
380 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 4, NOVEMBER 2000

Evolutionary Ensembles with Negative Correlation Learning
Yong Liu, Xin Yao, and Tetsuya Higuchi

Abstract—Based on negative correlation learning and evolu-
tionary learning, this brief paper presents evolutionary ensembles
with negative correlation learning (EENCL) to address the
issues of automatic determination of the number of individual
neural networks (NNs) in an ensemble and the exploitation of the
interaction between individual NN design and combination. The
idea of EENCL is to encourage different individual NNs in the
ensemble to learn different parts or aspects of the training data so
that the ensemble can learn better the entire training data. The
cooperation and specialization among different individual NNs
are considered during the individual NN design. This provides an
opportunity for different NNs to interact with each other and to
specialize. Experiments on two real-world problems demonstrate
that EENCL can produce NN ensembles with good generalization
ability.

Index Terms—Evolutionary ensembles, negative correlation
learning, neural networks.

I. INTRODUCTION

Many real-world problems are too large and too complex for
a single monolithic system to solve alone. There are many ex-
amples from both natural and artificial systems that show that
an integrated system consisting of several subsystems can re-
duce the total complexity of the system while solving a difficult
problem satisfactorily. The success of neural network (NN) en-
sembles in improving a classifier’s generalization is a typical
example [1].

NN ensembles adopt the divide-and-conquer strategy. Instead
of using a single network to solve a task, an NN ensemble com-
bines a set of NNs that learn to subdivide the task and thereby
solve it more efficiently and elegantly. An NN ensemble offers
several advantages over a monolithic NN [2]. First, it can per-
form more complex tasks than any of its components (i.e., in-
dividual NNs in the ensemble). Second, it can make an overall
system easier to understand and modify. Finally, it is more ro-
bust than a monolithic NN, and can show graceful performance
degradation in situations where only a subset of NNs in the en-
semble are performing correctly.

Given the advantages of NN ensembles and the complexity
of the problems that are beginning to be investigated, it is clear
that the NN ensemble method is and will be an important and
pervasive problem-solving technique. However, designing NN
ensembles is a very difficult task. It relies heavily on human
experts and prior knowledge about the problem.

Manuscript received February 23, 2000; revised July 25, 2000.
Y. Liu is with the University of Aizu, Fukushima 965-8580, Japan (e-mail:

yliu@u-aizu.ac.jp).
X. Yao is with the School of Computer Science, The University of Birm-

ingham, Birmingham B15 2TT, U.K.
T. Higuchi is with the Evolvable Systems Laboratory, Computer Science Di-

vision, Electrotechnical Laboratory, Ibaraki 305-8568, Japan.
Publisher Item Identifier S 1089-778X(00)10496-5.

The idea of designing an ensemble learning system consisting
of many subsystems can be traced back to as early as 1958 [3],
[4]. Since the early 1990s, algorithms based on similar ideas
have been developed in many different but related forms, such
as NN ensembles [5], [2], mixtures of experts [6]–[9], and var-
ious boosting and bagging methods [10]–[12]. However, all of
these algorithms rely on some manual design, such as the de-
sign of individual NNs and/or division of training data. The
number of individual NNs in an ensemble system is often pre-
defined and fixed, according to human experience and prior
knowledge of the problem to be solved. Also, it is generally un-
clear what subtasks should be performed by which NNs. In the
case of some speech and image processing tasks, such task de-
composition was done manually. While manual design and a
fixed ensemble architecture may be appropriate when there are
experienced human experts with sufficient prior knowledge of
the problem to be solved, it is certainly not the case for those
real-world problems where we do not have much prior knowl-
edge. Tedious trial-and-error processes are often involved in de-
signing NN ensembles in practice.

