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Cooperation among unrelated individuals is frequently observed in social groups when their members combine

efforts and resources to obtain a shared benefit that is unachievable by an individual alone. However, understanding

why cooperation arises despite the natural tendency of individuals toward selfish behavior is still an open

problem and represents one of the most fascinating challenges in evolutionary dynamics. Recently, the structural

characterization of the networks in which social interactions take place has shed some light on the mechanisms

by which cooperative behavior emerges and eventually overcomes the natural temptation to defect. In particular,

it has been found that the heterogeneity in the number of social ties and the presence of tightly knit communities

lead to a significant increase in cooperation as compared with the unstructured and homogeneous connection

patterns considered in classical evolutionary dynamics. Here, we investigate the role of social-ties dynamics for

the emergence of cooperation in a family of social dilemmas. Social interactions are in fact intrinsically dynamic,

fluctuating, and intermittent over time, and they can be represented by time-varying networks. By considering two

experimental data sets of human interactions with detailed time information, we show that the temporal dynamics

of social ties has a dramatic impact on the evolution of cooperation: the dynamics of pairwise interactions favors

selfish behavior.
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I. INTRODUCTION

The organizational principles driving the evolution and de-

velopment of natural and social large-scale systems, including

populations of bacteria, ant colonies, herds of predators, and

human societies, rely on the cooperation of large populations

of unrelated agents [1–3]. Even if cooperation seems to

be a ubiquitous property of social systems, its spontaneous

emergence is still a puzzle for scientists, since cooperative

behaviors are constantly threatened by the natural tendency

of individuals toward self-preservation and the never-ceasing

competition among agents for resources and success. The

preference for selfishness over cooperation is also due to

the higher short-term benefits that a single (defector) agent

obtains by taking advantage of the joint efforts of cooperating

agents. Obviously, the imitation of such selfish (but rational)

conduct drives the system toward a state in which the higher

benefits associated with cooperation are no longer achievable,

with dramatic consequences for the whole population. Con-

sequently, the relevant question to address is why cooperative

behavior is so common in nature and society, and what are the

circumstances and the mechanisms that allow it to emerge and

persist.

In recent decades, the study of the elementary mechanisms

fostering the emergence of cooperation in populations sub-

jected to evolutionary dynamics has attracted a lot of interest

in ecology, biology, and social sciences [4,5]. The problem

has been tackled through the formulation of simple games
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that neglect the microscopic differences among distinct social

and natural systems, thus providing a general framework

for the analysis of evolutionary dynamics [6–8]. Most of

the classical models studied within this framework made

the simplifying assumption that social systems are charac-

terized by homogeneous structures, in which the interaction

probability is the same for any pair of agents and constant

over time [9]. However, the theory of complex networks has

proven this assumption false for real systems by revealing that

most natural and social networks exhibit large heterogeneity

and nontrivial interconnection topologies [10–13]. It has also

been shown that the structure of a network has dramatic

effects on the dynamical processes taking place on it, so

that complex network analysis has become a fundamental tool

in epidemiology, computer science, neuroscience, and social

sciences [14–16].

The study of evolutionary games on complex topologies

has led to a new way out for cooperation to survive in some

paradigmatic cases such as the Prisoner’s Dilemma [17–20]

or the Public Goods games [21–23]. In particular, it has been

pointed out that the complex patterns of interactions among

the agents found in real social networks, such as scale-free

distributions of the number of contacts per individual or the

presence of tightly knit social groups, tend to favor the emer-

gence and persistence of cooperation. This line of research,

which brings together the tools and methods from the statistical

mechanics of complex networks and the classical models of

evolutionary game dynamics, has effectively became a new

discipline, known as evolutionary graph theory [24–28].

Recently, the availability of longitudinal spatiotemporal

information about human interactions and social relationships

1539-3755/2014/90(5)/052825(11) 052825-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.052825


ALESSIO CARDILLO et al. PHYSICAL REVIEW E 90, 052825 (2014)

[29–32] has revealed that social systems are not static objects

at all: contacts among individuals are usually volatile and

fluctuate over time [33,34], face-to-face interactions are

bursty and intermittent [35,36], and agent motion exhibits

long spatiotemporal correlations [37–39]. Consequently, static

networks, constructed by aggregating in a single graph all the

interactions observed among a group of individuals across a

given period, can only be considered as simplified models of

real networked systems. For this reason, time-varying graphs

have been introduced recently as a more realistic framework

to encode time-dependent relationships [40–44]. In particular,

a time-varying graph is an ordered sequence of graphs defined

over a fixed number of nodes, where each graph in the sequence

aggregates all the edges observed within a certain temporal

interval. The introduction of time as a new dimension of

the graph gives rise to a richer structure. Therefore, new

metrics specifically designed to characterize the temporal

properties of graph sequences have been proposed, and most

of the classical metrics defined for static graphs have been

extended to the time-varying case [44–50]. Recently, the

study of dynamical processes taking place on time-evolving

graphs has shown that temporal correlations and contact

recurrence play a fundamental role in diverse settings such as

random-walk dynamics [51–53], the spreading of information

and diseases [54–56], and synchronization [57].

