
This article was downloaded by: [University of North Carolina]
On: 12 June 2013, At: 11:24
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer
House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Statistical Theory and Practice
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/ujsp20

Evolutionary Dynamics on Graphs - the Effect of
Graph Structure and Initial Placement on Mutant
Spread
M. Broom a , J. Rychtář b & B. T. Stadler c

a Centre for Mathematical Science, City University London, Northampton Square,
London, EC1V 0HB, UK
b Department of Mathematics and Statistics, The University of North Carolina
Greensboro, Greensboro, NC, 27402, USA
c Department of Computer Science, The University of North Carolina Greensboro,
Greensboro, NC, 27402, USA
Published online: 30 Nov 2011.

To cite this article: M. Broom , J. Rychtář & B. T. Stadler (2011): Evolutionary Dynamics on Graphs - the Effect of Graph
Structure and Initial Placement on Mutant Spread, Journal of Statistical Theory and Practice, 5:3, 369-381

To link to this article:  http://dx.doi.org/10.1080/15598608.2011.10412035

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to
anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss, actions,
claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/ujsp20
http://dx.doi.org/10.1080/15598608.2011.10412035
http://www.tandfonline.com/page/terms-and-conditions


© Grace Scientific Publishing
Journal of

Statistical Theory and Practice
Volume 5, No. 3, September 2011

Evolutionary Dynamics on Graphs - the Effect of Graph
Structure and Initial Placement on Mutant Spread

M. Broom, Centre for Mathematical Science,
City University London, Northampton Square, London, EC1V 0HB, UK.

Email: mark.broom@city.ac.uk
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Abstract

We study the stochastic birth-death process in a finite and structured population and analyze how
the fixation probability of a mutant depends on its initial placement. In particular, we study how the
fixation probability depends on the degree of the vertex where the mutant is introduced, and which
vertices are its neighbours. We find that within a fixed graph, the fixation probability of a mutant
has a negative correlation with the degree of the starting vertex. For a general mutant fitness r, we
give approximations of relative fixation probabilities in terms of the fixation probabilities of neigh-
bours which will be useful for considering graphs of relatively simple structure but many vertices,
for instance of the small world network type, and compare our approximations to simulation results.
Further, we explore which types of graphs are conducive to mutant fixation and which are not. We
find a high positive correlation between a fixation probability of a randomly placed mutant and the
variation of vertex degrees on that graph.

AMS Subject Classification: 05C57; 05C82.

Key-words: Birth-death process; Fixation probability; Heterogeneous graphs; Small world networks.

1. Introduction

Evolutionary dynamics has proved to be very influential in the modelling of biological
populations. From the simplest models where fitness only depends upon fixed characteris-
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370 M. Broom, J. Rychtář & B. T. Stadler

tics, rather than the interactions between the individuals, there has been a huge development
of more sophisticated methods of modelling the interactions between individuals including
the classical game theoretical models (Bishop and Cannings, 1976; Cressman, 1992; Haigh,
1975; Hofbauer and Sigmund, 1998; Maynard Smith, 1982; Maynard Smith and Price,
1973) and the use of population genetics models (Kimura, 1985; Kimura, 1994).

Such evolutionary dynamics models have traditionally considered only homogeneous
populations. Population structure, however, can be important and this was demonstrated
particularly by Lieberman, Hauert and Nowak (2005), and a series of related papers have fol-
lowed, developing these ideas in a number of ways for example investigating game-theoretic
models on (usually regular) graphs (Hauert and Doebeli, 2004; Ohtsuki and Nowak, 2006),
and considering simple fixed evolution models on irregular graphs (Broom and Rychtář,
2008; Broom, Rychtář and Stadler, 2009). Note that a number of other papers have con-
sidered this idea of modelling population structure on graphs in different contexts (Barabási
and Albert, 1999; Erdös and Rényi, 1960; Nagylaki and Lucier, 1980).

Following Lieberman, Hauert and Nowak (2005) we consider a model where each vertex
represents an individual in the population, and individuals can reproduce into neighbouring
vertices. In homogeneous populations the probability of fixation in a population with N
individuals (and so N vertices) is given by the Moran probability (Moran, 1958)

PMoran =
1−1/r

1−1/rN (1.1)

where resident individuals have baseline fitness 1 and mutants have fitness r (each individual
being chosen as the reproducing individual with probability proportional to its fitness). The
formula (1.1) holds for regular graphs (graphs where every vertex has the same degree), and
for no others (Lieberman, Hauert and Nowak, 2005).

