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Nowadays, many disciplines have to deal with big datasets that additionally involve a high number of features. Feature selection
methods aim at eliminating noisy, redundant, or irrelevant features that may deteriorate the classi	cation performance. However,
traditionalmethods lack enough scalability to copewith datasets ofmillions of instances and extract successful results in a delimited
time. �is paper presents a feature selection algorithm based on evolutionary computation that uses the MapReduce paradigm to
obtain subsets of features frombig datasets.�e algorithmdecomposes the original dataset in blocks of instances to learn from them
in the map phase; then, the reduce phase merges the obtained partial results into a 	nal vector of feature weights, which allows a

exible application of the feature selection procedure using a threshold to determine the selected subset of features. �e feature
selection method is evaluated by using three well-known classi	ers (SVM, Logistic Regression, and Naive Bayes) implemented
within the Spark framework to address big data problems. In the experiments, datasets up to 67 millions of instances and up to
2000 attributes have been managed, showing that this is a suitable framework to perform evolutionary feature selection, improving
both the classi	cation accuracy and its runtime when dealing with big data problems.

1. Introduction

Learning from very large databases is a major issue for most
of the current data mining and machine learning algorithms
[1]. �is problem is commonly named with the term “big
data,” which refers to the di�culties and disadvantages of
processing and analyzing huge amounts of data [2–4]. It has
attracted much attention in a great number of areas such as
bioinformatics, medicine, marketing, or 	nancial businesses
[5], because of the enormous collections of raw data that are
stored. Recent advances on Cloud Computing technologies
allow for adapting standard data mining techniques in order
to apply them successfully over massive amounts of data
[4, 6, 7].

�e adaptation of data mining tools for big data problems
may require the redesigning of the algorithms and their
inclusion in parallel environments. Among the dierent

alternatives, the MapReduce paradigm [8, 9] and its dis-
tributed 	le system [10], originally introduced by Google,
oer an eective and robust framework to address the
analysis of big datasets. �is approach is currently taken into
consideration in data mining, rather than other paralleliza-
tion schemes such as MPI (Message Passing Interface) [11],
because of its fault-tolerant mechanism and its simplicity.
Many recent works have been focused on the parallelization
of machine learning tools using the MapReduce approach
[12, 13].

Recently, new andmore 
exible work
ows have appeared
to extend the standardMapReduce approach, such as Apache
Spark [14], which has been successfully applied over various
data mining and machine learning problems [15–17].

Data preprocessing methods, and more concretely data
reduction models, are intended to clean and simplify input
data [18]. �us, they attempt to accelerate data mining
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algorithms and also to improve their accuracy by eliminating
noisy and redundant data.�e specialized literature describes
two main types of data reduction models. On the one
hand, instance selection [19, 20] and instance generation [21]
processes are focused on the instance level. On the other
hand, feature selection [22–25] and feature extraction [26]
models work at the level of characteristics.

Among the existing techniques, evolutionary approaches
have been successfully used for feature selection techniques
[27]. Nevertheless, an excessive increment of the individual
size can limit their applicability, being unable to provide a
preprocessed dataset in a reasonable time when dealing with
very large problems. In the current literature, there are no
approaches to tackle the feature space with evolutionary big
data models.

�emain objective of this paper is to enable Evolutionary
Feature Selection (EFS) models to be applied on big data. To
do this, a MapReduce algorithm has been developed, which
splits the data and performs a bunch of EFS processes in
parallel in the map phase and then combines the solutions
in the reduce phase to get the most interesting features.
�is algorithmwill be denoted “MapReduce for Evolutionary
Feature Selection” (MR-EFS).

More speci	cally, the purposes of this paper are

(i) to design an EFS technique over the MapReduce
paradigm for big data,

(ii) to analyze and illustrate the scalability of the proposed
scheme in terms of classi	cation accuracy and time
necessary to build the classi	ers.

To analyze the proposed approach, experiments on
two big data classi	cation datasets with up to 67 millions
instances and up to 2000 features will be carried out, focusing
on the CHC algorithm [28] as EFS method. With the
characteristics selected by this model, its in
uence on the
classi	cation performance of the Spark implementation of
three dierent algorithms (Support Vector Machine, Logistic
Regression, and Naive Bayes), available in MLlib [29], will be
analyzed.