Here we study how the level of cooperation is affected when

one considers a more realistic picture, in which the interactions

in a social system are represented by time-varying graphs

instead of classical (static) ones. We consider a family of

social dilemmas, including the Hawk-Dove, the Stag Hunt, and

the Prisoner’s Dilemma games, played by agents connected

through a time-evolving topology obtained from real traces of

human interactions. We analyze the effect of temporal resolu-

tion and correlations on the emergence of cooperation in two

paradigmatic data sets of human proximity, namely the MIT

Reality Mining [29] and the INFOCOM’06 [30] colocation

traces. We find that the level of cooperation achievable on time-

varying graphs depends crucially on the interplay between the

speed at which the network changes and the typical time scale

at which agents update their strategy. In particular, cooperation

is facilitated when agents keep playing the same strategy for

longer intervals, while too frequent strategy updates tend to

favor defectors. Our results also suggest that the presence

of temporal correlations in the creation and maintenance

of interactions hinders cooperation, so that synthetic time-

varying networks in which link persistence is broken usually

exhibit a considerably higher level of cooperation. Finally, we

show that both the average size of the giant component and

the weighted temporal clustering calculated across different

consecutive time windows are indeed good predictors of the

level of cooperation attainable on time-varying graphs.

II. EVOLUTIONARY DYNAMICS

ON TIME-VARYING GRAPHS

A. Evolutionary dynamics of social dilemmas

We focus on the emergence of cooperation in systems

whose individuals face a social dilemma between two possible

strategies: Cooperation (C) and Defection (D). A large class

of social dilemmas can be formulated as in [18] via a two-

parameter game described by the payoff matrix:

C D

C

D

(

R S

T P

)

=

C D

C

D

(

1 S

T 0

)

, (1)

where R, S, T , and P represent the payoffs corresponding to

the various possible encounters between two players. Namely,

when the two players choose to cooperate, they both receive

a payoff R = 1 (for Reward), while if they both decide to

defect they get P = 0 (for Punishment). When a cooperator

faces a defector it gets the payoff S (for Sucker) while the

defector gets T (for Temptation). In this version of the game,

the payoffs S and T are the only two free parameters, and their

respective values induce an ordering of the four payoffs that

determines the type of social dilemma. We have in fact three

different scenarios. When T > 1 and S > 0, defecting against

a cooperator provides the largest payoff, and this corresponds

to the Hawk-Dove game. For T < 1 and S < 0, cooperating

with a defector is the worst case, and we have the Stag Hunt

game. Finally, for T > 1 and S < 0, when a defector plays

with a cooperator, we have at the same time the largest (for the

defector) and the smallest (for the cooperator) payoffs, and the

game corresponds to the Prisoner’s Dilemma. In this work, we

consider the three types of games by exploring the parameter

regions T ∈ [0,2] and S ∈ [−1,1].

In real social systems, each individual has more than one

social contact at the same time. This situation is usually

represented [26] by associating each player i,i = 1,2, . . . ,N

to a node of a static network, with adjacency matrix A = {aij },

whose edges indicate pairs of individuals playing the game.

In this framework, a player i selects a strategy, plays a

number of games equal to the number of her neighbors,

ki =
∑

j aij , and accumulates the payoffs associated with

each of these interactions. Obviously, the outcome of playing

with a neighbor depends on the strategies selected by both

players, according to the payoff matrix in Eq. (1). When

all the individuals have played with all their neighbors in

the network, they update their strategies as a result of an

evolutionary process, i.e., according to the total collected

payoff. Namely, each individual i compares her cumulated

payoff, pi , with that of one of her neighbors, say j , chosen at

random. The probability Pi→j that agent i adopts the strategy

of her neighbor j increases with the difference (pj − pi).

Here we adopt the so-called Fermi update [58,59] in which

the probability that agent i copies the strategy of the randomly

chosen neighbor j reads

Pi→j =
1

1 + e−β(pj −pi )
, (2)

where β is a parameter controlling the smoothness of the

transition from Pi→j = 0 for small values of (pj − pi) to

Pi→j = 1 for large values of (pj − pi). Notice that for β ≪ 1

we obtain Pi→j ≃ 0.5 regardless of the value of (pj − pi),

which effectively corresponds to a random strategy update. On

the other hand, when β ≫ 1 then Pi→j ≃ �(pj − pi), where

�(x) is the Heaviside step function. Here we adopt β = 1,

although we have checked that the results are qualitatively

similar for a broad range of values of β.
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The games defined by the payoff matrix in Eq. (1) and

the use of a payoff-based strategy update rule have been

thoroughly investigated in static networks with different

topologies. The main result is that, when the network is fixed

and agent strategies are allowed to evolve over time, the level

of cooperation increases with the heterogeneity of the degree

distribution of the network, with scale-free networks being

the most paradigmatic promoters of cooperation [17–19].