The evolutionary dynamics on a graph with N vertices is a birth-death process (see for
example Bewernick et al. (2007), Crossman, Coolen-Schrijner and Coolen (2009) and ref-
erences therein) which leads generally to a system of the order of 2N equations (Broom and
Rychtář, 2008; Broom et al., 2010b). This means that one often has to resort to numerical
methods, as in Paley, Tarashkin and Elliot (2007), Rychtář and Stadler (2008) and Santos,
Pacheco and Lenaerts (2006). The three exceptional types of graph where the dynamics
yields significantly simpler system of equations are regular graphs (yielding N equations,
solved by Lieberman, Hauert and Nowak (2005)), star graphs (2N equations, solved by
Broom and Rychtář (2008)), and line graphs (N2/4 equations, progress on an analytical
solution made by Broom and Rychtář (2008)).

Besides the mutant’s fitness, there are two main factors that may potentially influence the
fixation probability - the local structure around the vertex where the mutant is introduced,
and then the global structure of the graph. In this paper we explore both factors, using a
theoretical analysis and simulation results. We focus on the degree and on the "temperature"
(Lieberman, Hauert and Nowak, 2005) of the vertex to capture the local structure and on the
variation of these within a graph to understand the global one. We compare regular graphs,
small world networks, line graphs and star graphs.

For a regular graph, the starting position has no influence on the fixation probability
(Broom and Rychtář, 2008; Lieberman, Hauert and Nowak, 2005). In the star, the mutant
does significantly better when it starts on the boundary; and similarly, starting at the end of
the line guarantees the highest fixation probability on the line (Broom and Rychtář, 2008).
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Evolutionary Dynamics on Graphs 371

Here we show that when a mutant has approximately the same fitness as a resident, then the
fixation probability if starting at a given vertex is proportional to the inverse of the degree of
the vertex. We also generalize the formula for an arbitrary fitness to approximate the relative
fixation advantage between mutants introduced at any two vertices of the graph.

The introduced approximation methods have the benefit of extending to larger more com-
plex graphical systems, such as the small world networks of (Bollobás and Chung, 1988;
Durrett, 2007; Newman, Barabási and Watts, 2006; Newman and Watts, 1999; Watts and
Strogatz, 1998).

2. Evolutionary dynamics on graphs

Let G = (V,E) be an undirected graph, where V is the set of vertices and E is the set of
edges. We assume that the graph is finite, connected and simple, i.e. no vertex is connected
to itself and there are no parallel edges. We study evolutionary dynamics as described by
Lieberman, Hauert and Nowak (2005), see also Nowak (2006). We treat the dynamics as a
discrete time Markov chain. At the beginning, a vertex is chosen at random and replaced
by a mutant with fitness r, all remaining vertices having fitness 1. At subsequent steps, a
randomly chosen individual replicates with a probability proportional to its fitness and its
offspring replaces an individual at a randomly chosen neighbouring vertex. The process
stops when there are no mutants or no original residents in the graph. Each state of the
dynamics is described by a set C ⊂V , a set of vertices inhabited by mutants. The transition
probabilities of the above Markov chain are determined by a) the probability that a given
vertex will be selected for reproduction and b) the probability that, once selected, it places
its offspring into another given vertex.

Let fi ∈ {1,r} be the fitness of an individual at vertex i; fi = r means that the individual
is a mutant, fi = 1 means that it is a resident. An individual at i is selected for reproduction
with probability

si =
fi

∑ j∈V f j
.

The graph structure is represented by a matrix W = (wi j), where wi j is the probability of
replacing a vertex j by a copy of a vertex i, provided vertex i was selected for reproduction,

wi j =

{
d−1

i , if i and j are connected,
0, otherwise,

where di is the degree of the vertex i, i.e. the number of edges incident to the vertex i.
Let PC denote the probability of mutant fixation given that mutants currently inhabit a set

C. The rules of the dynamics yield (Broom and Rychtář, 2008; Nowak, 2006)

PC =

∑
i∈C

∑
j ̸∈C

(
rwi jPC∪{ j}+w jiPC\{i}

)
∑
i∈C

∑
j ̸∈C

(
rwi j +w ji

) (2.1)

with P/0 = 0 and PV = 1. This system has a unique solution (Broom and Rychtář, 2008).
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Figure 2.1. The fixation probabilities of mutants with r = 1 placed in the line, star, lollypop
and circle of 4 vertices. The numbers in parenthesis are fixation probabilities for mutants
with r = 2.