�e rest of the paper is organized as follows. Section 2
provides some background information about EFS and
MapReduce. Section 3 describes the MapReduce algorithm
proposed for EFS. �e empirical results are discussed and
analyzed in Section 4. Finally, Section 5 summarizes the
conclusions of the paper.

2. Background

�is section describes the topics used in this paper. Section 2.1
presents some preliminaries about EFS and its main draw-
backs to deal with big data classi	cation problems. Section 2.2
introduces the MapReduce paradigm, as well as two of the
main frameworks for big data: Hadoop and Spark.

2.1. Feature Selection: Problems with Big Datasets. Feature
selection models attempt to reduce a dataset by removing
irrelevant or redundant features.�e feature selection process
seeks to obtain a minimum set of attributes, such that the

results of the data mining techniques that are applied over
the reduced dataset are as close as possible (or even better) to
the results obtained using all attributes [25]. �is reduction
facilitates the understanding of the patterns extracted and
increases the speed of posterior learning stages.

Feature selection methods can be classi	ed into three
categories:

(i) Wrapper methods: �e selection criterion is part of
the 	tness function and therefore depends on the
learning algorithm [30].

(ii) Filtering methods: �e selection is based on data-
related measures, such as separability or crowding
[22].

(iii) Embedded methods: �e optimal subset of features is
built within the classi	er construction [24].

For more information about speci	c feature selection
methods, the reader can refer to the published surveys on the
topic [22–24].

A recent, interesting proposal for applying feature selec-
tion to big datasets is presented in [31]. In that paper, the
authors describe an algorithm that is able to e�ciently cope
with ultrahigh-dimensional datasets and select a small subset
of interesting features from them. However, the number of
selected features is assumed to be several orders ofmagnitude
lower than the total of features, and the algorithm is designed
to be executed in a single machine. �erefore, this approach
is not scalable to arbitrarily large datasets.

A particular way of tackling feature selection is by using
evolutionary algorithms [27]. Usually, the set of features is
encoded as a binary vector, where each position determines
if a feature is selected or not. �is allows to perform feature
selection with the exploration capabilities of evolutionary
algorithms. However, they lack the scalability necessary to
address big datasets (from millions of instances onwards).
�e main problems found when dealing with big data are as
follows:

(i) Runtime: �e complexity of EFS models is at least
O(�2�), where � is the number of instances and �
the number of features.When either of these variables
becomes too large, the application of EFS may be too
time-consuming for real situations.

(ii) Memory consumption: Most EFS methods need to
store the entire training dataset in memory, along
with additional computation data and results. When
these data are too big, their size could easily exceed
the available RAMmemory.

In order to overcome these weaknesses, distributed parti-
tioning procedures are used, within a MapReduce paradigm,
that divide the dataset into disjoint subsets that are manage-
able by EFS methods.

2.2. Big Data: MapReduce, Hadoop, and Spark. �is sec-
tion describes the main solutions for big data process-
ing. Section 2.2.1 focuses on the MapReduce programming
model, whilst Section 2.2.2 introduces two of the main
frameworks to deal with big data.
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Figure 1: Flowchart of the MapReduce framework.

2.2.1. MapReduce. MapReduce [8, 9] is one of the most
popular programming models to deal with big data. It was
proposed by Google in 2004 and designed for processing
huge amounts of data using a cluster of machines. �e
MapReduce paradigm is composed of two phases: map and
reduce. In general terms, in the map phase, the input dataset
is processed producing some intermediate results. �en, the
reduce phase combines them in some way to form the 	nal
output.

�e MapReduce model is based on a basic data structure
known as the ⟨key, value⟩ pair. In the map phase, each
application of the map function receives a single ⟨key, value⟩
pair as input and generates a list of intermediate ⟨key, value⟩
pairs as output. �is is represented by the following form:

map (key1, value1) �→ {(key2, value2) , . . .} . (1)

�en, the MapReduce library groups all intermediate
⟨key, value⟩ pairs by key. Finally, the reduce function takes
the aggregated pairs and generates a new ⟨key, value⟩ pair as
output. �is is depicted by the following form:

reduce (key2, {value2, . . .}) �→ (key2, value3) . (2)

A 
owchart of the MapReduce framework is presented in
Figure 1.

