
Journal of Machine Learning Research 7 (2006) 877-917 Submitted 6/05; Revised 12/05; Published 5/06

Evolutionary Function Approximation

for Reinforcement Learning

Shimon Whiteson SHIMON@CS.UTEXAS.EDU

Peter Stone PSTONE@CS.UTEXAS.EDU

Department of Computer Sciences

University of Texas at Austin

1 University Station, C0500

Austin, TX 78712-0233

Editor: Georgios Theocharous

Abstract

Temporal difference methods are theoretically grounded and empirically effective methods for ad-

dressing reinforcement learning problems. In most real-world reinforcement learning tasks, TD

methods require a function approximator to represent the value function. However, using function

approximators requires manually making crucial representational decisions. This paper investi-

gates evolutionary function approximation, a novel approach to automatically selecting function

approximator representations that enable efficient individual learning. This method evolves indi-

viduals that are better able to learn. We present a fully implemented instantiation of evolutionary

function approximation which combines NEAT, a neuroevolutionary optimization technique, with

Q-learning, a popular TD method. The resulting NEAT+Q algorithm automatically discovers ef-

fective representations for neural network function approximators. This paper also presents on-line

evolutionary computation, which improves the on-line performance of evolutionary computation

by borrowing selection mechanisms used in TD methods to choose individual actions and using

them in evolutionary computation to select policies for evaluation. We evaluate these contributions

with extended empirical studies in two domains: 1) the mountain car task, a standard reinforcement

learning benchmark on which neural network function approximators have previously performed

poorly and 2) server job scheduling, a large probabilistic domain drawn from the field of autonomic

computing. The results demonstrate that evolutionary function approximation can significantly im-

prove the performance of TD methods and on-line evolutionary computation can significantly im-

prove evolutionary methods. This paper also presents additional tests that offer insight into what

factors can make neural network function approximation difficult in practice.

Keywords: reinforcement learning, temporal difference methods, evolutionary computation, neu-

roevolution, on-line learning

1. Introduction

In many machine learning problems, an agent must learn a policy for selecting actions based on its

current state. Reinforcement learning problems are the subset of these tasks in which the agent never

sees examples of correct behavior. Instead, it receives only positive and negative rewards for the

actions it tries. Since many practical, real world problems (such as robot control, game playing, and

system optimization) fall in this category, developing effective reinforcement learning algorithms is

critical to the progress of artificial intelligence.

c©2006 Shimon Whiteson and Peter Stone.

WHITESON AND STONE

The most common approach to reinforcement learning relies on the concept of value functions,

which indicate, for a particular policy, the long-term value of a given state or state-action pair. Tem-

poral difference methods (TD) (Sutton, 1988), which combine principles of dynamic programming

with statistical sampling, use the immediate rewards received by the agent to incrementally improve

both the agent’s policy and the estimated value function for that policy. Hence, TD methods en-

able an agent to learn during its “lifetime” i.e. from its individual experience interacting with the

environment.

For small problems, the value function can be represented as a table. However, the large, proba-

bilistic domains which arise in the real-world usually require coupling TD methods with a function

approximator, which represents the mapping from state-action pairs to values via a more concise,

parameterized function and uses supervised learning methods to set its parameters. Many different

methods of function approximation have been used successfully, including CMACs, radial basis

functions, and neural networks (Sutton and Barto, 1998). However, using function approxima-

tors requires making crucial representational decisions (e.g. the number of hidden units and ini-

tial weights of a neural network). Poor design choices can result in estimates that diverge from

the optimal value function (Baird, 1995) and agents that perform poorly. Even for reinforcement

learning algorithms with guaranteed convergence (Baird and Moore, 1999; Lagoudakis and Parr,

2003), achieving high performance in practice requires finding an appropriate representation for the

function approximator. As Lagoudakis and Parr observe, “The crucial factor for a successful ap-

proximate algorithm is the choice of the parametric approximation architecture(s) and the choice of

the projection (parameter adjustment) method.” (Lagoudakis and Parr, 2003, p. 1111) Nonetheless,

representational choices are typically made manually, based only on the designer’s intuition.

Our goal is to automate the search for effective representations by employing sophisticated op-

timization techniques. In this paper, we focus on using evolutionary methods (Goldberg, 1989)

because of their demonstrated ability to discover effective representations (Gruau et al., 1996; Stan-

ley and Miikkulainen, 2002). Synthesizing evolutionary and TD methods results in a new approach

called evolutionary function approximation, which automatically selects function approximator rep-

resentations that enable efficient individual learning. Thus, this method evolves individuals that are

better able to learn. This biologically intuitive combination has been applied to computational sys-

tems in the past (Hinton and Nowlan, 1987; Ackley and Littman, 1991; Boers et al., 1995; French

and Messinger, 1994; Gruau and Whitley, 1993; Nolfi et al., 1994) but never, to our knowledge, to

aid the discovery of good TD function approximators.

Our approach requires only 1) an evolutionary algorithm capable of optimizing representations

from a class of functions and 2) a TD method that uses elements of that class for function ap-

proximation. This paper focuses on performing evolutionary function approximation with neural

networks. There are several reasons for this choice. First, they have great experimental value. Non-

linear function approximators are often the most challenging to use; hence, success for evolutionary

function approximation with neural networks is good reason to hope for success with linear methods

too. Second, neural networks have great potential, since they can represent value functions linear

methods cannot (given the same basis functions). Finally, employing neural networks is feasible

because they have previously succeeded as TD function approximators (Crites and Barto, 1998;

Tesauro, 1994) and sophisticated methods for optimizing their representations (Gruau et al., 1996;

Stanley and Miikkulainen, 2002) already exist.

This paper uses NeuroEvolution of Augmenting Topologies (NEAT) (Stanley and Miikkulainen,

2002) to select neural network function approximators for Q-learning (Watkins, 1989), a popular

878

EVOLUTIONARY FUNCTION APPROXIMATION FOR REINFORCEMENT LEARNING

TD method. The resulting algorithm, called NEAT+Q, uses NEAT to evolve topologies and initial

weights of neural networks that are better able to learn, via backpropagation, to represent the value

estimates provided by Q-learning.

Evolutionary computation is typically applied to off-line scenarios, where the only goal is to

discover a good policy as quickly as possible. By contrast, TD methods are typically applied to on-

line scenarios, in which the agent tries to learn a good policy quickly and to maximize the reward it

obtains while doing so. Hence, for evolutionary function approximation to achieve its full potential,

the underlying evolutionary method needs to work well on-line.

TD methods excel on-line because they are typically combined with action selection mecha-

nisms like ε-greedy and softmax selection (Sutton and Barto, 1998). These mechanisms improve

on-line performance by explicitly balancing two competing objectives: 1) searching for better poli-

cies (exploration) and 2) gathering as much reward as possible (exploitation). This paper investi-

gates a novel approach we call on-line evolutionary computation, in which selection mechanisms

commonly used by TD methods to choose individual actions are used in evolutionary computation

to choose policies for evaluation. We present two implementations, based on ε-greedy and softmax

selection, that distribute evaluations within a generation so as to favor more promising individu-

als. Since on-line evolutionary computation can be used in conjunction with evolutionary function

approximation, the ability to optimize representations need not come at the expense of the on-line

aspects of TD methods. On the contrary, the value function and its representation can be optimized

simultaneously, all while the agent interacts with its environment.

We evaluate these contributions with extended empirical studies in two domains: 1) mountain

car and 2) server job scheduling. The mountain car task (Sutton and Barto, 1998) is a canonical

reinforcement learning benchmark domain that requires function approximation. Though the task

is simple, previous researchers have noted that manually designed neural network function approxi-

mators are often unable to master it (Boyan and Moore, 1995; Pyeatt and Howe, 2001). Hence, this

domain is ideal for a preliminary evaluation of NEAT+Q.

Server job scheduling (Whiteson and Stone, 2004), is a large, probabilistic reinforcement learn-

ing task from the field of autonomic computing (Kephart and Chess, 2003). In server job scheduling,

a server, such as a website’s application server or database, must determine in what order to process

a queue of waiting jobs so as to maximize the system’s aggregate utility. This domain is challenging

because it is large (the size of both the state and action spaces grow in direct proportion to the size of

the queue) and probabilistic (the server does not know what type of job will arrive next). Hence, it

is a typical example of a reinforcement learning task that requires effective function approximation.

