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Abstract

The interaction of multiple autonomous agents gives rise to highly dynamic and nonde-
terministic environments, contributing to the complexity in applications such as automated
financial markets, smart grids, or robotics. Due to the sheer number of situations that may
arise, it is not possible to foresee and program the optimal behaviour for all agents be-
forehand. Consequently, it becomes essential for the success of the system that the agents
can learn their optimal behaviour and adapt to new situations or circumstances. The past
two decades have seen the emergence of reinforcement learning, both in single and multi-
agent settings, as a strong, robust and adaptive learning paradigm. Progress has been
substantial, and a wide range of algorithms are now available. An important challenge in
the domain of multi-agent learning is to gain qualitative insights into the resulting system
dynamics. In the past decade, tools and methods from evolutionary game theory have
been successfully employed to study multi-agent learning dynamics formally in strategic
interactions. This article surveys the dynamical models that have been derived for various
multi-agent reinforcement learning algorithms, making it possible to study and compare
them qualitatively. Furthermore, new learning algorithms that have been introduced us-
ing these evolutionary game theoretic tools are reviewed. The evolutionary models can be
used to study complex strategic interactions. Examples of such analysis are given for the
domains of automated trading in stock markets and collision avoidance in multi-robot sys-
tems. The paper provides a roadmap on the progress that has been achieved in analysing
the evolutionary dynamics of multi-agent learning by highlighting the main results and
accomplishments.

1. Introduction

In a multi-agent system, several autonomous agents interact in the same environment.
Therefore, multi-agent systems can be used to model many complex problems of today’s
society, such as urban and air traffic control (Agogino & Tumer, 2012), multi-robot coor-
dination (Ahmadi & Stone, 2006; Claes, Hennes, Tuyls, & Meeussen, 2012), distributed
sensing (Mihaylov, Tuyls, & Nowé, 2014), energy distribution (Pipattanasomporn, Feroze,
& Rahman, 2009), and load balancing (Schaerf, Shoham, & Tennenholtz, 1995; Verbeeck,
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Nowé, & Tuyls, 2005). The fact that multiple agents interact leads to a highly dynamic,
non-deterministic environment. In such an environment, defining proper behaviour for each
agent in advance is non-trivial and therefore learning is crucial. Recent publications at
agents and machine learning conferences, as well as papers published in related mainstream
journals, make clear that the number of newly proposed multi-agent learning algorithms is
constantly growing. An overview of well-established multi-agent learning algorithms with
their various purposes can be attained from previous multi-agent learning survey papers
(Panait & Luke, 2005; ’t Hoen, Tuyls, Panait, Luke, & Poutré, 2005; Busoniu, Babuska, &
De Schutter, 2008; Tuyls & Weiss, 2012), and demonstrates the need for a comprehensive
understanding of their qualitative similarities and differences. Although single-agent learn-
ing – in particular reinforcement learning – has been extensively studied and acquired a
strong theoretical foundation (Kaelbling, Littman, & Moore, 1996; Sutton & Barto, 1998),
a thorough understanding of learning in multi-agent settings has long remained an open
problem (Tuyls, ’t Hoen, & Vanschoenwinkel, 2006).

Learning in multi-agent systems is not only relevant within the field of artificial intel-
ligence but has been extensively studied in game theory and economics as well (Shoham,
Powers, & Grenager, 2007). It is not surprising then, that these fields share a lot of com-
mon ground. Indeed, game theory often provides the context in which multi-agent systems
are modelled and evaluated. Recently, some multi-agent learning research has shifted its
focus from traditional game theory to evolutionary game theory (Tuyls et al., 2006; Tuyls
& Parsons, 2007). The concepts employed by evolutionary game theory prove well suited to
describe learning in multi-agent systems. Both fields are concerned with dynamic environ-
ments with a high level of uncertainty, characterised by the fact that agents lack complete
information (Tuyls et al., 2006). Moreover, there exists a formal relation between the be-
haviour of one of the most basic reinforcement learning algorithms, Cross learning (Cross,
1973), and the population dynamics of evolutionary game theory, described by the replica-
tor dynamics (Börgers & Sarin, 1997). Although this link was originally established in the
context of stateless normal-form games only, it has since been extended to more complex
scenarios as well (e.g., Hennes, Tuyls, & Rauterberg, 2009; Tuyls & Westra, 2009; Galstyan,
2013; Panozzo, Gatti, & Restelli, 2014).

Understanding this relation sheds light into the black box of reinforcement learning
by making it possible to analyse the learning dynamics of multi-agent systems in detail
and to compare the behaviour of different algorithms in a principled manner. This in turn
facilitates important tasks such as parameter tuning, and helps in selecting a specific learner
for a given problem. Tuyls and Nowé (2005) and Tuyls et al. (2006) were the first to present
an overview of this evolutionary game theoretic approach to multi-agent learning. They
build on the connection between Cross learning and the replicator dynamics and extend
this link to learning automata and Q-learning as well. However, much progress has been
made in the past decade, warranting an up-to-date overview and roadmap of this research
area. This is precisely our aim in this work.

We believe that evolutionary game theory has a lot to offer for both the understanding
and application of multi-agent learning. Shoham et al. (2007) call for a more grounded
approach to research in multi-agent learning, suggesting five agendas to which such research
could contribute. They also caution not to rely too strongly on requirements such as
convergence to a Nash equilibrium when evaluating learning algorithms in a multi-agent
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setting. In response, Tuyls and Parsons (2007) argue in favour of evolutionary game theory,
rather than classical game theory, as the preferable framework within which to study multi-
agent learning formally. They show how research on the evolutionary framework contributes
to each of the five agendas of research identified by Shoham et al. (2007). Moreover, it allows
us to move away from the static Nash equilibrium, and focus instead on the transient
dynamics of the learning process.

In this article we describe the formal relation between evolutionary game theory and
multi-agent learning in detail and survey the recent advances and extensions that have
been made in this area.1 To this end we present a categorisation of related work based
on the nature of the environment (stateless or multi-state games) and the actions (discrete
or continuous) available to the learning agents. Moreover, we provide examples of the
successful application of this approach in relation to parameter tuning, the design of new
learning algorithms, and the analysis of complex strategic interactions such as automated
trading and multi-robot collision avoidance. The evolutionary game theoretic approach
offers a promising new paradigm within which to study multi-agent learning, as it provides
new insights towards the understanding, analysis, and design of multi-agent reinforcement
learning algorithms.

The paper proceeds as follows. Section 2 provides the necessary background on (multi-
agent) reinforcement learning and evolutionary game theory. Section 3 introduces the link
between the replicator dynamics and Cross learning and outlines the methodology of this
survey. An overview of recent advances and extensions is given in Section 4, supported
by empirical validation in Section 5. Section 6 presents examples of the application of the
evolutionary game theoretic approach. Section 7 concludes the article.

2. Preliminaries

In this section, we outline the fundamentals of multi-agent learning. Firstly, we concisely
present Markov decision processes (MDPs) as the standard formal framework for single-
agent decision making, together with a well-known reinforcement learning algorithm, Q-
learning. We then proceed to present stochastic games, also called Markov games, as a multi-
agent extension to MDPs, as well as three approaches to learning in this extended setting:
independent learning, joint action learning, and gradient based methods. Finally, we discuss
how evolutionary game theory can be used to reason about multi-agent interactions, paving
the way to formally relate these two fields in Section 3.

2.1 Reinforcement Learning

Reinforcement learning is based on the concept of trial-and-error learning, which underlies
many theories of (human) learning and intelligence (Sutton & Barto, 1998). The rein-
forcement learning agent continuously interacts with the environment, perceiving its state,
taking actions, and observing the effect of those actions (see Figure 1). Actions that yield
a positive effect will have a higher chance of being executed again in the future, that is to

1. We do not attempt to present a broad survey on multi-agent learning in general but focus solely on
those works that explicitly model multi-agent learning using methods from evolutionary game theory.
An excellent survey and taxonomy of multi-agent learning algorithms in general can be found in the
work of Busoniu et al. (2008).
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Figure 1: A reinforcement learning agent perceives state st of the environment at time
t, decides to take action at, upon which the environment transitions to state st+1 and the
agent receives reward rt+1.

say they are reinforced within the agent’s behaviour. To this effect, the agent receives a
reward signal that indicates the quality of the actions taken; however, the reward may be
stochastic, delayed, or accumulated over sequences of actions. Therefore, the agent needs to
balance exploration and exploitation, to avoid getting stuck in local optima. The objective
of the learning agent is to discover a policy, represented as a mapping from states to actions,
that maximises its long-term expected reward.

The single-agent reinforcement learning setting can be formalised as a Markov decision
process (MDP) (Puterman, 1994). An MDP is defined by finite state and action sets, S
and A, one-step state transition dynamics

Pa
ss′ = P (st+1 = s′|st = s, at = a) (1)

describing the probability of transitioning to state s′ ∈ S after taking action a ∈ A in state
s, and the expected value of the next reward

Ra
ss′ = E(rt+1|st = s, at = a, st+1 = s′) (2)

given the previously executed action and resulting state transition. Both state transitions
and rewards can be stochastic, and in fact learning these stochastic models is a key task
in many reinforcement learning problems. The learning goal in an MDP is to find a policy
π that maps states to action selection probabilities, maximising expected reward. When
following a fixed policy π we can define the value of a state s under that policy as the total
amount of reward R the agent expects to accumulate when starting in state s and following
π thereafter:

V π(s) = Eπ(Rt|st = s) = Eπ(

∞∑

k=0

γkrt+k+1|st = s).

The rewards are discounted by factor γ ∈ [0, 1) to ensure a bounded sum in infinite horizon
MDPs. The value function for a policy π can be calculated iteratively using the Bellman
equation (Bellman, 1957). Starting with an arbitrarily chosen value function V π, at each
iteration and for each state s the value function is then updated based on the immediate
reward and the current estimate of V π:

V π(s)←
∑

a∈A(s)

π(s, a)
∑

s′∈S

Pa
ss′ [R

a
ss′ + γV π(s′)].
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The Bellman equation expresses the recursive relation between the value of a state and
its successor states, and averages over all possibilities, weighing each by its probability of
occurring. In this setting, finding an optimal policy π∗ is equivalent to finding a policy that
maximises the value function, i.e.,

V π∗

(s) = max
π

V π(s) ∀s ∈ S.

