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Abstract: The coronavirus disease 2019 (COVID-19) pandemic
has caused immense losses in human lives and the global
economy and posed significant challenges for global public
health. As severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), the causative agent of COVID-19, has evolved,
thousands of single nucleotide variants (SNVs) have been
identifiedacross the viral genome.The roles of individual SNVs
in the zoonotic origin, evolution, and transmission of
SARS-CoV-2 have become the focus of many studies. This re-
view summarizes recent comparative genomic analyses of
SARS-CoV-2 and related coronaviruses (SC2r-CoVs) found in
non-human animals, including delineation of SARS-CoV-2
lineages based on characteristic SNVs. We also discuss the
current understanding of receptor-binding domain (RBD)
evolution and characteristic mutations in variants of concern
(VOCs) of SARS-CoV-2, as well as possible co-evolution be-
tween RBD and its receptor, angiotensin-converting enzyme 2
(ACE2). We propose that the interplay between SARS-CoV-2
and host RNA editing mechanisms might have partially resul-
ted in the bias in nucleotide changes during SARS-CoV-2 evo-
lution. Finally, we outline some current challenges, including
difficulty in deciphering the complicated relationship between
viral pathogenicity and infectivity of different variants, and
monitoring transmission of SARS-CoV-2 between humans and
animals as the pandemic progresses.
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vere acute respiratory syndrome coronavirus 2; variant;
virus.

The structure, composition,
replication and transcription of the
SARS-CoV-2 genome

The coronavirus disease 2019 (COVID-19) pandemic has
caused immense losses in human lives and the global
economy and posed significant challenges for global
public health. As of December 14th, 2021, there were over
270 million confirmed cases and 5.32 million reported
deaths [1]. The SARS-CoV-2, a newly identified sarbecovi-
rus in the genus Betacoronavirus (β-CoVs or Beta-CoVs), is
the causative agent of COVID-19 pandemic [2–5].

SARS-CoV-2 is a single-stranded, positive-sense RNA
virus. The genome of SARS-CoV-2 is approximately 29.9 kb
with a cap structure at the 5′ end and a poly-A tail at the 3′
end [5], similar to host cellular mRNA; and it has 13–15 open
reading frames (ORFs) flanked by 5′ and 3′ untranslated
regions (UTRs) [6, 7], which contain cis-elements essential
for RNA synthesis (Figure 1A). ORF1ab occupies two-thirds
of the viral genome and is synthesized as a single poly-
protein (Figure 1A) and then cleaved into 16 nonstructural
proteins (nsps) by viral proteases encoded in nsp3 and nsp5.
Most nsps are essential for the formation of the viral repli-
cation and transcription complex (RTC) [8]. The remaining
one-third of the viral genome encodes four viral structural
proteins: the spike protein (S), an envelope protein (E),
membrane protein (M), and nucleoprotein (N), and several
viral accessory proteins, including ORF3a, ORF3b, ORF6,
ORF7a, ORF7b, ORF8, ORF9b, and ORF10 [6, 7]. The S pro-
tein is essential for binding its entry receptor, angiotensin-
converting enzyme 2 (ACE2), and contains two subunits, S1
and S2, separated by a furin cleavage site (Figure 1B). S1 can
be further divided into two domains, N-terminal domain
(NTD) and receptor-binding domain (RBD). After binding to
their receptor, S proteins may mediate membrane fusion
either at the cell plasma membrane directly or at lysosomal
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membranes after internalization through endocytosis,
depending on the availability of appropriate host pro-
teases [9, 10]. The E andM proteins are required for effective
virus assembly and budding, and the N protein binds to the
viral genome and forms a helical ribonucleocapsid (RNP)
that is essential for virus assembly [11]. Viral accessory
proteins are not required for virus replication in cell culture,
but they are suspected of playing important roles in viral
pathogenesis in the natural host. Not all ORFs listed here
have been experimentally verified, and the exact number of
accessory proteins encoded in the SARS-CoV-2 genome re-
mains to be determined [6, 7, 12, 13]. In addition, the
SARS-CoV-2 genome might encode other unknown ORFs
involved in the regulation of viral replication or host im-
mune responses [6].

OnceSARS-CoV-2 enters a cell, viral RNA replication and
transcription,which are controlled byRTC, begin. Likemany
other positive-sense RNA viruses, SARS-CoV-2 RNA synthe-
sis likely occurs inside the endoplasmic reticulum (ER)-
derived double-membrane vesicles (DMVs) [14]. DMVs may
not only protect viral RNA replication intermediates from
host cytosolic innate immune sensors but also provide a
place with adequate concentrations of substrates required
for RNA synthesis. Viral nsp3, nsp4, and nsp6 have been
implicated in the formation of DMVs [14]. In the RTC, nsp12
serves as an RNA-dependent RNA polymerase (RdRp),
catalyzing viral RNA synthesis with the help of two viral
cofactors, nsp7 and nsp8 [15]. The nsp8 protein is a primase,
and nsp7, nsp8, and nsp12 together form the core of the RTC
(Figure 1C). Thensp9 protein forms adimer and regulates the
replication process. Viral nsp13 [16] and nsp14 [17] also play
important roles in regulating viral RNA synthesis during
elongation: nsp13 is a viral helicase [18], and nsp14 provides
3′–5′ exonuclease activity with a proofreading function [19].
Nsp13 and nsp14 also contribute to the 5′ capping of viral
RNAs [18, 20]. The coronavirus capping machinery includes
nsp10, nsp13, nsp14, and nsp16. Nsp13 provides RNA 5′-tri-
phosphatase activity [18], nsp14 has N7-methyltransferase
activity [20], nsp16 isa 2′-O-methyltransferase [21], andnsp10
acts as a cofactor for nsp14 and nsp16 [22, 23].

During viral replication, thepositive-senseviral genome
is used as the template to synthesize full-length negative-
sense genome copies (Figure 1D). In return, negative-sense
genomes serve as the templates for the generation of prog-
eny viral RNA genomes, which can be translated to produce
more nsps and RTCs. Viral structural proteins and accessory
proteins are generated from individual viral subgenomic
RNAs (sgRNAs), which result from a unique discontinuous
transcription process during negative-strand synthesis, a
hallmark feature of CoV replication and transcription [8, 24].
There are transcription regulatory sequences (TRS) located

upstream of most ORFs in the coronavirus genome [8]. The
TRS adjacent to the leader sequence in the 5′UTRof the viral
genome is named “TRS-L”, whereas all other TRSs are called
TRS-“body” or TRS-B. In the case of SARS-CoV-2, the TRS
sequence is “ACGAAC” [5–7]. During negative-strand RNA
synthesis, the RTC likely pauses on specific sequences
containing TRS-B and reinitiates synthesis at TRS-L
(Figure 1D). The nascent negative-sense sgRNAs are then
used as templates to synthesize positive-sense sgRNAs
for the expression of structural and accessory proteins.
The discontinuous transcription process likely involves
interactions between complementary TRSs of the nascent
negative-strand RNA (negative-sense TRS-B) and the
positive-strand genomic RNA (positive-sense TRS-L) [8]. The
exact molecular mechanism underlying discontinuous
transcription remains elusive.

Comparative genomics of
SARS-CoV-2 and related CoVs

Identification of SARS-CoV-2-related CoVs

Great efforts have been undertaken worldwide to trace the
origin of SARS-CoV-2, but it remains elusive when and
where SARS-CoV-2 originated. The current consensus is
that it is extremely unlikely that a lab leakwas the source of
the pandemic virus [25]. Instead, many studies have sup-
ported the view that SARS-CoV-2 had a zoonotic origin and
evolved in nature [26–29]. Because the place of virus origin
is usually different from the place of the first recognized
outbreak [30] and investigating the origin of a virus can
take tremendous time and effort [31, 32], further studies are
needed to better understand the origin of SARS-CoV-2 [33].

Despite the zoonotic signatures observed in the
SARS-CoV-2 genome, it remains unclear how this virus was
transmitted from animals to human populations [28].
Nevertheless, recent studies have identified various CoVs in
bats closely related to SARS-CoV-2 (termed SC2r-CoVs),
including RaTG13 from Rhinolophus affinis [3], BANAL-20-
236 from R. marshalli [34], BANAL-20-52, BANAL-20-116,
BANAL-20-247, and RmYN02 from Rhinolophus malaya-
nus [34, 35], Rc-o319 from Rhinolophus cornutus [36],
RshSTT182 and RshSTT200 from Rhinolophus shameli [37],
RacCs203 fromRhinolophus acuminatus [38], andBANAL-20-
103 and RpYN06 from Rhinolophus pusillus [34, 39]. Bats are
common natural hosts for CoVs [40–43], supporting that
SARS-CoV-2 likely had a bat origin.

As shown previously [38, 44], the currently known
CoVs in the sarbecovirus lineage of the β-CoV genus can
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Figure 1: The scheme of genome organization and replication/transcription of SARS-CoV-2.
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be categorized into two major clades, with one clade
clustering with SARS-CoV-2 (termed SC2r-CoVs) and the
other clade grouping with SARS-CoV (SC1r-CoVs)
(Figure 2A). Notably, several bat CoVs, including RaTG13,
BANAL-20-52, BANAL-20-103, and BANAL-20-236, share
−96% nucleotide sequence identity with SARS-CoV-
2 [3, 34]. Divergence of SARS-CoV-2 and RaTG13 was
inferred to have occurred roughly 50 years ago [45, 46],
although the exact divergence time depends on the sub-
stitution rate assumed in various analyses. Of note, a
recent large-scale survey of CoV in bats in China failed to
find any SC2r-CoV sequences, indicating that active cir-
culation of SC2r-CoV might be limited in China [47–52].

