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Summary

� Rates of nucleotide substitution were previously shown to be several times slower in the

plastid inverted repeat (IR) compared with single-copy (SC) regions, suggesting that the IR

provides enhanced copy-correction activity.
� To examine the generality of this synonymous rate dependence on the IR, we compared

plastomes from 69 pairs of closely related species representing 52 families of angiosperms,

gymnosperms, and ferns.
� We explored the breadth of IR boundary shifts in land plants and demonstrate that synony-

mous substitution rates are, on average, 3.7 times slower in IR genes than in SC genes. In

addition, genes moved from the SC into the IR exhibit lower synonymous rates consistent

with other IR genes, while genes moved from the IR into the SC exhibit higher rates consistent

with other SC genes. Surprisingly, however, several plastid genes from Pelargonium,

Plantago, and Silene have highly accelerated synonymous rates despite their IR localization.
� Together, these results provide strong evidence that the duplicative nature of the IR reduces

the substitution rate within this region. The anomalously fast-evolving genes in Pelargonium,

Plantago, and Silene indicate localized hypermutation, potentially induced by a higher level of

error-prone double-strand break repair in these regions, which generates substitutional rate

variation.

Introduction

The plastid genome (plastome) of nearly all land plants has a
highly conserved quadripartite structure composed of two copies
of an inverted repeat (IR) and two single-copy (SC) regions, ter-
med the large single-copy (LSC) and small single-copy (SSC)
regions. The land plant IR typically ranges in size from 15 to
30 kb and contains a core set of four rRNA genes (encoding 4.5S,
5S, 16S and 23S rRNA) and five tRNA genes (encoding trnA-
UGC, trnI-GAU, trnN-GUU, trnR-ACG and trnV-GAC). In
addition to this core rRNA/tRNA cluster, the IRs of many land
plants, particularly vascular plants, also contain a variety of other
genes as a result of lineage-specific expansions and contractions.
Among more closely related species, these IR boundary shifts
tend to be relatively minor, resulting in the gain or loss of a small
number of genes (Goulding et al., 1996; Wang et al., 2008;
Wicke et al., 2014; Downie & Jansen, 2015; Wu & Chaw,
2015). However, recent large-scale expansions (exceeding several
kb) were reported for a few lineages, such as Pelargonium,
Psilotum, and Trochodendraceae (Chumley et al., 2006; Grewe
et al., 2013; Sun et al., 2013), which transferred numerous genes
from the SC regions into the IR. At the opposite extreme, some
plants have lost most, or even all, of the IR, as observed for
conifers, many legumes, and some species of Erodium (Palmer

et al., 1987; Raubeson & Jansen, 1992; Tsudzuki et al., 1992;
Guisinger et al., 2011; Guo et al., 2014).

The presence of the IR has a major impact on the rate of plas-
tome sequence evolution. The synonymous, nonsynonymous,
and noncoding substitution rates have been shown to be several
times lower for the IR relative to the SC regions among several
angiosperms (Wolfe et al., 1987; Maier et al., 1995; Gaut, 1998;
Perry & Wolfe, 2002; Yamane et al., 2006; Kim et al., 2009; Yi
& Kim, 2012; Yi et al., 2012). This pattern of lower IR substitu-
tion rates was recently extended to carnivorous plants (Wicke
et al., 2014) and outside of angiosperms to cycads (Wu & Chaw,
2015), suggesting that it is a hallmark feature of the IR in the
plastome. Similarly, the frequencies of indels between maize and
sugarcane and among carnivorous Lentibulariaceae are a few
times lower in the IR than in the SC regions (Yamane et al.,
2006; Wicke et al., 2014). When the IR becomes lost, however,
as in the IR-lacking clade of legumes, the synonymous substitu-
tion rate of the former IR genes was shown to increase to a value
similar to that of other SC genes, providing strong evidence that
the reduced substitution rate is dependent on the duplicative
nature of the IR (Perry & Wolfe, 2002). These findings suggest
that the depressed substitution rate in the IR is a result of a copy-
dependent repair mechanism (Wolfe et al., 1987; Perry & Wolfe,
2002), such as gene conversion that is biased against new
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mutations (Birky & Walsh, 1992). While biased gene conversion
can occur throughout the genome via intergenomic interactions,
the duplicative nature of the IR provides a twofold higher copy
number in the population of genome copies within each plastid,
which enables a relatively higher rate of intergenomic gene
conversion for the IR and also allows for intragenomic gene con-
version between IR copies. Gene conversion activity was demon-
strated in plastids using a transformation system (Khakhlova &
Bock, 2006) and has been implicated as the mechanism
generating small IR expansions and contractions (Goulding et al.,
1996).