This paper presents evolutionary ensembles with negative
correlation learning (EENCL) for designing NN ensembles
automatically based on negative correlation learning [13]–[15]
and evolutionary learning [16], [1], [17]. EENCL differs from
previous work on designing NN ensembles in three major
aspects. First, most previous work did not acknowledge or
exploit the negative correlation among individual NNs in an
ensemble as a driving force in the control of problem-solving
activity. The individual NNs were often trained independently
or sequentially. One of the disadvantages of such an approach
is the loss of interaction among the individual networks during
learning. EENCL emphasizes specialization and cooperation
among individual NNs in the ensemble. In EENCL, an evo-
lutionary algorithm based on evolutionary programming [18]
has been used to search for a population of diverse individual
NNs that together solve a problem (e.g., classify examples).
To maintain a diverse population while applying the selection
operator, the evolutionary algorithm must incorporate some
kind of speciation technique [19]–[21], by which individuals
in a population can form several species automatically through
evolution. Fitness sharing [22], [17] and negative correlation
learning [13]–[15] have been used to encourage the forma-
tion of different species. Fitness sharing refers to a class of
speciation techniques in evolutionary computation [23]. The
idea of negative correlation learning is to encourage different
individual networks in the ensemble to learn different parts or
aspects of the training data, so that the ensemble can better
learn the entire training data. In negative correlation learning,
the individual networks are trained simultaneously, rather than
independently or sequentially. This provides an opportunity
for the individual networks to interact with each other and to

1089–778X/00$10.00 © 2000 IEEE

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 4, NOVEMBER 2000 381

specialize. Negative correlation learning can create negatively
correlated NNs using a correlation penalty term in the error
function to encourage such specialization.

Second, most previous work separated the design of in-
dividual NNs from combination procedures, following a
two-stage design process: first generating the individual NNs,
and then combining them. The possible interactions among
them cannot be exploited until the combination stage. There
is no feedback from the combination stage to the individual
NN design stage. It is possible that some of the independently
designed individual NNs do not make much contribution to
the whole system. In contrast, negative correlation learning
learns and combines individual NNs in the same process. This
provides an opportunity for different NNs to interact with
each other and to specialize. One approach that does resemble
negative correlation learning is the mixtures-of-experts (ME)
architectures [6]–[8], [24], [9]. Negative correlation learning is
different from the ME architecture [9] that consists of a gating
network and a number of expert networks, although the ME ar-
chitecture also can produce biased individual networks, whose
estimates are negatively correlated [9]. Negative correlation
learning does not need a separate gating network. It uses totally
different error functions. The strength parameterin negative
correlation learning provides a convenient way to balance the
bias-variance-covariance trade-off [15]. The ME architecture
does not provide such control over the trade-off.

Third, the number of NNs in the ensemble is often prede-
fined and fixed in most previous work. Usually the number of
NNs is determined manually through a trial-and-error process.
In EENCL, the number of NNs in the ensemble is not predefined
but determined by the number of species, which are formed au-
tomatically through evolution.

The rest of this paper is organized as follows: Section II gives
ideas of using evolutionary learning to design NN ensembles;
Section III describes EENCL in detail; Section IV presents ex-
perimental results on EENCL and some discussions; and finally
Section V concludes with a summary of the paper and a few re-
marks.

II. EVOLUTIONARY LEARNING

Evolutionary learning is a population-based learning method.
It has been used to minimize error functions because of its robust
global search capability, as compared with gradient-based algo-
rithms. It also is used because it could incorporate NNs weight
learning and structure learning in the same learning process.
EPNet is such an evolutionary learning system for designing
feedforward NNs [16].

In essence, evolutionary learning has been used as a kind of
global optimization algorithm. It is common that the best indi-
vidual (i.e., the individual with the smallest error) is selected
as the output of evolution. No consideration is given to other
individuals in the population. Unfortunately, an NN with the
smallest training error may not be the NN with best general-
ization [1].

While there is little we can do in nonpopulation-based
learning, there are opportunities for improving popula-
tion-based evolutionary learning. Since the best individual in

learning might not be the individual with best generalization,
other individuals in the population might be better and contain
useful information. Hence, an ensemble system that combines
the entire population is expected to have better generalization
than any single individual.

Combining individual NNs in a population into an NN en-
semble has a close relationship with the design of NN ensem-
bles. The population of NNs can be regarded as an ensemble.
The evolutionary process can be regarded as a natural and auto-
matic way to design NN ensembles. We have tested this idea to
form the final result by combining all the individuals in the last
generation [1]. However, the interaction between individual NN
design and combination was not considered, and the ensemble
size was fixed.