It was shown in Broom et al. (2010b) (see also Shakarian and Roos, 2011) that for the
case of random drift, r = 1, the solution of (2.1) is given by

PC =

∑
i∈C

di
−1

∑
k∈V

dk
−1 . (2.2)

In particular, when r = 1, we get
P{i}
P{ j}

=
d j

di
. (2.3)

Also, the function C →PC is, for r = 1, an additive probability on the set of graph vertices.
However, it will be seen below that it can be considered a nonadditive probability (e.g.
Hampel, 2009). The fixation probabilities for a single mutant at each possible starting vertex
of several small examples of important graphs are shown in Figure 2.1.

3. Advantageous mutants where r ≫ 1.

In this section we study the dynamics for very advantageous mutants. When C = {i},
(2.1) reads

P{i} =

∑
j ̸=i

rwi jP{i, j}

∑
j ̸=i

(
rwi j +w ji

)
which implies that

P{i} ∑
j ̸=i

(rwi j +w ji) = ∑
j ̸=i

rwi jP{i, j}. (3.1)

When r is very large, mutants are unlikely to be eliminated, and if they are it is almost
certain to happen immediately, before a second mutant appears in the population. Thus in
the following calculations we shall assume that the mutants will win with probability 1 as
soon as there are at least two mutants in the graph. With this in mind, (3.1) yields

r = ∑
j ̸=i

rwi j ≈ ∑
j ̸=i

rwi jP{i, j}

= P{i} ∑
j ̸=i

(rwi j +w ji) = (r+Ti)P{i}
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Evolutionary Dynamics on Graphs 373

a) c)

b) d)

Figure 3.1. Exact versus estimated values of fixation probabilities of mutants starting in the center
of the lollypop with 4 vertices (a-b) and on an interior vertex of the line of 4 vertices (c-d). Real
values are given by solutions of (2.1) and the estimated values by formula (3.2).

where Ti = ∑ j ̸=i w ji is the temperature of the vertex i. Consequently,

P{i} ≈
r

r+Ti
(3.2)

We see from Figure 3.1 that the approximation (3.2) works well when r is sufficiently
large, for example of the order of 10 for line or lollypop graphs.

4. The effect of starting position on mutant advantage

We can see from formula (2.2) that even for the case of random drift (r = 1), the graph
structure can influence the selection process. If the vertex has low degree, i.e. only a few
edges are going into it, a mutant has an advantage if it starts there. We investigated the
dynamics on a large range of different graphs, including an exhaustive study of every graph
with up to 8 vertices (there are 12112 such graphs). The pattern of low degree and mutant
advantage is consistent, and the size of that advantage increases with the difference of the
degree of a given vertex and the average over the entire graph. In Figure 2.1 we see the
different fixation probabilities for a single mutant with r = 1 and r = 2 introduced at the
specified vertex for all vertices on the graph, for four graphs with four vertices. It should
be noted that for r = 1, the mean fixation probability over all vertices is simply 1/N. Also,
notice that as r increases, the fixation probabilities increase more rapidly for mutants placed
into vertices with higher degree.
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374 M. Broom, J. Rychtář & B. T. Stadler

Now, motivated by equation (2.3), for r = 1, we would like to estimate the advantage of a
mutant starting at specific vertex i versus another mutant starting at vertex j for an arbitrary
value r. We will work with the system (2.1) as done in Broom et al. (2010b). The equation
(3.1) derived from (2.1) will be satisfied if, for every i ̸= j ∈V ,

(rwi j +w ji)P{i} = rwi jP{i, j}.