In addition to regional effects of the IR on mutation rates, sev-
eral studies have identified additional examples of intragenomic
variation in substitution rates that appear to be independent of
their IR or nonIR localization. Both synonymous and nonsyn-
onymous rates are substantially higher in several ribosomal pro-
tein and RNA polymerase genes for species in Geraniaceae
(Guisinger et al., 2008). Similar rate accelerations were observed
for ribosomal protein genes, clpP, ycf1 and ycf2 in Silene (Erixon
& Oxelman, 2008; Sloan et al., 2012b). In some legumes, a
mutational hotspot was observed, affecting the ycf4 and psaI
genes (Magee et al., 2010), which was attributed to a hotspot of
double-strand breaks and their repair. Localized hypermutation
has also been observed in several plant mitochondrial lineages
(Mower et al., 2007), including both Silene (Sloan et al., 2012a)
and Ajuga (Zhu et al., 2014).

Although the reduction in IR substitution rates has been con-
sistently demonstrated in several studies, comparisons have been
made between relatively few taxa, and nearly all have been limited
to angiosperms. With the proliferation of new plastome
sequences available today, it is now possible to comprehensively
examine the evolutionary effect of the IR on substitution rates. In
addition, the abundance of IR boundary shifts (expansion, con-
traction, loss) in multiple lineages makes it possible to perform
parallel, independent analyses to examine the generality of rate
variation between IR and SC regions. Furthermore, large-scale
shifts of IR boundaries have occurred at different evolutionary
depths, allowing both short- and long-term impacts to be investi-
gated. To assess the influence of the IR on plastome substitution
rates, we first examined representative species to establish ances-
tral IR boundaries and subsequent boundary shifts during land
plant evolution. Next, we performed parallel analysis of 69
species pairs to establish the evolutionary patterns of substitution
rate variation between the SC and IR and to determine the effects
of IR boundary shifts on substitution rates of genes that were
relocated into or out of the IR. Finally, we looked at potential
mechanistic causes for the patterns of rate variation observed
among taxa.

Materials and Methods

Plastome sequencing, assembly and annotation

Total genomic DNAs from Angiopteris angustifolia C. Presl,
Gnetum gnemon L., Plantago maritima L., and Plantago media
L. were each isolated from fresh leaf tissue from a single plant

using a simplified CTAB protocol (Doyle & Doyle, 1987).
The Angiopteris and Gnetum DNAs were Illumina-sequenced at
the Indiana University Center for Genomics and Bioinformat-
ics, as described previously (Guo et al., 2014), generating 6 Gb
of 250 bp paired-end reads from an 800 bp library. The two
Plantago DNAs were Illumina-sequenced at BGI Corp.
(Shenzhen, China) from 5 kb mate-pair libraries, generating
7 Gb of 100 bp paired-end reads. Organelle-enriched DNAs
from Acorus gramineus Sol. ex Aiton, Ginkgo biloba L.,
Magnolia tripetala L., and Pinus strobus L. were each isolated
from leaf tissue from a single plant using differential centrifu-
gation and CTAB extraction and then Illumina-sequenced at
BGI Corp. as described previously (Grewe et al., 2013; Zhu
et al., 2014), generating 4 Gb of 100 bp paired-end reads from
an 800 bp library. All data were assembled with VELVET 1.2.03
(Zerbino & Birney, 2008), annotated with DOGMA (Wyman
et al., 2004), and checked for sequence and annotation accu-
racy using established procedures (Grewe et al., 2013; Guo
et al., 2014; Zhu et al., 2014). The annotated genome
sequences were deposited in GenBank with accession num-
bers KJ408574, KP099646–KP099650, KR297244 and
KR297245.