2.2.2. Hadoop and Spark. Dierent implementations of the
MapReduce programming model have appeared in the last
years.�emost popular one is ApacheHadoop [32], an open-
source framework written in Java that allows the processing
andmanagement of large datasets in a distributed computing
environment. In addition, Hadoop works on top of the
Hadoop Distributed File System (HDFS), which replicates
the data 	les in many storage nodes, facilitating rapid data
transfer rates among nodes and allowing the system to
continue operating without interruption when one or several
nodes fail.

In this paper, Apache Hadoop is used to implement the
proposal, MR-EFS, as described in Section 3.2.

Another Apache project that is tightly related to Hadoop
is Spark [14]. It is a cluster computing framework originally
developed in the UC Berkeley AMP Lab for large-scale

data processing that improves the e�ciency by the use of
intensive memory. Spark uses HDFS and has high-level
libraries for stream processing and for machine learning and
graph processing, such as MLlib [29].

For this work, several classi	ers included in MLlib are
used to test the MR-EFS algorithm: SVM, Naive Bayes,
and Logistic Regression. �eir parameters are speci	ed in
Section 4.1.

3. MR-EFS: MapReduce for Evolutionary
Feature Selection

�is section describes the proposed MapReduce approach
for EFS, as well as its integration in a generic classi	cation
process. In particular, the MR-EFS algorithm is based on the
CHC algorithm to perform feature selection, as described in
Section 3.1.

First, MR-EFS is applied over the original dataset to
obtain a vector of weights that indicates the relevance of
each attribute (Section 3.2). �en, this vector is used within
anotherMapReduce process to produce the resulting reduced
dataset (Section 3.3). Finally, the reduced dataset is used by a
classi	cation algorithm.

3.1. CHCAlgorithm for Feature Selection. �eCHCalgorithm
[28] is a binary-coded genetic algorithm that combines a very
high selective pressure with an elitist selection strategy, along
with several components that introduce diversity. �e main
parts of CHC are the following:

(i) Half Uniform Crossover (HUX): �is crossover oper-
ator aims at enforcing a high diversity and reducing
the risk of premature convergence. It selects at ran-
dom half of the bits that are dierent between both
parents. �en, it obtains two ospring that are at the
maximum Hamming distance from their parents.

(ii) Elitist selection: In each generation, the new popula-
tion is composed of the best individuals (those with
the best values of the 	tness function) among both
the current and the ospring populations. In case of
draw between a parent and an ospring, the parent is
selected.

(iii) Incest prevention: Two individuals are not allowed
to mate if the Hamming similarity between them
exceeds a threshold � (usually initialized to � = /2,
where  is the chromosome length). �e threshold is
decremented by one when no ospring is obtained in
one generation, which indicates that the algorithm is
converging.

(iv) Restarting process: When � = 0 (which happens
a�er several generations without any new ospring),
the population is considered to be stagnated. In
such a case, a new population is generated: the best
individual is kept, and the remaining individuals have
a certain percentage of their bits 
ipped.

�e basic execution scheme of CHC is shown in
Figure 2.�is algorithmnaturally adapts to a feature selection
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Figure 2: Flowchart of the CHC algorithm.

problem, as each feature can be represented as a bit in
the solution vector.�us, each position of the vector indicates
if the corresponding feature is selected or not. �erefore,
this approach falls within the wrapper method category,
according to the classi	cation established in Section 2.1. �e
	tness function used to evaluate new individuals applies a �-
Nearest Neighbors classi	er (�-NN) [33] over the dataset that
would be obtained a�er removing the corresponding features.
�e 	tness value is the weighted sum of the �-NN accuracy
and the feature reduction rate.

3.2. MR-EFS Algorithm. �is section describes the paral-
lelization of the CHC algorithm, by using a MapReduce
procedure to obtain a vector of weights.

Let � be a training set, stored in HFDS and random-
ized as described in [34]. Let � be the number of map
tasks. �e splitting procedure of MapReduce divides � in
� disjoint subsets of instances. �en, each �� subset (� ∈
{1, 2, . . . , �}) is processed by the corresponding Map� task.
As this partitioning is performed sequentially, all subsets will
have approximately the same number of instances, and the
randomization of the � 	le ensures an adequate balance of
the classes.