Using these domains, our experiments test Q-learning with a series of manually designed neu-

ral networks and compare the results to NEAT+Q and regular NEAT (which trains action selectors

in lieu of value functions). The results demonstrate that evolutionary function approximation can

significantly improve the performance of TD methods. Furthermore, we test NEAT and NEAT+Q

with and without ε-greedy and softmax versions of evolutionary computation. These experiments

confirm that such techniques can significantly improve the on-line performance of evolutionary

computation. Finally, we present additional tests that measure the effect of continual learning on

function approximators. The results offer insight into why certain methods outperform others in

these domains and what factors can make neural network function approximation difficult in prac-

tice.

We view the impact of this work as two-fold. First, it provides a much-needed practical approach

to selecting TD function approximators, automating a critical design step that is typically performed

879

WHITESON AND STONE

manually. Second, it provides an objective analysis of the strengths and weaknesses of evolutionary

and TD methods, opportunistically combining the strengths into a single approach. Though the TD

and evolutionary communities are mostly disjoint and focus on somewhat different problems, we

find that each can benefit from the progress of the other. On the one hand, we show that methods for

evolving neural network topologies can find TD function approximators that perform better. On the

other hand, we show that established techniques from the TD community can make evolutionary

methods applicable to on-line learning problems.

The remainder of this paper is organized as follows. Section 2 provides background on Q-

learning and NEAT, the constituent learning methods used in this paper. Section 3 introduces the

novel methods and details the particular implementations we tested. Section 4 describes the moun-

tain car and server job scheduling domains and Section 5 presents and discusses empirical results.

Section 7 overviews related work, Section 8 outlines opportunities for future work, and Section 9

concludes.

2. Background

We begin by reviewing Q-learning and NEAT, the algorithms that form the building blocks of our

implementations of evolutionary function approximation.

2.1 Q-Learning

There are several different TD methods currently in use, including Q-learning (Watkins, 1989),

Sarsa (Sutton and Barto, 1998), and LSPI (Lagoudakis and Parr, 2003). The experiments presented

in this paper use Q-learning because it is a well-established, canonical method that has also enjoyed

empirical success, particularly when combined with neural network function approximators (Crites

and Barto, 1998). We present it as a representative method but do not claim it is superior to other TD

approaches. In principle, evolutionary function approximation can be used with any of them. For

example, many of the experiments described in Section 5 have been replicated with Sarsa (Sutton

and Barto, 1998), another popular TD method, in place of Q-learning, yielding qualitatively similar

results.

Like many other TD methods, Q-learning attempts to learn a value function Q(s,a) that maps

state-action pairs to values. In the tabular case, the algorithm is defined by the following update

rule, applied each time the agent transitions from state s to state s′:

Q(s,a)← (1−α)Q(s,a)+α(r +γmaxa′Q(s′,a′))

where α ∈ [0,1] is a learning rate parameter, γ∈ [0,1] is a discount factor, and r is the immediate

reward the agent receives upon taking action a.

Algorithm 1 describes the Q-learning algorithm when a neural network is used to approximate

the value function. The inputs to the network describe the agent’s current state; the outputs, one

for each action, represent the agent’s current estimate of the value of the associated state-action

pairs. The initial weights of the network are drawn from a Gaussian distribution with mean 0.0 and

standard deviation σ (line 5). The EVAL-NET function (line 9) returns the activation on the network’s

outputs after the given inputs are fed to the network and propagated forward. Since the network uses

a sigmoid activation function, these values will all be in [0,1] and hence are rescaled according to

a parameter k. At each step, the weights of the neural network are adjusted (line 13) such that its

880

EVOLUTIONARY FUNCTION APPROXIMATION FOR REINFORCEMENT LEARNING

output better matches the current value estimate for the state-action pair: r + γmaxa′Q(s′,a′). The

adjustments are made via the BACKPROP function, which implements the standard backpropagation

algorithm (Rumelhart et al., 1986) with the addition of accumulating eligibility traces controlled by

λ (Sutton and Barto, 1998). The agent uses ε-greedy selection (Sutton and Barto, 1998) to ensure

it occasionally tests alternatives to its current policy (lines 10–11). The agent interacts with the

environment via the TAKE-ACTION function (line 15), which returns a reward and a new state.

Algorithm 1 Q-LEARN(S,A,σ,c,α,γ,λ,εtd,e)

1: // S: set of all states, A: set of all actions, σ: standard deviation of initial weights

2: // c: output scale, α: learning rate, γ: discount factor, λ: eligibility decay rate

3: // εtd: exploration rate, e: total number of episodes

4:

5: N← INIT-NET(S,A,σ) // make a new network N with random weights

6: for i← 1 to e do

7: s,s′← null, INIT-STATE(S) // environment picks episode’s initial state

8: repeat

9: Q[]← c×EVAL-NET(N,s′) // compute value estimates for current state

10: with-prob(εtd) a′← RANDOM(A) // select random exploratory action

11: else a′← argmax jQ[j] // or select greedy action

12: if s 6= null then

13: BACKPROP(N,s,a,(r +γmax jQ[j])/c,α,γ,λ) // adjust weights toward target

14: s,a← s′,a′

15: r,s′← TAKE-ACTION(a′) // take action and transition to new state

16: until TERMINAL-STATE?(s)

2.2 NEAT1

The implementation of evolutionary function approximation presented in this paper relies on Neu-

roEvolution of Augmenting Topologies (NEAT) to automate the search for appropriate topologies

and initial weights of neural network function approximators. NEAT is an appropriate choice be-

cause of its empirical successes on difficult reinforcement learning tasks like non-Markovian double

pole balancing (Stanley and Miikkulainen, 2002), game playing (Stanley and Miikkulainen, 2004b),

and robot control (Stanley and Miikkulainen, 2004a), and because of its ability to automatically op-

timize network topologies.

In a typical neuroevolutionary system (Yao, 1999), the weights of a neural network are strung

together to form an individual genome. A population of such genomes is then evolved by evaluating

each one and selectively reproducing the fittest individuals through crossover and mutation. Most

neuroevolutionary systems require the designer to manually determine the network’s topology (i.e.

how many hidden nodes there are and how they are connected). By contrast, NEAT automatically

evolves the topology to fit the complexity of the problem. It combines the usual search for network

weights with evolution of the network structure.

NEAT is an optimization technique that can be applied to a wide variety of problems. Section 3

below describes how we use NEAT to optimize the topology and initial weights of TD function

1. This section is adapted from the original NEAT paper (Stanley and Miikkulainen, 2002).

881

WHITESON AND STONE

approximators. Here, we describe how NEAT can be used to tackle reinforcement learning problems

without the aid of TD methods, an approach that serves as one baseline of comparison in Section 5.

For this method, NEAT does not attempt to learn a value function. Instead, it finds good policies

directly by training action selectors, which map states to the action the agent should take in that

state. Hence it is an example of policy search reinforcement learning. Like other policy search

methods, e.g. (Sutton et al., 2000; Ng and Jordan, 2000; Mannor et al., 2003; Kohl and Stone,

2004), it uses global optimization techniques to directly search the space of potential policies.

Algorithm 2 NEAT(S,A, p,mn,ml,g,e)

1: // S: set of all states, A: set of all actions, p: population size, mn: node mutation rate

2: // ml: link mutation rate, g: number of generations, e: episodes per generation

3:

4: P[]← INIT-POPULATION(S,A, p) // create new population P with random networks

5: for i← 1 to g do

6: for j← 1 to e do

7: N,s,s′← RANDOM(P[]), null, INIT-STATE(S) // select a network randomly

8: repeat

9: Q[]← EVAL-NET(N,s′) // evaluate selected network on current state

10: a′← argmaxiQ[i] // select action with highest activation

11: s,a← s′,a′

12: r,s′← TAKE-ACTION(a′) // take action and transition to new state

13: N. f itness← N. f itness+ r // update total reward accrued by N

14: until TERMINAL-STATE?(s)

15: N.episodes← N.episodes+1 // update total number of episodes for N

16: P′[]← new array of size p // new array will store next generation

17: for j← 1 to p do

18: P′[j]← BREED-NET(P[]) // make a new network based on fit parents in P

19: with-probability mn: ADD-NODE-MUTATION(P′[j]) // add a node to new network

20: with-probability ml: ADD-LINK-MUTATION(P′[j]) // add a link to new network

21: P[]← P′[]

Algorithm 2 contains a high-level description of the NEAT algorithm applied to an episodic

reinforcement learning problem. This implementation differs slightly from previous versions of

NEAT in that evaluations are conducted by randomly selecting individuals (line 7), instead of the

more typical approach of stepping through the population in a fixed order. This change does not

significantly alter NEAT’s behavior but facilitates the alterations we introduce in Section 3.2. During

each step, the agent takes whatever action corresponds to the output with the highest activation (lines

10–12). NEAT maintains a running total of the reward accrued by the network during its evaluation

(line 13). Each generation ends after e episodes, at which point each network’s average fitness is

N. f itness/N.episodes. In stochastic domains, e typically must be much larger than |P| to ensure

accurate fitness estimates for each network. NEAT creates a new population by repeatedly calling

the BREED-NET function (line 18), which performs crossover on two highly fit parents. The new

resulting network can then undergo mutations that add nodes or links to its structure. (lines 19–20).