Besides bats, SC2r-CoVs have also been detected in

Malayan pangolins (Manis javanica) [53–56]. Pangolin-
derived SC2r-CoVs (pangolin-CoVs) can be further clas-

sified into two sublineages, pangolin-CoV-GDC [53–55]
and pangolin-CoV-GXC, which were found during anti-

smuggling operations by Guangdong and Guangxi cus-

toms, respectively. While pangolin-CoV-GDC and

SARS-CoV-2 share genomic sequence similarity of

92.4% [53–55], pangolin-CoV-GXC and SARS-CoV-2 show

85.5% nucleotide identity [56]. Both sublineages of

pangolin-CoVs were isolated fromM. javanica. However,

a recent study identified an SC2r-CoV, MP20, from

M. pentadactyla that likely originated from Southeast

Asia [57]. MP20 is closely related to pangolin-CoV-GXC.

An intra-host variant analysis revealed that the genetic

diversity of pangolin-CoVs was substantially higher than

expected, suggesting that pangolins might be the natural

hosts of SC2r-CoVs [57]. The S proteins of viruses in both

pangolin-CoV sublineages can bind hACE2 [44, 58–60],

pointing to the potential risk of zoonotic transmission of
pathogenic SC2r-CoVs from pangolins to humans.

Roles of natural selection in SARS-CoV-2 and
SC2r-CoVs divergence

The substitution rate at synonymous substitution sites in
protein-coding regions (nucleotide changes that do not
alter protein sequences) is routinely used as a proxy for the
rate of neutral evolution. The synonymous substitution
rate of SARS-CoV has been estimated to range from 1.67 to
4.67 × 10−3 substitutions/site/year [61], whereas the
evolutionary rate of MERS-CoV was estimated at about
1.12 × 10−3 substitutions/site/year [62]. In comparison, the
substitution rate in SARS-CoV-2was roughly on the order of
10−3 substitutions/site/year [63–68], although the exact
rate has varied slightly across studies. These results indi-
cate that SARS-CoV-2 has an overall evolutionary rate
similar to SARS-CoV and MERS-CoV. Nevertheless, as
observed in other CoVs [69], the evolutionary rate is het-
erogeneous across SARS-CoV-2 genes. For example, in
comparing SARS-CoV-2 with SC2r-CoVs, we found consid-
erable differences in synonymous substitution rates across
genes,with the S gene showing amuchhigher evolutionary
rate than other genes [70].

Comparative genomics has revealed how natural
selection shaped the genome-wide differences between
SARS-CoV-2 and SC2r-CoVs. Comparison between dN
(nonsynonymous substitutions per nonsynonymous
site) vs. dS (synonymous substitutions per synonymous
site) values in coding regions provides a measure of the
selective pressure on protein evolution, with a dN/dS (ω)

A. The genomeorganization of SARS-CoV-2. The schematic diagramof the complete SARS-COV-2genome is shownat the top.ORF1a andORF1b
encode polyproteins pp1a and pp1ab, respectively, which are further processed into 10 and 16 nsps by viral proteases. The expression of
ORF1b is regulated by a ribosomal frameshifting mechanism. –1PRF: –1 programmed ribosome frameshifting element. The leader and body
copies of transcription-regulating sequences (TRS-L and TRS-B, respectively) are indicated by short thick red lines. The functions of important
nsps are indicated in the scheme. UTR, untranslated regions; Mpro, main protease; RBP, RNA binding protein; RdRp, RNA-dependent RNA
polymerase; S, spike protein; E, envelop protein;M, membrane protein;N, nucleocapsid protein. B. The schematic diagramof S protein of the
SARS-CoV-2 S protein. NTD, N-terminal domain; RBD, receptor-binding domain; FP, fusion peptide; TMD, transmembrane domain; cleavage
site, furin cleavage site. C. A hypotheticalmodel of the replicase and transcriptase complex of SARS-CoV-2. The diagram above shows how the
replication-related proteins form an RTC. Nascent RNA is synthesized at the nsp12 RdRp domain. The nsp7 and nsp8 form the primase
complex, nsp9 is a single-stranded binding protein and forms a dimer in the complex. Formation of the 5′ cap is catalyzed by nsp13, nsp14,
nsp10, and nsp16. The locations of these proteins in themodel are based on structural and functional analyses. D. A schematic of SARS-CoV-2
replication and transcription. Viral RNA replicates in the cytoplasm. ORF1a and ORF1ab are translated from the genomic RNA to produce pp1a
and pp1ab polyproteins, which are then cleaved by viral papain-like protease (PLpro) andMpro. Nsp 3, 4, and 6 are responsible for remodeling
cellular membranes to form double-membrane vesicles (DMVs) where viral replication and transcription occur. The positive-sense genome is
used as the template to produce full-length (−) RNA copies, which are used as templates for making full-length (+) RNA genomes. Negative-
stranded sub-genomicRNAs (–sgRNAs) are synthesized through a uniquediscontinuous transcriptionmechanism inwhich fusionand transfer
of a leader RNA sequence to body RNAs occur at transcription-regulating sequences (TRSs) with the help of the viral N protein and host
proteins. The –sgRNAs serve as templates for sub-genomic RNAs (+sgRNAs) that are capped and polyA-tailed, and, despite many ORFs, only
the closest ORF is typically translated.
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value>1 indicating positive selection, ω=1 indicating
neutral evolution, and ω<1 indicating purifying selec-
tion. By comparing the sequences of 13 protein-coding
genes between SARS-CoV-2 and other closely related
CoVs, we [70] found that in all pairwise comparisons, ω

values ranged between 0.044 and 0.124, suggesting
strong negative selection at nonsynonymous sites.
Similar patterns have been observed in other
studies [46, 71, 72]. Because nonsynonymous sites are
under stronger negative selection than synonymous

A B

C

Figure 2: Phylogeny of SARS-CoV-2 and representative related CoVs. A. Phylogenetic tree reconstructedwith concatenated protein sequences
of nine conserved ORFs (orf1ab, S, ORF3a, E, M, ORF6, ORF7a, ORF7b, and N). B. Phylogenetic tree based on the S protein. In both A and B, the
tree was reconstructed using MEGA X software [48], neighbor-joining method [49], and Jones-Taylor-Thornton (JTT) model [50]. The rate
variation among sites was modeled with a gamma distribution (shape parameter=1), and the pairwise deletion option was used to remove
ambiguous sites (SC1r-CoVs, red; SC2r-CoVs, blue). C. Protein sequence alignment of the receptor-binding motif (RBM). Site positions are
shown at the top; the 17 ACE2-contacting residues identified by Wang et al. [51] and Lan et al. [52] are labeled with purple stars, and another
four residues identified by Wang et al. [51] are labeled with black stars. A dot means the amino acid in that position is identical to that in
SARS-CoV-2, and two deletions in the RBM are highlighted in gray.
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sites, analysis of sequence differences without sepa-
rating these two classes of sites may underestimate the
extent of molecular divergence several-fold. For
instance, between SARS-CoV-2 and RaTG13, nucleotides
genome-wide differ by −3.8%; however, the average dN
is 0.78%, and dS is 16.8% (ω=0.0465), which means that,
on average, 95.35% of nonsynonymous mutations that
change protein sequences were removed by natural se-
lection as SARS-CoV-2 and RaTG13 diverged. Although
phylogenetic reconstruction using concatenated protein
sequences indicates that some CoVs collected from bats
in North Laos (BANAL-20-103 and BANAL-20-236) are
more distantly related to SARS-CoV-2 than RaTG13 [34],
the dS values from a comparison of SARS-CoV-2 and
these two CoVs (0.1524, and 0.1577 for BANAL-20-103
and 236, respectively) tend to be slightly lower than
those from a comparison of SARS-CoV-2 and RaTG13
(0.1682). Teasing apart the effect of natural selection
can yield a better understanding of the phylogenetic
relationships of CoVs (Table 1).

Although the purifying selection is the predominant
force governing the evolution of SARS-CoV-2 and SC2r-
CoVs, signals of positive selection were also detected in
nonsynonymous sites. By carrying out a CODEML anal-
ysis, we previously identified 10 nonsynonymous sites
that showed strong signals of positive selection during
the evolution of SARS-CoV-2 and other SC2r-CoVs [70].
Interestingly, five of these putative positively selected
sites are located in the S protein (sites 46, 183, 439, 483,
and 493), and three of them are located in the RBD of the
S protein (439, 483 and 493). Using a similar analysis,
Damas et al. identified three putative positively selected
sites (455, 483, and 494) [73], and Cagliani et al. [72]
found strong evidence of positive selection at seven sites,
including six in the S protein (483, 484, 486, 490, 493,
and 494). Sites 493 and 494 of the S protein were inferred
to be positively selected in two of these studies, and site
483 was inferred to be positively selected in all three
studies. Some of these inferences might have led to false
positives, as the assumptions of CODEML were violated

in analysis [74]. Therefore, functional studies are needed
to investigate the consequences of these amino acid
changes.

Evolution of RBD and possible co-
evolution with ACE2

Deletions and possible recombination in the
RBD

Compared with the phylogenetic tree based on protein
alignments of all the conserved genes (Figure 2A), a
considerably different tree was obtained when only S gene
sequences were used for phylogenetic reconstruction, as
some CoVs in the SC2r-CoV clade (e.g. RmYN02 and
RAcCS203) grouped with viruses in the SC1r-CoV clade
(e.g. Rf1 and HeB2013) (Figure 2B). This discrepancy might
result from differences in genealogies of the S gene from
those of other parts of the genome, as evidence of recom-
bination is commonly observed in CoVs [5, 75, 76]. This
pattern is manifested in the RBM (sites 436–506 of the S
protein) of the RBD (Figure 2C).

There are two deletions in the RBMs of the RBD: de-
letions 1 (sites 445–449) and 2 (473–486). These deletions
commonly coexist in coronavirus lineages such asRmYN02
and RacCs203. Previous analyses demonstrated that de-
letions in this sequence abolish the capacity of RBDs of
RmYN02 and RacCs203 to bind to hACE2 [38, 44]. However,
deletion 2 seems to be more important, because S proteins
with deletion of sites 445–449 alone, such as that in
RsYN04, retain some to bind to hACE2 [39]. The deletions
are interspersed in SC1r-CoVs and SC2r-CoVs; intriguingly,
however, viruses with both deletions also have highly
similar sequences flanking these deletions (Figure 2C),
suggesting that these deletions might have one single
origin rather than multiple independent origins. Recom-
bination may have shaped this discontinuity in the distri-
bution of deletions within the phylogeny.