�emap phase over each �� consists of the EFS algorithm
(in this case, based on CHC) as described in Section 3.1.
�erefore, the output of each map task is a binary vector
fi = {��1, . . . , ���}, where � is the number of features, that
indicates which features were selected by the CHC algorithm.
�e reduce phase averages all the binary vectors, obtaining
a vector x as de	ned in (3), where �� is the proportion of
EFS applications that include the feature � in their result.
�is vector is the result of the overall EFS process and is
used to build the reduced dataset that will be used for further
machine learning purposes:

x = {�1, . . . , ��} ,

�� = 1

�
�
∑
�=1

���, � ∈ {1, 2, . . . , �} . (3)

∑
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Figure 3: Flowchart of MR-EFS algorithm.

In the implementation used for the experiments, the
reduce phase is carried out by a single task, which reduces
the runtime by decreasing theMapReduce overhead [35].�e
whole MapReduce process for EFS is depicted in Figure 3. It
is noteworthy that the whole procedure is performed within
a single iteration of the MapReduce work
ow, avoiding
additional disk accesses.

3.3. Dataset Reduction with MapReduce. Once vector x is
calculated, the objective is to remove the less promising
features from the original dataset. To do so in a scalable
manner, an additional MapReduce process was designed.
First, vector x is binarized using a threshold �:

b = {�1, . . . , ��} ,

�� = {
{
{
1, if �� ≥ �,
0, otherwise.

(4)

Vector b indicates which features will be selected for
the reduced dataset. �e number of selected features (�� =
∑��=1 ��) can be controlled with �: with a high threshold, only

a few features will be selected, while a lower threshold allows
more features to be picked.
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Figure 4: Flowchart of the dataset reduction process.

�e MapReduce process for the dataset reduction works
as follows. Each map processes an instance and generates
a new one that only contains the features selected in b.
Finally, the instances generated are concatenated to form the
	nal reduced dataset, without the need of a reduce step. �e
dataset reduction process, using the result of MR-EFS and an
arbitrary threshold, is depicted in Figure 4.

4. Experimental Framework and Analysis

�is section describes the performed experiments and their
results. First, Section 4.1 describes the datasets and the
methods used for the experiments. Section 4.2 details the
underlying hardware and so�ware support. Finally, Sections
4.3 and 4.4 present the results obtained using two dierent
datasets.

4.1. Datasets and Methods. �is experimental study uses two
large binary classi	cation datasets in order to analyze the
quality of the solutions provided by the MR-EFS algorithm.

First, the epsilon dataset was used, which is composed of
500 000 instances with 2000 numerical features. �is dataset
was arti	cially created for the Pascal Large Scale Learning
Challenge [36] in 2008.�eversion provided by LIBSVM[37]
was used.

Additionally, this study includes the dataset used at the
data mining competition of the Evolutionary Computation
for Big Data and Big Learning held on July 14, 2014, in
Vancouver (Canada), under the international conference
GECCO-2014 (from now on, it is referred to as ECBDL14)

[38]. �is dataset has 631 features (including both numerical
and categorical attributes), and it is composed of approxi-
mately 32 million instances. Moreover, the class distribution
is not balanced: 98% of the instances belong to the negative
class.

In order to deal with the imbalance problem, the MapRe-
duce approach of the Random Oversampling (ROS) algo-
rithm presented in [39] was applied over the original training
set for ECBDL14. �e aim of ROS is to replicate the minority
class instances from the original dataset until the number of
instances from both classes is the same.

Despite the inconvenience of increasing the size of the
dataset, this technique was proven in [39] to yield bet-
ter performance than other common approaches to deal
with imbalance problems, such as undersampling and cost-
sensitive methods. �ese two approaches suer from the
small sample size problem for the minority class when they
are used within a MapReduce model.

�emain characteristics of these datasets are summarized
in Table 1. For each dataset, the number of instances for both
training and test sets and the number of attributes are shown,
along with the number of splits in which MR-EFS divided
each dataset. Note that the imbalanced version of ECBDL14 is
not used in the experiments, as only the balanced ECBDL14-
ROS version is considered.