The remainder of this section provides an overview of the reproductive process that occurs in lines

17–20. Stanley and Miikkulainen (2002) present a full description.

882

EVOLUTIONARY FUNCTION APPROXIMATION FOR REINFORCEMENT LEARNING

2.2.1 MINIMIZING DIMENSIONALITY

Unlike other systems that evolve network topologies and weights (Gruau et al., 1996; Yao, 1999)

NEAT begins with a uniform population of simple networks with no hidden nodes and inputs con-

nected directly to outputs. New structure is introduced incrementally via two special mutation

operators. Figure 1 depicts these operators, which add new hidden nodes and links to the network.

Only the structural mutations that yield performance advantages tend to survive evolution’s selec-

tive pressure. In this way, NEAT tends to search through a minimal number of weight dimensions

and find an appropriate complexity level for the problem.

Inputs

Nodes
Hidden

Outputs

����������������������������

Mutation

Add Node

Inputs

Nodes
Hidden

Outputs

Mutation

Add Link

(a) A mutation operator for adding new nodes (b) A mutation operator for adding new links

Figure 1: Examples of NEAT’s mutation operators for adding structure to networks. In (a), a hidden

node is added by splitting a link in two. In (b), a link, shown with a thicker black line, is

added to connect two nodes.

2.2.2 GENETIC ENCODING WITH HISTORICAL MARKINGS

Evolving network structure requires a flexible genetic encoding. Each genome in NEAT includes

a list of connection genes, each of which refers to two node genes being connected. Each con-

nection gene specifies the in-node, the out-node, the weight of the connection, whether or not the

connection gene is expressed (an enable bit), and an innovation number, which allows NEAT to find

corresponding genes during crossover.

In order to perform crossover, the system must be able to tell which genes match up between any

individuals in the population. For this purpose, NEAT keeps track of the historical origin of every

gene. Whenever a new gene appears (through structural mutation), a global innovation number is

incremented and assigned to that gene. The innovation numbers thus represent a chronology of

every gene in the system. Whenever these genomes crossover, innovation numbers on inherited

genes are preserved. Thus, the historical origin of every gene in the system is known throughout

evolution.

Through innovation numbers, the system knows exactly which genes match up with which.

Genes that do not match are either disjoint or excess, depending on whether they occur within or

outside the range of the other parent’s innovation numbers. When crossing over, the genes in both

genomes with the same innovation numbers are lined up. Genes that do not match are inherited

from the more fit parent, or if they are equally fit, from both parents randomly.

Historical markings allow NEAT to perform crossover without expensive topological analysis.

Genomes of different organizations and sizes stay compatible throughout evolution, and the problem

of matching different topologies (Radcliffe, 1993) is essentially avoided.

883

WHITESON AND STONE

2.2.3 SPECIATION

In most cases, adding new structure to a network initially reduces its fitness. However, NEAT

speciates the population, so that individuals compete primarily within their own niches rather than

with the population at large. Hence, topological innovations are protected and have time to optimize

their structure before competing with other niches in the population.

Historical markings make it possible for the system to divide the population into species based

on topological similarity. The distance δ between two network encodings is a simple linear combi-

nation of the number of excess (E) and disjoint (D) genes, as well as the average weight differences

of matching genes (W):

δ =
c1E

N
+

c2D

N
+ c3 ·W

The coefficients c1, c2, and c3 adjust the importance of the three factors, and the factor N, the number

of genes in the larger genome, normalizes for genome size. Genomes are tested one at a time; if

a genome’s distance to a randomly chosen member of the species is less than δt , a compatibility

threshold, it is placed into this species. Each genome is placed into the first species where this

condition is satisfied, so that no genome is in more than one species.

The reproduction mechanism for NEAT is explicit fitness sharing (Goldberg and Richardson,

1987), where organisms in the same species must share the fitness of their niche, preventing any

one species from taking over the population.

3. Method

This section describes evolutionary function approximation and a complete implementation called

NEAT+Q. It also describes on-line evolutionary computation and details two ways of implementing

it in NEAT+Q.

3.1 Evolutionary Function Approximation

When evolutionary methods are applied to reinforcement learning problems, they typically evolve a

population of action selectors, each of which remains fixed during its fitness evaluation. The central

insight behind evolutionary function approximation is that, if evolution is directed to evolve value

functions instead, then those value functions can be updated, using TD methods, during each fitness

evaluation. In this way, the system can evolve function approximators that are better able to learn

via TD.

In addition to automating the search for effective representations, evolutionary function approx-

imation can enable synergistic effects between evolution and learning. How these effects occur

depends on which of two possible approaches is employed. The first possibility is a Lamarckian

approach, in which the changes made by TD during a given generation are written back into the

original genomes, which are then used to breed a new population. The second possibility is a Dar-

winian implementation, in which the changes made by TD are discarded and the new population is

bred from the original genomes, as they were at birth.

It has long since been determined that biological systems are Darwinian, not Lamarckian. How-

ever, it remains unclear which approach is better computationally, despite substantial research (Pereira

and Costa, 2001; D. Whitley, 1994; Yamasaki and Sekiguchi, 2000). The potential advantage of

Lamarckian evolution is obvious: it prevents each generation from having to repeat the same learn-

884

EVOLUTIONARY FUNCTION APPROXIMATION FOR REINFORCEMENT LEARNING

ing. However, Darwinian evolution can be advantageous because it enables each generation to

reproduce the genomes that led to success in the previous generation, rather than relying on altered

versions that may not thrive under continued alteration. Furthermore, in a Darwinian system, the

learning conducted by previous generations can be indirectly recorded in a population’s genomes

via a phenomenon called the Baldwin Effect (Baldwin, 1896), which has been demonstrated in evo-

lutionary computation (Hinton and Nowlan, 1987; Ackley and Littman, 1991; Boers et al., 1995;

Arita and Suzuki, 2000). The Baldwin Effect occurs in two stages. In the first stage, the learning

performed by individuals during their lifetimes speeds evolution, because each individual does not

have to be exactly right at birth; it need only be in the right neighborhood and learning can adjust

it accordingly. In the second stage, those behaviors that were previously learned during individu-

als’ lifetimes become known at birth. This stage occurs because individuals that possess adaptive

behaviors at birth have higher overall fitness and are favored by evolution.

Hence, synergistic effects between evolution and learning are possible regardless of which im-

plementation is used. In Section 5, we compare the two approaches empirically. The remainder of

this section details NEAT+Q, the implementation of evolutionary function approximation used in

our experiments.

3.1.1 NEAT+Q

All that is required to make NEAT optimize value functions instead of action selectors is a rein-

terpretation of its output values. The structure of neural network action selectors (one input for

each state feature and one output for each action) is already identical to that of Q-learning function

approximators. Therefore, if the weights of the networks NEAT evolves are updated during their

fitness evaluations using Q-learning and backpropagation, they will effectively evolve value func-

tions instead of action selectors. Hence, the outputs are no longer arbitrary values; they represent

the long-term discounted values of the associated state-action pairs and are used, not just to select

the most desirable action, but to update the estimates of other state-action pairs.

Algorithm 3 summarizes the resulting NEAT+Q method. Note that this algorithm is identical to

Algorithm 2, except for the delineated section containing lines 13–16. Each time the agent takes an

action, the network is backpropagated towards Q-learning targets (line 16) and ε-greedy selection

occurs just as in Algorithm 1 (lines 13–14). If α and εtd are set to zero, this method degenerates to

regular NEAT.

NEAT+Q combines the power of TD methods with the ability of NEAT to learn effective rep-

resentations. Traditional neural network function approximators put all their eggs in one basket by

relying on a single manually designed network to represent the value function. NEAT+Q, by con-

trast, explores the space of such networks to increase the chance of finding a representation that will

perform well.