However, in most cases human contacts and social interactions

are intrinsically dynamic and varying in time, a feature that

has profound consequences on any process taking place over

a social network. We explore here the role of time on the

emergence of cooperation in time-varying networks.

B. Temporal patterns of social interactions

In the following we consider two data sets describing the

temporal patterns of human interactions at two different time

scales. The first data set has been collected during the MIT

Reality Mining experiment [29], and it includes information

about the spatial proximity of a group of students, staff, and

faculty members at the Massachusetts Institute of Technology,

over a period of six months. The resulting time-dependent

network has N = 100 nodes and consists of a time-ordered se-

quence {G1,G2, . . . ,GM} of M = 41 291 graphs (snapshots),

each graph representing proximity interactions during a time

interval of τ = 5 minutes. Remember that each graph Gm

(m = 1, . . . ,M) accounts for all the instantaneous interactions

taking place in the temporal interval [(m − 1)τ,mτ ]. The

second data set describes colocation patterns, over a period

of four days, among the participants of the INFOCOM’06

conference [30]. In this case, the resulting time-dependent

network has N = 78 nodes, and it contains a sequence of

M = 2880 graphs obtained by registering user colocation

every τ = 2 minutes. Additional details about the two data

sets are reported in Appendix A.

The frequency of social contacts is illustrated in Fig. 1

[panels (a) and (b)], where we report the number of active

links at time t , Eactive, as a function of time. In the MIT

Reality Mining data set, social activity exhibits daily and

weekly periodicities, respectively, due to home—work and

working-days–weekends cycles. In addition to these rhythms,

we notice a nonstationary behavior that is clearly visible when

we plot the activity averaged over a 1-month moving window

[red line in panel (a)]. In the INFOCOM’06 data set, we

observe a daily periodicity and a nonstationary trend that is

due, in this case, to decreasing social activity in the last days

of the conference, as seen by aggregating activity over 24 h

[red line in panel (b)]. We also report in Fig. 1 [panels (c) and

(d)] the distributions P (σ ) of contact duration, σ ≡ σon, and

of intercontact time, σ ≡ σoff (i.e., the interval between two

consecutive appearances of an edge). As is often the case for

human dynamics [35], the distributions of contact duration and

inter-contact time are heterogeneous. For the MIT data set, an

active edge can persist up to an entire day, while inactive in-

tervals can last over multiple days and weeks; similar patterns

are observed in the INFOCOM’06 data set, where some edges

remain active up to one entire day and intercontact times span

almost the whole observation interval. Edge activity exhibits

significant correlations over long periods of time. In particular,

the autocorrelation function of the time series of edge activity

shows a slow decay, up to lags of 6–8 hours for the MIT data

set, and of 3–4 hours for INFOCOM’06, after which the daily

periodicity becomes dominant (as displayed in Fig. 7).

III. EVOLUTION OF COOPERATION

IN TIME-VARYING NETWORKS

A. Cooperation diagrams

To simulate the game on a time-varying topology

{Gm}m=1,...,M , we start from a random distribution of strategies,

so that each individual initially behaves either as a cooperator

or as a defector, with equal probability. The simulation

proceeds in rounds, where each round consists of a playing

stage followed by a strategy update. In the first stage, each

agent plays with all her neighbors on the first graph of

the sequence, namely on G1, and accumulates the payoff

according to the matrix in Eq. (1). Then the graph changes,

and the agents employ the same strategies to play with all their

neighbors in the second graph of the sequence, G2. The new

payoffs are summed to those obtained in the previous iteration.

The same procedure is then repeated n times with n such that

nτ is equal to a chosen interval �t , which is the strategy update

FIG. 1. (Color online) Activity patterns of human interactions. The number Eactive of links in the graph at time t is reported as a function of

time for MIT Reality Mining (a) and INFOCOM’06 (b). Weekly and daily periodicities are visible. Red (light gray) lines display the moving

averages, over a 1-month and a 1-day window, respectively, revealing the nonstationarity of the sequences. Distributions of edge-active and

-inactive periods (triangles and circles, respectively) for MIT Reality Mining (c) and INFOCOM’06 (d). The data were log-binned. The peak

at σ ∼ 1 for the inactive periods corresponds to 24 hours.
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interval. At this point, the playing stage terminates and agent

strategies are updated following the Fermi update in Eq. (2).

After the agents have updated their strategy, their payoff is

reset to 0 and they start another round, during the subsequent

time interval of length �t = nτ , as described above.

To evaluate the degree of cooperation obtained for a

given value of the strategy update interval �t and a pair of

values (T ,S), we compute the average fraction of cooperators

〈C(T ,S)�t 〉:

〈C(T ,S)�t 〉 =
1

Q

Q
∑

i=1

N i
c

N
, (3)

where N i
c is the number of cooperators found at time i�t ,

and Q is the total number of rounds played. In general, we

set Q large enough to guarantee that the system reaches a

stationary state in which the level of cooperation remains

roughly constant.