Amino acid changes in RBDs of bat SC2r-
CoVs

There are at least 17 amino acid residues in the RBD of the
SARS-CoV-2 S protein that interact with hACE2 [51, 52]
(Figure 2C). Eight (Y449, Y453, N487, Y489, G496, T500,
G502, and Y505) of these 17 residues are conserved between
S proteins of SARS-CoV and SARS-CoV-2, and 11 of the 17
residues (K417, G446, Y453, L455, F456, A475, N487, Y489,

Table : The molecular divergence between SARS-CoV- and SCr-
CoVs.

dN dS dN/dS

Bat RaTG . . .
Bat BANAL-- . . .
Bat BANAL-- . . .
Bat BANAL-- . . .
Bat BANAL-- . . .
Bat BANAL-- . . .
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G496, T500, and G502) are identical between the S proteins
of SARS-CoV-2 and RaTG13 (Figure 2C). Nevertheless, the
S protein of RaTG13 can still use hACE2 as its entry recep-
tor, although the entry efficiency is lower than that of
SARS-CoV-2 [77–79]. These results highlight the plasticity of
RBD/hACE2 interactions. Recently, CoVs isolated from bats
inNorthLaoswere found to showveryhighhomologieswith
SARS-CoV-2 [34]. The S proteins of BANAL-20-52 and
BANAL-20-236 share amino acid sequence identities of over
98.4 and 90.6%, respectively, with that of SARS-CoV-2.
Among the 17 ACE2-contacting residues in the S protein,
there is only H498 in BANAL-20-52 and K493 and H498 in
BANAL-20-236 that differ from those residues in SARS-CoV-
2, indicating that both S proteins likely use hACE2 as the
entry receptor. Interestingly, although deletion 1 is found in
S proteins of bat RSHSTT182 and RSHSTT200 CoVs found in
Cambodia, several critical ACE2 contact residues are pre-
served, including Q493, Q498, N501, and Y505 [37]. While
the S protein of RSHSTT200 CoVs failed to bind to hACE2, it
could bindR. shameli bat ACE2 for virus entry [37]. Similar to
bat RSHSTT182 and RSHSTT200 CoVs, the S protein of
RaTG15, a coronavirus isolated from R. affinis, has a short
deletion 1 (Figure 2C). However, there are 10 residues (sites
417, 449, 475, 486, 487, 493, 498, 500, 501, and 502) and one
deletion (site 446) in the 17 ACE2-contacting sites that differ
between SARS-CoV-2 and RaTG15. Experimental results
reveal that these differences, possibly combined with the
effect of deletion 1, might be responsible for the loss of
binding affinity to hACE2 [44]. In summary, there are sub-
stantial differences in the critical functional sites in RBDs
across bat CoVs, but only some changes may be associated
with differences in the entry of human cells.

Amino acid changes in RBDs of pangolin-
CoVs

Neither of the two currently known pangolin-CoV sub-
lineages has any deletions in the RBM (Figure 2C).
Although the pangolin-CoVs are more distantly related to
SARS-CoV-2 than RaTG13, previous studies have revealed
almost identical amino acid sequences in the RBD region
between pangolin-GDC-CoV and SARS-CoV-2 [55, 80]. As
shown in Figure 2C, only two (417 and 498) out of the 17
ACE2-contacting residues differ between the RBDs of
pangolin-GDC-CoV and SARS-CoV-2. It seems likely that
the identical residues in SARS-CoV-2 and pangolin-
GDC-CoV resulted from convergent evolution or recombi-
nation [56, 70, 80]. Notably, 12 of these 17 residues (G446,
Y449, Y453, L455, F456, A475, N487, Y489, G496, T500,
G502, and Y505) are identical between pangolin-GXC-CoV

and SARS-CoV-2 (Lam et al. [56]). Despite differences in key
functional residues between the two sublineages of
pangolin-CoVs (Figure 2C), the RBDs of both pangolin-CoV
sublineages bind efficiently to hACE2 [44, 81]. In addition,
the RBDs of pangolin-CoVs seem to indicate a broader host
range than those of SARS‐CoV‐2 [81]. Of note, S protein
residue 498 differs across SARS-CoV-2 (Q), RaTG13 (Y),
pangolin-CoV (H), BANAL-20-52 (H), and BANAL-20-236
(H), and introducing a Q498H substitution in the SARS‐
CoV‐2 RBD expands its binding capacity to ACE2 of mice,
rats, and European hedgehogs [28, 81].

Evolution of ACE2 in animals and possible
co-evolution with RBD

In addition to differences in the RBD region across
SC2r-CoVs, sequence changes in the ACE2 receptor can in-
fluence RBD-ACE2 binding affinity. There are about 20 resi-
dues in ACE2 that interact with viral S proteins. Comparative
genomic analyses revealed multiple amino acid changes in
ACE2 across animals that putatively affect binding of the
SARS-CoV-2 RBD to ACE2 [73, 82]. Bat Rhinolophus macrotis
ACE2 (bACE2-Rm) exhibits a substantially lower affinity to
the RBD of SARS-CoV-2 than hACE2 does [83]. A detailed
analysis has revealed that residues 41 and 42 in bACE2-Rm
play important roles in interactions of the receptor with
SARS-CoV-2 RBD, with the Y41-Q42 combination yielding a
high binding affinity and theH41-E42 combination resulting
in a much weaker binding affinity [83]. While the S proteins
of both SARS-CoV-2 and RaTG13 can bind to ACE2 of bat
R. affinis (RaACE2), the binding affinity of SARS-CoV-2 RBD
to RaACE2 is much weaker than that to hACE2 [28]. The RBD
of RaTG15 shows clear discrepancies in binding to ACE2s
from different species; it can bind to ACE2 of both R. affinis
and Malayan pangolins, but fails to bind hACE2 [44]. More
comprehensive studies are needed to dissect the compli-
cated interactions between various RBDs of SC2r-CoVs
and different ACE2 homologs, as well as to understand the
mechanismof possible co-evolution between SC2r-CoVs and
the animal host receptors.

Mutational bias in the genomes of
SARS-CoV-2 and SC2r-CoVs

Besides replication errors, several confounding factors
such as host antiviral proteins and spontaneous chemical
reactions can lead to mutations in the genomes of RNA
viruses [69]. RNA editing enzymes, including adenosine
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deaminases acting on RNAs (ADARs) and apolipoprotein B
mRNA editing enzyme, catalytic polypeptides (APOBECs),
play important roles in the innate immune restriction to
counter SARS-CoV-2 infection by inducing point mutations
in SARS-CoV-2 genomes [6, 84, 85].

Several studies have shown excessiveA-to-G and C-to-U
mutations occurred during SARS-CoV-2 evolution [86–91].
For example, one study examined the nucleotide substitu-
tion matrix from the most recent common ancestor of
SARS-CoV-2 and RaTG13 to that of SARS-CoV-2 and RaTG13,
and observed a strong nucleotide substitution bias at syn-
onymous sites [14]. Specifically, A-to-G, C-to-U, U-to-C, and
G-to-A substitutions were the most abundant when the

ancestral nucleotide was A, C, U, and G, respectively
(Figure 3A). It was proposed that the overabundance of
C-to-U transitions in the SARS-CoV-2 genomes can be
caused by the activity of APOBEC cytosine deaminases [92].
Here, we propose amodel of possible RNA editing-induced
mutational bias in SARS-CoV-2 evolution. Under this
model, A-to-I editing events catalyzed by ADARs in the
sense or antisense strand of SARS-CoV-2 cause A-to-G or
U-to-C mutations; and C-to-U editing catalyzed by APO-
BECs in the sense or antisense strand of SARS-CoV-2 cause
C-to-U or G-to-A mutations (Figure 3B). However, other
mechanisms that might lead to similar observations could
not be excluded.

Figure 3: Model of possible RNA editing-induced mutational bias in SARS-CoV-2 evolution. A. Nucleotide substitution frequencies at syn-
onymous sites in branches from themost recent common ancestor of SARS-CoV-2 and RaTG13 (the purple point in the phylogenetic tree on the
left) to SARS-CoV-2 (B1) and RaTG13 (B2). B. A-to-I editing events catalyzed by ADARs in the sense or antisense strand of SARS-CoV-2 cause
A-to-G or U-to-Cmutations (upper panel); C-to-U editing catalyzed by APOBECs in the sense or antisense strand of SARS-CoV-2 cause C-to-U or
G-to-A mutations (lower panel).
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SARS-CoV-2 lineage analysis and
the continuing evolution

Although SARS-CoV-2 has a proofreading mechanism, mu-
tations remain inevitable during the replication of RNA vi-
ruses. By carrying out experimental evolution experiments
with two circulating SARS-CoV-2 strains, a recent study es-
timates a genomic mutation rate of 2.9–3.7 × 10−6 mutation/
site/cycle for SARS-CoV-2 under cell culture condition [93],
which yields roughly 0.1 mutations/genome/cycle. With
millions of SARS-CoV-2 genome sequences deposited in
databases, including the Global Initiative on Sharing All
Influenza Data (GISAID; https://www.epicov.org) [94, 95]
and National Genomic Data Center of China (https://ngdc.
cncb.ac.cn/) databases, hundreds to thousands of single
nucleotide variants (SNVs) have been identified [70, 96–100].
The roles of individual SNVs in zoonotic origin, evolution,
and transmission of SARS-CoV-2 have become the focus of
many studies [25, 64, 101–104]. Based on 103 available
SARS-CoV-2 genomes, we found that SARS-CoV-2 could
be divided into two major lineages, L and S, early in the
COVID-19 pandemic [70]. The distinction between L and
S lineages depends on two SNV pairs at sites 8,782
and 28,144 with nearly complete linkage: C8782/U28144
for L and U8782/C28144 for S, with the reference genome
(NC_045512) belonging to the L lineage. Residue 8,782
is encoded in the nsp4 gene. The C-to-U change at position
8,782 has no effect on the resulting amino acid, whereas
residue 28,144 is encoded in the accessory protein ORF8
and the U-to-C substitution at position 28,144 leads to a
codon switch from leucine (L) to serine (S). The “L” and “S”
lineages are named because of leucine and serine residues,
respectively, at position 28,144. Of note, the S lineage is
considered to be ancestral to the L lineage when a tree is
rooted by bat and pangolin CoVs as the outgroup [99].
Using Forster’s nomenclature, SARS-CoV-2 variants are
classified into three lineages: A, B, and C. “A” lineage is
equivalent to our “S” lineage, “L” lineage is further divided
into “B” and “C” lineages. Moreover, based on these two
sites and other SNVs, GISAID (http://gisaid.org) divides
SARS-CoV-2 genomes into four major groups (S, L, V, and
G), In contrast, Nextstrain (https://nextstrain.org) [105]
categorized SARS-CoV-2 variants into five major clades
(19A, 19B, 20A, 20B, and 20C). Finally, in the popular Pango
nomenclature of SARS-CoV-2 (https://cov-lineages.org/
index.html), classification of “A” and “B” lineages is also
based on SNVs at positions 8,782 and 28,144, with “A”
equating to “S” and “B” equating to “L”. Despite the sub-
stantial expansion of the number of viral genomes analyzed,
the distinction betweenSARS-CoV-2 L and S lineages remains