�e parameters for the CHC algorithm are presented in
Table 2.

A�er applying MR-EFS over the described datasets, the
behavior of the obtained reduced datasets was tested using
three dierent classi	ers implemented in Spark, available
in MLlib: SVM [40], Logistic Regression [41], and Naive
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Table 1: Summary of the used big data classi	cation datasets.

Dataset Training instances Test instances Features Splits Instances per split

Epsilon 400 000 100 000 2000 512 ∼780
ECBDL14 31 992 921 2 897 917 631 — —

ECBDL14-ROS 65 003 913 2 897 917 631 32 768 ∼1984

Table 2: Parameter speci	cation for all the methods involved in the
experimentation.

Algorithm Parameters

CHC

� value for �-NN: 1
Trade-o between reduction and accuracy: 0.5

Proportion of 
ipped bits in restarting process: 0.05

Population size: 40

Number of evaluations: 1000

Naive Bayes Lambda: 1.0 (default)

Logistic
Regression

Iterations: 100 (default)

StepSize: 1.0 (default)

miniBatchFraction: 1.0

SVM

Regularization parameter: 0.0; 0.5

Iterations: 100 (default)

StepSize: 1.0 (default)

miniBatchFraction: 1.0

Bayes [42]. �e reader may refer to the provided references
or to the MLlib guide [43] for further details about their
internal functioning.�e parameters used for these classi	ers
are listed in Table 2. Particularly, two dierent variants of
SVM were used, modifying the regularization parameter,
which allows the algorithm to calculate simpler models by
penalizing complex models in the objective function.

In the remainder of this paper, two metrics are used to
evaluate the performance of the three classi	ers when applied
over the obtained reduced datasets:

(i) Area Under the Curve (AUC): �is measure is de	ned
as the area under the Receiver Operating Charac-
teristic (ROC) curve. In this work, this value is
approximated with the formula in (5), where TPR is
the True Positive Rate and TNR is the True Negative
Rate. �ese values can be directly obtained from
the confusion matrix and are not aected by the
imbalance of the dataset:

AUC = TPR + TNR

2
. (5)

(ii) Training runtime: It is the time (in seconds) used to
train or build the classi	er.

Note that for this study the test runtime is much less
aected by the feature selection process, because at that point
the classi	er has already been built. For the sake of simplicity,
only training runtimes are reported.

4.2. Hardware and Soware Used. �e experiments for this
paper were carried out on a cluster of twenty computing
nodes, plus a master node. Each one of these compute nodes
has the following features:

(i) Processors: 2 x Intel Xeon CPU E5-2620.

(ii) Cores: 6 per processor (12 threads).

(iii) Clock speed: 2.00GHz.

(iv) Cache: 15MB.

(v) Network: QDR In	niBand (40Gbps).

(vi) Hard drive: 2 TB.

(vii) RAM: 64GB.

Both Hadoop master processes—the NameNode and the
JobTracker—are hosted in the master node. �e former
controls the HDFS, coordinating the slave machines by the
means of their respectiveDataNode processes, while the latter
is in charge of the TaskTrackers of each compute node, which
execute the MapReduce framework. Spark follows a similar
con	guration, as the master process is located on the master
node, and the worker processes are executed on the slave
machines. Both frameworks share the underlying HDFS 	le
system.

�ese are the details of the so�ware used for the experi-
ments:

(i) MapReduce implementation: Hadoop 2.0.0-cdh4.7.1.
MapReduce 1 (Cloudera’s open-source Apache Had-
oop distribution).

(ii) Spark version: Apache Spark 1.0.0.

(iii) Maximum maps tasks: 320 (16 per node).

(iv) Maximum reducer tasks: 20 (1 per node).

(v) Operating system: CentOS 6.6.

Note that the total number of cores of the cluster is 240.
However, a higher number of maps were kept to maximize
the use of the cluster by allowing a higher parallelism and a
better data locality, thereby reducing the network overload.