We have simulated the system using different values of

�t . Notice that for smaller value of �t , the time scale of the

strategy update is comparable with that of the graph evolution,

while when �t is equal to the entire observation period Mτ

the game is effectively played on a static topology, namely

the weighted aggregated graph corresponding to the whole

observation interval. We focus now on the top panels of Figs. 2

and 3, where we show how the average fraction of cooperators

depends on the parameters S and T and on the length �t of the

strategy update interval. We considered six values of �t for the

MIT data set, from �t = 1 hour up to the whole observation

interval, and eight values for INFOCOM’06, ranging from

minutes up to the aggregate network.

At first glance, we notice that the rightmost diagrams in

both figures, which correspond to �t = Mτ , are in perfect

agreement with the results of evolutionary games played on

static topologies reported in the literature (see, e.g., [18,26]).

If we look at the cooperation diagrams obtained by increasing

the value of �t in the original sequences of graphs (top panels

of Figs. 2 and 3), we notice an increase of the area of the red

region, which corresponds to configurations in which 100% of

the nodes are cooperators at the stationary state. In particular,

for MIT Reality Mining (Fig. 2), the fraction of cooperators

increases up until �t = 2 months, after which the cooperation

diagram is practically indistinguishable from that obtained on

the static aggregated graph.

As we pointed out above, edge activation patterns show

nontrivial correlations. To highlight the effects of temporal

correlations and of periodicity in the appearance of links in the

real data sets, we have simulated the games also on randomized

time-varying graphs and on synthetic networks generated

through the activity-driven model [60]. (See Appendix B

for details on the activity-driven model.) The results for

randomized graphs and activity-driven graphs are reported,

respectively, in the middle and in bottom panels of Figs. 2

and 3.

FIG. 2. (Color online) Cooperation diagrams for the MIT Reality Mining data set. Fraction of cooperators at the equilibrium as a function

of the temptation to defect (T ) and of the sucker’s score (S) for different values of the interval �t between two successive strategy updates.

From left to right, the diagrams correspond to �t equal to 1 hour, 1 day, 1 week, 1 month, 2 months, and to the entire observation period

Mτ ≃ 5 months. The diagrams in the top row correspond to time-varying graphs with original time ordering, those in the middle row are

obtained for the same values of �t but on randomized time-varying graphs, while the bottom row reports the results obtained on synthetic

networks constructed through the activity-driven model. The results are averaged over 50 different realizations. Red (light gray) corresponds

to 100% of cooperators while blue (dark gray) indicates 100% defectors. By focusing on a row, and proceeding from left to right, it is evident

that there exists a value of the update interval �t above which the differences in the cooperation diagram are mostly limited to the region that

separates the two phases (100% defectors and 100% cooperators), while the rest of the phase diagram is already indistinguishable from that

corresponding to the aggregate graph. Moreover, for a fixed value of �t , we observe that randomized and synthetic sequences are associated

with an overall larger level of cooperation than the original ones. See Fig. 8 for additional details.
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FIG. 3. (Color online) Cooperation diagrams for the INFOCOM data set. Fraction of cooperators at the equilibrium as a function of the

temptation to defect (T ) and of the sucker’s score (S) for different values of the interval �t between two successive strategy updates. From left

to right, the diagrams correspond to �t equal to 4 minutes, 10 minutes, 30 minutes, 1 hour, 2 hours, 8 hours, 10 hours, and Mτ ≃ 4 days. The

top, middle, and bottom row report, respectively, the results for the original data set, the reshuffled time-varying graph, and synthetic graphs

constructed through the activity-driven model. The results are averaged over 50 different realizations. Red (light gray) corresponds to 100% of

cooperators, while blue (dark gray) indicates 100% defectors. As in Fig. 2, the comparison of the diagrams corresponding to the same update

interval shows that differences appear in the region that separates the full cooperation and full defection phases and that these differences favor

(in terms of degree of cooperation) the randomized and synthetic sequences. See Fig. 9 for additional details.

Randomized time-varying graphs are obtained by uni-

formly reshuffling the original sequences of snapshots. In

this case, the frequency of each pairwise contact is preserved

equal to that of the original data set. However, the temporal

correlations of these contacts, namely the persistence of an

edge during consecutive time snapshots, are completely wiped

out. As expected, for �t = Mτ the cooperation diagrams

obtained on the reshuffled sequences (middle rightmost panels

of Figs. 2 and 3) are identical to those obtained on the

corresponding original data sets (top rightmost panels). In fact,

when �t = Mτ each agent plays with all the contacts she has

seen in the whole observation interval, with the corresponding

weights, before updating her strategy, and thus the frequencies

of contacts are the only ingredients responsible for the

emergence of cooperation. Conversely, for smaller values

of �t , the importance of the temporal correlations of each

pairwise contact becomes clear since the cooperation diagrams

for randomized and original networks are very different in both

data sets. In fact, for the randomized graphs, the cooperation

levels at �t = 1 week and �t = 2 hours for the Reality and

INFOCOM datasets, respectively, are comparable to those for

�t = Mτ . This points out that cooperation is enhanced by

destroying the temporal correlations of pairwise contacts.