III. EVOLVING NEURAL NETWORK ENSEMBLES

EENCL is studied to address the following issues: exploita-
tion of the interaction between individual NN design and combi-
nation and automatic determination of the number of individual
NNs. In EENCL, an evolutionary algorithm based on evolu-
tionary programming [18] has been used to search for a pop-
ulation of diverse individual NNs that solve a problem together.
To maintain a diverse population, fitness sharing [22] and nega-
tive correlation learning have been used to encourage the for-
mation of different species. In the current implementation of
EENCL, each NN in the ensemble is a feedforward NN with
logistic transfer functions. The major steps of EENCL are given
as follows.

1) Generate an initial population of NNs, and set .
The number of hidden nodes for each NN,, is specified
by the user. The random initial weights are distributed
uniformly inside a small range.

2) Train each NN in the initial population on the training set
for a certain number of epochs using negative correlation
learning. The number of epochs,, is specified by the
user.

3) Randomly choose a group of NNs as parents to create
offspring NNs by Gaussian mutation.

4) Add the offspring NNs to the population and train the
offspring NNs using negative correlation learning while
the remaining NNs’ weights are frozen.

5) Calculate the fitness of NNs in the population
and prune the population to the fittest NNs.

6) Go to the next step if the maximum number of generations
has been reached. Otherwise, and go to Step 3.

7) Form species using the-means algorithm.
8) Combining species to form the ensembles.
There are two levels of adaptation in EENCL: negative corre-

lation learning at the individual level and evolutionary learning
based on evolutionary programming (EP) [18] at the population
level. Details about each component of EENCL are given in the
following sections.

A. Negative Correlation Learning

Suppose that we have a training set

382 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 4, NOVEMBER 2000

where
,

is a scalar, and
is the size of the training set.

The assumption that the outputis a scalar has been made
merely to simplify exposition of ideas without loss of generality.
This section considers estimatingby forming an ensemble,
whose output is a simple averaging of outputs of a set of neural
networks

(1)

where
is the number of the individual neural networks in the
ensemble,
is the output of network on the th training pattern,
and
is the output of the ensemble on theth training pat-
tern.

Negative correlation learning introduces a correlation penalty
term into the error function of each individual network in the
ensemble so that all the networks can be trained simultaneously
and interactively on the same training data set. The error func-
tion for network in negative correlation learning is defined
by

(2)

where is the value of the error function of networkat
the presentation of theth training pattern. The first term in the
right side of (2) is the empirical risk function of network. The
second term, , is a correlation penalty function. The purpose
of minimizing is to negatively correlate each network’s error
with errors for the rest of the ensemble. The parameter

is used to adjust the strength of the penalty. The penalty
function has the form:

(3)

The partial derivative of , with respect to the output of
network on the th training pattern, is

(4)

where we have made use of the assumption that has con-
stant value with respect to . The standard back-propaga-
tion (BP) algorithm [25] has been used for weight adjustments

in the mode of pattern-by-pattern updating. That is, weight up-
dating of all the individual networks is performed simultane-
ously using (4) after the presentation of each training pattern.
One complete presentation of the entire training set during the
learning process is called anepoch. The negative correlation
learning from (4) is a simple extension to the standard BP algo-
rithm. In fact, the only modification that is needed is to calculate
an extra term of the form for the th network.

From (2)–(4), we may make the following observations.

1) During the training process, all the individual networks
interact with each other through their penalty terms in the
error functions. Each network minimizes not only the
difference between and , but also the differ-
ence between and . That is, negative correla-
tion learning considers errors that all other networks have
learned while training a network.

2) For , there are no correlation penalty terms in
the error functions of the individual networks, and the
individual networks are just trained independently. That
is, independent training for the individual networks is a
special case of negative correlation learning.

3) For , from (4) we get

(5)

Note that the empirical risk function of the ensemble for
the th training pattern is defined by

(6)

The partial derivative of with respect to on
the th training pattern is

(7)

In this case, we get

(8)

The minimization of the empirical risk function of the en-
semble is achieved by minimizing the error functions of the in-
dividual networks. From this point of view, negative correlation
learning provides a novel way to decompose the learning task of
the ensemble into a number of subtasks for different individual
networks.