When a model of the environment is available, in particular if P and R are known, the
Bellman equation can be applied to compute an optimal policy directly, using a dynamic
programming technique such as value iteration or policy iteration (Sutton & Barto, 1998).
In general, however, such a model may not be available. In this case, reinforcement learn-
ing can be used to find an optimal mapping from states to actions. Arguably the most
famous example of a reinforcement learning algorithm is the model-free temporal difference
algorithm Q-learning (Watkins & Dayan, 1992). Q-learning maintains a value function
over state-action pairs, Q(s, a), which it updates based on the immediate reward and the
discounted expected future reward according to Q:

Q(st, at)← Q(st, at) + α
[

rt+1 + γmax
a

Q(st+1, a)−Q(st, at)
]

. (3)

Here, γ is the discount factor for future rewards as before, and α ∈ [0, 1] is the learning rate
that determines how quickly Q is updated based on new reward information. Q-learning
is proven to converge to the optimal policy, given “sufficient” updates for each state-action
pair, and a decreasing learning rate α→ 0 (Watkins & Dayan, 1992).

Choosing which action to take is a crucial aspect of the learning process. Should the
agent exploit actions that yielded high reward in the past, or should it explore in order to
achieve potentially better results in the future, thereby risking a low reward now? Neither
of the two is sufficient on its own, and the dilemma is to find the right balance (Kaelbling
et al., 1996; Sutton & Barto, 1998). Two often used action selection mechanisms are ǫ-
greedy and softmax or Boltzmann exploration (Sutton & Barto, 1998). ǫ-Greedy selects
the best action (greedy w.r.t. Q) with probability 1 − ǫ, and with probability ǫ it selects
an action at random. The Boltzmann exploration mechanism makes use of a temperature
parameter τ that controls the balance between exploration and exploitation. Action ai is
chosen in state s with probability

pi =
eQ(s,ai)/τ

∑

j

eQ(s,aj)/τ
. (4)

A high temperature drives the mechanism towards exploration, whereas a low temperature
promotes exploitation, favouring actions with higher Q-values.

2.2 From Single-Agent to Multi-Agent Learning

The MDP framework assumes that a single agent is active in the environment. Once multiple
agents interact and learn simultaneously, the model needs to be extended. Stochastic games,
or Markov games, offer a generalisation of MDPs to the multi-agent domain (Littman, 1994).
In a stochastic game, each agent has its own set of actions, i.e., for n agents the joint-action
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space is A = A1×A2× . . .×An. The state transition and reward functions now depend on
the joint action of all agents:

R : S ×A1 × . . .×An × S 7→ R
n

P : S ×A1 × . . .×An × S 7→ [0, 1].

The immediate rewards may be the same for all agents but they need not be in general.
A special case of stochastic games is the stateless setting described by normal-form games.
Normal-form games are one-shot interactions, where all agents simultaneously select an
action and receive a reward based on their joint action, after which the game ends. There is
no state transition function, and the reward function can be represented by an n-dimensional
payoff matrix, for n agents. An agent’s policy is simply a probability distribution over its
actions. Repeated normal form games are common benchmarks for multi-agent learning.
Such scenarios are detailed further in Section 2.3.

Learning in a multi-agent setting is inherently more complex than in the single-agent
case described previously, as agents interact both with the environment and potentially
with each other. Learning is simultaneous, meaning that changes in the policy of one agent
may affect the rewards and hence the optimal policy of others. Moreover, agents may
have conflicting interests, yet cooperation with competitors may yield short or long term
benefits. This makes it difficult to judge the learning process, since myopic maximisation
of individual rewards might not lead to the best overall solution. The fact that the reward
function depends on the actions of other agents leads to an important characteristic of
multi-agent reinforcement learning: the environment is non-stationary and as a result each
agent is essentially pursuing a moving target (Busoniu et al., 2008). Moreover, the fact
that multiple agents influence the environment means that, from the perspective of the
individual agents, the Markov property no longer holds. Two different approaches to multi-
agent learning can be distinguished: independent learning and joint-action learning (Claus
& Boutilier, 1998). In the following we briefly discuss both approaches, and list notable
algorithms in each class. For a detailed taxonomy of multi-agent learning algorithms, we
refer to the excellent survey of Busoniu et al. (2008).

2.2.1 Independent Learning

Independent learners mutually ignore each other, thereby effectively reducing the multi-
agent learning problem to a single-agent one. Interaction with other agents is implicitly
perceived as noise in a stochastic environment. The advantage of this approach is that
single-agent learning algorithms can straightforwardly be applied to a multi-agent setting,
and scalability in the number of agents is not an issue.2 However, stochasticity of the
environment means that convergence guarantees from the single-agent setting are lost. In
particular, the Markov property on which such proofs are typically based, no longer holds.
Moreover, no explicit mechanism for coordination is available to the agents. Despite these
drawbacks, independent learners have shown good performance in many multi-agent set-
tings (Busoniu et al., 2008).

2. Computational complexity increases only linearly with the number of agents. Performance may vary
depending on the specific domain and algorithm.
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Traditional single-agent reinforcement learning algorithms, such as Q-learning (Watkins
& Dayan, 1992) and (networks of) learning automata (Narendra & Thathachar, 1974;
Wheeler Jr & Narendra, 1986; Vrancx, Verbeeck, & Nowé, 2008b), can be directly applied
in this setting. Moreover, various new independent learning algorithms have been proposed
specifically with the multi-agent setting in mind. For example, Bowling and Veloso (2001)
proposed policy hill climbing with the win or learn fast heuristic (WoLF-PHC), and show
that the algorithm is rational and convergent in multi-agent domains. Other examples
include frequency maximum Q-learning (Kapetanakis & Kudenko, 2002), an algorithm tai-
lored to coordinate in cooperative multi-agent systems, and a class of regret minimisation
algorithms (Blum & Mansour, 2007) that guarantee performance close to the best fixed
action in hindsight against any opponent. Finally, two extensions to Q-learning have been
proposed that alleviate certain artifacts of this algorithm in non-stationary (e.g. multi-
agent) environments: frequency-adjusted Q-learning (Kaisers & Tuyls, 2010), and repeated
update Q-learning (Abdallah & Kaisers, 2013). Frequency-adjusted Q-learning has been
proven to converge in two-player two-action normal-form games (Kaisers & Tuyls, 2011;
Kianercy & Galstyan, 2012).

2.2.2 Joint-Action Learning

Whereas independent learners completely ignore the presence of other agents, joint-action
learners explicitly take them into account. Joint-action learners achieve this by learning
in the space of joint actions, rather than in their individual action space only (Claus &
Boutilier, 1998). They observe the actions of other agents in order to estimate their policy,
and then act optimally given those estimated policies. This way, joint action learners have
better means of coordination. The drawback is that the agent needs to be able to observe the
other agents’ actions, and assumptions about the opponents’ adaptation mechanism are nec-
essary to derive reasonable predictions of the opponents’ future actions. Moreover, the com-
plexity of the algorithm grows exponentially with the number of agents. Examples of joint
action learners are minimax-Q (Littman, 1994), fictitious play and AWESOME (Brown,
1951; Conitzer & Sandholm, 2007), hyper-Q (Tesauro, 2003), and Nash-Q (Hu & Wellman,
2003). Worth mentioning here as well is the related stream of work on Bayesian reinforce-
ment learning (Dearden, Friedman, & Russell, 1998; Strens, 2000). Of particular interest
to the discussion of multi-agent learning is the work of Chalkiadakis and Boutilier (2003),
who use the Bayesian framework to explicitly model an agent’s uncertainty about both the
model of the environment and the strategies of the other agents.

2.2.3 Gradient Ascent Optimisation

A somewhat separate stream of multi-agent learning research revolves around gradient as-
cent based algorithms. These methods often fall in between independent learning and
joint-action learning, but are worth mentioning separately as they are important for our
discussion in Section 4.1. Gradient ascent (or descent) is a well-known optimisation tech-
nique in the field of machine learning. Given a well-defined differentiable objective function,
the learning process can follow the direction of its gradient in order to find a local optimum.
This concept can be adapted for multi-agent learning by having the learning agents’ policies
follow the gradient of their individual expected reward.
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Examples of gradient ascent algorithms are infinitesimal gradient ascent (IGA), which
is designed specifically for two-player two-action normal-form games (Singh, Kearns, &
Mansour, 2000), and generalized infinitesimal gradient ascent (GIGA), which extends IGA
to games with an arbitrary number of actions (Zinkevich, 2003). Both algorithms can be
combined with the win or learn fast (WoLF) heuristic in order to improve convergence in
stochastic games (Bowling & Veloso, 2002; Bowling, 2005). Both IGA and GIGA assume
that the agents have knowledge of the (reward) structure of the game, or at least have some
mechanism for approximating the gradient of the value function, which is not generally
feasible in practice. However, the more recent algorithm weighted policy learning (WPL)
relaxes this assumption (Abdallah & Lesser, 2008).

2.3 Game Theory

Game theory (Von Neumann & Morgenstern, 1944; Gibbons, 1992) is a theory of interactive
strategic decision making, and is therefore of utmost importance for multi-agent systems.
It studies this decision making in the form of cooperative and competitive games. In these
games, each player has a set of actions and a preference over the joint action outcome, which
is captured by a numerical payoff signal. For games between two players that are played
only once, i.e., one-shot two-player games, the payoffs can be represented by a bi-matrix
(A,B), which gives the payoff for the row player in A, and the column player in B (see
Figure 2). In this example, the row player chooses one of the two rows, the column player
chooses on of the columns, and the outcome of their joint action determines the payoff to
both. The goal for each player is to come up with a strategy (a probability distribution over
his actions) that maximises their expected payoff in the game. Note that games, players,
strategies, and payoffs of game theory map one-to-one to environments, agents, policies,
and rewards in the multi-agent systems literature.