Interchanging the roles of i and j, we get that, whenever i and j are connected,

rwi j +w ji

rwi j
P{i} = P{i, j} =

rw ji +wi j

rw ji
P{ j},

which yields the relative fixation advantage formula

P{i}
P{ j}

≈
r+ d j

di

r+ di
d j

. (4.1)

For the case r ≈ 0, we can see that

P{i}
P{ j}

≈
(

d j

di

)2

and it follows that the fixation probability of any vertex is proportional to d−2, where d is
the degree of that vertex. For the case r ≈ 1, (4.1) agrees with (2.3) and we see that the
fixation probability of any vertex is proportional to d−1 in this case.

Note that (4.1) was derived, and is more accurate, for pairs of vertices that are neighbours.
We can use it for pairs that are not neighbours, yet the approximation may bring additional
errors. Also, the approximations generally work well for most values of r, but they are
least accurate for mutants which are advantageous with a significant but not overwhelming
advantage, for instance r ≈ 2, and similarly for mutants with r ≈ 1/2, see the illustrative
plots in Figure 4.1.

There is an equality in (4.1) for star graphs (Broom and Rychtář, 2008). On the other
hand, the formula cannot hold exactly in any graph with three vertices i, j,k such that di ̸=
d j ̸= dk ̸= di because we would then have

1 =
P{i}
P{ j}

·
P{ j}
P{k}

·
P{k}
P{i}

=
r3 + r2

(
d j
di
+ dk

d j
+ di

dk

)
+ r

(
dk
di
+

d j
dk
+ di

d j

)
+1

r3 + r2
(

dk
di
+

d j
dk
+ di

d j

)
+ r

(
d j
di
+ dk

d j
+ di

dk

)
+1

̸= 1

In fact, it seems that (4.1) does not hold exactly in any graph other than a star graph. Yet, it
is still generally a good approximation to the formula (4.1) and in particular approximates
well for r ≈ 0, r ≈ 1 and r ≈ ∞.
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Evolutionary Dynamics on Graphs 375

a) c) e)

b) d) f)

Figure 4.1. Comparison of fixation probabilities of mutants on the lollypop with 4 vertices (a-d) and
line of 4 vertices (e-f). Real values and values estimated by formula (4.1) are plotted. a) and b) the
central vertex of degree 3 versus the vertex of degree 1 (note that the vertices are neighbours); c)
and d) a vertex of degree 2 versus the vertex of degree 1, note that the vertices are not neighbours;
e) and f) a central vertex versus an end vertex.

5. The effect of graph structure on mutant advantage

We found that 1
N ∑v∈V P{v}, the mean fixation probability of a randomly placed mutant,

is positively correlated with the variance of vertex degree in that graph, 1
N ∑v∈V (dv − µ)2

where µ = 1
N ∑v∈V dv. This is illustrated in Figure 5.1a). The variance of vertex degree is

correlated even more strongly with the average fixation probability once we consider graphs
with a fixed number of edges only, see for example Figure 5.1b).

a) b)

Figure 5.1. Correlation between the mean fixation probability (for r = 2) and the variance of
vertex degrees in a given graph. a) all connected graphs with 7 vertices, b) all connected graphs
with 7 vertices and 12 edges.

Regular graphs (i.e. graphs where the degree variance is 0) are among those least conduc-
tive; a graph being described as conductive if its structure is good for allowing the spread
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376 M. Broom, J. Rychtář & B. T. Stadler

of (advantageous) mutants. There are graphs that were even less conductive than regular
graphs; in fact there are about 60 graphs among 853 of those with 7 vertices that are less
conductive than regular graphs for some r > 1. It was observed that the higher r, the smaller
the number of graphs that are less conductive than regular ones. In general, if a graph is less
conductive than a regular graph for some r0 > 1, then it is less conductive than a regular
graph for any r ∈ (1,r0) (however, there are a few graphs which are more conductive than a
regular graph for relatively large r, but less conductive for intermediate r > 1). Figure 5.2
shows two graphs that belong among the least conductive ones for all r ∈ (1,10). Moreover,
for any r > 1, the average fixation probability of a mutant on the least conductive graph (for
that specific r) is never less than 99% of the Moran probability, i.e. the average fixation
probability of mutants on the regular graphs.

Figure 5.2. Two of the least conductive graphs.