B. Fitness Evaluation

The fitness evaluation in EENCL is carried out by fitness
sharing. Explicit and implicit fitness sharing have been pro-
posed to encourage speciation in recent years [26], [27]. Fit-
ness sharing accomplishes speciation by degrading the raw fit-
ness (i.e., the unshared fitness) of an individual, according to
the presence of similar individuals. Thus, this type of speciation
requires a distance metric on the phenotype or genotype space

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 4, NOVEMBER 2000 383

of the individuals. Traditionally, such a measurement is based
on the Hamming distance between two binary strings. How-
ever, this sharing scheme is not suitable for EENCL because
the individual networks are not represented by binary strings in
EENCL.

Fitness sharing used in EENCL is based on the idea of “cov-
ering” the same training patterns by shared individuals. The pro-
cedure of calculating shared fitness is carried out pattern-by-pat-
tern over the training set. If one training pattern is learned cor-
rectly by individuals in the population, each of theseindi-
viduals receives fitness , and the rest of the individuals in the
population receive zero fitness. Otherwise, all the individuals in
the population receive zero fitness. The fitness is summed over
all training patterns. Such fitness evaluation encourages each
individual in the population to cover different patterns in the
training set.

C. Selection Mechanism and Replacement Strategy

There are many different selection mechanisms, such as
roulette wheel selection[23] and rank-based selection[16],
that have been used to select individuals to reproduce in evolu-
tionary algorithms. Such selection mechanisms encourage the
algorithm to find quickly the best individual. In EENCL, each
individual is selected to be mutated with equal probability. This
reflects the emphasis of EENCL on evolving a diverse set of
individuals.

After mutation, all the individuals in the population
are evaluated and sorted. Thefittest individuals are selected
to replace the current population.

D. Mutation

Mutation in EENCL is carried out in two steps: weight mu-
tation and further weight training. In the first step, the selected

parent networks create offspring by the following weight
mutation:

(9)

where and denote the weights of offspringand parent,
respectively, , is the index number of weights.

denotes a Gaussian random variable with mean zero
and standard deviation one.

In the second step, the offspring NNs are first added to the
population, and indexed by to . Then the off-
spring NNs are trained further by negative correlation learning,
while the weights of the remaining NNs in the population are
frozen. The error function for each offspring NN is defined by

(10)

where , is the number of training
patterns, is the output of individual network on the th

training pattern, is the desired output of theth training
pattern and

Error function (10) uses the feedback from the current popula-
tion to guide the learning of each offspring.

E. Forming the Ensembles

A population of NNs is generated after the evolutionary
process. A direct method is to use all the individual NNs in the
population to form an ensemble. It is interesting to investigate
whether or not all the individual NNs in the last generation are
useful in forming the ensemble. Can the size of the ensemble
be reduced without worsening the performance too much? Two
methods for constructing the NN ensembles were tested in
EENCL. One used all the individual NNs in the last generation
and the other selected one representative from each species in
the last generation. The species in the population are deter-
mined by clustering the individuals in the population using
the k-means algorithm[28]. The resulting clusters correspond
to different species. The representative for each species is the
fittest individual in the species.

There are output nodes in each NN, whereis the number
of classes in a classification problem. For each NN, its output
on training patterns forms an -dimensional vector.
Given output vectors , of individual
NNs, the -means algorithm classifies them in, determined by
the user in advance, different clusters. The algorithm proceeds
as follows.

1) Choose a set of cluster centers arbi-
trarily.

2) For all , assign to cluster
using the minimum Euclidean distance rule

belongs to cluster if

3) Compute new cluster centers so as to minimize the cost
function

4) If any cluster center changes, return to Step 2); otherwise,
stop.

F. Combination Methods

Three combination methods for determining the output of the
ensemble have been investigated in EENCL. The first is simple
averaging. The output of the ensemble is formed by a simple
averaging of output of individual NNs in the ensemble. The
second is majority voting. The output of the greatest number
of individual NNs will be the output of the ensemble. If there
is a tie, the output of the ensemble is rejected. The third is
winner-takes-all. For each pattern of the testing set, the output
of the ensemble is only decided by the individual NN whose
output has the highest activation.

384 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 4, NOVEMBER 2000

IV. EXPERIMENTAL STUDIES

We have applied EENCL to two benchmark problems:
the Australian credit card assessment problem and the dia-
betes problem. Both data sets were obtained from the UCI
machine learning benchmark repository. They are available
by anonymous ftp at ics.uci.edu (128.195.1.1) in directory
/pub/machine-learning-databases.