robust. For instance, among the 127,119 high-quality
SARS-CoV-2 genomes we previously analyzed, 120,958 (95.
15%)belonged to the L lineage, 5,950 (4.68%)belonged to the
S lineage, and only 211 (0.17%) could not be accurately
assigned to either the L or S lineage [106].

Given the rapid accumulation of publicly available
SARS-CoV-2 genome sequences, analyzing the relatedness of
SARS-CoV-2 genomesusing traditional phylogeneticmethods
is a significant challenge. The power of a phylogenetic anal-
ysis can also be limited for tracing genealogies when ances-
tral, anddescendent sequences are pooled [107, 108]. Further,
because viruses often evolve through multifurcation, espe-
cially when superspreaders play a role in transmission [109],
the hierarchical bifurcating assumption in the traditional
phylogenetic inferencemay be violated. As an alternative, we
have proposed determination of the lineage of a SARS-CoV-2
genome combined with haplotype network analysis to trace
geneologies [106]. Specifically, based on L/S delineation ac-
cording to variants at sites 8,782 and 28,144, we further
divided the L lineage into two major sublineages (L1 and L2)
using three tightly linked variants at sites 3,037, 14,408, and
23,403, and further categorized SARS-CoV-2 strains into 130
sublineages with SNVs at 201 additional sites. Our lineage
designation system is hierarchical and can be easily
expanded with new variants that might arise and become
prevalent. In Figure 4, we incorporated the characteristic
mutations in representative variants of concern (VOCs) and
variants of interest (VOIs) andupdated thehaplotypenetwork
of SARS-CoV-2 sublineages based on the previous L/S
nomenclature system [106].

Important SARS-CoV-2 variants and
their biological, immunological,
and clinical characteristics

Important variants of concern (VOCs) and
variants of interest (VOIs) and their
biological, immunological, and
transmissibility

Amino acid changes in the S protein affect virus infectivity
and host immune responses against the virus [110].
For instance, an N234Q change promotes resistance to
neutralizing antibodies, whereas an N165Q change makes
the virus more sensitive. A D614Gmutation in the S protein
(A23403G) and C3037U and C14408U greatly enhances vi-
rus infectivity and transmission. Based on thesemutations,
L1 and L2 sublineages can be defined [106]. The L1
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sublineage carries the ancestral D614 variant, whereas the
L2 sublineage has the G614 mutation. As shown in
Figure 5B, SARS-CoV-2 sublineages exhibit substantial
differences in temporal distributions; currently, the L2
sublineage is dominant worldwide.

Population genetic analyses have revealed that the
D614G change is driven by positive selection [111–113].
Precisely, selective coefficients of G614 over D614 were
estimated to be 0.31–0.55 [112] and 0.06–0.56 [113] when
considering SARS-CoV-2 strains sampled worldwide.
Strains found in the initial outbreak mainly carry D614,
whereas G614 strains became dominant during the
pandemic [106, 111, 112]. Although residue 614 itself is not
located on the surface of the RBM, the G614 S protein seems
to adopt a more open conformation that allows the S pro-
tein to bind to hACE2 more efficiently [114]. Numerous ex-
periments have shown D614G enhancement of viral
replication in human lung epithelial cells and primary
human airway tissues, leading to high virus titers in the

upper respiratory tract and greater transmissability, that
result from the greater infectivity and virion stability
conferred by this change [115–121]. However, the open
conformation of the S protein may also increase suscepti-
bility to antibody neutralization [122]. Similar to D614G,
some emerging variants alter receptor binding affinity,
reduce antibody neutralization activity, and affect the
T cell response, potentially impacting COVID-19 diagnosis,
treatment, and vaccine effectiveness globally.

To mitigate the potential impacts of some important
variants and communicate differences between variants
more easily to the public, WHO developed a classification
system that defines two classes of SARS-CoV-2 variants, VOIs
and VOCs. A VOI is defined as a SARS-CoV-2 variant with
specific genetic markers that are known or predicted to be
associated with an increase in virus transmissibility, disease
severity, or immune escape, or a decrease in the efficacy of
treatments and diagnostic assays. A VOC is defined as a
variant that shows evidenceof an increase in transmissibility,

Figure 4: Updated haplotype network of SARS-CoV-2 sublineages based on the L/S nomenclature system [106]. Except for L2d11, L2i2, and
L2d13 the size of each dot indicating a sublineage was scaled to the number of genomes in that sublineage (Sizes of L2d11, L2i2, and L2d13
have been reduced for better visualization). Some representative variants of concern (VOCs) and variants of interest (VOIs) are labeled in red in
the network (Alpha: L2d11; Beta: L2g3f; Gamma: L2d12; Delta: L2i2; Omicron: L2d13; Epsilon: L2g3g1 + L2g3g2; Eta: L2h; Kappa: L2i1).
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disease severity, or immune escape. Both VOIs and VOCs are
namedwith Greek alphabet letters, and the list is periodically
adjusted as the pandemic progresses. As of January 18th,
2022, there are five VOCs, Alpha, Beta, Gamma, Delta and
Omicron; two VOIs, Lambda and Mu; and six formerly
circulating VOIs, Epsilon, Zeta, Eta, Theta, Iota, and Kappa.
Figure 5A shows characteristicmutations in the Sprotein that
define VOCs. In Figure 5B, we present the bi-weekly world-
wide prevalence of these variants. In the following, we will
briefly summarize the current understanding of the five VOC
lineages, with a focus on the S protein.

The Alpha (B.1.1.7) variant has two deletions (sites
69–70 and site 144) and seven amino acid changes (N501Y,
A570D, D614G, P681H, T716I, S982A, and D1118H) in the S
protein. This lineage shows greater transmissibility than the
SARS-CoV-2 variant circulating prior to its

appearance [113, 123]. The Alpha lineage showed a modest
increase in resistance to neutralizing antibodies, but the
E484K substitution in a small fraction of strains in the Alpha
lineage (∼0.3%) was found to facilitate immune
escape [124–127].

The Beta (B.1.351) variant carries threemutations in the
RBD (K417N, E484K, and N501Y), three in the N-terminal
domain (D80A, D215G, and a deletion of sites 241–243), and
one mutation in the S2 subunit (A701V). This variant was
first identified in South Africa in October 2020, and it
spreads rapidly in Africa due to a selective advantage pu-
tatively resulting from enhanced transmissibility [128] or
immune escape [125, 129, 130].

The Gamma (P.1) variant has three mutations (K417T,
E484K, and N501Y) in the RBD and nine other mutations
(L18F, T20N, P26S, D138Y, R190S, D614G, H655Y, T1027I,

A

B

Figure 5: Prevalence and characteristic mutations in the S protein of VOCs and VOIs. A. Characteristic mutations (relative to the reference
genomeNC_045512) in the S proteins of VOCs and VOIs. In each variant lineage, themutations that have a frequency of ≥75% in the sequences
of that lineage are shown in red (Data were taken fromOutbreak.info, last accessed on 20 January 2022).△, deletion; A, alanine; R, arginine;
N, asparagine; D, aspartic acid; C, cysteine; E, glutamic acid; Q, glutamine; G, glycine; H, histidine; I, isoleucine; L, leucine; K, lysine; F, phenyl-
alanine; P, proline; S, serine; T, threonine; Y, tyrosine; V, valine. Note that a 3-amino-acid insertion (EPE) occurred after R214 of the Omicron
Spike protein. B. Prevalence of VOCs and VOIs over time. SARS-CoV-2 genomes with collection date information in the GISAID database
(6,977,884 in total, deposited between October 1st, 2020 and January 16th, 2022) were used in the analysis. The number of genomes was
updated at two-week intervals.
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and V1176F) in the S protein. The three mutations in the
RBD confer an increased binding affinity to hACE2 to
strains in this lineage; strains in the gamma lineagemay be
1.7- to 2.4-fold more transmissible than previously circu-
lating non-Gamma strains [131]. In addition, virus strains in
the gamma lineage have shown increased resistance to
neutralizing antibodies [132, 133].

The Delta (B.1.617.2) lineage has one deletion (sites 157–
158) and seven amino acid mutations in the S protein (T19R,
E156G, L452R, T478K, D614G, P681R, and D950N). The
infection rate with Delta strains is significantly higher than
strains from other lineages. Delta is currently the most
prevalent variant circulating worldwide. This variant is
considerably less sensitive to serum neutralizing antibodies
than pre-existing strains that only bear the D614G substitu-
tion [134]. The Delta lineage showsmore efficient replication
in airway organoid and human airway epithelial cells and
spike-mediated entry than strains in the Alpha lineage [134].
The S protein of the Delta variant appears to mediate faster
membrane fusion than other variants [135], resulting in a
higher virus load and faster transmission rate [136]. The
L452Rmutation in the RBM confers increased infectivity and
neutralizing antibody resistance to this variant [137–144].
Interestingly, the L452Q mutation in the Lambda variant
might have similar effects as the L452R change in the Delta
lineage [145–147]. Additionally, the P681R mutation in the
Delta lineage may enhance furin cleavage of the spike pro-
tein into S1 and S2 subunits, facilitating more efficient
cleavage by TMPRSS2 and increased virus infectivity [148].