The players are thought of as individually rational, in the sense that each player is
perfectly logical and tries to maximise his own payoff, assuming the others are doing likewise.
Under this assumption, the Nash equilibrium (NE) solution concept can be used to study
what players will reasonably choose to do. A set of strategies forms a NE if no single player
can do better by unilaterally switching to a different strategy. In other words, each strategy
in a NE is a best response against all other strategies in that equilibrium.

A game can have more than one Nash equilibrium, some of which may not be preferred
equally. Moreover, the NE may not be the best outcome from a social point of view. As an
example, consider the Prisoner’s Dilemma (Axelrod & Hamilton, 1981), depicted in Figure 3
(left). In this game, two players simultaneously choose either to cooperate (C) or defect
(D). Individually, defection is a best response against any opponent strategy, and as a result
mutual defection is the single Nash equilibrium of the game. However, both players would
be better off if both would cooperate – hence the dilemma.

(
a11, b11
a21, b21

a12, b12
a22, b22

)

Figure 2: General payoff bi-matrix (A,B) for a two-player two-action normal form game.
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Figure 3: Payoff matrix for the Prisoner’s Dilemma (left), the Stag Hunt (center), and
Matching Pennies (right).

A second example is given by the Stag Hunt (Skyrms, 2004), shown in Figure 3 (center).
In this coordination game, both players prefer to jointly choose either to hunt for stag (S) or
hare (H). Hunting for hare provides a safe choice, as the payoff for this action is independent
of the choice of the opponent. Hunting stag is more risky, however both players yield a higher
payoff if they manage to coordinate. This game has two pure Nash equilibria, (S, S) and
(H,H), and one mixed Nash equilibrium where both players randomise and play S with
probability 2

3 .
Finally, in the Matching Pennies game (Figure 3, right) two players simultaneously

choose which side of their coin to display, either heads (H) or tails (T). If both choose the
same side, the first player gets to keep both coins. If they pick opposite sides, the second
player keeps the coins. In this zero-sum game, the single mixed NE is for both players to
randomise uniformly over their actions.

2.4 Evolutionary Game Theory

Classical game theory assumes that full knowledge of the game is available to all players,
which together with the assumption of individual rationality does not necessarily reflect
the dynamic nature of real world interactions. Evolutionary game theory relaxes the ra-
tionality assumption and replaces it by biological concepts such as natural selection and
mutation (Maynard Smith & Price, 1973; Weibull, 1997; Hofbauer & Sigmund, 1998; Gin-
tis, 2009). Central to evolutionary game theory are the replicator dynamics that describe
how a population of individuals evolves over time under evolutionary pressure. Each in-
dividual is of a certain type, and individuals are randomly paired in interaction. Their
reproductive success is determined by their fitness, which results from these interactions.
The replicator dynamics dictate that the population share of a certain type will increase
if the individuals of this type have a higher fitness than the population average; otherwise
their population share will decrease. The population can be described by the state vector
x = (x1, x2, . . . , xn)

⊤, with 0 ≤ xi ≤ 1 ∀i and
∑

i xi = 1, representing the fractions of the
population belonging to each of n types. Now suppose the fitness of type i is given by the fit-
ness function fi(x), and the average fitness of the population is given by f̄(x) =

∑

j xjfj(x).

Using ẋi to denote dxi

dt
, the population change over time can then be written as

ẋi = xi
[
fi(x)− f̄(x)

]
. (5)

These replicator dynamics describe the change over time of a large population of individuals.
However, the model can be interpreted alternatively as representing the strategy of a single
player, where the population share of each type represents the probability with which the
player selects the corresponding pure action, as summarised in Table 1. The replicator
dynamics now describe the player’s strategy change over time as he repeatedly plays the
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Table 1: Correspondence of terminology between the domains of reinforcement learning,
game theory, and evolutionary game theory.

Reinforcement Learning Game Theory Evolutionary Game Theory

environment game game

agent player population

action action type

policy strategy distribution over types

reward payoff fitness

game and iteratively updates his policy. Evolutionary game theory refines the static
Nash equilibrium (NE) concept with the notion of evolutionarily stable strategies (ESS). A
strategy x is an ESS if it is immune to invasion by mutant strategies, given that the mutants
initially occupy only a small fraction of the population. Let f(x,y) be the (expected) fitness
of strategy x against strategy y. Formally then, strategy x is an ESS iff, for any mutant
strategy y, the following hold:

1. f(x,x) ≥ f(y,x), and

2. if f(x,x) = f(y,x), then f(x,y) > f(y,y).

The first condition states that an ESS is also a NE of the original game. The second
condition states that if the invading strategy does as well against the original strategy as
the original strategy does against itself, then the original strategy must do better against
the invader than the invader does against itself. This means that ESS are a refinement of
the NE solution concept. Moreover, every ESS is an asymptotically stable fixed point of
the replicator dynamics (Weibull, 1997).

In a two-player game, each player is described by his own evolving population, and at
every iteration of the game one individual of each player’s population is drawn to interact.
Therefore, the fitness of each type now depends on the population distribution of the co-
player, i.e., the two populations are co-evolving. If the two players’ populations are given
by x and y and their fitness functions by the payoff matrices A and B, we can write the
expected fitness of type i of population x as

fi(x) =
∑

j

aijyj = (Ay)i

and similarly we can write the average population fitness as

f̄(x) =
∑

i

xi
∑

j

aijyj = x⊤Ay.

Following similar reasoning for the population y, we can rewrite Equation 5 for the two
populations as

ẋi = xi

[

(Ay)i − x⊤Ay
]

ẏi = yi

[

(x⊤B)i − x⊤By
]

.
(6)
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Figure 4: The replicator dynamics, plotted in the unit simplex, for the prisoner’s dilemma
(left), the stag hunt (center), and matching pennies (right).

To illustrate the dynamics of Equation 6, we analyse the three games presented in Figure 3.
Since a player’s strategy over two actions is fully defined by the probability of the first action
(as x2 = 1−x1), we can plot the strategy space of these games as the two-dimensional unit
simplex over the tuple (x1, y1). Plugging the payoff matrix of each game into the replicator
dynamics of Equation 6, we find the direction and relative speed of change for each point
in the unit simplex. The resulting vector fields for the three games are shown in Figure 4.

Figure 4 shows that the players in the prisoner’s dilemma are drawn to the (D,D)
equilibrium, which is both a NE and an ESS. In the stag hunt, both pure NE, (S, S) and
(H,H), are also ESS, but the mixed NE is not. It is a fixed point, but not asymptotically
stable. Finally, the matching pennies game has a single mixed NE at (12 ,

1
2), where both

players randomise uniformly over their actions. However, this again is not an ESS; instead
all trajectories cycle around this fixed point.

3. Relating Reinforcement Learning and Replicator Dynamics

Recent research analysing the dynamics of multi-agent learning builds on seminal work
by Börgers and Sarin (1997), who first proved the formal relation between the replicator
dynamics of evolutionary game theory and reinforcement learning. In this section, we will
first summarise their proof. Next, we present a categorisation of recent work, based on the
nature of the environment and actions available to the agents.

3.1 Replicator Dynamics as the Continuous Time Limit of Cross Learning

Multi-agent learning and evolutionary game theory share a substantial part of their foun-
dation, in that they both deal with the decision making processes of boundedly rational
agents, or players, in uncertain environments. The link between these two fields is not only
an intuitive one, but was made formal with the proof that the continuous time limit of
Cross learning converges to the replicator dynamics (Börgers & Sarin, 1997).
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Cross learning (Cross, 1973) is one of the most basic stateless reinforcement learning
algorithms, which updates policy3 π based on the reward r received after taking action j as

π(i)← π(i) +

{
r − π(i)r if i = j

−π(i)r otherwise
. (7)

A valid policy is ensured by the update rule as long as the rewards are normalised, i.e.,
0 ≤ r ≤ 1. Cross learning is closely related to finite action-set learning automata (Narendra
& Thathachar, 1974; Thathachar & Sastry, 2002). In particular, it is equivalent to a learning
automaton with a linear reward-inaction (LR−I) update scheme and a learning step size (α)
of 1.

We can estimate the expected change in the policy, E [∆π(i)], induced by Equation 7
(Börgers & Sarin, 1997). The probability π(i) of action i is affected both if i is selected and
if another action j is selected. Let Ei[r] be the expected reward after taking action i. We
can now write

E [∆π(i)] = π(i)
[

Ei[r]− π(i)Ei[r]
]

+
∑

j 6=i

π(j)
[

− Ej [r]π(i)
]

= π(i)
[

Ei[r]−
∑

jπ(j)Ej [r]
]

. (8)

Assuming the learner takes infinitesimally small update steps, the continuous time limit of
Equation 8 can be taken as

πt+δ(i) = πt(i) + δ∆πt(i)

with lim δ → 0. This yields a continuous time system which can be expressed with the
partial differential equation

π̇(i) = π(i)
[

Ei[r]−
∑

jπ(j)Ej [r]
]

In a two-player normal form game, we can write the policy of an agent simply as a probability
distribution over actions, i.e. π ≡ x. As such defined, and given payoff matrices A and B

and policies x and y for the two players, respectively, this yields

ẋi = xi

[

(Ay)i − x⊤Ay
]

ẏi = yi

[

(x⊤B)i − x⊤By
] (9)

which are exactly the multi-population replicator dynamics of Equation 6.
This link can be made explicit not only theoretically but also empirically, as shown

in Figure 5. Here, we simulate the learning process of two Cross learners when taking
very small policy update steps (by multiplying the update term of Equation 7 by α =
0.001), starting at different initial policies, and overlaying the resulting policy traces on
the replicator dynamics of Figure 4. As can be observed, the learning traces follow the
replicator dynamics precisely. In a similar fashion, dynamical models of different (and more
complex) reinforcement learning algorithms can be derived. These are discussed in the
following sections.