Little differences are observed between activity-driven

synthetic networks and the corresponding graph sequence

randomizations (results shown in the bottom panels of Figs. 2

and 3). In this case not only are temporal correlations wiped

out, but also the microscopic structure of each snapshot is

replaced by a graph having a similar density of links. This

rewiring distributes links more heterogeneously than in the

original and the randomized sequences (see Appendix B for

details). The cooperation diagrams of activity-driven networks

show a further increase of the cooperation levels for even

smaller values of the strategy update interval, �t , than

in the case of Random graphs. Namely, for �t = 1 day

in Reality Mining (Fig. 2) and for �t = 30 minutes in

INFOCOM (Fig. 3), we already recover the cooperation

levels of �t = Mτ . These results indicate that defectors take

advantage of the volatility of edges, and that cooperation

emerges only when the interval between two consecutive

strategy updates is large enough. A more detailed visualization

of the differences between the phase diagrams obtained in the

original sequence for different values of �t and those observed

for the randomized and synthetic networks is reported in

Figs. 8 and 9.

B. Structural analysis of time-varying networks

The reported results suggest that the ordering, persistence,

and distribution of edges over consecutive time windows are

all fundamental ingredients for the success of cooperation.

In general, a small value of �t in the original data sets

corresponds to playing the game on a sparse graph, possibly

comprising a number of small components, in which nodes

are connected to a small neighborhood that persists rather

unaltered over consecutive time windows. The small size of

the isolated clusters and the persistence of the connections

within them allow defectors to spread their strategy efficiently.

In the following, we will test this hypothesis by characterizing

the structure of the original and randomized versions of the

time-varying graphs.

To investigate the dependence of cooperation on the strategy

update interval �t , we computed the average fraction 〈S〉 of

nodes in the giant component of the graphs as a function of �t

for the original data sets and for the reshuffled and synthetic

sequences of snapshots. The results reported in Fig. 4 indicate

that for a given value of �t , the giant component of graphs

in the randomized sequences or in the activity-driven model

is larger than that of graphs in the original ordering. The lack

of temporal correlations between consecutive time snapshots
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FIG. 4. (Color online) Cooperation level and size of the giant

component. Overall cooperation level Ctot(�t) and average size of

the giant component 〈S〉 as a function of the aggregation interval

�t for MIT Reality Mining (top panels) and INFOCOM’06 (bottom

panels). Blue circles correspond to the original data, black squares

to the reshuffled networks, and red triangles to the activity-driven

model. The shades indicate the standard deviation of 〈S〉 across the

sequence of graphs for each value of �t . Notice that the typical size

of the giant component at time scale �t correlates quite well with the

observed cooperation level at the same time scale.

in randomized and activity-driven networks produces an

increase in the number of ties between different agents of

the population even for small values of �t . In addition, the

more homogeneous distribution of links within the snapshots

of the activity-driven network further increases the mixing of

the agents and thus enlarges the size of the giant connected

component compared to that of randomized graphs.

In Fig. 4, we also show the overall level of cooperation

observed at a given aggregation scale �t , Ctot(�t), defined as

Ctot(�t) =
1

Ctot(Mτ )

∫ 2

0

dT

∫ 1

−1

C(T ,S) dS.

Notice that Ctot(�t) is divided by the value Ctot(Mτ ) corre-

sponding to the whole observation interval, so that Ctot ∈ [0,1].

The value of �t at which 〈S〉 is comparable with the number

of nodes N , i.e., when 〈S〉 ≃ 1, coincides with the value of �t

at which the cooperation diagram becomes indistinguishable

from that obtained for the aggregate network, Ctot(�t) ≃ 1, for

both the original and the reshuffled sequences of snapshots.

This result confirms that the size of the giant connected

component of the graph corresponding to a given aggregation

FIG. 5. (Color online) Extremal temporal clustering γ i
e as a

function of the strategy update interval �t on real data sets (blue

dots). Top (bottom) panel refers to Reality Mining (INFOCOM).

Black squares correspond to randomly reshuffled sequences and red

triangles to activity-driven synthetic networks. In both datasets we

notice that, for small values of �t , real data display a higher value of

clustering (persistence) than synthetic cases followed by a transition

value of �t above which we observe a rapid increase in the clustering

of synthetic cases such that the previous situation is inverted.

interval plays a central role in determining the level of

cooperation sustainable by the system, in agreement with the

experiments discussed in [61] for the case of static complex

networks.