The Australian credit card assessment problem is to assess
applications for credit cards based on a number of attributes.
There are 690 patterns in total. The output has two classes. The
14 attributes include six numeric values and eight discrete ones,
the latter having from two to 14 possible values.

The diabetes data set is a two-class problem that has 500 ex-
amples of class 1 and 268 of class 2. There are eight attributes
for each example. The data set is rather difficult to classify. The
so-called “class” value is really a binarised form of another at-
tribute that is itself highly indicative of certain types of diabetes
but does not have a one-to-one correspondence with the medical
condition of being diabetic.

In order to compare EENCL with previous work, the experi-
mental setup is the same as the previous experimental setup de-
scribed in [29]. Then-fold cross-validation technique [30] was
used to divide the data randomly intomutually exclusive data
groups of equal size. In each train-and-test process, one data
group is selected as the testing set, and the other groups
become the training set. The estimated error rate is the average
error rate from these groups. In this way, the error rate is esti-
mated efficiently and in an unbiased way. The parameterwas
set to be 10 for the Australian credit card data set, and 12 for the
diabetes data set, respectively.

The parameters used in EENCL were set to be the same for
both problems: the population size (25), the number of gen-
erations (200), the reproduction block size(2), the strength
parameter (0.75), the number of training epochs (5), the
minimum number of cluster sets (3), and the maximum number
of cluster sets (25). The used NNs in the population are multi-
layer perceptrons with one hidden layer and five hidden nodes.
These parameters were selected after some preliminary experi-
ments. They were not meant to be optimal.

A. Experimental Results

1) A Population as an Ensemble:Tables I and II show the re-
sults of EENCL for the two data sets, where the ensembles were
constructed by the whole population in the last generation. The
accuracy raterefers to the percentage of correct classifications
produced by EENCL. In comparison with the accuracy rates
obtained by three combination methods, winner-takes-all out-
performed simple averaging and majority voting on both prob-
lems. In simple averaging and majority voting, all individuals
are treated equally. However, not all individuals are equally im-
portant. Because different individuals created by EENCL were
able to specialize to different parts of the testing set, only the
outputs of these specialists should be considered to make the
final decision of the ensemble for this part of the testing set.
The winner-takes-all combination method performed better be-
cause there are good and poor individuals for each pattern in the
testing set and winner-takes-all selects the best individual.

TABLE I
ACCURACY RATES OFEENCL FOR THEAUSTRALIAN CREDIT CARD DATA SET.
THE RESULTS AREAVERAGED ON 10-FOLD CROSS-VALIDATION . MEAN, SD,

MIN, AND MAX INDICATE THE MEAN VALUE, STANDARD DEVIATION,
MINIMUM , AND MAXIMUM VALUE, RESPECTIVELY

2) A Subset of the Population as an Ensemble:For the pre-
vious implementation of EENCL, all the individuals in the last
generation were used in the ensembles. It is interesting to in-
vestigate whether we can reduce the size of the ensembles by
selecting representative individuals from the whole population.
Such investigation can provide some hints on whether all the
individuals in the last generation will contain some useful in-
formation.

We used thek-means algorithm [28] to divide the individ-
uals in the population into different clusters. Each cluster cor-
responds to a species. These species then are used are to con-
struct an NN ensemble, in which one representative from each
species was selected for combination. The representative for
each species is the fittest individual in the species.

The number of species, i.e., the number of clusters, starts from
3 to 25 (i.e., the population size). The optimal number of species
was determined by measuring the performance of these con-
structed ensembles on the training set. The accuracy rate was
chosen as the measure of performance. The results of the en-
semble formed by the representatives from species are given
in Table III. The combination method used is winner-takes-all.
The t-test statistics comparing the accuracies of the ensembles
using the representatives from species to the ensembles using
the whole population are 0.80 for the Australian credit card data
set, and 0.36 for the diabetes data set. No statistically signif-
icance difference was observed between them for either data
set, which implies that the ensemble does not have to use the
whole population to achieve good performance. The size of the

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 4, NOVEMBER 2000 385

TABLE II
ACCURACY RATES OFEENCL FOR THEDIABETES DATA SET. THE RESULTS

ARE AVERAGED ON 12-FOLD CROSS-VALIDATION . MEAN, SD, MIN, AND MAX

INDICATE THE MEAN VALUE, STANDARD DEVIATION, MINIMUM , AND

MAXIMUM VALUE, RESPECTIVELY

ensemble can be substantially smaller than the population size.
The reduction in the size of the ensembles can be seen from
Table IV, that gives the sizes of the ensembles using the repre-
sentatives from species.