3. The dependency of the policy on state s is dropped for stateless environments, and the dependence on
time is implied but omitted for notational convenience.
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Figure 5: Policy traces of Cross learning, plotted in the unit simplex and overlaid on the
replicator dynamics, for the prisoner’s dilemma (left), the stag hunt (center), and matching
pennies (right).

3.2 Categorisation of Learning Dynamics

We divide the learning algorithms and corresponding dynamics that are presented in this
work into four categories, based on the nature of the environment and the actions avail-
able to the agent. We distinguish stateless normal-form games, and games with multiple
states with probabilistic transitions between them, represented by stochastic games (see
also Section 2.2). Moreover, we differentiate between settings where the agent has a finite,
discrete choice of actions, and settings which offer a continuous range of choices. Table 2
lists the four resulting categories, along with references to work that has been done in each
category. We focus solely on work that explicitly relates the dynamical models to learning
in multi-agent systems. A large body of work is available that discusses extensions to the
replicator dynamics from an evolutionary game theoretic viewpoint only, however, these fall
outside the scope of this survey.4

Cross learning, detailed previously, belongs to the first category of stateless games with
discrete actions. Other examples in this category are stateless Q-learning and the related
frequency adjusted (FAQ) and lenient (LFAQ) versions, regret minimisation, and gradient
ascent algorithms. The second category comprises stateless games with a continuous action
space. Typically, function approximators are used in such settings (a recent overview is
provided in Busoniu, Babuska, De Schutter, & Ernst, 2010), however most work in that
category has so far been limited to single-agent learning. Here, we summarise approaches
to model such games using continuous action replicator dynamics. The third category is that
of stochastic (i.e. multi-state) games with discrete actions. Dynamics have been derived
for networks of learning automata, in particular piece-wise and state-coupled replicator
dynamics, and the variation RESQ-learning that incorporates exploration in the learning
process.

The fourth category in Table 2, comprising stochastic games with continuous action-
spaces, is strikingly empty. Indeed, this domain is of main interest for future work, as no
attempts have been made so far to derive learning dynamics for this setting. Combining
techniques and approaches from the second and third category could be a fruitful starting

4. See e.g. the textbooks by Weibull (1997) and Hofbauer and Sigmund (1998) for an introduction.
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Table 2: Categorisation of dynamical models of multi-agent learning that are available in
the literature.

Discrete actions Continuous actions

Normal form

games

Q-learning1

FAQ-learning2

Regret Minimisation3

Lenient FAQ-learning4

Gradient ascent5

Continuous action replicator
dynamics6

Q-learning7

Stochastic

games

Piecewise replicator dynamics8

State-coupled replicator
dynamics9

RESQ-learning10

1Tuyls et al. (2003)

Kianercy and Galstyan (2012)
2Kaisers and Tuyls (2010, 2011)
3Klos et al. (2010)

4Panait et al. (2008)

Bloembergen et al. (2011)
5Kaisers et al. (2012)
6Tuyls and Westra (2009)

7Galstyan (2013)
8Vrancx et al. (2008a)
9Hennes et al. (2009)
10Hennes et al. (2010)

point for such an endeavour. In the next section we provide an overview of the work listed
in Table 2, following the same categorisation.

4. Overview of Learning Dynamics

With the categorisation presented in Table 2 in hand, we now give an overview of the
dynamics of various multi-agent reinforcement learning algorithms. First, learning dynamics
in normal-form games will be discussed. Next, we present replicator dynamics for continuous
strategy spaces. Finally, multi-state learning dynamics are described.

4.1 Learning Dynamics in Normal-Form Games

Repeated normal-form games are characterised by being stateless games, in which agents
choose from a discrete and finite set of actions at each time step. This greatly simplifies
analytical approaches, while at the same time still allowing to capture interesting strategic
interactions. As a result, normal-form games have been frequently used as a test-bed for
multi-agent learning (Busoniu et al., 2008). Several learning algorithms have been devised
specifically for normal-form games; other multi-state algorithms such as Q-learning can
straightforwardly be applied by removing the state dependency from the learning update
rule. As before, in the remainder we define x ≡ π and y ≡ σ to be the policies of the two
agents in the stateless setting.

4.1.1 Independent Reinforcement Learners

As described in Section 3, Cross learning (CL) was the first algorithm to be linked to the
replicator dynamics of evolutionary game theory (Börgers & Sarin, 1997). In particular,
the infinitesimal time limit of the Cross learning update rule (Equation 7) converges to the
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replicator dynamics. The link between a simple policy learner such as Cross learning, and
a dynamical system in the policy space may seem intuitive. However, this link has been
extended to value-based (and more complex policy-based) learners as well. A selection-
mutation model of Boltzmann Q-learning has been proposed by Tuyls et al. (2003), assuming
a constant temperature τ .5 Tuyls et al. show that the dynamical system can be decomposed
into terms for exploitation (selection following the replicator dynamics) and exploration
(mutation through randomisation based on the Boltzmann mechanism):6

ẋi =
αxi

τ

[

(Ay)i − x⊤Ay
]

︸ ︷︷ ︸

exploitation

−αxi

[

log xi −
∑

kxk log xk

]

︸ ︷︷ ︸

exploration

. (10)

Another way to view the two terms of Equation 10 is in relation to the thermodynamical
concepts of energy and entropy, where selection is analogous to energy, and mutation to
entropy. The entropy term can be further subdivided in the entropy of one individual strat-
egy, log xi, and the entropy of the entire population,

∑

k xk log xk. In this sense, mutation is
determined by the difference in entropy of an individual strategy compared to the entropy
of the whole population (Tuyls et al., 2003).

The dynamical model of Equation 10 assumes that all actions are updated simultane-
ously, as is the case for Cross learning. Q-learning, however, only updates the Q-value of the
selected action, causing discrepancies between the predicted dynamics and the actual learn-
ing behaviour of the algorithm. The variation frequency-adjusted Q-learning (FAQ) (Kaisers
& Tuyls, 2010) mimics simultaneous action updates by modulating the update rule (Equa-
tion 3) inversely proportional to xi, thereby following the dynamical model of Equation 10
precisely. Dropping the state dependency, this yields

Q(i)← Q(i) +
1

xi
α

[

r +max
j

Q(j)−Q(i)

]

.

Using the replicator dynamics model of Equation 10, two independent proofs of convergence
for FAQ have been derived for two-player two-action normal-form games, showing conver-
gence near Nash equilibria given a decreasing exploration temperature τ (Kaisers & Tuyls,
2011; Kianercy & Galstyan, 2012).

Lenient FAQ (LFAQ) (Bloembergen et al., 2011) is a variation aimed at overcoming
convergence to suboptimal equilibria by mis-coordination in the early phase of cooperative
learning processes, when mistakes by one agent may lead to penalties for others, irrespective
of the quality of their actions. Leniency towards such mistakes can be achieved by collecting
κ rewards for each action, and updating the Q-value based on the highest of those rewards.
This causes an (optimistic) change in the expected reward for the actions of the learning
agent, incorporating the probability of a potential reward for that action being the highest
of κ consecutive tries (Panait et al., 2008). The expected reward for each action Ay in

5. For a model of Boltzmann Q-learning dynamics with varying temperature, see the work of Kaisers, Tuyls,
Parsons, and Thuijsman (2009) and Kaisers (2012).

6. From here on, we will derive the dynamics of one agent only. The dynamics of other agents follow
straightforwardly, similar to Equation 9.
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Equation 10 is replaced by the utility vector u, with

ui =
∑

j

aijyj

[(
∑

k:aik≤aij
yk

)κ

−
(
∑

k:aik<aij
yk

)κ]

∑

k:aik=aij
yk

(11)

where
∑

k:statement implies summing over all indices k for which the statement holds.
Recently, the evolutionary framework has also been extended to the polynomial weights

algorithm, which implements regret minimisation (RM) (Blum & Mansour, 2007; Klos
et al., 2010). The learner calculates the loss (or regret) li of taking action i rather than
the best action in hindsight as li = r∗ − r where r is the actual reward received, and r∗ is
the optimal reward. The learner maintains a set of weights w for all actions, updates these
weights according to the perceived loss, and derives a new policy by normalisation:

wi ← wi [1− αli]

xi =
wi

∑

j wj
.

(12)

This form of regret, computed at each time step, is known as external regret, whereas
internal regret is computed as the loss with respect to a policy that replaces a given action
i with some other action j at each occurrence (Blum & Monsour, 2007). Despite the great
difference in update rule and policy generation compared to Cross learning or Q-learning,
Klos et al. (2010) show that the infinitesimal time limit of regret minimisation can similarly
be linked to a dynamical system with replicator dynamics in the numerator:

ẋi =
αxi

[
(Ay)i − x⊤Ay

]

1− α [maxk(Ay)k − x⊤Ay]
. (13)

The denominator can be interpreted as a learning rate modulation dependent on the best
action’s update, corresponding to weighting the action probability update by the expected
loss.

4.1.2 Gradient Ascent Algorithms

Gradient ascent (or descent) is a well known optimisation technique in the field of Machine
Learning. Given a well-defined differentiable objective function, the learning process can
follow the direction of its gradient in order to find a local optimum. This concept can be
adapted for multi-agent learning by having the learning agents’ policies follow the gradient
of their individual expected payoff. This approach assumes that the expected payoff function
is known to (or can be accurately learned by) the agents, which may not generally be feasible
in practice, since in multi-agent settings the payoff function usually depends on (possibly
frequently changing) unobservable internal states of other agents.

One algorithm implementing gradient ascent for multi-agent learning is infinitesimal
gradient ascent (IGA) (Singh et al., 2000), in which each learner updates its policy by
taking infinitesimal steps in the direction of the gradient of its expected payoff. It has been
proven that, in two-player two-action games, IGA either converges to a Nash equilibrium,
or the asymptotic expected payoff of the two players converges to the expected payoff of a
Nash equilibrium (Singh et al., 2000). A discrete time algorithm using a finite decreasing
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step size shares these properties. Take V (x) : Rn → R to be the value function that maps
a policy to its expected payoff. The policy update rule for IGA can now be defined as

∆xi ← α
∂V (x)

∂xi

x← projection(x+∆x)

(14)

where α denotes the learning step size. The intended change ∆x may take x outside of
the valid policy space, in which case it is projected back to the nearest valid policy by the
projection function.