4.3. Experiments with the Epsilon Dataset. �is section
explains the results obtained for the epsilon dataset. First,
Section 4.3.1 describes the performance of the feature selec-
tion procedure and compares it with a sequential approach.
�en, Section 4.3.2 describes the results obtained in the
classi	cation.
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Table 3: Execution times (in seconds) over the epsilon subsets.

Instances Sequential CHC MR-EFS Splits

1000 391 419 1

2000 1352 409 2

5000 8667 413 5

10 000 39 576 431 10

15 000 91 272 445 15

20 000 159 315 455 20

400 000 — 6531 512

4.3.1. Feature Selection Performance. �e complexity order of

the CHC algorithm is approximately O(�2��), where � is
the number of evaluations of the 	tness function (a �-NN
classi	er in this case), � is the number of instances, and � is
the number of features. �erefore, the algorithm is quadratic
with respect to the number of instances.

When the dataset is divided into � splits within MR-
EFS, each one of the � map tasks has complexity order
O((�2/�2)��), which is �2 times faster than applying CHC
over the whole dataset. If �� cores are available for the map
tasks, the complexity of the map phase within the MR-
EFS procedure is approximately O(⌈�/��⌉(�2/�2)��). �is
demonstrates the scalability of the approach presented in this
paper: even if themaps are executed sequentially (�� = 1), the
procedure is still one order of magnitude faster than feeding
a single CHC with all the instances at once.

In order to verify the performance of MR-EFS with
respect to the sequential approach, a set of experiments
were performed using subsets of the epsilon dataset. Both
a sequential CHC algorithm and the parallel MR-EFS (with
1000 instances per split) were applied over those subsets.
�e obtained execution times are presented in Table 3 and
Figure 5, along with the runtime of MR-EFS over the whole
dataset.

�e sequential runtimes described a quadratic shape,
in concordance with the complexity order of CHC, which
clearly states that the time necessary to tackle the whole
dataset would be impractical. In opposite, the runtime of
MR-EFS for the small datasets was nearly constant. �e case
with 1000 instances is particular, in the sense that MR-EFS
only executed one map task; therefore, it executed a single
CHC with 1000 instances. �e time dierence between CHC
and MR-EFS in this case re
ects the overhead introduced by
the latter. Even though his overhead increased slightly as the
number of map tasks grew, it represented a minor part of the
overall runtime.

As for the full dataset, with 512 splits, the number of
instances for each map task in MR-EFS is around 780. As the
number of cores used for the experiments was 240, the map
phase in MR-EFS should be roughly three times slower than
the sequential CHC with 1000 instances, according to the
complexity orders previously detailed. �e times in Table 3
show a higher time gap, because MR-EFS includes as well the
other phases of theMapReduce framework (namely, splitting,
shu�e, and reduce), which are nonnegligible for a dataset of
such size. Nevertheless, the overall MR-EFS execution time is
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Figure 5: Execution times of the sequential CHC and MR-EFS.
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highly scalable, as shown by the fact that MR-EFS was able to
process the 400 000 instances faster than the time needed by
CHC to process 5000 instances.

4.3.2. Classi�cation Results. �is section presents the results
obtained by applying several classi	ers over the full epsilon
dataset with its features previously selected by usingMR-EFS.
�e dataset was split among 512 map tasks, each of which
computed around 780 instances.

�e AUC values are shown in Table 4 and Figure 6, both
for training and test sets, using three dierent thresholds
for the dataset reduction step. Note that the zero-threshold
corresponds to the original dataset, without performing any



8 Mathematical Problems in Engineering

Table 4: AUC results for the Spark classi	ers using epsilon.

�reshold Features
Logistic Regression Naive Bayes SVM (" = 0.0) SVM (" = 0.5)

Training Test Training Test Training Test Training Test

0.00 2000 0.6786 0.6784 0.7038 0.7008 0.6440 0.6433 0.6440 0.6433

0.55 721 0.6985 0.7000 0.7154 0.7127 0.6855 0.6865 0.6855 0.6865

0.60 337 0.6873 0.6867 0.7054 0.7030 0.6805 0.6799 0.6805 0.6799

0.65 110 0.6496 0.6497 0.6803 0.6794 0.6492 0.6493 0.6492 0.6493

Table 5: Training runtime (in seconds) for the Spark classi	ers using epsilon.