We also investigate the role of edge correlations between

consecutive graphs on the observed cooperation level. To-

ward that end, we analyze the temporal clustering γ i
e (see

Appendix C), which captures the average tendency of edges

to persist over time. In Fig. 5, we plot the evolution of the

temporal clustering as a function of the strategy update interval

�t . The results clearly reveal that, for small values �t , the

persistence of ties in the two original data sets is larger than

in the randomized and the activity-driven graphs. Overall,

for small �t , the large temporal clustering and the small

average size of the giant component indicate that the graphs

are composed of small clusters of nodes whose composition

changes very slowly compared to the faster mixing observed

in the randomized sequences. Thus, these are two ingredients
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hindering cooperation in the original data sets: the size of the

giant component and the internal arrangement of connections

within the different components.

As an example of the negative effect on cooperation of

the combination of the two latter ingredients, we consider

a pair of (T ,S) values in the Harmony Game (HG) regime

(0 < T < 1 and 0 < S < 1). The evolutionary dynamics of

the HG in the well mixed (all-to-all) regime drives the

system toward full cooperation. Even though this regime is

the best scenario for the promotion of cooperation, the real

time-varying graphs exhibit small cooperation levels for small

�t . This is mainly due to the high level of segregation of

interactions in disconnected and small clusters. Under these

conditions (far from the well-mixed hypothesis), the HG

behaves differently in the regimes T < S and S < T (these

two regimes are separated by the solid line S = T in the

panels of Figs. 2 and 3). While in the first regime, T < S,

the pairwise encounters between a cooperator and a defector

yield more benefit to the former, this is not the case when

S < T . Thus, when the population is segregated into small

(and persistent) clusters containing a small number of nodes,

defection easily prevails in the region S < T of the HG. This

counterintuitive result is obtained for the original time-varying

graphs (especially for that of MIT) and small �t . The time

evolution of the interaction patterns of the real data sets

confirms the structural roots of this behavior.

In Fig. 6, we display, for the case of INFOCOM, the number

of components Z, the number of links K , the size of the giant

component S, and the topological clustering coefficient c (i.e.,

the probability that two neighbors of a given node are also

connected) as a function of time t . Similar results are obtained

for the MIT dataset. We notice considerable differences

between the time evolution of these quantities in the original

time series and those in the randomized ones. Namely, in

the original time-varying graph we observe a long initial

FIG. 6. (Color online) Evolution of cooperation and topological

quantities as a function of time t for the INFOCOM dataset in the

harmony game (T = 0.9,S = 0.2). From top to bottom we display the

number of components Z, fraction of nodes in the giant component S,

number of links K , topological clustering coefficient c, and fraction

of cooperators C as a function of time. Black [red (gray)] line

corresponds to the original (randomized) dataset.

time window during which the real network displays a large

number of components and poor connectivity. This period is

then followed by another long period characterized by the

appearance of a connected and clustered giant component. As

expected, the randomized graph does not show this persistent

behavior. In the bottom panel, we show the evolution of

cooperation when the update interval is set to its minimum

value, �t = 4 minutes. As can be observed, the initial fraction

of cooperators face a rather complicated scenario for their

survival even in the HG regime.

Turning our attention back to Fig. 5, we notice that, as

�t increases, the link persistence grows similarly in the

randomized and activity-driven networks. This growth points

out that the randomization of snapshots in one null model and

the redistribution of links in the other one make the ties more

stable as �t increases. This stabilization, however, does not

lead to a decrease in cooperation since it is combined with the

fast increase with �t of the size of the giant component.

IV. CONCLUSIONS

Although the impact of network topology on the onset

and persistence of cooperation has been extensively studied

in recent years, the recent availability of data sets with

time-resolved information about social interactions allows

for a deeper investigation of the impact of time-evolving

social structures on evolutionary dynamics. Here we addressed

two crucial questions: does the interplay between the time

scale associated with graph evolution and that corresponding

to the strategy update affect the classical results about the

enhancement of cooperation driven by network reciprocity?

And what is the role of the time correlations of temporal

networks in the evolution of cooperation? The importance

of the competition between the time scale of social ties

and their corresponding outcome (here the games played

and the benefits obtained) and the update of strategies have

been recently addressed [62,63]. However, in our work we

attempted to go one step further by relying on two empirical

data sets incorporating the two ingredients whose impact over

the evolution of cooperation we want to evaluate: the time

scale of social interactions and their temporal correlations.

Our results confirm that, for all four social dilemmas studied

in this work, cooperation is seriously hindered when (i) agent

strategy is updated too frequently with respect to the typical

time scale of agent interaction, and (ii) realistic link temporal

correlations are present. This phenomenon is a consequence of

the relatively small size of the giant component of the graphs

obtained at small aggregation intervals. However, when the

temporal sequence of social contacts is replaced by random-

ized or synthetic time-varying networks preserving the original

activity attributes of links or nodes but breaking the original

temporal correlations, the structural patterns of the network

at a given time scale of strategy update change dramatically

from those observed in real data. As a consequence, the effects

of temporal resolution over cooperation are smoothed and,

by breaking the real temporal correlations of social contacts,

cooperation can emerge and persist even for moderately small

time periods between consecutive strategy updates.