Win or learn fast (IGA-WoLF) (Bowling & Veloso, 2002) is a variation on IGA which
uses a variable learning rate. The intuition behind this scheme is that an agent should
adapt quickly if it is performing worse than expected, whereas it should be more cautious
when it is winning. The modified learning rule of IGA-WoLF is

∆xi ←
∂V (x)

∂xi

{
αmin if V (x) > V (x∗)

αmax otherwise

x← projection(x+∆x)

(15)

where x∗ is a reference policy, e.g., a policy belonging to an arbitrary Nash equilibrium.
The weighted policy learner (WPL) (Abdallah & Lesser, 2008) is a second variation of

IGA that also modulates the learning rate, but in contrast to IGA-WoLF it does not require
a reference policy. The update rule of WPL is defined as

∆xi ← α
∂V (x)

∂xi

{
xi if ∂V (x)

∂xi
< 0

1− xi otherwise

x← projection(x+∆x)

(16)

where the update is weighted either by xi or by 1−xi depending on the sign of the gradient.
This means that x is driven away from the boundaries of the policy space.

In the next section, we will derive the dynamical model of these gradient ascent al-
gorithms in two-player two-action games, and show their remarkable similarities to the
dynamics of the reinforcement learners discussed in Section 4.1.1.

4.1.3 Comparative Overview of Learning Dynamics in 2x2 Games

For two-agent two-action games, the dynamical models presented in the previous sections
can be simplified (Kaisers et al., 2012). Let h = (1,−1), x = (x, 1−x) and y = (y, 1−y). The
learning dynamics are completely described by the pair (ẋ, ẏ), which denote the probability
change of the first action for both learners. For Cross learning (CL) this leads to the
simplified form

ẋ = x
[
(Ay)1 − x⊤Ay

]

= x(1− x)
[
y (a11 − a12 − a21 + a22) + a12 − a22

]

= x(1− x)
[
yhAh⊤+ a12 − a22

]

where a12 and a22 are elements of the payoff matrix A. To shorten the notation for two-
action games, let

ð = (Ay⊤)1 − (Ay⊤)2 = yhAh⊤+ a12 − a22
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denote the gradient, such that the CL dynamics are written as ẋ = x(1 − x)ð. Then,
similarly, the simplified FAQ dynamics read

ẋ = αx(1− x)

[
ð

τ
− log

x

1− x

]

.

The dynamics of RM are slightly more complex, as the denominator depends on which
action gives the highest reward. This can be derived from the gradient: the first action will
be maximal iff ð > 0. Using this insight, the dynamics of RM in two action games can be
written as follows:

ẋ = αx(1− x)ð ·

{
(1 + αxð)−1 if ð < 0

(1− α(1− x)ð)−1 otherwise.

For IGA, the update rule can be worked out in a similar fashion. The main term in this
update rule is the gradient of the expected reward, which in two player two-action games
can be written as

∂V (x)

∂x
=

∂

∂x
(x, 1− x)A

(
y

1− y

)

= y(a11 − a12 − a21 + a22) + a12 − a22

= yhAh⊤+ a12 − a22

= ð.

This reduces the dynamics of the update rule for IGA in two-player two-action games to
ẋ = αð. The extension of the dynamics of IGA to IGA-WoLF and WPL are straightforward.

Table 3 lists the dynamics of the six discussed algorithms: IGA, IGA-WoLF, WPL,
CL, FAQ and RM. It is immediately clear from this table that all algorithms share the
same basic term in their dynamics: the gradient ð. Depending on the algorithm, the
gradient is scaled with a learning speed modulation. Interestingly, the dynamics of IGA are
completely independent of the learner’s own current policy x. In other words, IGA is an

Table 3: This table shows an overview of the learning dynamics, rewritten for the specific
case of two-agent two-action games (Kaisers et al., 2012).

Algorithm ẋ

IGA αð

IGA-WoLF ð ·

{
αmin if V (x) > V (x∗)

αmax otherwise

WPL αð ·

{
x if ð < 0

(1− x) otherwise

CL x(1− x) ð

FAQ αx(1− x)
[
ð ·τ−1 − log x

1−x

]

RM αx(1− x) ð ·

{
(1 + αxð)−1 if ð < 0

(1− α(1− x)ð)−1 otherwise
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off-policy algorithm that assumes that all actions are sampled equally often. In contrast, in
any multi-agent learning setting in which the (gradient of the) value function is not known,
the learners necessarily need to be on-policy, as otherwise they cannot learn the true value
function. In this light, it can be argued that Cross learning implements stochastic on-
policy gradient ascent (Kaisers et al., 2012). Finally, FAQ yields the only dynamics that
additionally add exploration terms to the process.

This analysis shows the merits of the evolutionary game theoretic approach to the study
of multi-agent learning. By deriving mathematical models of the infinitesimal time limit
of various learning algorithms, we can formally establish their underlying differences and
commonalities.

4.2 Replicator Dynamics in Continuous Action Spaces

The dynamics and algorithms discussed previously assume a discrete, finite action space.
In contrast, many real-world settings feature actions that are rather of a continuous nature.
In such settings the tabular notation for Q-functions and policies is no longer feasible and
function approximators need to be used. One approach is to discretise such continuous pa-
rameters in ranges, and treat each range as one instance. However, it is not straightforward
in general to design a good discretisation, and details might be lost. Another approach is to
model those continuous actions directly, moving from discrete probability vectors over ac-
tions to probability density functions. Examples of Q-learning algorithms for continuous ac-
tion spaces are fitted Q-iteration (Ernst, Geurts, & Wehenkel, 2005) and NEAT+Q-learning
(Whiteson & Stone, 2006). Learning automata can similarly be extended to continuous ac-
tion spaces. For instance, Santharam, Sastry, and Thathachar (1994) propose continuous
action-set learning automata (CALA) which use a Gaussian distribution to model the policy.
It is also possible to use a nonparametric distribution, as is employed in continuous action
reinforcement learning automata (CARLA), allowing a more diverse exploration strategy
and convergence to a potentially multi-modal distribution (Howell, Frost, Gordon, & Wu,
1997; Rodŕıguez, Vrancx, Grau, & Nowé, 2012). An in-depth discussion of these learning
methods falls outside the scope of this paper. Instead, we focus here on modelling such
algorithms by extending the replicator dynamics to continuous action spaces.7

Suppose each agent’s action space can be described by D continuous parameters x =
(x1, x2, . . . , xD), with x ∈ Θ ⊂ RD, where Θ is the allowed action space. In a two-player
setting, the reward of playing action x against an opponent who plays y is given by f(x,y).
An agent’s policy at time t is now given by a probability density function over the action
space, φ(x, t), where

∫

Θ
φ(x, t)dx = 1.

We can now write the continuum limit of the standard replicator dynamics (Equation 5) as
a partial differential equation (Oechssler & Riedel, 2001; Cressman, 2005; Tuyls & Westra,
2009):

∂φ(x, t)

∂t
= φ(x, t)

[

V (x, t)− E(t)
]

(17)

7. A recent extensive overview of function approximation methods for reinforcement learning is provided
by Busoniu et al. (2010).
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where

V (x, t) =

∫

Θ
f(x,y)φ(y, t)dy

E(t) =

∫

Θ
V (x, t)φ(x, t)dx.

Here, V (x) depicts the expected reward of action x, and E the overall average reward. In
the context of statistical mechanics these terms can be thought of as local potential and
total energy, respectively.

Similar to the discrete action dynamics discussed before, we can add mutation terms
to Equation 17 to model exploration by the learning agents. The most straightforward
approach to do this is by including a diffusion term to the replicator dynamics, which
allows the mutation of strategies to slightly different ones ‘nearby’. This procedure was
originally proposed by Hofbauer and Sigmund (1998), for which Ruijgrok and Ruijgrok
(2005) have provided a rigorous mathematical foundation and subsequent analysis. Ruijgrok
and Ruijgrok add such a diffusion term to the continuous action replicator dynamics and
find that even a small mutation rate may greatly alter the outcome of the learning process,
leading to more favourable results in, e.g., the ultimatum game. Specifically, they add
a transition probability per unit time qij for the spontaneous transfer to strategy i from
strategy j. In this way the discrete replicator equations with mutation can be written as
follows:

ẋi = xi(Vi − E) +
∑

j

(qijxj − qjixi).

Ruijgrok and Ruijgrok follow the method of Van Kampen (1992) to derive the continuum
limit of the mutation term. Using this approach, they arrive at the same continuous repli-
cator equation as Hofbauer and Sigmund:

∂φ(x, t)

∂t
= φ(x, t)

[

V (x, t)− E(t)
]

+ µ(x, t)∇2φ(x, t). (18)

Ruijgrok and Ruijgrok study this equation for a number of games that have been trans-
formed to a continuous strategy setting. There is, however, no reason to assume that mu-
tations are only restricted to adjacent strategies. Therefore, building on this work, Tuyls
and Westra (2009) compare three different diffusion-based mutation terms, and find that
the type of mutation can also significantly influence the resulting dynamics. Specifically,
they replace the simple isotropous diffusion term containing the mutation rate of Ruijgrok
and Ruijgrok by mimicking the effect of anisotropous deterministic mutations. They start
from the continuous time discrete action replicator equations with mutation, and from there
derive a different formulation for the continuous action space:

∂φ(x, t)

∂t
= φ(x, t)

[

V (x, t)− E(t)
]

+∇T · µ(x)∇
[

V (x)φ(x, t)
]

.