The Omicron variant (B.1.1.529) was first detected in pa-
tients traveling from South Africa in November 2021, and has
rapidly expanded globally. A substantial number of changes
have occurred in the S protein of Omicron variant, including
three deletions (sites 69–70, sites 143–145, and site 212), one
insertion (insertion of EPE after site 214), and 26 point mu-
tations (12 of them are located in the RBD: G339D, S371L,
S373P, S375F, S477N, T478K, E484A, Q493R, G496S, Q498R,
N501Y, and Y505H). Despite the large number of mutations
carriedby theOmicronvariant, it is not yet clear regarding the
origin of this variant. It is possible that the Omicron variant
might have evolved in human populations where the large-
scale sequencing of SARS-CoV-2 genomes were not well
carried out, or in immunocompromised people where many
mutations in the SARS-CoV-2 genomes were allowed to
accumulate, or resulted fromcross-species transmission from
animals that were infected with SARS-CoV-2 and accumu-
lated adaptive mutations [149, 150]. Existing studies have
shown thatOmicronhas a stronger immune evasion ability to
neutralize antibodies than othermutant strains [151–154], but
its pathogenicity might be significantly weakened [155–158].

In summary, the VOC lineages tend to be more infec-
tious and have a greater capacity for immune escape.
Although numerous mutations have been found across the
SARS-CoV-2 genome, changes in the S protein have
received the most attention. These residues determine not
only receptor usage and host range but also serve as major
targets for host immune responses and, therefore, vac-
cines. Of note, as the pandemic developed, many muta-
tions have occurred in the genomes of the VOCs which
differentiated each VOC lineage into many sublineages. In
Figures S1–5, we presented the characteristic mutations
in the S protein of the sublineages and their prevalence in
each of the five VOC lineages. Although new S protein
variants have emerged and disappeared throughout the
pandemic andmost changes have had little to no impact on
critical characteristics of the virus, somemutations such as
D614G, L452R, E484, and N501Y significantly affect virus
infectivity and/or sensitivity to neutralizing antibodies. In
particular, the N501Ymutation in the S protein is present in
four of the five VOC variants (Alpha, Beta, Gamma, and
Omicron). N501 interacts with several residues in
hACE2 [79], and theN501Ymutation increases RBDbinding
affinity to hACE2 [159, 160]. Further studies are required
regarding whether the N501Y mutations in different VOCs
were descendants from one single mutation event or
resultant from multiple independent parallel mutations.
E484K is present in Beta and Gamma lineage strains and a
small fraction (0.3%) of Alpha strains. The E484Kmutation
confers immune escape [161, 162], and a combination of
E484K and N501Y can further increase resistance to anti-
body neutralization [161–165]. In addition, many other
mutations in S protein, such as N234Q, N165Q, L452R,
A475V, V483A, F490L, and combinations of these, may
also affect neutralization by antibodies [144, 166, 167].

Relationship between SARS-CoV-2 variants
and pathogenicity

Despite the relatively well-understood relationships be-
tween a handful of variants and infectivity and immune
escape of SARS-CoV-2 [110], how the variants affect patho-
genicity and clinical manifestations of COVID-19 in patients
is not yet well understood. Previously, among 271 patients
(73 S- and 198 L-lineage patients) diagnosed with COVID-19
early during the COVID-19 outbreak in Wuhan, S-lineage
patients exhibited significantly worse clinical outcomes
than L-lineage patients, and this pattern held even after
excluding other risk factors [168]. However, the underlying
molecular mechanism, i.e. how changes at sites 8,782 and
28,144 affect the replication and transmission of SARS-CoV-
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2, is not yet clear. Although the D614G change in the S
protein is associated with increased infectivity, D614 and
G614 SARS-CoV-2 variants do not appear to differ signifi-
cantly in pathogenicity or clinical severity in patients [113] or
in their pathogenicity in hamsters [169].

Mixed results were obtained regarding whether the
COVID-19 patients infected with the Alpha variant [170–173]
or Beta variant [128, 174] exhibit more severe disease than
those infected with the prior SARS-CoV-2 strains, despite
these two VOCs tending to show increased infectivity. Viral
infection experiments of animal models yielded mixed re-
sults aswell. Both theAlphaandBeta variantswere shown to
be 100-fold more lethal than the original SARS-CoV-2
bearing 614D in K18-hACE2 transgenic mice [175]. Similarly,
in the hACE2-bearing mice, infection with the Beta variant
resulted in more severe clinical symptoms and more weight
loss than infection with prototype strain IME-BJ05 [176]. In
contrast, very similar virus replication kinetics and amounts
of virus shedding were observed in rhesus macaques infec-
ted with Alpha, Beta, and the variant containing only the
D614G mutation; however, the Beta variant was found to be
slightly less pathogenic than the other two variants in this
host [177]. The Delta variant is more pathogenic than the
prototypic SARS-CoV-2 strain in hamsters, and the P681R
mutation in the Delta variant might be associated with
this enhanced pathogenicity [178]. However, whether the
Delta variant will induce more severe disease remains un-
clear. Altogether, it is challenging to decipher the relation-
ship between SARS-CoV-2 variants and pathogenicity in
COVID-19 patients, as multiple confounding factors such as
age, gender, and underlying medical conditions affect
symptoms and clinical severity of COVID-19 [111, 179–181].
Animal models have provided important insights into the
phenotypical changes and pathogenesis of SARS-CoV-2
variants. However, outcomes in animal models affected by
changes in ACE2 gene and protein sequences may not be
recapitulated in humans.

Driving forces and possible trends
in the evolution of SARS-CoV-2

Epistatic interactions between SARS-CoV-2
variants

One salient observation is that many genetic variants of
SARS-CoV-2 are tightly linked together. For instance, by
analyzing SNVs in 121,618 high-quality SARS-CoV-2 genomes,
we identified 202 pairs of mutations (133 sites) that exhibit
strong linkage [106]. Intriguingly, despite the tremendous

accumulation of SARS-CoV-2 genome sequences to date,
variants at sites 8,782 and 28,144 continue to show an
extremely high level of linkage, with C8782/U28144 variants
specific to the L lineage andU8782/C28144 variants specific to
the S lineage, and ∼0.2% of genomes unable to be accurately
assigned to theLorS lineage. Inaddition,within theL lineage,
variants at sites 3,037, 14,408, and 23,404 are tightly linked,
with C3037/C14408/A23403 variants belonging to the L1
lineage, andU3037/U14408/G23403 variants belonging to the
L2 lineage, and <0.2% of L genomes belonging to neither the
L1 nor L2 sublineage [106]. These observations support the
notionof extensive epistasis andadvantageous compensatory
mutations between tightly linked variants, as illustrated in
Figure 6. Nevertheless, themolecularmechanismsunderlying
these epistatic interactions in viral transmission or pathoge-
nicity are largely unknown. For instance, in mouse-adapted
SARS-CoV-2 strains, double mutations at N501Y/Q493H
conferredhigher binding affinity for hACE2 thanN501Y alone;
however, triple mutations at N501Y/Q493H/K417N substan-
tially decreased binding affinity for hACE2 [182], highlighting
the importance of epistasis between these variants. Overall,
the impacts of individual variants and combined effects of
tightly linked variants on the transmission and pathogenicity
of SARS-CoV-2 require further studies.

Trends in SARS-CoV-2 evolution

One notable observation with SARS-CoV-2 is that one
lineage tends to replace previously dominant lineages,
with the Delta variant being predominant at present (e.g.
Figure 5B). Nevertheless, the precise factors that shape this
pattern are not clear. There are two competing theories on
the evolution of virulence (i.e. pathogenicity) of a path-
ogen [183–186]. One long-standing view is that there is a
trade-off between virulence and transmissibility, leading
pathogens to evolve toward reduced virulence because
weakening a host may reduce transmission. The alterna-
tive view is that a high level of virulence might be favored
by natural selection if themore virulent strain compensates
for the reduced transmission that can result from harming
hosts. Continuous circulation of a SARS-CoV-2 variant is
mainly driven by evolutionary forces that favor trans-
missibility and immune evasion rather than pathoge-
nicity [177]. Further studies are needed to understand
better the relationship between pathogenicity and infec-
tivity caused by new SARS-CoV-2 variants that emerge.
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Cross-species transmission between
humans and animals

Anearly study suggested that residue 372 of the SARS-CoV-2 S
protein plays a vital role in virus adaptation in humans. An
A372 (codon GCA at sites 22,676–22,678 of the genome) was
found in nearly all 182,000 SARS-CoV-2 sequences sur-
veyed [187], whereas T372 is found in the orthologous site
(codonACUorACC) of all other SC2r-CoVs, indicating that the
T372A change might have evolved during zoonotic trans-
mission tohumans. TheT372Asubstitutionnot only abolishes
N-linked glycosylation but increases affinity for hACE2,
whereas A372 viruses replicate better than T372 viruses in
human respiratory epithelial cells. Additionally, the T372A
variant has shown evidence of positive selection upon ex-
amination of SARS-CoV-2 population data [187]. An N501Y
substitution increases affinity of the S protein for hACE2,
and viruses with Y at this site in the S protein show a broader
host range, with mice susceptible to infection by N501Y
strains [188]. In addition, mice can be infected with viruses
carryingQ493KandQ498Hchanges in theSprotein [189, 190].

Accumulating evidence indicates that SARS-CoV-2
can be transmitted from humans infected with COVID-19
to a wide range of mammals, including cats, minks,
ferrets, lions, tigers, and white-tailed deer [191–193].
Notably, reverse zoonosis from humans to the animals
can enable animals to become novel reservoirs for new
SARS-CoV-2 variants that might be transmitted back to
human populations with dramatic changes in infectivity

or pathogenicity, as cross-species transmission can be
accompanied by punctuated increases in mutations that
may serve as raw materials for natural selection. For
example, genome sequences prove that SARS-CoV-2 has
been transmitted from humans to minks and then back to
humans [194]. Thus, surveillance should be established
to monitor possible back-and-forth transmission of
SARS-CoV-2 between humans and animals.