In NEAT+Q, the weight changes caused by backpropagation accumulate in the current popula-

tion’s networks throughout each generation. When a network is selected for an episode, its weights

begin exactly as they were at the end of its last episode. In the Lamarckian approach, those changes

are copied back into the networks’ genomes and inherited by their offspring. In the Darwinian

approach, those changes are discarded at the end of each generation.

885

WHITESON AND STONE

Algorithm 3 NEAT+Q(S,A,c, p,mn,ml,g,e,α,γ,λ,εtd)

1: // S: set of all states, A: set of all actions, c: output scale, p: population size

2: // mn: node mutation rate, ml: link mutation rate, g: number of generations

3: // e: number of episodes per generation, α: learning rate, γ: discount factor

4: // λ: eligibility decay rate, εtd: exploration rate

5:

6: P[]← INIT-POPULATION(S,A, p) // create new population P with random networks

7: for i← 1 to g do

8: for j← 1 to e do

9: N,s,s′← RANDOM(P[]), null, INIT-STATE(S) // select a network randomly

10: repeat

11: Q[]← c× EVAL-NET(N,s′) // compute value estimates for current state

12:

13: with-prob(εtd) a′← RANDOM(A) // select random exploratory action

14: else a′← argmaxkQ[k] // or select greedy action

15: if s 6= null then

16: BACKPROP(N,s,a,(r +γmaxkQ[k])/c,α,γ,λ) // adjust weights toward target

17:

18: s,a← s′,a′

19: r,s′← TAKE-ACTION(a′) // take action and transition to new state

20: N. f itness← N. f itness+ r // update total reward accrued by N

21: until TERMINAL-STATE?(s)

22: N.episodes← N.episodes+1 // update total number of episodes for N

23: P′[]← new array of size p // new array will store next generation

24: for j← 1 to p do

25: P′[j]← BREED-NET(P[]) // make a new network based on fit parents in P

26: with-probability mn: ADD-NODE-MUTATION(P′[j]) // add a node to new network

27: with-probability ml: ADD-LINK-MUTATION(P′[j]) // add a link to new network

28: P[]← P′[]

886

EVOLUTIONARY FUNCTION APPROXIMATION FOR REINFORCEMENT LEARNING

3.2 On-Line Evolutionary Computation

To excel in on-line scenarios, a learning algorithm must effectively balance two competing objec-

tives. The first objective is exploration, in which the agent tries alternatives to its current best policy

in the hopes of improving it. The second objective is exploitation, in which the agent follows the

current best policy in order to maximize the reward it receives. TD methods excel at on-line tasks

because they are typically combined with action selection mechanisms that achieve this balance (e.g

ε-greedy and softmax selection).

Evolutionary methods, though lacking explicit selection mechanisms, do implicitly perform this

balance. In fact, in one of the earliest works on evolutionary computation, Holland (1975) argues

that the reproduction mechanism encourages exploration, since crossover and mutation result in

novel genomes, but also encourages exploitation, since each new generation is based on the fittest

members of the last one. However, reproduction allows evolutionary methods to balance exploration

and exploitation only across generations, not within them. Once the members of each generation

have been determined, they all typically receive the same evaluation time, even if some individuals

dramatically outperform others in early episodes. Hence, within a generation, a typical evolutionary

method is purely exploratory, as it makes no effort to favor those individuals that have performed

well so far.

Therefore, to excel on-line, evolutionary methods need a way to limit the exploration that occurs

within each generation and force more exploitation. In a sense, this problem is the opposite of that

faced by TD methods, which naturally exploit (by following the greedy policy) and thus need a way

to force more exploration. Nonetheless, the ultimate goal is the same: a proper balance between the

two extremes. Hence, we propose that the solution can be the same too. In this section, we discuss

ways of borrowing the action selection mechanisms traditionally used in TD methods and applying

them in evolutionary computation.

To do so, we must modify the level at which selection is performed. Evolutionary algorithms

cannot perform selection at the level of individual actions because, lacking value functions, they

have no notion of the value of individual actions. However, they can perform selection at the level

of evaluations, in which entire policies are assessed holistically. The same selection mechanisms

used to choose individual actions in TD methods can be used to select policies for evaluation, an

approach we call on-line evolutionary computation. Using this technique, evolutionary algorithms

can excel on-line by balancing exploration and exploitation within and across generations.

The remainder of this section presents two implementations. The first, which relies on ε-greedy

selection, switches probabilistically between searching for better policies and re-evaluating the best

known policy to garner maximal reward. The second, which relies on softmax selection, dis-

tributes evaluations in proportion to each individual’s estimated fitness, thereby focusing on the

most promising individuals and increasing the average reward accrued.

3.2.1 USING ε-GREEDY SELECTION IN EVOLUTIONARY COMPUTATION

When ε-greedy selection is used in TD methods, a single parameter, εtd , is used to control what

fraction of the time the agent deviates from greedy behavior. Each time the agent selects an action, it

chooses probabilistically between exploration and exploitation. With probability εtd , it will explore

by selecting randomly from the available actions. With probability 1−εtd , it will exploit by selecting

the greedy action.

887

WHITESON AND STONE

In evolutionary computation, this same mechanism can be used to determine which policies to

evaluate within each generation. With probability εec, the algorithm explores by behaving exactly

as it would normally: selecting a policy for evaluation, either randomly or by iterating through the

population. With probability 1− εec, the algorithm exploits by selecting the best policy discovered

so far in the current generation. The score of each policy is just the average reward per episode

it has received so far. Each time a policy is selected for evaluation, the total reward it receives is

incorporated into that average, which can cause it to gain or lose the rank of best policy.

To apply ε-greedy selection to NEAT and NEAT+Q, we need only alter the assignment of the

candidate policy N in lines 7 and 9 of Algorithms 2 and 3, respectively. Instead of a random

selection, we use the result of the ε-greedy selection function described in Algorithm 4, where

N.average = N. f itness/N.episodes. In the case of NEAT+Q, two different ε parameters control

exploration throughout the system: εtd controls the exploration that helps Q-learning estimate the

value function and εec controls exploration that helps NEAT discover appropriate topologies and

initial weights for the neural network function approximators.

Algorithm 4 ε-GREEDY SELECTION(P,εec)

1: // P: population, εec: NEAT’s exploration rate

2:

3: with-prob(εec) return RANDOM(P) // select random network

4: else return N ∈ P | ∀(N′ ∈ P)N.average≥ N′.average // or select champion

Using ε-greedy selection in evolutionary computation allows it to thrive in on-line scenarios

by balancing exploration and exploitation. For the most part, this method does not alter evolu-

tion’s search but simply interleaves it with exploitative episodes that increase average reward during

learning. The next section describes how softmax selection can be applied to evolutionary compu-

tation to intelligently focus search with each generation and create a more nuanced balance between

exploration and exploitation.

3.2.2 USING SOFTMAX SELECTION IN EVOLUTIONARY COMPUTATION

When softmax selection is used in TD methods, an action’s probability of selection is a function of

its estimated value. In addition to ensuring that the greedy action is chosen most often, this technique

focuses exploration on the most promising alternatives. There are many ways to implement softmax

selection but one popular method relies on a Boltzmann distribution (Sutton and Barto, 1998), in

which case an agent in state s chooses an action a with probability

eQ(s,a)/τ

∑b∈A eQ(s,b)/τ

where A is the set of available actions, Q(s,a) is the agent’s value estimate for the given state-action

pair and τ is a positive parameter controlling the degree to which actions with higher values are

favored in selection. The higher the value of τ, the more equiprobable the actions are.

As with ε-greedy selection, we use softmax selection in evolutionary computation to select

policies for evaluation. At the beginning of each generation, each individual is evaluated for one

episode, to initialize its fitness. Then, the remaining e− |P| episodes are allocated according to a

Boltzmann distribution. Before each episode, a policy p in a population P is selected with probabil-

888

EVOLUTIONARY FUNCTION APPROXIMATION FOR REINFORCEMENT LEARNING

ity

eS(p)/τ

∑q∈P eS(q)/τ

where S(p) is the average fitness of the policy p.

To apply softmax selection to NEAT and NEAT+Q, we need only alter the assignment of the

candidate policy N in lines 7 and 9 of Algorithms 2 and 3, respectively. Instead of a random se-

lection, we use the result of the softmax selection function shown in Algorithm 5. In the case of

NEAT+Q, εtd controls Q-learning’s exploration and τ controls NEAT’s exploration. Of course, soft-

max exploration could be used within Q-learning too. However, since comparing different selection

mechanisms for TD methods is not the subject of our research, in this paper we use only ε-greedy

selection with TD methods.