Estimation of sequence divergence and repeat content

In addition to the eight newly sequenced plastomes, another 130
plastomes were obtained from GenBank (Supporting Informa-
tion Table S1). Plastomes were chosen to obtain pairs of closely
related species from within the same genus. To increase taxon
sampling, additional plastome pairs from species of the same
family or from individuals of the same species were also included.
This sampling strategy resulted in 69 pairs of closely related plas-
tomes from 52 vascular plant families. For each plastome pair,
pairwise synonymous substitution rates were compared between
SC genes and IR genes. Individual protein-coding genes were
aligned at the protein level using the CLUSTALW2 software
(Larkin et al., 2007) and then reverse-translated into codon-based
alignments via PAL2NAL v.1.4 (Suyama et al., 2006). A concate-
nated data set of all IR genes and a second data set of all SC genes
were generated with FASconCAT (Kuck & Meusemann, 2010),
except that genes located across IR-SC boundaries or genes whose
IR or SC localization differed between the taxon pair were
excluded. Synonymous rates were estimated for the concatenated
SC and IR data sets via KAKS_CALCULATOR 2.0 (Wang et al., 2010)
under the GY-HKY substitution model.

To assess whether it was appropriate to combine the LSC and
SSC genes into a single data set, synonymous sequence diver-
gence was compared between LSC and SSC genes for 61 of the
69 pairs of species (excluding those pairs lacking an IR or with a
highly reduced IR). LSC and SSC divergence values were
strongly and significantly correlated (R2 = 0.96; P < 0.0001)
using a linear regression model (y = 1.04x + 0.00), providing jus-
tification for combining the LSC and SSC genes into a single SC
data set. For those pairs of species that had an unusual pattern of
synonymous rate variation in the IR relative to the SC, we calcu-
lated synonymous divergence for individual genes using the
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KAKS_CALCULATOR 2.0 and sequence divergence for individual
introns using DNASP 5.10 (Librado & Rozas, 2009). These
values were then plotted against their corresponding genomic
positions.

Results

General features of new plastome sequences

We sequenced and assembled the complete sequences of eight
plastomes from four angiosperms (Acorus gramineus, Magnolia
tripetala, Plantago maritima and Plantago media), three gym-
nosperms (Ginkgo biloba, Gnetum gnemon and Pinus strobus), and
one fern (Angiopteris angustifolia). These species were selected to
represent distinct evolutionary lineages among vascular plants, to
complement closely related genomes available in public sequence
databases, and/or because of their distinct properties of IR expan-
sion or contraction. Among the newly sequenced genomes, there
is moderate variation in genome size, gene and intron content,
guanosine-cytosine (GC) content, the size and frequency of
nonIR repeats, and the number of duplicated genes (Table 1), in
agreement with known degrees of diversity among euphyllo-
phytes (Wicke et al., 2011; Jansen & Ruhlman, 2012; Wolf &
Karol, 2012). With the exception of the two Plantago genomes,
the newly sequenced genomes are fully syntenic and show mini-
mal sequence divergence in comparison to close relatives from
the same genus (Fig. S1). These patterns are consistent with a
generally slow rate of sequence and structural evolution of plant
plastomes.

In contrast to the conserved evolution of most plant plas-
tomes, the two Plantago plastomes exhibit increased levels of
sequence and structural divergence. Although the two species
diverged only 14 million yr ago (Cho et al., 2004), their
genomes have accumulated 5.0% sequence divergence as well as
several rearranged segments (Fig. S2). Compared with the
ancestral angiosperm genome structure (represented by
Nicotiana tabacum), both genomes contain inverted repeats that
have increased markedly in size to 33.7 kb in P. maritima and
38.4 kb in P. media (Fig. S3), resulting in the transfer of five