3) Comparisons with Other Work:Direct comparison with
other evolutionary approaches to designing ensembles is very
difficult due to the lack of such results. Instead, the best and
latest results available in the literature, regardless of whether
the algorithm used was an evolutionary, a BP, or a statistical
one, were used in the comparison.

Tables V and VI compare the results of EENCL, including
the results of the ensembles using the whole population and
the ensembles using the representatives from species, with
those produced by other 23 algorithms tested by Michieet al.
[29]. These 23 algorithms can be categorized into four groups:
statistical algorithms (Discrim, Quadisc, Logdisc, SMART,
ALLOC80, -NN, CASTLE, NaiveBay, Default); decision
trees (CART, IndCART, NewID, , Baytree, Cal5, C4.5);
rule-based methods (CN2, ITrule); neural networks (Backprop,
Kohonen, LVQ, RBF, DIPOL92). More details about these
algorithms appear in [29]. EENCL used the same data setup as
in [29], i.e., 10-fold cross-validation for the Australian credit
card data set and 12-fold cross-validation for the diabetes
data set. Theerror rate refers to the percentage of wrong
classifications on the testing set. For the ensembles using
the whole population and the winner-takes-all combination
method, the average testing accuracy rates of EENCL are
respectively 0.865 and 0.779 for the Australian credit card data

TABLE III
ACCURACY RATES OF THEENSEMBLE FORMED BY THE REPRESENTATIVES

FROM SPECIES. THE RESULTS ARE AVERAGED ON 10-FOLD

CROSS-VALIDATION FOR THE AUSTRALIAN CREDIT CARD DATA SET, AND

12-FOLD CROSS-VALIDATION FOR THE DIABETES DATA SET. MEAN, SD,
MIN, AND MAX INDICATE THE MEAN VALUE, STANDARD DEVIATION,

MINIMUM , AND MAXIMUM VALUE, RESPECTIVELY

TABLE IV
SIZES USING THE REPRESENTATIVESFROM SPECIES. THE RESULTS ARE

AVERAGED ON 10-FOLD CROSS-VALIDATION FOR THE AUSTRALIAN CREDIT

CARD DATA SET, AND 12-FOLD CROSS-VALIDATION FOR THE DIABETES DATA

SET. MEAN, SD, MIN, AND MAX INDICATE THE MEAN VALUE, STANDARD

DEVIATION, MINIMUM , AND MAXIMUM VALUE, RESPECTIVELY

set and the diabetes data set. Accordingly, their average testing
error rates are respectively 0.135 and 0.221. For the ensembles
using the representatives from species, similarly we can get
the average testing error rates of EENCL from Table III for
the two data sets. They are respectively 0.132 and 0.223 for
the Australian credit card data set and the diabetes data set. As
demonstrated by the results, EENCL have been able to achieve
the generalization performance comparable to or better than the
best of 23 algorithms tested [29] for both the Australian credit
card data set and the diabetes data set.

V. CONCLUSION

This paper introduces EENCL for learning and designing of
NN ensembles. The negative correlation learning and fitness
sharing were adopted to encourage the formation of species in
the population. In a sense, EENCL provides an automatic way
of designing NN ensembles, where each NN is an individual or a
representative from each species in the population. EENCL was
tested on the Australian credit card assessment problem and the
diabetes problem. Very competitive results have been produced
by EENCL in comparison with other algorithms [29].

386 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 4, NOVEMBER 2000

TABLE V
COMPARISONAMONG EENCL AND OTHERS[29] IN TERMS OF THEAVERAGE

TESTING ERRORRATE FOR THEAUSTRALIAN CREDIT CARD DATA SET.
THE RESULTS AREAVERAGED ON 10-FOLD CROSS-VALIDATION . “FD”