Our findings suggest that the frequency at which the

connectivity of a given system is sampled has to be carefully
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chosen, according with the typical time scale of the social

interaction dynamics. For instance, as stock brokers might

decide to change strategy after just a couple of interactions,

other processes such as trust formation in business or col-

laboration networks are likely to be better described as the

result of multiple subsequent interactions. These conclusions

are also supported by the results of a recent paper by Ribeiro

et al. [53] in which the effects of temporal aggregation

interval �t in the behavior of random walks are studied.

One limitation of the current work comes from the fact

that the used datasets have not been specifically collected

in order to study cooperation spreading on networks and

might therefore represent a suboptimal network substrate

for the dynamical process under study. At the same time,

these empirical datasets arguably contain the most direct

measurement of human interaction upon which any social

interaction mechanism is then built up, and—already at this

simple level of face-to-face interaction—they contain rich and

nontrivial structures and phenomena. One example of this is

the fundamental role played by the real-data time correlations

in dynamical processes on the graph, which calls for more

models of temporal networks and for a better understanding of

their nature. In a nutshell, our results point out that one should

always bear in mind that both the over- and the undersampling

of time-evolving social graph and the use of the finest/coarsest

temporal resolution could substantially bias the results of a

game-theoretic model defined on the corresponding network.

These results pave the way to a more detailed investigation

of social dilemmas in systems in which both structural and

temporal correlations are incorporated in the interaction maps.
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APPENDIX A: DATA SETS DESCRIPTION

In the following, we introduce the principal characteristics

of the two data sets used in our study. As stated in the main text,

one of the reasons behind the emergence of cooperation is the

persistence of interactions. A way to gauge such persistence

is measuring the autocorrelation function R of our time series,

as shown in Fig. 7.

1. MIT Reality Mining dataset

The dataset describes proximity interactions collected

through the use of Bluetooth-enabled phones [29]. The phones

were distributed to a group of 100 users (75 MIT Media

FIG. 7. (Color online) Autocorrelation function R for edge acti-

vations, averaged over all the active edges in the datasets, Reality (top)

and INFOCOM (bottom). The long-lasting correlations in the edge

activity of both datasets (up to 6–8 hours for Reality and 3–4 hours

for INFOCOM) represent one of the main ingredients behind the

different cooperation outcomes. The red (gray) line corresponds to

the exponential fit of the data.

Laboratory students and 25 faculty members). Each device had

a unique tag and was able to detect the presence and identity of

other devices within a range of 5–10 meters. The interactions,

intended as proximity of devices, were recorded over a period

of about six months. In addition to the interaction data, the

original dataset included also information regarding call logs,

other Bluetooth devices within detection range, the cell tower

to which the phones were connected, and information about

phone usage and status. Here, we consider only the contact

network data, ignoring any other contextual metadata. The re-

sulting time-varying network is an ordered sequence of 41 291

graphs, each having N = 100 nodes. Each graph corresponds

to a proximity scan taken every 5 minutes. An edge between

two nodes indicates that the two corresponding devices were

within detection range of each other during that interval. We

refer to such links as active. During the entire recorded period,

2114 different edges have been detected as active, at least

once. This corresponds to the aggregate graph having a large

average node degree 〈k〉 ≃ 42. However, this is an artefact of

the aggregation; the single snapshots tend to be very sparse,

usually containing between 100 and 200 active edges.

2. INFOCOM’06 dataset

The dataset consists of proximity measurements collected

during the IEEE INFOCOM’06 conference held in a hotel

in Barcelona in 2006 [30]. A sample of 78 participants from

a range of different companies and institutions was chosen

and equipped with a portable Bluetooth device, Intel iMote,

able to detect similar devices nearby. Area “inquiries” were

performed by the devices every 2 minutes, with a random

delay or anticipation of 20 seconds. The delay and anticipation
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mechanism was implemented in order to avoid synchronous

measurements, because while actively sweeping the area,

devices could not be detected by other devices. A total number

of 2730 distinct edges were recorded as active at least once in

the observation interval, while the number of edges active at a

given time is significantly lower, varying between 0 and 200,

depending on the time of day.

APPENDIX B: ACTIVITY-DRIVEN MODEL

The activity-driven model, introduced in Ref. [60], is a

simple model to generate time-varying graphs starting from

the empirical observation of the activity of each node, in

terms of number of contacts established per unit time. Given

a characteristic time window �t , one measures the activity

potential xi of each agent i, defined as the total number of

interactions (edges) established by i in a time window of length

�t divided by the total number of interactions established on

average by all agents in the same time interval. Then, each

agent is assigned an activity ai = ηxi , which is the probability

per unit time to create a new connection or contact with any

another agent j . The coefficient η is a rescaling factor, whose

value is appropriately set in order to ensure that the total

number of active nodes per unit time in the system is equal to

η〈x〉N , where N is the total number of agents. Notice that η

effectively determines the average number of connections in a

temporal snapshot whose length corresponds to the resolution

of the original data set.