Algorithm 5 SOFTMAX SELECTION(P,τ)

1: // P: population, τ: softmax temperature

2:

3: if ∃N ∈ P | N.episodes = 0 then

4: return N // give each network one episode before using softmax

5: else

6: total← ∑N∈P eN.average/τ // compute denominator of Boltzmann function

7: for all N ∈ P do

8: with-prob(eN.average/τ

total
) return N // select N for evaluation

9: else total← total− eN.average/τ // or skip N and reweight probabilities

In addition to providing a more nuanced balance between exploration and exploitation, soft-

max selection also allows evolutionary computation to more effectively focus its search within each

generation. Instead of spending the same number of evaluations on each member of the popula-

tion, softmax selection can quickly abandon poorly performing policies and spend more episodes

evaluating the most promising individuals.

In summary, on-line evolutionary computation enables the use of evolutionary computation dur-

ing an agent’s interaction with the world. Therefore, the ability of evolutionary function approxima-

tion to optimize representations need not come at the expense of the on-line aspects of TD methods.

On the contrary, the value function and its representation can be optimized simultaneously, all while

the agent interacts with its environment.

4. Experimental Setup

To empirically compare the methods described above, we used two different reinforcement learning

domains. The first domain, mountain car, is a standard benchmark task requiring function approxi-

mation. We use this domain to establish preliminary, proof-of-concept results for the novel methods

described in this paper. The second domain, server job scheduling, is a large, probabilistic domain

drawn from the field of autonomic computing. We use this domain to assess whether these new

methods can scale to a much more complex task. The remainder of this section details each of these

domains and describes our approach to solving them with reinforcement learning.

889

WHITESON AND STONE

Figure 2: The Mountain Car Task. This figure was taken from Sutton and Barto (1998).

4.1 Mountain Car

In the mountain car task (Boyan and Moore, 1995), depicted in Figure 2, an agent strives to drive a

car to the top of a steep mountain. The car cannot simply accelerate forward because its engine is

not powerful enough to overcome gravity. Instead, the agent must learn to drive backwards up the

hill behind it, thus building up sufficient inertia to ascend to the goal before running out of speed.

The agent’s state at timestep t consists of its current position pt and its current velocity vt .

It receives a reward of -1 at each time step until reaching the goal, at which point the episode

terminates. The agent’s three available actions correspond to the throttle settings 1,0, and -1. The

following equations control the car’s movement:

pt+1 = boundp(pt + vt+1)

vt+1 = boundv(vt +0.001at−0.0025cos(3pt))

where at is the action the agent takes at timestep t, boundp enforces −1.2≤ pt+1 ≤ 0.5, and boundv

enforces −0.07 ≤ vt+1 ≤ 0.07. In each episode, the agent begins in a state chosen randomly from

these ranges. To prevent episodes from running indefinitely, each episode is terminated after 2,500

steps if the agent still has not reached the goal.

Though the agent’s state has only two features, they are continuous and hence learning the value

function requires a function approximator. Previous research has demonstrated that TD methods can

solve the mountain car task using several different function approximators, including CMACs (Sut-

ton, 1996; Kretchmar and Anderson, 1997), locally weighted regression (Boyan and Moore, 1995),

decision trees (Pyeatt and Howe, 2001), radial basis functions (Kretchmar and Anderson, 1997), and

instance-based methods (Boyan and Moore, 1995). By giving the learner a priori knowledge about

the goal state and using methods based on experience replay, the mountain car problem has been

solved with neural networks too (Reidmiller, 2005). However, the task remains notoriously difficult

for neural networks, as several researchers have noted that value estimates can easily diverge (Boyan

and Moore, 1995; Pyeatt and Howe, 2001).

We hypothesized that the difficulty of using neural networks in this task is due at least in part

to the problem of finding an appropriate representation. Hence, as a preliminary evaluation of

evolutionary function approximation, we applied NEAT+Q to the mountain car task to see if it

could learn better than manually designed networks. The results are presented in Section 5.

To represent the agent’s current state to the network, we divided each state feature into ten

regions. One input was associated with each region (for a total of twenty inputs) and was set to one

890

EVOLUTIONARY FUNCTION APPROXIMATION FOR REINFORCEMENT LEARNING

if the agent’s current state fell in that region, and to zero otherwise. Hence, only two inputs were

activated for any given state. The networks have three outputs, each corresponding to one of the

actions available to the agent.

4.2 Server Job Scheduling

While the mountain car task is a useful benchmark, it is a very simple domain. To assess whether our

methods can scale to a much more complex problem, we use a challenging reinforcement learning

task called server job scheduling. This domain is drawn from the burgeoning field of autonomic

computing (Kephart and Chess, 2003). The goal of autonomic computing is to develop computer

systems that automatically configure themselves, optimize their own behavior, and diagnose and

repair their own failures. The demand for such features is growing rapidly, since computer systems

are becoming so complex that maintaining them with human support staff is increasingly infeasible.

The vision of autonomic computing poses new challenges to many areas of computer science,

including architecture, operating systems, security, and human-computer interfaces. However, the

burden on artificial intelligence is especially great, since intelligence is a prerequisite for self-

managing systems. In particular, we believe machine learning will play a primary role, since com-

puter systems must be adaptive if they are to perform well autonomously. There are many ways

to apply supervised methods to autonomic systems, e.g. for intrusion detection (Ertoz et al., 2004),

spam filtering (Dalvi et al., 2004), or system configuration (Wildstrom et al., 2005). However, there

are also many tasks where no human expert is available and reinforcement learning is applicable,

e.g network routing (Boyan and Littman, 1994), job scheduling (Whiteson and Stone, 2004), and

cache allocation (Gomez et al., 2001).

One such task is server job scheduling, in which a server, such as a website’s application server

or database, must determine in what order to process the jobs currently waiting in its queue. Its

goal is to maximize the aggregate utility of all the jobs it processes. A utility function (not to be

confused with a TD value function) for each job type maps the job’s completion time to the utility

derived by the user (Walsh et al., 2004). The problem of server job scheduling becomes challenging

when these utility functions are nonlinear and/or the server must process multiple types of jobs.

Since selecting a particular job for processing necessarily delays the completion of all other jobs

in the queue, the scheduler must weigh difficult trade-offs to maximize aggregate utility. Also, this

domain is challenging because it is large (the size of both the state and action spaces grow in direct

proportion to the size of the queue) and probabilistic (the server does not know what type of job will

arrive next). Hence, it is a typical example of a reinforcement learning task that requires effective

function approximation.

The server job scheduling task is quite different from traditional scheduling tasks (Zhang and

Dietterich, 1995; Zweben and Fox, 1998). In the latter case, there are typically multiple resources

available and each job has a partially ordered list of resource requirements. Server job scheduling

is simpler because there is only one resource (the server) and all jobs are independent of each other.

However, it is more complex in that performance is measured via arbitrary utility functions, whereas

traditional scheduling tasks aim solely to minimize completion times.

Our experiments were conducted in a Java-based simulator. The simulation begins with 100 jobs

preloaded into the server’s queue and ends when the queue becomes empty. During each timestep,

the server removes one job from its queue and completes it. During each of the first 100 timesteps,

a new job of a randomly selected type is added to the end of the queue. Hence, the agent must make

891

WHITESON AND STONE

-160

-140

-120

-100

-80

-60

-40

-20

0

0 50 100 150 200

U
til

ity

Completion Time

Utility Functions for All Four Job Types

Job Type #2

Job Type #3

Job Type #4

Job Type #1

Figure 3: The four utility functions used in our experiments.

decisions about which job to process next even as new jobs are arriving. Since one job is processed

at each timestep, each episode lasts 200 timesteps. For each job that completes, the scheduling agent

receives an immediate reward determined by that job’s utility function.

Four different job types were used in our experiments. Hence, the task can generate 4200 unique

episodes. Utility functions for the four job types are shown in Figure 3. Users who create jobs

of type #1 or #2 do not care about their jobs’ completion times so long as they are less than 100

timesteps. Beyond that, they get increasingly unhappy. The rate of this change differs between the

two types and switches at timestep 150. Users who create jobs of type #3 or #4 want their jobs

completed as quickly as possible. However, once the job becomes 100 timesteps old, it is too late to

be useful and they become indifferent to it. As with the first two job types, the slopes for job types

#3 and #4 differ from each other and switch, this time at timestep 50. Note that all these utilities

are negative functions of completion time. Hence, the scheduling agent strives to bring aggregate

utility as close to zero as possible.