former SSC genes into the IR of P. maritima and nine former
SSC genes into the IR of P. media (Table 1). Both genomes
have also experienced a large-scale inversion within the
expanded IR, spanning 14 kb for P. media and 21 kb for
P. maritima (Fig. S3). The breakpoints are inferred to be at
trnL-ndhB and trnN-trnR for P. media, but at trnL-ndhB and
ycf1-rps15 for P. maritima. The P. maritima genome has another
small-scale inversion associated with the ycf1 gene (Fig. S3). By
contrast, no inversions or gene relocations were found in the SC
regions. In addition to IR expansion and genomic rearrange-
ment, the Plantago plastomes have accumulated more repeats
than most other angiosperms (Table 1). Most of the repeats are
< 100 bp in length, although seven repeats in P. maritima and
five repeats in P. media range from 100 to 450 bp. Finally, there
is variation in intron content between the two Plantago genomes
as a result of the loss of the rpl2 intron and both clpP introns
from P. maritima (Fig. S3).

Inverted repeat expansion, contraction, and loss among
land plants

During land plant evolution, there have been multiple instances
of IR expansion or contraction that have moved entire genes
from the SC regions into the IR or vice versa (Fig. 1). Across land
plants, the terminal IR gene adjacent to the SSC region is highly
conserved. In most species, the last full-length IR gene at the IR/
SSC boundary is trnN-GUU, providing strong evidence that this
was the ancestral IR/SSC endpoint which has been retained in
most lineages. Several minor IR extensions into the SSC have
occurred in Selaginella, Psilotum, gnetophytes, and some
angiosperms, but their sporadic distribution and general lack of
homology indicate that they were independent events for each
lineage. Within gnetophytes, the distinct IR boundaries were pro-
posed to result from a multistep process involving several expan-
sions, inversions, and gene losses (Wu et al., 2009).

The IR/LSC boundary has shifted more dynamically during
land plant evolution (Fig. 1). Excluding seed plants (i.e.
angiosperms and gymnosperms), the IR generally terminates at
the trnV-GAC gene at the IR/LSC boundary. The most

Table 1 General characteristics of vascular plant plastomes

Ferns Gymnosperms Angiosperms

Ehye Aang Gbil Ggne Pstr Agra Mtri Pmar Pmed

Genome size (bp) 131 760 153 596 157 002 115 022 115 576 152 849 160 037 158 358 164 130
IR size (bp) 10 093 21 676 17 733 20 051 472 25 822 26 572 33 735 38 398
SC size (bp) 111 574 110 244 121 536 74 920 114 632 101 205 106 893 90 888 87 334
GC content (%) 33.7 35.5 39.6 38.2 38.8 38.7 39.3 38.6 38.0
Unique genes 120 122 118 99 108 112 112 113 113
Protein genes in IR 0 3 3 3 0 6 6 11 15
rRNAs in IR 4 4 4 4 0 4 4 4 4
tRNAs in IR 5 8 6 8 1 7 7 7 7
% nonIR repeats 1.8 1.6 1.2 1.4 4.3 0.47 0.93 2.5 2.7

Ehye, Equisetum hyemale; Aang, Angiopteris angustifolia; Gbil, Ginkgo biloba; Ggne, Gnetum gnemon; Pstr, Pinus strobus; Agra, Acorus gramineus; Mtri,
Magnolia tripetala; Pmar, Plantago maritima; Pmed, Plantago media; IR, inverted repeat; SC, single-copy.
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parsimonious interpretation is that the trnV-GAC gene repre-
sents the ancestral IR/LSC endpoint among land plants, with
several independent expansions in the hornwort Anthoceros, the
lycophytes Isoetes and Huperzia, the ferns Psilotum and
Angiopteris, and the common ancestor of angiosperms and gym-
nosperms. This scenario of independent expansions is further
supported by the observation that the IR expanded to different
endpoints among these land plant lineages. However, more
complicated scenarios involving multiple expansions and con-
tractions cannot be excluded. Within ferns, for example, it is
only slightly less parsimonious to propose an ancestral expan-
sion to trnL-CAA in the common ancestor of all ferns followed
by independent contractions back to trnV-GAC in Equisetum,
ophioglossoid ferns (Ophioglossum and Mankyua), and early
diverging leptosporangiate ferns (Diplopterygium and
Osmundastrum).