In general a tree structure is very conducive for mutant fixation. Out of these tree graphs,
the worst such graphs for mutant fixation are line graphs, although they are still among the
best 25% of all graphs. Among graphs with 8 or less vertices, the most conductive graph is
the star graph. The star graphs are also highly conductive for graphs with 9 or more vertices;
but they are not the most conductive anymore. High variability of the degree of vertices is
the key element associated with high mutant fixation probability.

We now investigate the case of graphs with seven vertices, and in particular those with
either seven or eight edges; in total there are 99 such graphs. See Figure 5.3, which shows
the results for the least conductive graphs. The worst performing graph is a circle, a regular
graph. This graph is closely followed by two graphs, both of them consisting of a circle
and an edge connecting 2 vertices that are not direct neighbours. The surprising result is
that all of the 25 worst conductive graphs could be obtained from one of the worst three
graphs by rewiring one single edge (i.e. by selecting an edge and possibly changing one of
its endpoints). There are in total 31 graphs that could be obtained by this one step rewiring
procedure and all of them are in the worst 32 graphs.

Figure 5.4 shows the most conductive graphs among those with 7 vertices and 7 or 8
edges. It should be noted that most graphs look like a star graph and all but one such graph
have a property that there is one vertex connected to at least 5 of the remaining vertices.

The structure of the graph can also have a significant effect on the length of the compu-
tation between mutant and resident. It is shown in Broom, Hadjichrysanthou and Rychtář
(2010a) that in general evolution is slower on the star than on the circle, which is again
slower than on the complete graph. They considered both the time to absorption (the time
until the population consists only of a single type) and the time to mutant fixation (the time
until mutants fixate, conditional upon this occurring) and the pattern was the same, with the

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

or
th

 C
ar

ol
in

a]
 a

t 1
1:

24
 1

2 
Ju

ne
 2

01
3 



Evolutionary Dynamics on Graphs 377

variance in graph vertices’ degree
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Figure 5.3. Graphs with lowest conductivity (and low variance of vertex degrees)
among graphs with 7 vertices and 7 or 8 edges. All such graphs are one rewiring
step from one of the three graphs in the lower left corner. The graphs drawn in
grey are 2 rewiring steps away. The large ellipses are magnifications of the
corresponding smaller ellipses to show the graphs involved clearly. Fixation
probabilities are shown for r = 2.
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Figure 5.4. Graphs with highest conductivity (and high variance of vertex de-
grees) among graphs with 7 vertices and 7 or 8 edges. All (except the only one
in gray color) such graphs are star like graphs, i.e. with one vertex connected to
at least 5 of the remaining vertices. Fixation probabilities are shown for r = 2.
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378 M. Broom, J. Rychtář & B. T. Stadler

times for the star typically an order of magnitude longer. This occurs because all interactions
on the star involve the central individual, with most changes occurring with this individual
being replaced, and the individuals on the leaves only interacting indirectly through the cen-
tre, whereas on the complete graph all individuals can interact with each other. The circle is
somewhat inbetween these two extremes in that every individual interacts with exactly two
neighbours, and so the fixation/absorption times also take an intermediate value.

6. Interpretations for small world networks and more complex graphical systems

We now return to the small world networks of Bollobás and Chung (1988) and Watts and
Strogatz (1998). Small world graphs are regular in form with most vertices unconnected,
but with a few added random connections which generally make the path length between
any two vertices short. One way to generate a small world network is to randomly rewire
a small number of edges of a regular graph, Watts and Strogatz (1998). We can see from
Figure 5.3 and the related discussion, that such a rewiring procedure on graphs with a small
number of vertices yields a higher mutant fixation probability than on the regular graph,
but this advantage is not great. In fact, regular graphs, even after a slight rewiring, yield a
lower fixation probability than most other graph structures. This result was essentially borne
out for real small world network graphs from Rychtář and Stadler (2008), where extensive
simulations showed an advantage of mutants on small world networks over regular graphs
of anything up to about 10%. The formula (4.1) indicates that the more random connections
that are added, and thus the greater the variability in the degree of the vertices, the greater
the disparity in fixation probability from vertex to vertex, and the greater the potential for
mutant fixation on the graph.

In general we can use (4.1) to make qualitative predictions for more complex graphs by
comparing connected vertices, even if the graph is too large and complex for an analytical
solution. We can also use the variance in the degree of the vertices of a graph to estimate
mutation fixation probability, or at least to obtain an idea of the relative size of such fixation
probabilities for different graphs.