A primary obstacle to applying reinforcement learning methods to this domain is the size of

the state and action spaces. A complete state description includes the type and age of each job in

the queue. The scheduler’s actions consist of selecting jobs for processing; hence a complete action

space includes every job in the queue. To render these spaces more manageable, we discretize them.

The range of job ages from 0 to 200 is divided into four sections and the scheduler is told, at each

timestep, how many jobs in the queue of each type fall in each range, resulting in 16 state features.

The action space is similarly discretized. Instead of selecting a particular job for processing, the

scheduler specifies what type of job it wants to process and which of the four age ranges that job

should lie in, resulting in 16 distinct actions. The server processes the youngest job in the queue

that matches the type and age range specified by the action.

These discretizations mean the agent has less information about the contents of the job queue.

However, its state is still sufficiently detailed to allow effective learning. Although the utility func-

tions can change dramatically within each age range, their slopes do not change. It is the slope

892

EVOLUTIONARY FUNCTION APPROXIMATION FOR REINFORCEMENT LEARNING

of the utility function, not the utility function itself, which determines how much utility is lost by

delaying a given job.

Even after discretization, the state space is quite large. If the queue holds at most qmax jobs,
(

qmax+1
16

)

is a loose upper bound on the number of states, since each job can be in one of 16 buckets.

Some of these states will not occur (e.g. ones where all the jobs in the queue are in the youngest

age range). Nonetheless, with 16 actions per state, it is clearly infeasible to represent the value

function in a table. Hence, success in this domain requires function approximation, as addressed in

the following section.

5. Results

We conducted a series of experiments in the mountain car and server job scheduling domains to

empirically evaluate the methods presented in this paper. Section 5.1 compares manual and evo-

lutionary function approximators. Section 5.2 compares off-line and on-line evolutionary compu-

tation. Section 5.3 tests evolutionary function approximation combined with on-line evolutionary

computation. Section 5.4 compares these novel approaches to previous learning and non-learning

methods. Section 5.5 compares Darwinian and Lamarckian versions of evolutionary function ap-

proximation. Finally, Section 5.6 presents some addition tests that measure the effect of continual

learning on function approximators. The results offer insight into why certain methods outperform

others in these domains and what factors can make neural network function approximation difficult

in practice.

Each of the graphs presented in these sections include error bars indicating 95% confidence

intervals. In addition, to assess statistical significance, we conducted Student’s t-tests on each pair

of methods evaluated. The results of these tests are summarized in Appendix A.

5.1 Comparing Manual and Evolutionary Function Approximation

As an initial baseline, we conducted, in each domain, 25 runs in which NEAT attempts to discover

a good policy using the setup described in Section 4. In these runs, the population size p was 100,

the number of generations g was 100, the node mutation rate mn was 0.02, the link mutation rate

ml was 0.1, and the number of episodes per generation e was 10,000. Hence, each individual was

evaluated for 100 episodes on average. See Appendix B for more details on the NEAT parameters

used in our experiments.

Next, we performed 25 runs in each domain using NEAT+Q, with the same parameter settings.

The eligibility decay rate λ was 0.0. and the learning rate α was set to 0.1 and annealed linearly

for each member of the population until reaching zero after 100 episodes.2 In scheduling, γ was

0.95 and εtd was 0.05. Those values of γ and εtd work well in mountain car too, though in the

experiments presented here they were set to 1.0 and 0.0 respectively, since Sutton (1996) found that

discounting and exploration are unnecessary in mountain car. The output scale c was set to -100 in

mountain car and -1000 in scheduling.

We tested both Darwinian and Lamarckian NEAT+Q in this manner. Both perform well, though

which is preferable appears to be domain dependent. For simplicity, in this section and those that

follow, we present results only for Darwinian NEAT+Q. In Section 5.5 we present a comparison of

the two approaches.

2. Other values of λ were tested in the context of NEAT+Q but had little effect on performance.

893

WHITESON AND STONE

To test Q-learning without NEAT, we tried 24 different configurations in each domain. These

configurations correspond to every possible combination of the following parameter settings. The

networks had feed-forward topologies with 0, 4, or 8 hidden nodes. The learning rate α was either

0.01 or 0.001. The annealing schedules for α were linear, decaying to zero after either 100,000 or

250,000 episodes. The eligibility decay rate λ was either 0.0 or 0.6. The other parameters, γ and

ε, were set just as with NEAT+Q, and the standard deviation of initial weights σ was 0.1. Each

of these 24 configurations was evaluated for 5 runs. In addition, we experimented informally with

higher and lower values of α, higher values of γ, slower linear annealing, exponential annealing,

and no annealing at all, though none performed as well as the results presented here.

In these experiments, each run used a different set of initial weights. Hence, the resulting

performance of each configuration, by averaging over different initial weight settings, does not

account for the possibility that some weight settings perform consistently better than others. To

address this, for each domain, we took the best performing configuration3 and randomly selected

five fixed initial weight settings. For each setting, we conducted 5 additional runs. Finally, we took

the setting with the highest performance and conducted an additional 20 runs, for a total of 25. For

simplicity, the graphs that follow show only this Q-learning result: the best configuration with the

best initial weight setting.

Figure 4 shows the results of these experiments. For each method, the corresponding line in

the graph represents a uniform moving average over the aggregate utility received in the past 1,000

episodes, averaged over all 25 runs. Using average performance, as we do throughout this paper, is

somewhat unorthodox for evolutionary methods, which are more commonly evaluated on the per-

formance of the generation champion. There are two reasons why we adopt average performance.

First, it creates a consistent metric for all the methods tested, including the TD methods that do not

use evolutionary computation and hence have no generation champions. Second, it is an on-line

metric because it incorporates all the reward the learning system accrues. Plotting only generation

champions is an implicitly off-line metric because it does not penalize methods that discover good

policies but fail to accrue much reward while learning. Hence, average reward is a better metric for

evaluating on-line evolutionary computation, as we do in Section 5.2.

To make a larger number of runs computationally feasible, both NEAT and NEAT+Q were run

for only 100 generations. In the scheduling domain, neither method has completely plateaued by

this point. However, a handful of trials conducted for 200 generations verified that only very small

additional improvements are made after 100 generation, without a qualitative effect on the results.

Note that the progress of NEAT+Q consists of a series of 10,000-episode intervals. Each of

these intervals corresponds to one generation and the changes within them are due to learning via

Q-learning and backpropagation. Although each individual learns for only 100 episodes on average,

NEAT’s system of randomly selecting individuals for evaluation causes that learning to be spread

across the entire generation: each individual changes gradually during the generation as it is repeat-

edly evaluated. The result is a series of intra-generational learning curves within the larger learning

curve.

For the particular problems we tested and network configurations we tried, evolutionary func-

tion approximation significantly improves performance over manually designed networks. In the

scheduling domain, Q-learning learns much more rapidly in the very early part of learning. In both

domains, however, Q-learning soon plateaus while NEAT and NEAT+Q continue to improve. Of

3. Mountain car parameters were: 4 hidden nodes, α = 0.001, annealed to zero at episode 100,000, λ = 0.0. Server job

scheduling parameters were: 4 hidden nodes, α = 0.01, annealed to zero at episode 100,000, λ = 0.6.

894

EVOLUTIONARY FUNCTION APPROXIMATION FOR REINFORCEMENT LEARNING

-15000

-14500

-14000

-13500

-13000

-12500

-12000

-11500

-11000

-10500

-10000

 0 200 400 600 800 1000

S
co

re

Episode (x1000)

Uniform Moving Average Score Per Episode

-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

 0

 0 200 400 600 800 1000

S
co

re

Episode (x1000)

Uniform Moving Average Score Per Episode

(a) Mountain Car (b) Server Job Scheduling

NEAT+Q

NEAT

Q−Learning

Q−Learning

NEAT

NEAT+Q

Figure 4: A comparison of the performance of manual and evolutionary function approximators in

the mountain car and server job scheduling domains.

course, after 100,000 episodes, Q-learning’s learning rate α has annealed to zero and no additional

learning is possible. However, its performance plateaus well before α reaches zero and, in our

experiments, running Q-learning with slower annealing or no annealing at all consistently led to

inferior and unstable performance.

Nonetheless, the possibility remains that additional engineering of the network structure, the

feature set, or the learning parameters would significantly improve Q-learning’s performance. In

particular, when Q-learning is started with one of the best networks discovered by NEAT+Q and

the learning rate is annealed aggressively, Q-learning matches NEAT+Q’s performance without

directly using evolutionary computation. However, it is unlikely that a manual search, no matter

how extensive, would discover these successful topologies, which contain irregular and partially

connected hidden layers. Figure 5 shows examples of typical networks evolved by NEAT+Q.