Concluding remarks and future
perspectives

The COVID-19 pandemic has caused immense disruptions
in the global economy and human health. Through
comparative genomics, CoVs in animals that are closely
related to SARS-CoV-2 has been identified. Evolutionary
analysis of these CoV genomes has revealed strong
signatures of positive and purifying selection as
SARS-CoV-2, and SC2r-CoVs diverged. The interplay be-
tween SARS-CoV-2 and RNA editing mechanisms in hosts
might have shaped the characteristic mutational bias
in nucleotide changes during SARS-CoV-2 evolution.
Genome sequencing has provided a powerful approach to
identifying SARS-CoV-2 variants under putative positive
selection, and defining lineages based on characteristic
variants has facilitated studies of ongoing SARS-CoV-2
evolutionary dynamics. Although the molecular mecha-
nisms and functional consequences of a few amino acid

A B

Figure 6: Schematic of epistatic interactions between two variants. A. A newly emerged variant (A>a) in the population might be harmful,
neutral, or advantageous. Beneficial new variants are favored by natural selection andbecome fixed in the population very rapidly. In contrast,
highly detrimental variants are removed by natural selection or persist in the population only at low frequencies. B. Under the epistatic
interactions model, both A>a and B>b mutations are slightly deleterious. A virus with either an Ab or aB genotype has reduced fitness relative
to the AB genotype. The virus with the ab genotype has a normal or even higher fitness. Thus, epistatic interactions can cause linkages
between variants at the two sites to be maintained during viral evolution.
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changes have been dissected, these changes have been
mainly restricted to the S protein, with the causes and
impacts of amino acid changes in other regions of
SARS-CoV-2 genomes poorly understood. The epistatic
relationship between amino acid changes and possible
combined effects of such changes require further explo-
ration. One observation of SARS-CoV-2 variants is that one
lineage replaces previously dominant lineages; however,
the factors underlying these patterns are not yet clear. It is
also a challenge to decipher the relationship between
pathogenicity and infectivity of variants. Further studies
are needed to monitor the possible cross-species trans-
mission of SARS-CoV-2 between humans and other ani-
mals as the pandemic develops.
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Mutation rate of SARS-CoV-2 and emergence of mutators during
experimental evolution [Preprint]. bioRxiv 2021. https://doi.
org/10.1101/2021.05.19.444774.

94. Elbe S, Buckland-Merrett G. Data, disease and diplomacy:
GISAID’s innovative contribution to global health. Global Chall
2017;1:33–46.

95. Shu Y, McCauley J. GISAID: global initiative on sharing all
influenza data – from vision to reality. Euro Surveill 2017;22:
30494.

Qian et al.: Evolutionary dynamics of the SARS-CoV-2 genomes 19

https://doi.org/10.1101/2021.03.22.436468
https://virological.org/t/phylogeography-with-whole-genomes-24-mar-2020/444
https://virological.org/t/phylogeography-with-whole-genomes-24-mar-2020/444
https://doi.org/10.1101/2021.03.17.435823
https://doi.org/10.1101/2021.03.17.435823
https://doi.org/10.1101/2020.02.07.939207
https://doi.org/10.1101/2020.02.07.939207
https://doi.org/10.1101/2021.07.22.453345
https://doi.org/10.1101/2021.07.22.453345
https://doi.org/10.1101/2021.01.14.426705
https://doi.org/10.1093/nsr/nwab220
https://doi.org/10.1093/nsr/nwab220
https://doi.org/10.1101/2021.05.19.444774
https://doi.org/10.1101/2021.05.19.444774


96. Zhang L, Yang J-R, Zhang Z, Lin Z. Genomic variations of
SARS-CoV-2 suggest multiple outbreak sources of transmission
[Preprint]. medRxiv 2020. https://doi.org/10.1101/2020.02.25.
20027953.

97. Yu W-B, Tang G-D, Zhang L, Corlett RT. Decoding the evolution
and transmissions of the novel pneumonia coronavirus
(SARS-CoV-2/HCoV-19) using whole genomic data. Zool Res
2020;41:247–57.

98. Matsuda T, Suzuki H, Ogata N. Phylogenetic analyses of the
severe acute respiratory syndrome coronavirus 2 reflected the
several routes of introduction to Taiwan, the United States, and
Japan. arXiv 2020. https://arxiv.org/abs/2002.08802.

99. Forster P, Forster L, Renfrew C, Forster M. Phylogenetic network
analysis of SARS-CoV-2 genomes. Proc Natl Acad Sci USA 2020;
117:9241–3.

100. Wu A, Niu P, Wang L, Zhou H, Zhao X, Wang W, et al. Mutations,
recombination and insertion in the evolution of 2019-nCoV
[Preprint]. bioRxiv 2020. https://doi.org/10.1101/2020.02.29.
971101.

101. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and
COVID-19. Nat Rev Microbiol 2020;19:1–14.

102. Zhang YZ, Holmes EC. A genomic perspective on the origin and
emergence of SARS-CoV-2. Cell 2020;181:223–7.

103. Wong G, Bi YH, Wang QH, Chen XW, Zhang ZG, Yao YG. Zoonotic
origins of human coronavirus 2019 (HCoV-19/SARS-CoV-2): why
is this work important? Zool Res 2020;41:213–9.

104. Banerjee A, Doxey AC, Mossman K, Irving AT. Unraveling the
zoonotic origin and transmission of SARS-CoV-2. Trends Ecol
Evol 2021;36:180–4.

105. Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C,
et al. Nextstrain: real-time tracking of pathogen evolution.
Bioinformatics 2018;34:4121–3.

106. Tang X, Ying R, Yao X, Li G, Wu C, Tang Y, et al. Evolutionary
analysis and lineage designation of SARS-CoV-2 genomes. Sci
Bull 2021;66:2297–311.

107. Jombart T, Eggo RM, Dodd PJ, Balloux F. Reconstructing disease
outbreaks from genetic data: a graph approach. Heredity 2011;
106:383–90.

108. Paradis E. Analysis of haplotype networks: the randomized
minimum spanning tree method. Methods Ecol Evol 2018;9:
1308–17.

109. Gomez-Carballa A, Bello X, Pardo-Seco J, Martinon-Torres F,
Salas A. Mapping genome variation of SARS-CoV-2 worldwide
highlights the impact of COVID-19 super-spreaders. Genome
Res 2020;30:1434–48.

110. Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC,
Harrison EM, et al. SARS-CoV-2 variants, spike mutations and
immune escape. Nat Rev Microbiol 2021;19:409–24.

111. Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J,
Abfalterer W, et al. Tracking changes in SARS-CoV-2 Spike:
evidence that D614G increases infectivity of the COVID-19 virus.
Cell 2020;182:812–27.

112. Trucchi E, Gratton P, Mafessoni F, Motta S, Cicconardi F, Mancia
F, et al. Population dynamics and structural effects at short and
long range support the hypothesis of the selective advantage of
the G614 SARS-CoV-2 spike variant. Mol Biol Evol 2021;38:
1966–79.

113. Volz E, Hill V, McCrone JT, Price A, Jorgensen D, O’Toole Á, et al.
Evaluating the effects of SARS-CoV-2 spike mutation D614G on
transmissibility and pathogenicity. Cell 2021;184:64–75.

114. Zhou B, Thao TTN, Hoffmann D, Taddeo A, Ebert N, Labroussaa F,
et al. SARS-CoV-2 spikeD614G change enhances replication and
transmission. Nature 2021;592:122–7.

115. Plante JA, Liu Y, Liu J, Xia H, Johnson BA, Lokugamage KG, et al.
Spike mutation D614G alters SARS-CoV-2 fitness. Nature 2020;
592:116–21.

116. Daniloski Z, Jordan TX, Ilmain JK, Guo X, Bhabha G, tenOever BR,
et al. The spike D614Gmutation increases SARS-CoV-2 infection
of multiple human cell types. eLife 2021;10:e65365.

117. Ozono S, Zhang Y, Ode H, Sano K, Tan TS, Imai K, et al.
SARS-CoV-2 D614G spike mutation increases entry efficiency
with enhancedACE2-binding affinity. Nat Commun2021;12:848.

118. Hu J, He C-L, Gao Q-Z, Zhang G-J, Cao X-X, Long Q-X, et al. The
D614G mutation of SARS-CoV-2 spike protein enhances viral
infectivity [Preprint]. bioRxiv 2020. https://doi.org/10.1101/
2020.06.20.161323.

119. Zhang L, Jackson CB, Mou H, Ojha A, Peng H, Quinlan BD, et al.
SARS-CoV-2 spike-protein D614G mutation increases virion
spike density and infectivity. Nat Commun 2020;11:6013.

120. Yurkovetskiy L, Wang X, Pascal KE, Tomkins-Tinch C,
Nyalile TP, Wang Y, et al. Structural and functional analysis
of the D614G SARS-CoV-2 spike protein variant. Cell 2020;183:
739–51.

121. Hou YJ, Chiba S, Halfmann P, Ehre C, KurodaM, Dinnon KH, et al.
SARS-CoV-2 D614G variant exhibits efficient replication ex vivo
and transmission in vivo. Science 2020;370:1464–8.

122. WeissmanD,AlamehM-G,deSilva T, Collini P,HornsbyH,BrownR,
et al. D614G spikemutation increases SARSCoV-2 susceptibility to
neutralization. Cell Host Microbe 2021;29:23–31.

123. Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday
JD, et al. Estimated transmissibility and impact of SARS-CoV-2
lineage B.1.1.7 in England. Science 2021;372:eabg3055.

124. Collier DA,DeMarcoA, Ferreira IATM,MengB,Datir RP,Walls AC,
et al. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited
antibodies. Nature 2021;593:136–41.

125. Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y, et al. Antibody
resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature
2021;593:130–5.