This new formulation is able to capture certain aspects of an evolution driven by game
theoretic interactions that are absent in the original formulation of Hofbauer and Sigmund,
and Ruijgrok and Ruijgrok in Equation 18. The dynamics of this approach are even more
complex as different mutation rates provide entirely different stationary solutions. Full
details can be found in the work of Tuyls and Westra.
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Although the dynamical models of Equations 17 and 18 have not yet been directly linked
to a specific learning algorithm, Galstyan (2013) recently proposed a dynamical model for a
continuous action version of Boltzmann Q-learning. Galstyan’s model has a similar selection
term based on local potential V (x) and total energy E, but a mutation term that is again
an entropy term derived from the Boltzmann distribution, as in Equation 10. Galstyan
finds that mutation drives the learning process away from pure Nash equilibria but helps
convergence to uniformly mixed equilibria, similar to discrete action Q-learning (see Kaisers
& Tuyls, 2011; Kianercy & Galstyan, 2012).

4.3 State-Coupled Replicator Dynamics

So far, our discussion of learning dynamics has been limited to stateless games. Although
many real-world interactions can indeed be cast in the form of repeated normal-form games,
this is not always the case. Therefore, there is a need to understand learning dynamics in
statefull environments as well. Vrancx et al. (2008a) propose a combination of replicator dy-
namics and switching dynamics to model learning automata in stochastic (Markov) games.
As learning automata are by definition stateless (see Section 3.1), an extension is needed for
multi-state games. One option is for an agent to maintain a network of learning automata
(Wheeler Jr & Narendra, 1986; Vrancx et al., 2008b), one for each state. As the game
progresses, control is passed from one automaton to the other depending on the current
state of the game. Instead of performing policy updates for the active automaton based on
the immediate reward rt, the update is delayed until the automaton becomes active again,
at which time it is updated based on the average reward received during that period. Based
on this mechanism, Vrancx et al. (2008a) partition the state-space in cells, corresponding to
different attractors in these average reward games. Each cell has a fixed replicator dynamic,
based on which the agents’ policies are updated. When this update makes the system leave
the current cell, a new replicator dynamic takes over. Hennes, Tuyls, and Rauterberg (2008)
further formalise these piece-wise replicator dynamics.

The piece-wise model suffers from several shortcomings, however, as demonstrated by
Hennes et al. (2009). Firstly, the model only approximates the learning behaviour by as-
suming fixed dynamics in each cell, and secondly, the discrete switching between cells causes
discontinuities that are not present in real traces of the learning process. In order to al-
leviate these shortcomings, Hennes et al. propose the state-coupled replicator dynamics
(SC-RD) model which uses direct state coupling rather than piece-wise switching dynam-
ics. The direct state coupling eliminates anomalies and discontinuities caused by linear
approximations and discrete cell switching. The SC-RD are defined as follows. Let π be
the set of policies of n agents, i.e., π =

(
π1, π2, . . . , πn

)
. Moreover, let a =

(
a1, a2, . . . , an

)

be their joint action. Assuming the game has no absorbing states (i.e., the set of states S

is ergodic), there exists a stationary distribution χπ over all states S under π, where χπ

s

is the frequency of state s and
∑

s∈S χπ

s = 1. We can then calculate the limiting average
reward r̄ of playing a specific joint-action a in state s, given fixed policies π in all other
states s′, as

r̄i(s,a) = χπ

s r
i(s,a) +

∑

s′∈S−{s}

χπ

s′f
i
(
s′
)

(19)
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where f i (s′) is the expected reward (fitness) of agent i in state s′, calculated as

f i (s) =
∑

a∈
∏n

j=1
Aj

(

ri (s,a)
n∏

k=1

πk
(

s, ak
)
)

.

We can set up a system of differential equations for each agent i and action j, similar to
Equation 9, where the payoff matrix A is substituted by the limiting average reward r̄.
Furthermore, instead of the single opponent policy σ we now have all other agents’ policies
π
−i =

(
π1 . . . πi−1, πi+1 . . . πn

)
. The expected payoff for player i playing pure action j in

state s is given by

f i
j (s) =

∑

a
′∈

∏
l 6=i A

l



r̄i
(
s,a′

)∏

k 6=i

πk
(

s, a′k
)





where a′ =
(
a1 . . . ai−1, j, ai . . . an

)
. Essentially, we enumerate all possible joint actions a

with fixed action j for agent i. In general, for some mixed policy ω, agent i receives an
expected payoff of

f i (s, ω) =
∑

ai∈Ai



ω(s, ai)
∑

a
′∈

∏
l 6=i A

l



r̄i
(
s,a′

)∏

k 6=i

πk
(

s, a′k
)









where r̄ is the limiting average reward given in Equation 19. Writing xi(s) ≡ πi(s) to
be the probability distribution over actions of agent j in state s, we can now define the
multi-population state-coupled replicator dynamics as the following system of differential
equations:

ẋij(s) = xij(s)χ
x

s

[
f i(s, ej)− f i

(
s,xi(s)

)]
(20)

where ej is the jth-unit vector, corresponding to the policy that plays pure action j. In
total this system has N =

∑

s∈S

∑n
i=1 |A

i| replicator equations. Hennes et al. show that
the SC-RD model describes the true learning dynamics of networks of learning automata
far more precise than the piece-wise replicator dynamics.

Recently, the replicator dynamics have been extended to the sequence form representa-
tion of extensive-form games as well (Gatti, Panozzo, & Restelli, 2013; Lanctot, 2014). This
allows us to model even more complex games, e.g. with sequential moves and imperfect in-
formation. Panozzo et al. (2014) have developed a new version of Q-learning that works on
the sequence form, along with a dynamical model that matches the learning process based
on the sequence-form replicator dynamics with a mutation term similar to Equation 10.
They show that, although the selection mechanism of the sequence-form and normal-form
replicator dynamics are realization equivalent (Gatti et al., 2013; Lanctot, 2014), the mu-
tation term is not. An in-depth discussion of these findings falls outside the scope of this
article, as it would require the addition of a much broader background on extensive-form
games. However, these recent works show the promise of the evolutionary framework for
multi-agent learning beyond normal-form or even stochastic games as well.
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5. Experimental Overview

We established the link between multi-agent reinforcement and the replicator dynamics of
evolutionary game theory in Section 3, and provided an overview of learning dynamics in
normal-form games, continuous strategy spaces, and stochastic (Markov) games in Section 4.
Here, we show a set of experiments that empirically validate these models in two-player two-
action normal-form games. We restrict ourselves to these games as their simplicity allows
easy visual analysis, while preserving the explanatory power of such dynamical models. At
the end of this section we provide an overview of related empirical work in more complex
interactions.

As described earlier, in two-player two-action games the policy space can be compactly
represented by the unit simplex as it is completely defined by the probability with which
both agents select their first action. This makes it easy to plot and visually inspect the
learning dynamics in such interactions. In Section 3.1, Figure 5, an example of such analysis
can be found for Cross learning, as compared to the standard replicator dynamics. Similar
analysis can be performed for different learning algorithms, by plotting policy traces of their
learning behaviour overlaid on the vector field of their corresponding dynamical model (see
e.g. Tuyls et al., 2006; Klos et al., 2010; Kaisers & Tuyls, 2010, 2011; Bloembergen et al.,
2011). Figure 6 shows this for standard frequency-adjusted Q-learning (FAQ), and its
lenient counterpart (LFAQ), in the top two rows. Whereas the dynamics of these different
algorithms are similar in their convergence behaviour when only one equilibrium is present,
as is the case in the prisoner’s dilemma and matching pennies, in the stag hunt differences
can be observed. The notion of leniency, introduced to overcome convergence to suboptimal
equilibria, works to drive the learning process towards the optimal outcome of the game (S, S
– top right corner), as can be easily observed by investigating the vector field. Interestingly,
while Cross learning and the standard replicator dynamics do not converge in the matching
pennies game, (L)FAQ does sprial inwards towards the single Nash equilibrium at (12 ,

1
2),

which is not evolutionarily stable in the classical replicator dynamics model (Section 2.3).
The additional exploration term makes a difference here.

So far, we have analysed the dynamics of two identical learners pitted against each
other. However, the replicator dynamics model allows for heterogeneous systems as well,
in which different agents follow different learning rules. In such cases, the policy change
of each individual agent is modelled by a different variation of the replicator dynamics,
corresponding to that agent’s learning rule. The bottom row of Figure 6 shows this for the
situation where FAQ and LFAQ are pitted against each other. In games where the self-
play dynamics of both learners are similar, such as the prisoner’s dilemma and matching
pennies, the mixed dynamics do not change significantly. In other cases, such as the stag
hunt, the learning process is clearly influenced as different dynamics mix. As LFAQ has
a stronger tendency to play the optimal action S, FAQ is persuaded to do likewise. Such
analysis makes it possible to compare the behaviour of learning algorithms in heterogeneous
environments, or to compare different parameter settings of a single algorithm.

As a final example, we revisit the comparison of gradient ascent-based and reinforcement
learning algorithms of Section 4.1.3. Figure 7 shows the learning dynamics as predicted by
the models derived there and presented in Table 3, for the matching pennies game. Regret
minimisation (RM) is omitted as its dynamics are visually indistinguishable from Cross
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Figure 6: Policy traces of FAQ and LFAQ, plotted in the unit simplex and overlaid on
their respective dynamical model, for the prisoner’s dilemma (left), the stag hunt (center),
and matching pennies (right) (Bloembergen et al., 2011).
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Figure 7: Overview of the dynamics of various gradient ascent and reinforcement learn-
ing algorithms in matching pennies. The bottom right panel shows a single trace of the
dynamical models, using the same initial policy (indicated with ⊕) (Kaisers et al., 2012).

learning (CL). We can clearly observe the similarity between CL and infinitesimal gradient
ascent (IGA), which both cycle around the central equilibrium point without converging.
Win-or-learn-fast IGA (WoLF) and the weighted policy learner (WPL) both converge due
to their learning rate modulator; in the case of WoLF, two learning rates are used (for
winning and loosing), whereas WPL uses a continuum of learning rates, resulting in non-
linear dynamics. This difference can be clearly observed by comparing the vector fields of
their respective dynamical models. As noted before, FAQ spirals inwards towards the Nash
equilibrium – although this is hard to observe from the vector field alone, this fact can be
verified by following a trace of the dynamics, as shown in the bottom right panel of Figure 7
for the different algorithms. These traces highlight the (subtle) similarities and differences
between the diverse algorithms.