NEAT+Q also significantly outperforms regular NEAT in both domains. In the mountain car

domain, NEAT+Q learns faster, achieving better performance in earlier generations, though both

plateau at approximately the same level. In the server job scheduling domain, NEAT+Q learns more

rapidly and also converges to significantly higher performance. This result highlights the value of

TD methods on challenging reinforcement learning problems. Even when NEAT is employed to

find effective representations, the best performance is achieved only when TD methods are used to

estimate a value function. Hence, the relatively poor performance of Q-learning is not due to some

weakness in the TD methodology but merely to the failure to find a good representation.

Furthermore, in the scheduling domain, the advantage of NEAT+Q over NEAT is not directly ex-

plained just by the learning that occurs via backpropagation within each generation. After 300,000

episodes, NEAT+Q clearly performs better even at the beginning of each generation, before such

learning has occurred. Just as predicted by the Baldwin Effect, evolution proceeds more quickly in

NEAT+Q because the weight changes made by backpropagation, in addition to improving that in-

dividual’s performance, alter selective pressures and more rapidly guide evolution to useful regions

of the search space.

895

WHITESON AND STONE

Figure 5: Typical examples of the topologies of the best networks evolved by NEAT+Q in both the

mountain car and scheduling domains. Input nodes are on the bottom, hidden nodes in

the middle, and output nodes on top. In addition to the links shown, each input node

is directly connected to each output node. Note that two output nodes can be directly

connected, in which case the activation of one node serves not only as an output of the

network, but as an input to the other node.

5.2 Comparing Off-Line and On-Line Evolutionary Computation

In this section, we present experiments evaluating on-line evolutionary computation. Since on-

line evolutionary computation does not depend on evolutionary function approximation, we first

test it using regular NEAT, by comparing an off-line version to on-line versions using ε-greedy

and softmax selection. In Section 5.3 we study the effect of combining NEAT+Q with on-line

evolutionary computation.

Figure 6 compares the performance of off-line NEAT to its on-line counterparts in both domains.

The results for off-line NEAT are the same as those presented in Figure 4. To test on-line NEAT

with ε-greedy selection, 25 runs were conducted with εec set to 0.25. This value is larger than is

typically used in TD methods but makes intuitive sense, since exploration in NEAT is safer than in

TD methods. After all, even when NEAT explores, the policies it selects are not drawn randomly

from policy space. On the contrary, they are the children of the previous generation’s fittest parents.

To test on-line NEAT with softmax selection, 25 runs were conducted with τ set to 50 in mountain

car and 500 in the scheduling domain. These values are different because a good value of τ depends

on the range of possible values, which differ dramatically between the two domains.

These results demonstrate that both versions of on-line evolutionary computation can signifi-

cantly improve NEAT’s average performance. In addition, in mountain car, on-line evolutionary

computation with softmax selection boosts performance even more than ε-greedy selection.

Given the way these two methods work, the advantage of softmax over ε-greedy in mountain

car is not surprising. ε-greedy selection is a rather naı̈ve approach because it treats all exploratory

actions equally, with no attempt to favor the most promising ones. For the most part, it conducts the

search for better policies in the same way as off-line evolutionary computation; it simply interleaves

that search with exploitative episodes that employ the best known policy. Softmax selection, by

contrast, concentrates exploration on the most promising alternatives and hence alters the way the

896

EVOLUTIONARY FUNCTION APPROXIMATION FOR REINFORCEMENT LEARNING

-300

-250

-200

-150

-100

-50

 0

 0 200 400 600 800 1000

S
co

re

Episode (x1000)

Uniform Moving Average Score Per Episode

-15000

-14500

-14000

-13500

-13000

-12500

-12000

-11500

-11000

-10500

-10000

 0 200 400 600 800 1000

S
co

re

Episode (x1000)

Uniform Moving Average Score Per Episode

(a) Mountain Car (b) Server Job Scheduling

Epsilon−Greedy NEAT

Off−Line NEAT

Softmax NEAT

Off−Line NEAT

Softmax NEAT

Epsilon−Greedy NEAT

Figure 6: A comparison of the performance off-line and on-line evolutionary computation in the

mountain car and server job scheduling domains.

search for better policies is conducted. Unlike ε-greedy exploration, softmax selection spends fewer

episodes on poorly performing individuals and more on those with the most promise. In this way, it

achieves better performance.

More surprising is that this effect is not replicated in the scheduling domain. Both on-line meth-

ods perform significantly better than their off-line counterpart but softmax performs only as well as

ε-greedy. It is possible that softmax, though focusing exploration more intelligently, exploits less

aggressively than ε-greedy, which gives so many evaluations to the champion. It is also possible that

some other setting of τ would make softmax outperform ε-greedy, though our informal parameter

search did not uncover one. Even achieving the performance shown here required using different

values of τ in the two domains, whereas the same value of ε worked in both cases. This highlights

one disadvantage of using softmax selection: the difficulty of choosing τ. As Sutton and Barto write

“Most people find it easier to set the ε parameter with confidence; setting τ requires knowledge of

the likely action values and of powers of e.” (Sutton and Barto, 1998, pages 27-30)

It is interesting that the intra-generational learning curves characteristic of NEAT+Q appear in

the on-line methods even though backpropagation is not used. The average performance increases

during each generation without the help of TD methods because the system becomes better informed

about which individuals to select on exploitative episodes. Hence, on-line evolutionary computation

can be thought of as another way of combining evolution and learning. In each generation, the

system learns which members of the population are strongest and uses that knowledge to boost

average performance.

5.3 Combining Evolutionary Function Approximation with On-Line Evolutionary

Computation

Sections 5.1 and 5.2 verify that both evolutionary function approximation and on-line evolutionary

computation can significantly boost performance in reinforcement learning tasks. In this section,

we present experiments that assess how well these two ideas work together.

897

WHITESON AND STONE

Figure 7 presents the results of combining NEAT+Q with softmax evolutionary computation,

averaged over 25 runs, and compares it to using each of these methods individually, i.e. using off-

line NEAT+Q (as done in Section 5.1) and using softmax evolutionary computation with regular

NEAT (as done in Section 5.2). For the sake of simplicity we do not present results for ε-greedy

NEAT+Q though we tested it and found that it performed similarly to softmax NEAT+Q.

-300

-250

-200

-150

-100

-50

 0

 0 200 400 600 800 1000

S
co

re

Episode (x1000)

Uniform Moving Average Score Per Episode

-15000

-14500

-14000

-13500

-13000

-12500

-12000

-11500

-11000

-10500

-10000

 0 200 400 600 800 1000

S
co

re

Episode (x1000)

Uniform Moving Average Score Per Episode

(a) Mountain Car (b) Server Job Scheduling

Off−Line NEAT

Off−Line NEAT+Q

Softmax NEAT Softmax NEAT+Q

Softmax NEAT+Q

Softmax NEAT

Off−Line NEAT

Off−Line NEAT+Q

Figure 7: The performance of combining evolutionary function approximation with on-line evolu-

tionary computation compared to using each individually in the mountain car and server

job scheduling domains.

In both domains, softmax NEAT+Q performs significantly better than off-line NEAT+Q. Hence,

just like regular evolutionary computation, evolutionary function approximation performs better

when supplemented with selection techniques traditionally used in TD methods. Surprisingly, in the

mountain car domain, softmax NEAT+Q performs only as well softmax NEAT. We attribute these

results to a ceiling effect, i.e. the mountain car domain is easy enough that, given an appropriate

selection mechanism, NEAT is able to learn quite rapidly, even without the help of Q-learning.

In the server job scheduling domain, softmax NEAT+Q does perform better than softmax NEAT,

though the difference is rather modest. Hence, in both domains, the most critical factor to boosting

the performance of evolutionary computation is the use of an appropriate selection mechanism.

5.4 Comparing to Previous Approaches

The experiments presented thus far verify that the novel methods presented in this paper can im-

prove performance over the constituent techniques upon which they are built. In this section, we

present experiments that compare the performance of the highest performing novel method, softmax

NEAT+Q, to previous approaches. In the mountain car domain, we compare to previous results that

use TD methods with a linear function approximator (Sutton, 1996). In the server job scheduling do-

main, we compare to a random scheduler, two non-learning schedulers from previous research (van

Mieghem, 1995; Whiteson and Stone, 2004), and an analytical solution computed using integer

linear programming.