INDICATES KOHONEN ALGORITHM FAILED ON THAT DATA SET. TWO ERROR

RATES ARE LISTED FOREENCL, WHICH ARE THE RESULTS FOR THE

ENSEMBLES USING THE WHOLE POPULATION AND THE ENSEMBLES

USING THE REPRESENTATIVESFROM SPECIES

TABLE VI
COMPARISON AMONG EENCL AND OTHERS [29] IN TERMS OF THE

AVERAGE TESTING ERROR RATE FOR THE DIABETES DATA SET. THE

RESULTS AREAVERAGED ON 12-FOLD CROSS-VALIDATION . TWO ERROR

RATES ARE LISTED FOREENCL, WHICH ARE THE RESULTS FOR THE

ENSEMBLES USING THE WHOLE POPULATION AND THE ENSEMBLES

USING THE REPRESENTATIVES FROMSPECIES

Rosen [31] proposed an ensemble learning algorithm using
decorrelated NNs. The idea is that individual networks attempt
not only to minimize the error between the target and their
output, but also to decorrelate their errors from networks
trained previously. However, Rosen’s algorithm still trains the
individual networks sequentially. One major disadvantage of
this algorithm is that training a network in an ensemble cannot

affect the networks trained previously in the ensemble, so
that the errors of the individual networks are not necessarily
negatively correlated. Negative correlation learning extends
Rosen’s work to simultaneous training of negatively correlated
NNs. Such extension has produced significant improvement in
NN ensembles’ performance. Negatively correlated NNs can
be obtained in negative correlation learning.

The architecture of each NN in the ensemble is predefined in
the current implementation of EENCL. One of the future im-
provements to EENCL would be to evolve the architectures of
NNs by EPNet [16]. Another future improvement would be to
form the ensemble output from a linear combination of indi-
vidual NN outputs, where the linear combination weights would
co-evolve with NN ensembles in order to exploit the interaction
between NNs and their combined output.

ACKNOWLEDGMENT

The authors are grateful to anonymous referees and D. Fogel,
for their constructive comments and criticism that have helped
to improve the paper.

REFERENCES

[1] X. Yao and Y. Liu, “Making use of population information in evolu-
tionary artificial neural networks,”IEEE Trans. Syst., Man, Cybern., B.,
vol. 28, no. 3, pp. 417–425, 1998.

[2] A. J. C. Sharkey, “On combining artificial neural nets,”Connect. Sci.,
vol. 8, no. 3/4, pp. 299–313, 1996.

[3] O. G. Selfridge, “Pandemonium: A paradigm for learning,” inMecha-
nization of Thought Processes: Proc. of a Symp. Held at the National
Physical Lab. London, U.K.: HMSO, 1958, pp. 513–526.

[4] N. J. Nilsson,Learning Machines: Foundations of Trainable Pattern-
Classifying Systems. New York: McGraw Hill, 1965.

[5] L. K. Hansen and P. Salamon, “Neural network ensembles,”IEEE Trans.
Pattern Anal. Machine Intell., vol. 12, no. 10, pp. 993–1001, 1990.

[6] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive
mixtures of local experts,”Neural Comput., vol. 3, no. 6, pp. 79–87,
1991.

[7] R. A. Jacobs and M. I. Jordan, “A competitive modular connectionist
architecture,” inAdvances in Neural Information Processing Systems 3,
R. P. Lippmann, J. E. Moody, and D. S. Touretzky, Eds. San Mateo,
CA: Morgan Kaufmann, 1991, pp. 767–773.

[8] R. A. Jacobs, M. I. Jordan, and A. G. Barto, “Task decomposition
through competition in a modular connectionist architecture: The what
and where vision task,”Cogn. Sci., vol. 15, no. 2, pp. 219–250, 1991.

[9] R. A. Jacobs, “Bias/variance analyzes of mixture-of-experts architec-
tures,”Neural Comput., vol. 9, no. 2, pp. 369–383, 1997.

[10] H. Drucker, C. Cortes, L. D. Jackel, Y. LeCun, and V. Vapnik,
“Boosting and other ensemble methods,”Neural Comput., vol. 6, no. 6,
pp. 1289–1301, 1994.

[11] R. E. Schapire, “The strength of weak learnability,”Mach. Learn., vol.
5, no. 2, pp. 197–227, 1990.

[12] H. Drucker, R. Schapire, and P. Simard, “Improving performance in
neural networks using a boosting algorithm,” inAdvances in Neural In-
formation Processing Systems 5, S. J. Hanson, J. D. Cowan, and C. L.
Giles, Eds. San Mateo, CA: Morgan Kaufmann, 1993, pp. 42–49.