All of the above relies on there being a fixed unchanging graph. But what if the graph
itself evolves? Three main types of evolving graphs have previously been discussed. Firstly,
there are those that evolve at random, independent of any behaviour that is happening on
the graph (see e.g. Fan and Chen, 2004). Under these circumstances, if evolution is slow
enough, the situation reduces essentially to what we have described above. However even if
that is not the case, we may be able to estimate the variability of the degree of the vertices
across the graph at a given time, and still make some statements about the mutant fixation
probability. This is particularly the case if some vertices will be prone to low or high degree,
and less so if every connection exists or not purely at random. The second type of evolving
graph is one that is influenced by the behaviour on the graph itself (see Chan et al., 2003).
This type of behaviour is common in real epidemics, for instance, when as soon as someone
gets a disease their behaviour may change due to sickness or deliberate isolation. In the
context of evolution on a graph this raises interesting possibilities. We know that mutants
with smaller numbers of connections do better. Thus if a mutant could strategically cut
connections it would maximise its chances of fixation, provided it did not cut so many
that the graph became disconnected. In general the different propensity for mutant-mutant,
resident-resident and mutant-resident connections would have a significant effect on the
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Evolutionary Dynamics on Graphs 379

probability of eventual fixation, even if these were not governed strategically. We could use
our work here to make some statements about this probability if we could use information on
these connections to obtain information on the degrees of connected pairs, or the variability
of this degree. Finally, recently deterministic models of graph evolution involving the births
and deaths of vertices have been considered by Southwell and Cannings (2010a,b). It would
be of particular interest to see how a process of evolution upon a graph that is changing in
such a way behaves, especially if, for instance, whether death occurs depends upon the types
of the individual at the vertex in question and at its neighbours.

7. Discussion

In this paper we have considered the fortunes of a mutant population within a resident
population on a graph, with N vertices starting with a single mutant. The fixation probability
within any graph depends upon the starting position of the mutant with a mutant at a vertex
with few connections doing best. When the mutant starts at a vertex of degree d, and its
fitness is approximately the same as that of resident individuals, then its fixation probability
in the graph is proportional to d−1. This is illustrated in the simple graphs in Figure 2.1.

Assuming that a mutant is placed in a randomly chosen vertex in a graph, the fixation
probability is simply 1/N for mutants with r = 1. However, if a mutant has superior fitness
to the resident population, which will generally be the case for mutants that eventually
reach fixation, then the type of graph that it appears on will have a significant effect on its
fixation probability. Overall graphs of the tree type (especially stars) are helpful to mutant
spread, and those with a regular structure with cycles are not. In general regular graphs,
including the complete graph which represents the well-mixed populations generally used in
modelling biological populations, are among the worst structures for mutant spread. Other
graphs that are not very conductive are the small world networks, again because of their
fairly regular structure (e.g. see Figure 5.3).

Another factor that varies between types of graphs is the time that fixation or elimination
of mutants takes. On a well-mixed graph there are more routes to fixation and the contest is
resolved far more quickly than on tree-like structures, especially the star, and the difference
can be an order of magnitude even for very small graphs.

It should be noted that there are other types of evolutionary dynamics on graphs. For
instance Antal, Redner and Sood (2006) investigate and compare three different dynamics
both analytically and by simulation, including the one considered here, and find different
results depending on the dynamics used. In particular they find fixation is more likely if
the mutant starts on higher degree nodes in a model called the biased voter model, where
the population evolves through one individual dying at random, and its vertex then being
occupied by a copy of the individual of one of those connected to it, chosen with probability
proportional to its fitness. Thus it is important to think about the dynamics of any particular
process.

For graphs with a large number of vertices, it is very hard to analyse them mathematically
except in a few special cases, and so simulation is often used. Formula (3.2) may help with
an analytical approximation which would enable us to make some qualitative statements
about graphs in general. The formula (4.1) is good for estimating the fixation probability
for one vertex from the known fixation probability of its neighbour. Multiple usage of (4.1)
accumulates mistakes. However if the graph has a small diameter (such as the small world
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network), the mistake can be bounded since the formula need only be used a few times. We
maintain that the results obtained here will be of use in making qualitative analyses of more
complex graphs in general, potentially including evolving structures.
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