In addition to these IR boundary shifts, there are a few cases
where the IR has been severely reduced or even eliminated
(Fig. 1), as previously described for several legumes (Palmer et al.,

1987), some species of Erodium (Guisinger et al., 2011), cupress-
ophytes (Guo et al., 2014), and Pinaceae (Tsudzuki et al., 1992;
Wu et al., 2011).

Lower substitution rates in the IR are consistent with
copy-dependent repair activity

To comprehensively examine the effect of the IR on plastome
substitution rates, we used 69 pairs of closely related taxa (within
the same family, genus, or species) from angiosperms, gym-
nosperms, and ferns to compare synonymous sequence diver-
gence (dS) of a concatenated set of genes in the IR and SC
regions (Fig. 2). In nearly all species, dS was markedly higher for
SC genes than for IR genes. Linear regression showed a tight and
significant correlation (R2 = 0.93; n = 54; P < 0.001) between dS
values in the IR and the SC region, and the line of best fit indi-
cated that dS was 3.7-fold lower in the IR than in the SC region,
consistent with results from previous studies. In contrast to most
vascular plants, however, three plant lineages (Pelargonium,
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Fig. 1 Inference of ancestral inverted repeat (IR) content during land plant evolution. Genes which are only partially duplicated in the IR are not shown.
Genomes with highly rearranged IR content (e.g. from Plantago, Pelargonium, Silene, and most leptosporangiate ferns) were not included because these
lineage-specific changes have no bearing on ancestral reconstruction.

New Phytologist (2016) 209: 1747–1756 � 2015 The Authors

New Phytologist� 2015 New Phytologist Trustwww.newphytologist.com

Research

New
Phytologist1750



Plantago, and Silene) did not follow the trend of reduced IR rates.
Instead, protein-coding genes in the IR of these three genera
exhibited slightly higher dS values (1.4- to 2.1-fold) when
compared with their SC genes.

To examine the pattern of rate variation in these three genera
in more detail, we plotted dS for individual genes and sequence
divergence for individual introns against their genomic positions
(Fig. 3). The dS plot for individual genes identified several
extreme outliers in the IR and SC regions. In Pelargonium, the

SC-localized genes rpl33 and psaC have several-fold higher dS val-
ues than other SC genes, while about half of the IR genes have
values ranging from twofold (e.g. rpl36) to > 40-fold (rpoA)
higher than the other half of the IR genes with lower values. Sim-
ilarly, in Plantago there are two SC genes (accD, clpP) with sub-
stantially higher dS values than other SC genes, while a single IR
gene (ycf1) has a 10-fold higher dS than the remaining IR genes.
Likewise, dS in the Silene plastome is much higher for the IR gene
ycf2 than for other IR genes and for the SC gene clpP than for
other SC genes. Because there are so few protein-coding genes in
the IR, these few outliers, especially the very large ycf1 and ycf2
genes, have a large effect on dS calculations in the concatenated
analysis, which explains the anomalously high dS values for the
concatenated IR genes for these three genera. Importantly, more
than half of the IR genes in each species have a lower dS than do
the SC genes, as expected for a model of enhanced copy-
correction activity in the IR. Intron divergence values are also
consistent with this pattern; divergence is consistently lower for
IR introns and higher for SC introns, as expected for their respec-
tive localization.

Substitution rate shifts of relocated genes provides further
support for IR copy-dependent repair activity

With the numerous expansions and contractions of the IR
region that have occurred during vascular plant evolution
(Fig. 1), there are now many examples of genes that have
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relocated into or out of the IR during vascular plant evolution
(Fig. 4). Examination of the shift in substitution rates of these
relocated genes provides strong support for the role of the IR in

providing enhanced copy-correction activity among diverse
plants (Fig. 5).