�reshold Features Logistic Regression Naive Bayes SVM (" = 0.0) SVM (" = 0.5)
0.00 2000 367.29 605.14 334.18 331.69

0.55 721 409.35 340.42 409.70 386.84

0.60 337 488.16 307.33 505.46 489.93

0.65 110 501.86 264.26 467.44 473.74

Table 6: Size of the epsilon dataset for each threshold.

�reshold Set MB HDFS blocks

0.00
Training 8179.18 128

Test 2044.80 32

0.55
Training 2946.52 47

Test 736.63 12

0.60
Training 1377.21 22

Test 344.30 6

0.65
Training 450.60 8

Test 112.65 2

feature selection.�ebest results for eachmethod are stressed
in boldface. �e table shows that the accuracy was improved
by the removal of the adequate features, as the threshold 0.55
allowed for obtaining higher AUC values. �e accuracy gain
was especially large for SVM.Moreover, more than half of the
features were removed, which reduces signi	cantly the size
of the dataset and therefore the complexity of the resulting
classi	er.

A threshold of value 0.60 also got to improve the accuracy
results, while reducing even further the size of the dataset.
Finally, for the 0.65 thresholds, only SVM saw its AUC
improved.

It is also noteworthy that the two variants of SVM
obtained the same results for all the tested thresholds. �is
fact indicates that the complexity of the obtained SVMmodel
is relatively low.

�e training runtime of the dierent algorithms and
databases is shown in Table 5 and Figure 7. �e obtained
results were seemingly the opposite to the expectations:
except for Naive Bayes, the classi	ers needed more time to
process the datasets as their number of features decreases.

However, this behavior can be explained: as the dataset
gets smaller, it occupies less HDFS blocks, and therefore
the full parallel capacity of the cluster is not exploited. �e
size of each version of the epsilon dataset and the number
of HDFS blocks that are needed to store it are shown in
Table 6. �e computer cluster is composed of 20 machines;
therefore, when the number of blocks is lower than 20, some
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Figure 7: Training runtime with the epsilon dataset. Note that the
number of features decreases as the threshold increases.

of the machines remain idle because they have no HDFS
block to process. Moreover, even if the number of blocks is
slightly above 20, the aectedHDFS blocksmay not be evenly
distributed among the computing nodes. �is demonstrates
the capacity of Spark to deal with big databases: as the
size of the database (more concretely, the number of HDFS
blocks) increases, the framework is able to distribute the
processes more evenly, exploiting data locality, increasing the
parallelism, and reducing the network overhead.

In order to deal with this problem, the same experiments
were repeated over the epsilon dataset, a�er reorganizing the
	les with a smaller block size. For each of the eight sets, the
block size #� was calculated according to (6), where $ is the
size of the dataset in bytes and �� is the number of cores in
the cluster:

#� = 2	,
% = ⌊log

2

$
�� ⌋ . (6)
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Table 7: Training runtime (in seconds) for the Spark classi	ers using epsilon with customized block size.

�reshold Features Logistic Regression Naive Bayes SVM (" = 0.0) SVM (" = 0.5)
0.00 2000 321.94 483.48 300.94 306.47

0.55 721 256.92 313.19 256.72 256.98

0.60 337 236.16 248.59 231.23 228.03

0.65 110 307.70 308.26 254.05 261.23

Table 8: AUC values for the Spark classi	ers using ECBDL14-ROS.

�reshold Features
Logistic Regression Naive Bayes SVM (" = 0.0) SVM (" = 0.5)

Training Test Training Test Training Test Training Test

0.00 631 0.5821 0.5808 0.6714 0.6506 0.5966 0.6046 0.5875 0.5897

0.55 234 0.6416 0.6352 0.6673 0.6489 0.6369 0.6307 0.6228 0.6148

0.60 119 0.6309 0.6235 0.6732 0.6516 0.5884 0.5841 0.6116 0.6054

0.65 46 0.5017 0.5022 0.6136 0.6093 0.5032 0.5039 0.5000 0.5000

Table 9: Training runtime (in seconds) for the Spark classi	ers using ECBDL14-ROS.