Similar analyses have been performed to investigate learning dynamics in more complex
(e.g., multi-state) games, or to highlight the influence of certain parameters on the learning
process. For instance, Tuyls et al. (2003) were the first to derive the selection-mutation
dynamics of Q-learning in discrete-action normal-form games, and to visually compare traces
of the learning algorithm with the predicted dynamics of the model. Similar derivations and
analyses have later been provided for other algorithms such as learning automata (Tuyls
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et al., 2006) and regret minimisation (Klos et al., 2010). Others have focused on learning
dynamics in multi-state (stochastic) games, in particular deriving dynamics of networks of
learning automata (Vrancx et al., 2008a; Hennes et al., 2009). Again others have derived new
learning algorithms based on a desirable dynamical model, leading to FAQ-learning (Kaisers
& Tuyls, 2010) and lenient FAQ (Bloembergen et al., 2011) for normal-form games, and
RESQ-learning for stochastic games (Hennes et al., 2010). Finally, several authors have
used insights stemming from the dynamical models to compare different algorithms, or
to investigate their convergence. For example, Bowling and Veloso (2002) introduce the
variable learning rate WoLF heuristic and prove that it can be used to make IGA convergent
in normal-form games. Abdallah and Lesser (2008) introduce WPL and compare it to IGA
and IGA-WoLF, and show that WPL converges in normal-form games as well, without
requiring as much information as IGA-WoLF. Kaisers and Tuyls (2011) use the dynamical
model of FAQ to demonstrate its near-NE convergence in normal-form games, and Galstyan
(2013) similarly shows this for continuous-action Q-learning (see also Section 6.1.2).

Table 4 presents an overview of these related works, clustered by interaction type – i.e.,
normal form games with discrete or continuous actions spaces, and stochastic games – and
lists the relevant learning algorithms that are investigated. We purposely list only those
works that explicitly focus on the relation between multi-agent learning algorithms and the
evolutionary dynamical model. Each of these works utilises and extends this connection
in order to gain qualitative insights into the behaviour of such algorithms in a variety of
settings.

Table 4: An overview of related empirical evaluations of learning dynamics. NFG: normal-
form games; CNFG: continuous action normal-form games; SG: stochastic (Markov) games.

Type Algorithm Reference

NFG Q-learning Tuyls et al. (2003, 2006)

NFG regret minimisation Klos et al. (2010)

NFG FAQ Kaisers and Tuyls (2010, 2011)

NFG lenient FAQ
Bloembergen et al. (2011)

Kaisers (2012)

NFG WoLF Bowling and Veloso (2002)

NFG IGA, IGA-WoLF, WPL Abdallah and Lesser (2008)

CNFG Q-learning Galstyan (2013)

SG
networks of learning

automata
Vrancx et al. (2008a)
Hennes et al. (2009)

SG RESQ-learning Hennes et al. (2010)
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6. Applications

In the previous sections we highlighted the descriptive power of the replicator dynamics
model of multi-agent learning. Here, we focus on its prescriptive power as well. For ex-
ample, we can use the dynamical models for easy parameter tuning of learning algorithms.
Moreover, starting from desired dynamics, it is possible to reverse-engineer a learning al-
gorithm that exhibits the preferred behaviour. Finally, the evolutionary models can be
used to analyse complex strategic interactions, such as automated trading. Focusing on
meta-strategies rather than primitives reduces the complexity of such interactions enough
to study their dynamics analytically.

6.1 Parameter Tuning

Parameter tuning is traditionally a cumbersome task involving many simulation trials, often
following some evolutionary optimisation approach. However, with a deterministic dynam-
ical model the effect of various parameters on the learning process is readily observable. In
the following, we provide examples for lenient learning, and for balancing exploration and
exploitation.

6.1.1 Degree of Leniency

Lenient learning was introduced as a way to overcome the problem of suboptimal con-
vergence in cooperative multi-agent settings, where initial mis-coordination leads to an
undervaluation of the optimal action (Panait et al., 2008). This problem is also known as
relative overgeneralisation (Wiegand, 2003) or action shadowing (Fulda & Ventura, 2007).
By focusing the learning update on maximal rewards rather than average, the learner effec-
tively ignores the low rewards that are due to suboptimal behaviour by others in the early
phases of the learning process. This can be achieved by collecting κ rewards for each action
before performing an update based on the highest of those rewards (Panait et al., 2008;
Bloembergen et al., 2011). The details and dynamical model of lenient frequency-adjusted
Q-learning (LFAQ) are given in Section 4.1.1, Equation 11.

The main parameter of LFAQ is the degree of leniency, κ. One of the main advantages
of having a dynamical model is that it allows studying and tuning such a parameter without
the need for extensive simulations. Instead, we can directly analyse the dynamical model.
Figure 8 shows the dynamics of LFAQ, following Equation 11, in the stag hunt, for κ ∈
{1, 2, 5, 25}. The stag hunt has two pure Nash equilibria that are also evolutionarily stable
strategies, where both agents either play H, at (0, 0), or S, at (1, 1) (see Section 2.3). The
dilemma in this game is the choice between the safe action H, which always gives the same
reward independent of the other agent’s action, or S, which is optimal, but only if both
players coordinate. This is precisely the problem that leniency aims to solve. Figure 8
shows that as the degree of leniency increases, so does the basin of attraction of the optimal
outcome (1, 1). Depending on the nature of the game and the opponent, a balance needs
to be found between leniency on the one hand, and the risk of being exploited, or lagging
behind a changing environment, on the other. The dynamical model greatly facilitates
gaining quick insight into these effects.

685



Bloembergen, Tuyls, Hennes, & Kaisers

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

LFAQ: x
1

L
F

A
Q

: 
y 1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

LFAQ: x
1

L
F

A
Q

: 
y 1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

LFAQ: x
1

L
F

A
Q

: 
y 1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

LFAQ: x
1

L
F

A
Q

: 
y 1

κ = 1 κ = 2 κ = 5 κ = 25

Figure 8: The effect of the degree of leniency κ on convergence in the stag hunt game. The
solid line indicates the boundary between the basins of attraction for the two equilibria; the
global optimum is located at (1, 1) (Bloembergen et al., 2011).

6.1.2 Tuning the Exploration Rate in FAQ-Learning

Balancing exploration and exploitation is of vital importance to any learning task, in par-
ticular in dynamic environments where multiple learning agents interact. In (FA)Q-learning
with Boltzmann exploration (Equation 4), the temperature parameter τ controls the level of
exploration – a high temperature promotes exploration, whereas a low temperature favours
exploitation. The dynamical model of FAQ (Equation 10) allows to study the effect of the
exploration rate on the behaviour and convergence of the learner in a multi-agent setting,
as demonstrated by Kaisers and Tuyls (2011).

Figure 9 shows the effect of τ on the dynamics and convergence of FAQ in battle of the
sexes. In this game, players need to coordinate on either one of their two actions, however
both have a different preference over those joint outcomes:

B

S

B S
(

2, 1
0, 0

0, 0
1, 2

)

The first three frames of the figure show the dynamics and computed fixed points for
different temperatures (first frame τ = ∞, second frame τ = 0.72877, third frame τ = 0).
The fixed points move between these discrete values for τ as indicated by the paths shown in
the fourth frame. The game has three Nash equilibria, at (0, 0), (1, 1), and (23 ,

1
3). However,

for high values of τ the replicator model yields only one attracting fixed point, that moves
from (12 ,

1
2) towards the mixed equilibrium (23 ,

1
3). Kaisers and Tuyls show that this fixed

point splits in a supercritical pitchfork bifurcation at the critical temperature τcrit ≈ 0.72877
and at position (x1, y1) ≈ (0.5841, 0.4158). For low temperatures τ < τcrit, the dynamics
yield three fixed points that move closer to the corresponding equilibria as τ is decreased.
The two fixed points moving toward the pure equilibria (0, 0) and (1, 1) are attracting, and
the third one moving toward (23 ,

1
3) is repelling.

A similar analysis for Boltzmann Q-learning has been performed by Kianercy and Gal-
styan (2012). They also observe that the fixed points of the dynamical model move towards
Nash equilibria as τ → 0 and relate the temperature of the Boltzmann mechanism to the
thermodynamical concept of free energy (Galstyan, 2013). Gomes and Kowalczyk (2009)
propose a dynamical model of ǫ-greedy Q-learning, and show that this model accurately
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Figure 9: Replicator dynamics (arrows) and fixed points (⊗) for τ = {∞, 0.72877, 0}
(first three frames). Right-most frame shows trajectories of fixed points as temperature is
decreased (Kaisers & Tuyls, 2011).

predicts the empirical findings. Similarly, Wunder, Littman, and Babes (2010) present a
detailed study of ǫ-greedy Q-learning in various classes of normal-form games and provide
proofs of (non-) convergence for each class, varying from rapid convergence to stable os-
cillations. Each of these works shows the great applicability and benefit of the replicator
dynamics model of multi-agent learning, when investigating the effect of various parameters
on the learning process.

6.2 Design of New Learning Algorithms

So far, we have taken a forward approach: starting from a learning algorithm we derived a
dynamical model that accurately predicts the behaviour of that algorithm in the limit. We
can, however, also take an inverse approach by starting from a set of desired dynamics and
reverse-engineering a learning algorithm that exhibits those dynamical properties (Hennes
et al., 2010; Tuyls, Heytens, Nowé, & Manderick, 2003).