In angiosperms, the six protein-coding genes (rps12-3 0, rps7,
ndhB, ycf2, rpl23 and rpl2) that were ancestrally present in the IR
exhibit an approximately four- to sixfold reduction in dS relative
to SC genes, as exemplified by dS ratios of 0.17–0.23 relative to
SC genes for representative angiosperms, including the monocot
Acorus, the magnoliid Magnolia, and the eudicot Nicotiana
(Fig. 5). In Trochodendraceae, the IR has expanded into the LSC
region, resulting in the movement of six genes (rps19, rpl22, rps3,
rpl16, rpl14 and rps8) into the IR (Fig. 4). These SC-to-IR genes
show a sixfold reduction in dS compared with SC genes, consis-
tent with expectations for IR gene localization (Fig. 5). An oppo-
site pattern is observed for genes that have moved out of the IR.
The loss of the IR from Erodium and papillionoid legumes (e.g.
Trifolium) shifted the six ancestral IR genes into the SC regions
(Fig. 4). This transfer resulted in SC-like substitution rates for
these IR-to-SC genes as demonstrated by a dS ratio much closer
to 1 (Fig. 5). The major shift of the IR in the Campanulaceae
species Hanabusaya and Trachelium provides examples of SC-to-
IR transitions for six genes (ycf1, rps15, ndhH, ndhA, ndhI,
ndhG) and IR-to-SC transitions for five of the six ancestral IR
genes (all except rps12-3 0) (Fig. 4). Consistent with their current
genomic locations in Hanabusaya and Trachelium, the SC-to-IR
genes show a threefold reduction in dS compared with SC genes,
whereas dS for the IR-to-SC genes have increased to values com-
parable with SC genes (Fig. 5).

Similar patterns are observed outside of angiosperms. The
gymnosperm ancestor was inferred to have four protein-coding
genes (rps12-3 0, rps7, ndhB and ycf2) in the IR (Fig. 1). Cycas has
retained all four of these genes in the IR, while Ginkgo and
Gnetum have retained three out of the four (Fig. 4). For all three
genera, the dS values for their IR genes are substantially lower
than for their SC genes (Fig. 4; note that the extremely low ratios
for Cycas and Ginkgo are probably a result of the low overall plas-
tid substitution rate for these species (Wu & Chaw, 2015) and
the small number of genes available for estimation of the even
lower IR rate). By contrast, the loss of the IR from cupresso-
phytes (Cephalotaxus, Juniperus, Podocarpus and Taiwania) and
the nearly complete loss of the IR from Pinaceae (Picea and
Pinus) moved these ancestral IR genes into the SC (Fig. 4). This
shift resulted in substantially increased dS values for these IR-to-
SC genes, with values close to (i.e. less than twofold higher or
lower than) SC genes (Fig. 5).

Among ferns, multiple IR shifts (expansions, contractions,
and/or rearrangements) are required to explain the IR diversity
among species, making it difficult to unambiguously determine
the ancestral IR content. Nevertheless, there is clear variation
among species in terms of the presence and absence of protein-
coding genes in the IR. Assuming an ancestral IR that lacked any
protein-coding genes, SC-to-IR transitions must have occurred
for six, three, and four protein-coding genes in Psilotum,
Angiopteris, and Pteridaceae (Adiantum + Cheilanthes), respec-
tively (Fig. 4). Consistent with their current location in the IR,
these putative SC-to-IR genes have reduced dS values relative to
SC genes (Fig. 5). As mentioned, however, it is only slightly less
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parsimonious to assume that the ancestral IR contained three
protein-coding genes (rps12-3 0, rps7 and ndhB). In this scenario,
the absence of these genes from Equisetum and Ophioglossaceae
(Ophioglossum +Mankyua) would be a result of IR-to-SC transi-
tions. Consistent with their location in the SC, these three puta-
tive IR-to-SC genes have dS values consistent with other SC
genes (Fig. 5).