�reshold Features Logistic Regression Naive Bayes SVM (" = 0.0) SVM (" = 0.5)
0.00 631 4649.19 1581.52 5283.88 5065.87

0.55 234 2107.66 613.50 2321.22 2179.18

0.60 119 1162.98 322.06 1352.85 1226.72

0.65 46 978.38 215.09 914.32 864.28

�e runtime for the dataset with the block size cus-
tomized for each subset is displayed in Table 7 and Figure 8.
It is observed that the runtime was smaller than that with
the default block size. Furthermore, the curves show the
expected behavior: as the number of features of the dataset
was reduced, the runtime decreased. In the extreme case
(for threshold 0.65), the runtime increased again, because
with such a small dataset the synchronization times of Spark
become bigger than the computing times, even with the
customized block size.

In the next section, MR-EFS is tested over a very large
dataset, validating these observations.

4.4. Experiments with the ECBDL14-ROS Dataset. �is sec-
tion presents the classi	cation accuracy and runtime results
obtained with the ECBDL14-ROS dataset. As described
in Section 4.1, a random oversampling technique [39] was
previously applied over the original ECBDL14 dataset to
overcome the problems originated by its imbalance.�eMR-
EFS method was applied using 32 768 map tasks; therefore,
each map task computed around 1984 instances.

�e obtained results in terms of accuracy are depicted
in Table 8 and Figure 9. MR-EFS improved the results in
all cases, with dierent thresholds. �e accuracy gain was
especially important for the Logistic Regression and SVM
algorithms. As expected, the SVM with " = 0.0 obtained
better results than the onewith" = 0.5, as the latter attempted
to reduce the complexity of the obtained model. However,
it is noteworthy that, for 119 features, SVM-0.5 was able to
outperform SVM-0.0. �is hints that a�er removing noisy
features, the simpler obtained models represented better the
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Figure 8: Training runtime with the epsilon dataset with cus-
tomized block size. Note that the number of features decreases as
the threshold increases.

true knowledge underlying the data. With even less features,
both variants of SVM obtained roughly the same accuracy.

To conclude this study, the runtime necessary to train
the classi	ers with all variants of ECBDL14-ROS is presented
in Table 9 and Figure 10. In this case, the runtime behaved
as expected: the time was roughly linear with respect to the
number of features, for all testedmodels.�ismeans thatMR-
EFS was able to improve both the runtime and the accuracy
for all those classi	ers.
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Figure 9: Accuracy with the ECBDL14-ROS dataset. Note that the
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0

1000

2000

3000

4000

5000

R
u

n
 t

im
e 

(s
)

200 400 600

Features

Logistic Regression

Naive Bayes

SVM-0.0

SVM-0.5

Classi�er

Figure 10: Training runtime with the ECBDL14-ROS dataset. Note
that the number of features decreases as the threshold increases.

5. Concluding Remarks

�is paper presents MR-EFS, an Evolutionary Feature Selec-
tion algorithm designed upon the MapReduce paradigm,
intended to preprocess big datasets so that they become
aordable for other machine learning techniques, such as
classi	cation techniques, that are currently not scalable
enough to deal with such datasets. �e algorithm has been
implemented using Apache Hadoop, and it has been applied
over two dierent large datasets. �e resulting reduced
datasets have been tested using three dierent classi	ers,
implemented inApache Spark, over a cluster of 20 computers.

�e theoretical evaluation of themodel highlights the full
scalability of MR-EFS with respect to the number of features
in the dataset, in comparison with a sequential approach.
�is behavior has been further con	rmed a�er the empirical
procedures.

According to the obtained classi	cation results, it can be
claimed thatMR-EFS is able to reduce adequately the number
of features of large datasets, leading to reduced versions
of them, that are at the same time smaller to store, faster
to compute, and easier to classify. �ese facts have been
observed with the two dierent datasets and for all tested
classi	ers.

For the epsilon dataset, the relation between the reduced
datasets size and the number of nodes is forced to modify
the HDFS block size, proving that the hardware resources
can be optimally used by Hadoop and Spark, with the correct
design. One of the obtained reduced ECDBL14-ROS datasets,
with more than 67 million instances and several hundred
features, could be processed by the classi	ers in less than
half of the time than that of the original dataset, and with an
improvement of around 5% in terms of AUC.
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