As an example, consider again the state-coupled replicator dynamics (SC-RD) intro-
duced in Section 4.3. These dynamics describe the behaviour of networks of learning au-
tomata, which are essentially exploiting, and exploration is solely induced by the stochastic
action-selection process. However, results from the domain of stateless games suggest that
exploration aids convergence to mixed equilibria, where purely exploitative learners enter
cycles (see Section 5, in particular Figure 7). Hennes et al. (2010) extend the SC-RD model
(Equation 20) with the exploration term of FAQ-learning (Equation 10), which leads to

ẋij(s) = xij(s)χ
x

s

[[

f i (s, ej)− f i
(
s,xi(s)

)
]

− τ

(

log xij +
∑

k

xik log x
i
k

)]

.

These dynamics can be translated to a learning algorithm by adding a similar exploration
term to the policy update of a network of learning automata. The reward remains equal to
the average accumulated reward since the last visit to that particular automata, while the
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policy update after taking action j is now computed as

π(i)← π(i) + α

{

r̄ − π(i)r̄ − τ (log π(i) +
∑

k π(k) log π(k)) if i = j

−π(i)r̄ − τ (log π(i) +
∑

k π(k) log π(k)) otherwise.

Hennes et al. show that RESQ-learning is able to converge in a two-state version of matching
pennies, where the standard SC-RD cycle around the equilibrium.

Another example is given in the work of Tuyls et al. (2003), where the standard replicator
dynamics are extended to ensure stable convergence to Nash equilibria in all classes of two-
agent two-action normal-form games. Based on these extended replicator dynamics Tuyls
et al. derive an extended Cross learning algorithm that adheres to the preferred dynamics.

6.3 Evolutionary Analysis of Complex Strategic Interactions

In addition to relatively simple, stylised games, we also can analyse much more complex
systems. This is accomplished by taking a high-level view and focusing on meta-strategies,
rather than atomic actions, in such scenarios. For example, this allows us to study the
evolutionary dynamics of various trading strategies in stock markets (Kaisers et al., 2009;
Hennes, Bloembergen, Kaisers, Tuyls, & Parsons, 2012; Bloembergen, Hennes, McBurney,
& Tuyls, 2015). Similarly, it is possible to compare auction mechanisms (Phelps, Parsons, &
McBurney, 2005), strategies in the game of poker (Ponsen, Tuyls, Kaisers, & Ramon, 2009),
or even collision avoidance methods in multi-robot systems (Hennes, Claes, & Tuyls, 2013).
Moreover, the link between the replicator dynamics and reinforcement learning allows us to
predict what will happen when agents learn to optimise their strategy in such scenarios.

In the following, we present two examples of such analyses. Firstly, we detail heuristic
payoff tables as a method to estimate the payoff of high-level meta-strategies empirically.
Next, we present how to use this analysis to evaluate trading strategies in stock markets
(Section 6.3.2), and collision avoidance strategies in multi-robot systems (Section 6.3.3).

6.3.1 Heuristic Payoff Tables

In order to analyse the evolutionary strength of high-level meta-strategies, we need to
estimate the expected payoff of such strategies relative to each other. In evolutionary
game theoretic terms, this is the relative fitness of the various strategies, dependent on the
current frequencies of those strategies in the population. The evolutionary model assumes
an infinite population. We cannot compute the payoff for such a population directly, but
we can approximate it from evaluations of a finite population. All possible distributions
over k strategies can be enumerated for a finite population of n individuals. Let N be
a matrix, where each row Ni contains one discrete distribution. The matrix will yield
(
n+k−1

n

)
rows. Each distribution over strategies can be simulated (using an appropriate

model of the environment), returning a vector of expected relative rewards u(Ni). Let U be
a matrix which captures the rewards corresponding to the rows in N , i.e., Ui = u(Ni). A
heuristic payoff table H = (N,U) is proposed by Walsh, Das, Tesauro, and Kephart (2002)
to capture the payoff information for all possible discrete distributions in a finite population.
An example of such a heuristic payoff table is given in Table 5. In this example, we have
k = 3 different meta-strategies, distributed over a population of n = 6 individuals. Each
row in N specifies exactly how many individuals use each of the three strategy types, and
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Table 5: Example of a heuristic payoff table for k = 3 strategies and a finite population
of n = 6 individuals.

Ni1 Ni2 Ni3 Ui1 Ui2 Ui3

6 0 0 0.5 0 0

5 1 0 0.4 0.7 0

· · · · · ·

3 1 2 0.3 0.5 0.8

· · · · · ·

0 0 6 0 0 0.9

each row in U specifies their estimated payoff. If a discrete distribution Ni features zero
individuals of type j, their payoff naturally cannot be measured, and we set Uij = 0.

In order to approximate the payoff for an arbitrary mix of strategies in an infinite pop-
ulation distributed over the species according to x, n individuals are drawn randomly from
the infinite distribution. The probability for selecting a specific row Ni can be computed
from x and Ni as

P (Ni|x) =

(
n

Ni1, Ni2, . . . , Nik

) k∏

j=1

x
Nij

j .

The expected payoff of strategy i, fi(x), is then computed as the weighted combination of
the payoffs given in all rows:

fi(x) =

∑

j P (Nj |x)Uji

1− (1− xi)k
.

This expected payoff function can be used in Equation 5 to compute the evolutionary
population change according to the replicator dynamics.

6.3.2 The Value of Information in Markets

As an example, consider a market in which differently informed traders bid for a certain
asset (Bloembergen et al., 2015). Depending on their information level, traders have a
certain amount of foresight regarding the future value of the stock. More information gives
a better approximation of the real current value of the asset; however, information comes at
a price. We can use the replicator dynamics model to analyse the effect of various pricing
schemes for information, e.g. no cost, fixed cost for any amount of information, or a cost
function that is linear in the amount of information. Traders can also choose not to acquire
additional information but instead rely solely on the current market price. By running
market simulations with different distributions of information levels among the traders, we
can compute a heuristic payoff table as described above, and use this table as basis for the
replicator model.

Figure 10 shows the resulting dynamics for three types of traders (uninformed – ZI;
averagely informed – I3; insiders – I9), and the three different cost functions described
above. In the absence of costs, the best strategy is to obtain as much information as
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Figure 10: Vector field showing the evolutionary dynamics of a market with three infor-
mation levels and different cost functions for information: no cost (left), fixed cost (center),
and linear cost (right) (Bloembergen et al., 2015).

possible, leading to a domination of I9 traders over the entire interior of the simplex. Adding
fixed costs gives a small boost to the I0 traders (who do not have to pay), allowing them
to survive in equilibrium alongside the insiders. The linear cost function gives rise to an
internal equilibrium where all types can coexist. Such analysis can be a valuable tool to
gain insight into the dynamics of stock markets, and helps to predict the effect of external
influences (such as costs, e.g. in the form of taxing schemes) on the market as a whole.

6.3.3 Collision Avoidance in Multi-robot Systems

Autonomous collision avoidance is a complex task in the field of robotics, especially in
the presence of dynamic obstacles. The task increases in complexity when the dynamic
obstacles are mobile robots that also take actions to avoid collisions. However, assuming
mutual avoidance (reciprocity) may potentially improve avoidance behaviour since each
robot only needs to take half of the responsibility of avoiding pairwise collisions. In order
to test this hypothesis we can employ the same meta-strategy approach to evaluate the
evolutionary strength of different collision avoidance strategies (Hennes et al., 2013).

One approach to collision avoidance in continuous spaces is the velocity obstacle (VO)
paradigm, first introduced by Fiorini and Shiller (1998) for local collision avoidance and
navigation in dynamic environments with multiple moving objects. The VO strategy can
be modified to include reciprocity, yielding the reciprocal velocity obstacle (RVO); a hybrid
between these two is given by the HRVO. Figure 11 (left) shows the evolutionary dynamics
resulting from a heuristic payoff table over these three strategies. All pure population states
are asymptotically stable fixed points under the replicator dynamics. Although the basin of
attraction for RVO is considerably smaller, we do not see any clearly dominant strategy in
this setting. For pairwise comparison between two strategies, along the faces of the simplex,
no strategy is inferior; all three strategies are evolutionarily stable.

The VO takes all obstacles into account, independent of their distance. This may greatly
reduce the mobility of robots in a highly cluttered environment. In order to overcome this
problem, the VO can be truncated to ignore obstacles that are farther away. Truncation
yields significantly different and more complex dynamics, as shown in Figure 11 (right). In
a pairwise comparison (faces of the simplex), RVO is dominated by VO as well as by HRVO.

690



Evolutionary Dynamics of Multi-Agent Learning

HRVO RVO

VO

HRVO RVO

VO

Figure 11: Evolutionary dynamics of three strategies for multi-robot collision avoidance,
without truncation (left) and with truncation (right) (Hennes et al., 2013).

However, the reciprocal velocity obstacle is more robust in the presence of all three strategies
(interior of the simplex), which can be explained by it being the more “aggressive”, or the
least restricting, strategy.

7. Conclusions

In this article we have surveyed recent advances in the study of the evolutionary dynamics
of multi-agent learning. In particular, we presented the formal relation between reinforce-
ment learning and the replicator dynamics of evolutionary game theory. By modifying the
standard replicator dynamics, the behaviour of various state-of-the-art reinforcement learn-
ing algorithms in a multi-agent setting can be modelled accurately. So far, this link has
been established in stateless environments (e.g. normal form games), both with discrete
and continuous action spaces, and multi-state environments (e.g. stochastic games) with a
discrete action space. Therefore, an important avenue for future work is the extension of
the theory to stochastic games with continuous action spaces.

The analytical study of multi-agent learning dynamics offers several important advan-
tages. In particular, it sheds light into the black box of reinforcement learning, by making
it possible to analyse the learning dynamics of multi-agent systems in detail, and to com-
pare the behaviour of different algorithms in a principled manner. This in turn facilitates
important tasks such as parameter tuning. Furthermore, studying the dynamics of different
learning algorithms helps in selecting a specific learner for a given problem. Moreover, it
is possible to derive new learning algorithms by first designing preferred dynamics. Fi-
nally, the theory can be applied to complex strategic interactions in real-world settings by
analysing meta-strategies, as demonstrated for automated trading and multi-robot collision
avoidance.
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