126. Graham C, Seow J, Huettner I, Khan H, Kouphou N, Acors S, et al.
Neutralization potency of monoclonal antibodies recognizing
dominant and subdominant epitopes on SARS-CoV-2 spike is
impacted by the B.1.1.7 variant. Immunity 2021;54:1276–89.

127. Muik A, Wallisch A-K, Sänger B, Swanson KA, Mühl J, Chen W,
et al. Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus
by BNT162b2 vaccine-elicited human sera. Science 2021;371:
1152–3.

128. Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V,
Giandhari J, et al. Detection of a SARS-CoV-2 variant of concern
in South Africa. Nature 2021;592:438–43.

129. Wibmer CK, Ayres F, Hermanus T, Madzivhandila M, Kgagudi P,
OosthuysenB, et al. SARS-CoV-2 501Y.V2 escapesneutralization
by South African COVID-19 donor plasma. Nat Med 2021;27:
622–5.

130. Cele S, Gazy I, Jackson L, Hwa S-H, Tegally H, Lustig G, et al.
Escape of SARS-CoV-2 501Y.V2 from neutralization by
convalescent plasma. Nature 2021;593:142–6.

131. Faria NR, Mellan TA, Whittaker C, Claro IM, Candido DDS, Mishra
S, et al. Genomics and epidemiology of the P.1 SARS-CoV-2
lineage in Manaus, Brazil. Science 2021;372:815–21.

20 Qian et al.: Evolutionary dynamics of the SARS-CoV-2 genomes

https://doi.org/10.1101/2020.02.25.20027953
https://doi.org/10.1101/2020.02.25.20027953
https://arxiv.org/abs/2002.08802
https://doi.org/10.1101/2020.02.29.971101
https://doi.org/10.1101/2020.02.29.971101
https://doi.org/10.1101/2020.06.20.161323
https://doi.org/10.1101/2020.06.20.161323


132. Wang P, Casner RG, Nair MS, Wang M, Yu J, Cerutti G, et al.
Increased resistance of SARS-CoV-2 variant P.1 to antibody
neutralization. Cell Host Microbe 2021;29:747–51.

133. Garcia-Beltran WF, Lam EC, St Denis K, Nitido AD, Garcia ZH,
Hauser BM, et al. Multiple SARS-CoV-2 variants escape
neutralization by vaccine-induced humoral immunity. Cell 2021;
184:2372–83.

134. Mlcochova P, KempSA, DharMS, Papa G,Meng B, Ferreira IATM,
et al. SARS-CoV-2 B.1.617.2 delta variant replication and
immune evasion. Nature 2021;599:114–9.

135. Zhang J, Xiao T, Cai Y, Lavine CL, Peng H, Zhu H, et al. Membrane
fusion and immune evasion by the spike protein of SARS-CoV-2
delta variant. Science 2021;374:1353–60.

136. Li B, Deng A, Li K, Hu Y, Li Z, Xiong Q, et al. Viral infection and
transmission in a large, well-traced outbreak caused by the
SARS-CoV-2 delta variant [Preprint]. medRxiv 2021. https://doi.
org/10.1101/2021.07.07.21260122.

137. McCallum M, Bassi J, De Marco A, Chen A, Walls AC, Di Iulio J,
et al. SARS-CoV-2 immune evasion by the B.1.427/B.1.429
variant of concern. Science 2021;373:648–54.

138. Motozono C, Toyoda M, Zahradnik J, Ikeda T, Saito A, Tan TS,
et al. An emerging SARS-CoV-2 mutant evading cellular
immunity and increasing viral infectivity [Preprint]. bioRxiv
2021. https://doi.org/10.1101/2021.04.02.438288.

139. Liu Z, VanBlargan LA, Bloyet L-M, Rothlauf PW, Chen RE, Stumpf
S, et al. Identification of SARS-CoV-2 spike mutations that
attenuate monoclonal and serum antibody neutralization. Cell
Host Microbe 2021;29:477–88.

140. Greaney AJ, Starr TN, Gilchuk P, Zost SJ, Binshtein E, Loes AN,
et al. Complete mapping of mutations to the SARS-CoV-2 spike
receptor-binding domain that escape antibody recognition. Cell
Host Microbe 2021;29:44–57.

141. Deng X, Garcia-Knight MA, Khalid MM, Servellita V, Wang C,
Morris MK, et al. Transmission, infectivity, and neutralization of
a spike L452R SARS-CoV-2 variant. Cell 2021;184:
3426–37.e3428.

142. Starr TN, Greaney AJ, Dingens AS, Bloom JD. Complete map of
SARS-CoV-2 RBD mutations that escape the monoclonal
antibody LY-CoV555 and its cocktail with LY-CoV016. Cell Rep
Med 2021;2:100255.

143. Zhang W, Davis BD, Chen SS, Sincuir Martinez JM, Plummer JT,
Vail E. Emergence of a novel SARS-CoV-2 variant in Southern
California. JAMA 2021;325:1324–6.

144. Li QQ, Wu J, Nie J, Zhang L, Hao H, Liu S, et al. The impact of
mutations in SARS-CoV-2 spike on viral infectivity and
antigenicity. Cell 2020;182:1284–94.

145. Acevedo ML, Alonso-Palomares L, Bustamante A, Gaggero A,
Paredes F, Cortés CP, et al. Infectivity and immune escape of the
new SARS-CoV-2 variant of interest lambda [Preprint]. medRxiv
2021. https://doi.org/10.1101/2021.06.28.21259673.

146. Kimura I, Kosugi Y, Wu J, Yamasoba D, Butlertanaka EP,
Tanaka YL, et al. SARS-CoV-2 lambda variant exhibits higher
infectivity and immune resistance [Preprint]. bioRxiv 2021.
https://doi.org/10.1101/2021.07.28.454085.

147. Tada T, Zhou H, Dcosta BM, Samanovic MI, Mulligan MJ,
Landau NR. SARS-CoV-2 lambda variant remains susceptible to
neutralization by mRNA vaccine-elicited antibodies and
convalescent serum [Preprint]. bioRxiv 2021. https://doi.org/
10.1101/2021.07.02.450959.

148. Liu Y, Liu J, Johnson BA, Xia H, Ku Z, Schindewolf C, et al. Delta
spike P681R mutation enhances SARS-CoV-2 fitness over alpha
variant [Preprint]. bioRxiv 2021. https://doi.org/10.1101/2021.
08.12.456173.

149. Wei C, Shan K-J, WangW, Zhang S, Huan Q, QianW. Evidence for
a mouse origin of the SARS-CoV-2 omicron variant. J Genet
Genom 2021;48:1111–21.

150. Du P, Gao F, Wang Q. The mysterious origins of the omicron
variant of SARS-CoV-2 [Preprint]. Innovation 2022.
https://doi.org/10.1016/j.xinn.2022.100206.

151. Wang Y, Li Q, Liang Z, Li T, Liu S, Cui Q, et al. The significant
immune escape of pseudotyped SARS-CoV-2 variant omicron.
Emerg Microb Infect 2022;11:1–5.

152. Cao Y, Wang J, Jian F, Xiao T, Song W, Yisimayi A, et al. Omicron
escapes the majority of existing SARS-CoV-2 neutralizing
antibodies [Preprint]. Nature 2021. https://doi.org/10.1038/
s41586-021-04385-3.

153. Cele S, Jackson L, Khoury DS, Khan K, Moyo-Gwete T, Tegally H,
et al. Omicron extensively but incompletely escapes Pfizer
BNT162b2 neutralization [Preprint]. Nature 2021.
https://doi.org/10.1038/s41586-021-04387-1.

154. Rössler A, Riepler L, Bante D, von Laer D, Kimpel J. SARS-CoV-2
omicron variant neutralization in serum from vaccinated and
convalescent persons [Preprint]. N Engl J Med 2022.
https://doi.org/10.1056/NEJMc2119236.

155. ZhaoH, Lu L, Peng Z, Chen L-L,Meng X, ZhangC, et al. SARS-CoV-
2 omicron variant shows less efficient replication and fusion
activity when compared with delta variant in
TMPRSS2-expressed cells. Emerg Microb Infect 2021;11:1–18.

156. Meng B, Ferreira IATM, Abdullahi A, Goonawardane N, Saito A,
Kimura I, et al. SARS-CoV-2 omicron spike mediated immune
escape and tropism shift [Preprint]. bioRxiv 2022.
https://doi.org/10.1101/2021.12.17.473248.

157. McMahan K, Giffin V, Tostanoski LH, Chung B, Siamatu M,
Suthar MS, et al. Reduced pathogenicity of the SARS-CoV-2
omicron variant in hamsters [Preprint]. bioRxiv 2022.
https://doi.org/10.1101/2022.01.02.474743.

158. Bentley EG, Kirby A, Sharma P, Kipar A, Mega DF, Bramwell C,
et al. SARS-CoV-2 omicron-B.1.1.529 variant leads to less severe
disease than pango B and delta variants strains in a mouse
model of severe COVID-19 [Preprint]. bioRxiv 2021.
https://doi.org/10.1101/2021.12.26.474085.

159. Zhu X, Mannar D, Srivastava SS, Berezuk AM, Demers J-P,
Saville JW, et al. Cryo-electron microscopy structures of the
N501Y SARS-CoV-2 spike protein in complex with ACE2 and
2 potent neutralizing antibodies. PLoS Biol 2021;19:
e3001237.

160. Tian F, Tong B, Sun L, Shi S, Zheng B, Wang Z, et al. N501Y
mutation of spike protein in SARS-CoV-2 strengthens its binding
to receptor ACE2. eLife 2021;10:e69091.

161. Baum A, Fulton BO, Wloga E, Copin R, Pascal KE, Russo V, et al.
Antibody cocktail to SARS-CoV-2 spike protein prevents rapid
mutational escape seen with individual antibodies. Science
2020;369:1014–8.

162. Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi JC,
et al. Escape from neutralizing antibodies by SARS-CoV-2 spike
protein variants. eLife 2020;9:e61312.