[13] Y. Liu and X. Yao, “Negatively correlated neural networks can pro-
duce best ensembles,”Aust. J. Intell. Inf. Proc. Syst., vol. 4, no. 3/4, pp.
176–185, 1998.

[14] , “A cooperative ensemble learning system,” inProc. of the 1998
IEEE Int. Joint Conf. Neural Networks (IJCNN’98). Piscataway, NJ:
IEEE Press, 1998, pp. 2202–2207.

[15] , “Simultaneous training of negatively correlated neural networks
in an ensemble,”IEEE Trans. Syst., Man, Cybern., B, vol. 29, no. 6, pp.
716–725, 1999.

[16] X. Yao and Y. Liu, “A new evolutionary system for evolving artifi-
cial neural networks,”IEEE Trans. Neural Networks, vol. 8, no. 3, pp.
694–713, 1997.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 4, NOVEMBER 2000 387

[17] Y. Liu and X. Yao, “Toward designing neural network ensembles by
evolution,” in Parallel Problem Solving from Nature—PPSN V: Proc.
5th Int. Conf. Parallel Problem Solving from Nature. Berlin, Germany:
Springer-Verlag, 1998, vol. 1498, Lecture Notes in Computer Science,
pp. 623–632.

[18] D. B. Fogel,Evolutionary Computation: Toward a New Philosophy of
Machine Intelligence. New York: IEEE Press, 1995.

[19] J. Horn, D. E. Goldberg, and K. Deb, “Implicit niching in a learning
classifier system: Nature’s way,”Evol. Comput., vol. 2, no. 1, pp. 37–66,
1994.

[20] P. Darwen and X. Yao, “Automatic modularization by speciation,” in
Proc. 1996 IEEE Int. Conf. Evolutionary Computation (ICEC’96),
Nagoya, Japan. New York, 10017–2394: IEEE Press, 1996, pp.
88–93.

[21] , “Every niching method has its niche: Fitness sharing and implicit
sharing compared,” inParallel Problem Solving from Nature (PPSN)
IV, H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel,
Eds. Berlin, Germany: Springer-Verlag, 1996, vol. 1141, Lecture
Notes in Computer Science, pp. 398–407.

[22] X. Yao, Y. Liu, and P. Darwen, “How to make best use of evolutionary
learning,” inComplex Systems: From Local Interactions to Global Phe-
nomena, R. Stocker, H. Jelinek, and B. Durnota, Eds. Amsterdam,
Netherlands: IOS Press, 1996, pp. 229–242.

[23] D. E. Goldberg,Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Reading, MA: Addison-Wesley, 1989.

[24] M. I. Jordan and R. A. Jacobs, “Hierarchical mixtures-of-experts and the
EM algorithm,”Neur. Comput., vol. 6, no. 2, pp. 181–214, 1994.

[25] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning in-
ternal representations by error propagation,” inParallel Distributed
Processing: Explorations in the Microstructures of Cognition, D. E.
Rumelhart and J. L. McClelland, Eds. Cambridge, MA: MIT Press,
1986, vol. I, pp. 318–362.

[26] S. W. Mahfoud, “Niching methods for genetic algorithms,” Ph.D.
thesis, Dept. General Engineering, Univ. Illinois, Urbana-Cham-
paign, IL, 1995.

[27] P. J. Darwen and X. Yao, “Speciation as automatic
categorical modularization,”IEEE Trans. Evol. Comput., vol. 1, no.
2, pp. 101–108, 1997.

[28] J. MacQueen, “Some methods for classification and analysis of multi-
variate observation,” inProc. 5th Berkely Symp. Mathematical Statistics
and Probability. Berkely, CA: University of California Press, 1967,
vol. 1, pp. 281–297.

[29] D. Michie, D. J. Spiegelhalter, and C. C. Taylor,Machine Learning,
Neural and Statistical Classification. London, U.K.: Ellis Horwood
Limited, 1994.

[30] M. Stone, “Cross-validatory choice and assessment of statistical predic-
tions,” J. Royal Stat. Soc., vol. 36, pp. 111–147, 1974.

[31] B. E. Rosen, “Ensemble learning using decorrelated neural networks,”
Connect. Sci., vol. 8, no. 3/4, pp. 373–383, 1996.