Discussion

Evolutionary models for IR boundary shifts

In this study, we first explored the conservation and evolution-
ary dynamics of IR boundaries among land plants. In particular,
we identified the ancestral structure of the IR at several ancestral
nodes and demonstrated that shifts in IR endpoints have
occurred multiple times at different evolutionary depths (Fig. 1).
While most shifts are small, involving up to several hundred bp,
others have expanded or contracted the IR by several kb, which
relocated multiple genes into or out of the IR (Fig. 4). By com-
paring the IR/SC junctions in closely related species, several ele-
gant models have been proposed to explain the expansion and
contraction of the IR. By examination of IR/LSC junctions in
13 Nicotiana species, Goulding et al. (1996) proposed a stepwise
model involving a single-strand break, heteroduplex formation
via a Holliday junction, and then small IR expansions via gene
conversion. This same model may also apply to other small
boundary shifts which have occasionally incorporated rps19 and
rpl22 into the IR of several dicot lineages (Fig. 4). Goulding
and colleagues also proposed a different model that starts with a
double-strand break followed by strand invasion and recombi-
nation to explain the larger IR expansion in N. acuminata. A
subsequent study by Wang et al. (2008) suggested that the dou-
ble-strand break model could also apply to a small IR extension
that incorporated the trnH-rps19 cluster into the ancestral
monocot IR.

In many ways, the IR-expanded plastomes of Pelargonium
and Plantago have distinct features compared with other

enlarged IR lineages, such as N. acuminata, Trochodendron and
Berberis. These features include extensive genomic rearrange-
ments, accelerated substitution rates, loss of genes and introns,
and the presence of multiple large (> 100 bp), nonidentical
repeats, which suggests that a different mechanism of IR expan-
sion may be involved. For the Pelargonium IR expansion,
Chumley et al. (2006) proposed a model involving multiple
inversions promoted by these dispersed repeats, along with sev-
eral rounds of ebb-and-flow expansions and contractions. Small
dispersed repeats are also located at all inversion breakpoints in
the Plantago genomes (Fig. S3), indicating that they may have
promoted the inversion events. Given the many similarities
between the Plantago and Pelargonium plastomes, this same
model may also be applicable to the Plantago IR expansions.

Copy-dependent repair and reduced IR substitution rates

Previous studies have also shown that the substitution rate is
slower in the IR than in the SC region of angiosperm plastomes.
The seminal study by Wolfe et al. (1987) examined pairs of taxa
at several different evolutionary depths (within Solanaceae,
between rosids and asterids, or between monocots and eudicots),
but their rate estimates were based on a small subset of genes.
Subsequent studies have focused on pairwise comparisons of
complete plastomes, yet only a few distinct lineages have been
compared to date, including Poaceae (Maier et al., 1995; Gaut,
1998; Yamane et al., 2006), Fabaceae (Perry & Wolfe, 2002),
Ranunculaceae (Kim et al., 2009), Araliaceae (Yi et al., 2012),
Lamiales (Yi & Kim, 2012; Wicke et al., 2014); and Cycadaceae
(Wu & Chaw, 2015). In our study, we have vastly expanded sam-
pling to include not only 39 angiosperm families but also seven
gymnosperm and six fern families. Importantly, each of our 69
pairwise comparisons represents nonoverlapping segments of
phylogenetic tree space, ensuring that they are independent data
points suitable for statistical analysis. Furthermore, each compar-
ison is between a pair of close relatives (intrafamilial, intrageneric,
or intraspecific), providing higher confidence that the shared IR
genes in each pair have been maintained in the IR since their
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divergence from a common ancestor. With this diverse and
extensive sampling, we estimated that IR genes are evolving c. 4
times more slowly, on average, than SC genes in a wide variety of
vascular plants (Fig. 2). The significant regression analysis pro-
vides strong evidence that reduced IR rates are a fundamental
property of plant plastomes.