163. Kuzmina A, Khalaila Y, Voloshin O, Keren-Naus A, Boehm-Cohen
L, Raviv Y, et al. SARS-CoV-2 spike variants exhibit differential

Qian et al.: Evolutionary dynamics of the SARS-CoV-2 genomes 21

https://doi.org/10.1101/2021.07.07.21260122
https://doi.org/10.1101/2021.07.07.21260122
https://doi.org/10.1101/2021.04.02.438288
https://doi.org/10.1101/2021.06.28.21259673
https://doi.org/10.1101/2021.07.28.454085
https://doi.org/10.1101/2021.07.02.450959
https://doi.org/10.1101/2021.07.02.450959
https://doi.org/10.1101/2021.08.12.456173
https://doi.org/10.1101/2021.08.12.456173
https://doi.org/10.1016/j.xinn.2022.100206
https://doi.org/10.1038/s41586-021-04385-3
https://doi.org/10.1038/s41586-021-04385-3
https://doi.org/10.1038/s41586-021-04387-1
https://doi.org/10.1056/NEJMc2119236
https://doi.org/10.1101/2021.12.17.473248
https://doi.org/10.1101/2022.01.02.474743
https://doi.org/10.1101/2021.12.26.474085


infectivity and neutralization resistance to convalescent or post-
vaccination sera. Cell Host Microbe 2021;29:522–8.

164. Li Q, Nie J, Wu J, Zhang L, Ding R, Wang H, et al. SARS-CoV-2
501Y.V2 variants lack higher infectivity but do have immune
escape. Cell 2021;184:2362–71.

165. ZhouD,DejnirattisaiW, SupasaP, LiuC,Mentzer AJ, GinnHM, et al.
Evidence of escape of SARS-CoV-2 variant B.1.351 fromnatural and
vaccine-induced sera. Cell 2021;184:2348–61.

166. Shi R, Shan C, Duan X, Chen Z, Liu P, Song J, et al. A human
neutralizing antibody targets the receptor-binding site of
SARS-CoV-2. Nature 2020;584:120–4.

167. Ju B, Zhang Q, Ge J, Wang R, Sun J, Ge X, et al. Human neutralizing
antibodies elicited by SARS-CoV-2 infection. Nature 2020;584:
115–9.

168. Hu B, Liu R, Tang X, Pan Y, Wang M, Tong Y, et al. The
concordance between the evolutionary trend and the clinical
manifestation of the twoSARS-CoV-2 variants. Natl Sci Rev 2021;
8:nwab073.

169. Stauft CB, Lien CZ, Selvaraj P, Liu S, Wang TT. The G614 pandemic
SARS-CoV-2 variant is not more pathogenic than the original D614
form in adult Syrian hamsters. Virology 2021;556:96–100.

170. GrahamMS, Sudre CH, May A, Antonelli M, Murray B, Varsavsky
T, et al. Changes in symptomatology, reinfection, and
transmissibility associated with the SARS-CoV-2 variant B.1.1.7:
an ecological study. Lancet Public Health 2021;6:E335–45.

171. Davies NG, Jarvis CI, CMMID COVID-19Working Group, Edmunds
WJ, Jewell NP, Diaz-Ordaz K, et al. Increased mortality in
community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature
2021;593:270–4.

172. Frampton D, Rampling T, Cross A, Bailey H, Heaney J, Byott M,
et al. Genomic characteristics and clinical effect of the emergent
SARS-CoV-2 B.1.1.7 lineage in London, UK: a whole-genome
sequencing and hospital-based cohort study. Lancet Infect Dis
2021;21:1246–56.

173. Challen R, Brooks-Pollock E, Read JM, Dyson L, Tsaneva-
Atanasova K, Danon L. Risk of mortality in patients infected with
SARS-CoV-2 variant of concern 202012/1:matched cohort study.
BMJ Br Med J 2021;372:n579.

174. Jassat W, Mudara C, Ozougwu L, Tempia S, Blumberg L, Davies
MA, et al. Difference in mortality among individuals admitted to
hospital with COVID-19 during the first and second waves in
South Africa: a cohort study. Lancet Global Health 2021;9:
e1216–25.

175. Radvak P, Kwon H-J, Kosikova M, Ortega-Rodriguez U,
Xiang R, Phue J-N, et al. SARS-CoV-2 B.1.1.7 (alpha) and
B.1.351 (beta) variants induce pathogenic patterns in
K18-hACE2 transgenic mice distinct from early strains. Nat
Commun 2021;12:6559.

176. Chen Q, Huang X-Y, Tian Y, Fan C, Sun M, Zhou C, et al. The
infection and pathogenicity of SARS-CoV-2 variant B.1.351 in
hACE2 mice. Virol Sin 2021;36:1232–5.

177. Munster VJ, Flagg M, Singh M, Yinda CK, Williamson BN,
Feldmann F, et al. Subtle differences in the pathogenicity of
SARS-CoV-2 variants of concern B.1.1.7 and B.1.351 in rhesus
macaques. Sci Adv 2021;7:eabj3627.

178. Saito A, Nasser H, Uriu K, Kosugi Y, Irie T, Shirakawa K, et al.
SARS-CoV-2 spike P681R mutation, a hallmark of the delta
variant, enhances viral fusogenicity and pathogenicity
[Preprint]. bioRxiv 2021. https://doi.org/10.1101/2021.06.17.
448820.

179. Teuwen L-A, Geldhof V, Pasut A, Carmeliet P. COVID-19: the
vasculature unleashed. Nat Rev Immunol 2020;20:389–91.

180. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al.
Epidemiological and clinical characteristics of 99 cases of 2019
novel coronavirus pneumonia in Wuhan, China: a descriptive
study. Lancet 2020;395:507–13.

181. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical
characteristics of 138 hospitalized patients with 2019 novel
coronavirus-infected pneumonia in Wuhan, China. JAMA 2020;
323:1061–9.

182. Sun S, Gu H, Cao L, Chen Q, Ye Q, Yang G, et al. Characterization
and structural basis of a lethal mouse-adapted SARS-CoV-2. Nat
Commun 2021;12:5654.

183. Alizon S, Hurford A, Mideo N, Van Baalen M. Virulence evolution
and the trade-off hypothesis: history, current state of affairs and
the future. J Evol Biol 2009;22:245–59.

184. Cressler CE, McLeod DV, Rozins C, Van Den Hoogen J, Day T.
The adaptive evolution of virulence: a review of theoretical
predictions and empirical tests. Parasitology 2016;143:
915–30.

185. Bull JJ, Lauring AS. Theory and empiricism in virulence evolution.
PLoS Pathog 2014;10:e1004387.

186. Lipsitch M, Moxon ER. Virulence and transmissibility of
pathogens: what is the relationship? Trends Microbiol 1997;5:
31–7.

187. Kang L, He G, Sharp AK, Wang X, Brown AM, Michalak P, et al. A
selective sweep in the spike gene has driven SARS-CoV-2 human
adaptation. Cell 2021;184:4392–400.

188. Gu H, Chen Q, Yang G, He L, Fan H, Deng Y-Q, et al. Adaptation of
SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science
2020;369:1603–7.

189. Huang K, Zhang Y, Hui X, Zhao Y, Gong W, Wang T, et al. Q493K
and Q498H substitutions in spike promote adaptation of
SARS-CoV-2 in mice. EBioMedicine 2021;67:103381.

190. Dinnon KH, 3rd, Leist SR, Schäfer A, Edwards CE, Martinez DR,
Montgomery SA, et al. A mouse-adapted model of
SARS-CoV-2 to test COVID-19 countermeasures. Nature 2020;
586:560–6.

191. Gao GF, Wang L. COVID-19 expands its territories from humans
to animals. China CDC Wkly 2021;3:855–8.

192. Shi J, Wen Z, Zhong G, Yang H, Wang C, Huang B, et al.
Susceptibility of ferrets, cats, dogs, and other domesticated
animals to SARS-coronavirus 2. Science 2020;368:1016–20.

193. Chandler JC, Bevins SN, Ellis JW, Linder TJ, Tell RM,
Jenkins-Moore M, et al. SARS-CoV-2 exposure in wild white-
tailed deer (Odocoileus virginianus) [Preprint]. bioRxiv 2021.
https://doi.org/10.1101/2021.07.29.454326.

194. OudeMunnink BB, Sikkema RS, Nieuwenhuijse DF, Molenaar RJ,
Munger E, Molenkamp R, et al. Transmission of SARS-CoV-2 on
mink farms between humans and mink and back to humans.
Science 2020;371:172–7.

22 Qian et al.: Evolutionary dynamics of the SARS-CoV-2 genomes

https://doi.org/10.1101/2021.06.17.448820
https://doi.org/10.1101/2021.06.17.448820
https://doi.org/10.1101/2021.07.29.454326

	Evolutionary dynamics of the severe acute respiratory syndrome coronavirus 2 genomes
	The structure, composition, replication and transcription of the SARS-CoV-2 genome
	Comparative genomics of SARS-CoV-2 and related CoVs
	Identification of SARS-CoV-2-related CoVs
	Roles of natural selection in SARS-CoV-2 and SC2r-CoVs divergence

	Evolution of RBD and possible co-evolution with ACE2
	Deletions and possible recombination in the RBD
	Amino acid changes in RBDs of bat SC2r-CoVs
	Amino acid changes in RBDs of pangolin-CoVs
	Evolution of ACE2 in animals and possible co-evolution with RBD

	Mutational bias in the genomes of SARS-CoV-2 and SC2r-CoVs
	SARS-CoV-2 lineage analysis and the continuing evolution
	Important SARS-CoV-2 variants and their biological, immunological, and clinical characteristics
	Important variants of concern (VOCs) and variants of interest (VOIs) and their biological, immunological, and transmissibility
	Relationship between SARS-CoV-2 variants and pathogenicity

	Driving forces and possible trends in the evolution of SARS-CoV-2
	Epistatic interactions between SARS-CoV-2 variants
	Trends in SARS-CoV-2 evolution
	Cross-species transmission between humans and animals

	Concluding remarks and future perspectives
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 35
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1000
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.10000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /DEU <>
    /ENU ()
    /ENN ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName (ISO Coated v2 \(ECI\))
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.503940
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