The model works as follows. At each time t the graph Gt

starts with N disconnected nodes. Then, each node i becomes

active with probability ai�t and connects to m other randomly

selected nodes. At the following time step, all the connections

in Gt are deleted, and a new snapshot is sampled.

Notice that time-varying graphs constructed through the

activity-driven model preserve the average degree of nodes

in each snapshot, but they impose that connections have, on

average, a duration equal to �t , effectively removing any

temporal correlation among edges.

For the networks studied, we obtain mean raw activities

〈x〉Infocom ≃ 0.49 and 〈x〉Reality ≃ 0.15. Choosing a number

m = 2 of new links created for every activated node and

constraining the average fraction of active nodes and the

average number of contacts per node to be those of the

real networks, we obtain ηReality ≃ 0.024 and ηInfocom ≃ 0.7.

Finally, the average activity of nodes becomes 〈a〉Reality =

0.004 ± 0.001 and 〈a〉Infocom = 0.35 ± 0.11.

The aggregated versions of networks obtained from the

activity-driven model were computed in two steps: (i) a

synthetic temporal network was created at the same temporal

resolution and of the same length as the original dataset;

(ii) the synthetic network was aggregated on the appropriate

time window. This was done in order to mimic as closely as

possible the procedure that we performed on the real networks,

where a single temporal network was compared with its own

aggregated versions.

APPENDIX C: TEMPORAL CLUSTERING

Several metrics have been proposed recently to measure the

tendency of the edges of a time-varying graph to persist over

time. One of the most widely used is the unweighted temporal

clustering, introduced in Ref. [44], which for a node i of a

time-varying graph is defined as

γ i =
1

T − 1

T −1
∑

t=1

∑

j at
ija

t+1
ij

√

kt
ik

t+1
i

, (C1)

where at
ij are the elements of the adjacency matrix of the

time-varying graph at snapshot t , kt
i is the total number of

edges incident on node i at snapshot t , and T is the duration

FIG. 8. (Color online) Here we report with a color-code the difference between the cooperation diagram corresponding to the original MIT

Reality Mining graph sequence (top panels) and those obtained on the reshuffled (middle panels) and synthetic networks (bottom panels), at

different values of the update interval �t .
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FIG. 9. (Color online) As in Fig. 8, we report the differences between the cooperation diagram corresponding to the original INFOCOM’06

dataset and those obtained on the reshuffled (middle panels) and synthetic networks (bottom panels), at different values of the update

interval �t .

of the whole observation interval. Notice that γ i takes values

in [0,1]. In general, a higher value of γ i is obtained when the

interactions of node i persist longer in time, while γ i tends to

zero if the interactions of i are highly volatile.

If each snapshot of the time-varying graph is a weighted

network, where the weight ωt
ij represents the strength if the

interaction between node i and node j at time t , we can define

a weighted version of the temporal clustering coefficient as

follows:

γ i
w =

1

T − 1

T −1
∑

t=1

∑

j ωt
ijω

t+1
ij

s t
i s

t+1
i

. (C2)

Finally, if we focus more on the persistence of interaction

strength across subsequent network snapshots, we can define

the extremal temporal clustering as

γ i
e =

1

T − 1

T −1
∑

t=1

∑

j min
(

ωt
ij ,ω

t+1
ij

)

√

s t
i s

t+1
i

, (C3)

where by considering the minimum between ωt
ij and ωt+1

ij one

can distinguish between persistent interactions having constant

strength over time and those interactions having more volatile

strength. As in our case social interactions are seen to be highly

volatile in real data sets, the extremal version of the temporal

clustering seems to be the best choice to unveil the persistence

of social ties at short time scales.

APPENDIX D: DIFFERENCES IN

THE COOPERATION DIAGRAMS

To highlight the effects that temporal correlations between

pairwise interactions have on the emergence of cooperation,

we show in this appendix the quantitative differences among

the cooperation level of the original datasets (as displayed by

the fraction of cooperators as a function of T and S) and both

their randomized and activity-driven versions. In Figs. 8 and 9

we show these differences for the MIT Reality Mining and

INFOCOM’06 graphs, respectively.

From these two figures, it becomes clear that most of the

differences with the dynamics run on the original time-varying

graph are concentrated at the interface between the regions

in which 100% of the nodes are cooperators [the red (light

gray) areas in the top panels] and those where 100% of the

nodes become defectors [blue (dark gray) areas in the top

panels]. Interestingly, for both datasets these differences are

more pronounced for smaller values of �t and become less

evident when �t increases, until they almost disappear for the

largest aggregation interval.
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