In an important follow-up study, Perry & Wolfe (2002)
found that substitution rates increased to SC levels for former
IR genes in the clade of IR-lacking legumes. A similar finding
was reported by Gaut (1998), who used relative ratio tests for
former IR genes in the pine plastome, although there were no
statistical data presented to support this conclusion. Here, we
examined IR boundary shifts in 13 pairs of vascular plants,
which resulted in multiple examples of IR-to-SC gene transi-
tions and SC-to-IR transitions (Figs 4, 5). Consistent with pre-
vious results, IR-to-SC genes exhibited substitution rates
comparable to those of ancestral SC genes in several indepen-
dent lineages including Erodium, Trifolum, cupressophytes
(Cephalotaxus, Juniperus, Podocarpus and Taiwania), and
Pinaceae (Pinus and Picea). Conversely, the major IR expansion
in Trochodendrales and several ferns (Angiopteris, Psilotum, and
Pteridaceae) resulted in IR-like substitution rates for genes
moved from the SC into the IR. This reduction in substitution
rates for SC-to-IR gene transitions has not been demonstrated
previously. Perhaps the most illustrative single example of the
effect of IR duplication on substitution rates comes from the
Hanabusaya and Trachelium comparison, in which a major IR
shift transferred some former SC genes into the IR and some
former IR genes into the SC. Consistent with our other com-
parisons, the SC-to-IR genes in Hanabusaya and Trachelium
show IR-like substitution rates, while their IR-to-SC genes show
SC-like substitution rates (Fig. 5). Together, these results clearly
demonstrate that IR localization, rather than gene identity or
function, is the key factor in conferring reduced substitution
rates in plant plastomes.

Localized hypermutation as another source of intragenomic
rate heterogeneity

Surprisingly, however, we discovered that this pattern of reduced
IR substitution rates does not apply universally to all vascular
plants. We observed that IR genes from species in the genera
Pelargonium, Plantago and Silene have comparable, and in fact
slightly higher, synonymous rates, on average, relative to their SC
genes. How did this unusual evolutionary pattern arise? Given
that the enhanced copy-correction activity in the IR is probably a
result of increased amounts of homologous recombination and
gene conversion, one straightforward explanation might be the
loss or reduction of homologous recombination activity in the IR
of these three genera. However, closer inspection of sequence
divergence of individual loci revealed that, instead of a general
increase of the IR substitution rates for all genes, the increased
substitution rates are confined to a few mutation hotspots: rpoA-
rps11-rpl36 and ycf1-rpl32 in Pelargonium, ycf1 in Plantago, and
ycf2 in Silene (Fig. 3). Overall, the observation of locus-specific
increases in sequence divergence coupled with elevated levels of

rearrangements, gene/intron loss, and repetitiveness in the plas-
tomes of Plantago, Pelargonium and Silene suggests a common
process driving the correlated evolution of all phenomena.

These striking locus-specific rate increases in Pelargonium,
Plantago, and Silene are not unique, as examples have been
observed in plastid or mitochondrial genomes of several plants
(Mower et al., 2007; Erixon & Oxelman, 2008; Guisinger et al.,
2008; Sloan et al., 2009, 2012a,b; Magee et al., 2010; Zhu
et al., 2014). In Oenthera and several Sileneae lineages (including
Silene), the clpP gene was previously shown to have elevated
synonymous and nonsynonymous substitution rates associated
with the proliferation of repetitive amino acid sequence motifs
and loss of the introns, although the evolutionary processes con-
necting these various phenomena were not determined (Erixon
& Oxelman, 2008). Similar repetitive amino acid motifs were
identified in Medicago accD and ycf1 genes, and their active pro-
liferation over a short evolutionary timescale was suggested to
be recombinationally driven, but it was not determined if these
genes also had accelerated substitution rates (Gurdon & Maliga,
2014). For the substantial intragenomic variation in synony-
mous substitution rates within some plant mitochondrial
genomes, possible evolutionary processes were suggested to be
recombination between maternal and paternal genome copies
(Sloan et al., 2009) or gene conversion via recombination with
processed transcripts and their originating genes (Zhu et al.,
2014). A more direct link between recombination and mutation
hotspots was postulated for the IR-lacking plastome from
Lathyrus, where repeated DNA breakage and repair were sug-
gested to cause a c. 1.5 kb localized hypermutation region
around ycf4 (Magee et al., 2010). In Plantago media, the three
fastest-evolving genes (accD, clpP, ycf1) have small repeats in
their vicinity, suggesting a role for recombination in rate accel-
eration (Fig. S3B). Overall, the weight of evidence suggests that
mutation hotspots are tied to increased recombinational activity,
which itself may be driven by the proliferation of repeats within
these genomes.
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