898

EVOLUTIONARY FUNCTION APPROXIMATION FOR REINFORCEMENT LEARNING

In the mountain car domain, the results presented above make clear that softmax NEAT+Q can

rapidly learn a good policy. However, since these results use an on-line metric, performance is

averaged over all members of the population. Hence, they do not reveal how close the best learned

policies are to optimal. To assess this, we selected the generation champion from the final generation

of each softmax NEAT+Q run and evaluated it for an additional 1,000 episodes. Then we compared

this to the performance of a learner using Sarsa, a TD method similar to Q-learning (Sutton and

Barto, 1998), with CMACs, a popular linear function approximator (Sutton and Barto, 1998), using

a setup that matches that of Sutton (1996) as closely as possible. We found their performance to

be nearly identical: softmax NEAT+Q received an average score of -52.75 while the Sarsa CMAC

learner received -52.02. We believe this performance is approximately optimal, as it matches the

best results published by other researchers, e.g. (Smart and Kaelbling, 2000).

This does not imply that neural networks are the function approximator of choice for the moun-

tain car domain. On the contrary, Sutton’s CMACs converge in many fewer episodes. Nonetheless,

these results demonstrate that evolutionary function approximation and on-line evolution make it

feasible to find approximately optimal policies using neural networks, something that some previous

approaches (Boyan and Moore, 1995; Pyeatt and Howe, 2001), using manually designed networks,

were unable to do.

Since the mountain car domain has only two state features, it is possible to visualize the value

function. Figure 8 compares the value functions learned by softmax NEAT+Q to that of Sarsa with

CMACs. For clarity, the graphs plot estimated steps to the goal. Since the agent receives a reward

of -1 for each timestep until reaching the goal, this is equivalent to −maxa(Q(s,a)). Surprisingly,

the two value functions bear little resemblance to one another. While they share some very general

characteristics, they differ markedly in both shape and scale. Hence, these graphs highlight a fact

that has been noted before (Tesauro, 1994): that TD methods can learn excellent policies even if

they estimate the value function only very grossly. So long as the value function assigns the highest

value to the correct action, the agent will perform well.

Value Function

-1.2

-0.35

0.5Position -0.07

0.0

0.07

Velocity

 0

 20

 40

 60

 80

 100

 120

Steps to Goal

Value Function

-1.2

-0.35

0.5Position -0.07

0.0

0.07

Velocity

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650

Steps to Goal

(a) NEAT+Q Network (b) CMAC

Figure 8: The value function, shown as estimated steps to the goal, of policies learned by softmax

NEAT+Q and Sarsa using CMACs.

899

WHITESON AND STONE

In the server job scheduling domain, finding alternative approaches for comparison is less

straightforward. Substantial research about job scheduling already exists but most of the methods

involved are not applicable here because they do not allow jobs to be associated with arbitrary utility

functions. For example, Liu and Layland (1973) present methods for job scheduling in a real-time

environment, in which a hard deadline is associated with each job. McWherter et al. (2004) present

methods for scheduling jobs with different priority classes. However, unlike the utility functions

shown in Section 4.2, the relative importance of a job type does not change as a function of time.

McGovern et al. (2002) use reinforcement learning for CPU instruction scheduling but aim only to

minimize completion time.

One method that can be adapted to the server job scheduling task is the generalized cµ rule (van

Mieghem, 1995), in which the server always processes at time t the oldest job of that type k which

maximizes C′k(ok)/pk, where C′k is the derivative of the cost function for job type k, ok is the age

of the oldest job of type k and pk is the average processing time for jobs of type k. Since in our

simulation all jobs require unit time to process and the cost function is just the additive inverse

of the utility function, this is equivalent to processing the oldest job of that type k that maximizes

−U ′k(ok), where U ′k is the derivative of the utility function for job type k. The generalized cµ rule

has been proven approximately optimal given convex cost functions (van Mieghem, 1995). Since

the utility functions, and hence the cost functions, are both convex and concave in our simulation,

there is no theoretical guarantee about its performance in the server job scheduling domain. To see

how well it performs in practice, we implemented it in our simulator and ran it for 1,000 episodes,

obtaining an average score of -10,891.

Another scheduling algorithm applicable to this domain is the insertion scheduler, which per-

formed the best in a previous study of a very similar domain (Whiteson and Stone, 2004). The

insertion scheduler uses a simple, fast heuristic: it always selects for processing the job at the head

of the queue but it keeps the queue ordered in a way it hopes will maximize aggregate utility. For

any given ordering of a set of J jobs, the aggregate utility is:

∑
i∈J

Ui(ai + pi)

where Ui(·), ai, and pi are the utility function, current age, and position in the queue, respectively,

of job i. Since there are |J|! ways to order the queue, it is clearly infeasible to try them all. Instead,

the insertion scheduler uses the following simple, fast heuristic: every time a new job is created, the

insertion scheduler tries inserting it into each position in the queue, settling on whichever position

yields the highest aggregate utility. Hence, by bootstrapping off the previous ordering, the insertion

scheduler must consider only |J] orderings. We implemented the insertion scheduler in our simulator

and ran it for 1,000 episodes, obtaining an average score of -13,607.

Neither the cµ rule nor the insertion scheduler perform as well as softmax NEAT+Q, whose final

generation champions received an average score of -9,723 over 1,000 episodes. Softmax NEAT+Q

performed better despite the fact that the alternatives rely on much greater a priori knowledge about

the dynamics of the system. Both alternatives require the scheduler to have a predictive model of

the system, since their calculations depend on knowledge of the utility functions and the amount of

time each job takes to complete. By contrast, softmax NEAT+Q, like many reinforcement learning

algorithms, assumes such information is hidden and discovers a good policy from experience, just

by observing state transitions and rewards.

If, in addition to assuming the scheduler has a model of the system, we make the unrealistic

assumption that unlimited computation is available to the scheduler, then we can obtain an informa-

900

EVOLUTIONARY FUNCTION APPROXIMATION FOR REINFORCEMENT LEARNING

tive upper bound on performance. At each time step of the simulation, we can compute the optimal

action analytically by treating the scheduling problem as an integer linear program. For each job

i ∈ J and for each position j in which it could be placed, the linear program contains a variable

xi j ∈ {0,1}. Associated with each variable is a weight wi j = Ui(ai + j), which represents the reward

the scheduler will receive when job i completes given that it currently resides in position j. Since

the scheduler’s goal is to maximize aggregate utility, the linear program must maximize ∑i ∑ j wi jxi j.

In addition to the constraint that ∀i j : xi j ∈ {0,1}, the program is also constrained such that each job

is in exactly one position: ∀i : ∑ j xi j = 1 and that each position holds exactly one job: ∀ j : ∑i xi j = 1.

A solution to the resulting integer linear program is an ordering that will maximize the aggregate

utility of the jobs currently in the queue. If the scheduler always processes the job in the first

position of this ordering, it will behave optimally assuming no more jobs arrive. Since new jobs

are constantly arriving, the linear program must be re-solved anew at each time step. The resulting

behavior may still be suboptimal since the decision about which job to process is made without

reasoning about what types of jobs are likely to arrive later. Nonetheless, this analytical solution

represents an approximate upper bound on performance in this domain.

Using the CPLEX software package, we implemented a scheduler based on the linear program

described above and tested in our simulator for 1,000 episodes, obtaining an average score of -

7,819. Not surprisingly, this performance is superior to that of softmax NEAT+Q, though it takes,

on average, 741 times as long to run. The computational requirements of this solution are not likely

to scale well either, since the number of variables in the linear program grows quadratically with

respect to the size of the queue.

Figure 9 summarizes the performance of the alternative scheduling methods described in this

section and compares them to softmax NEAT+Q. It also includes, as a lower bound on performance,

a random scheduler, which received an average score of -15,502 over 1,000 episodes. A Student’s

t-test verified that the difference in performance between each pair of methods is statistically signif-

icant with 95% confidence. Softmax NEAT+Q performs the best except for the linear programming

approach, which is computationally expensive and relies on a model of the system. Prior to learn-

ing, softmax NEAT+Q performs similarly to the random scheduler. The difference in performance

between the best learned policies and the linear programming upper bound is 75% better than that

of the baseline random scheduler and 38% better than that of the next best method, the cµ scheduler.

5.5 Comparing Darwinian and Lamarckian Evolutionary Computation

As described in Section 3.1, evolutionary function approximation can be implemented in either a

Darwinian or Lamarckian fashion. The results presented so far all use the Darwinian implementa-

tion of NEAT+Q. However, it is not clear that this approach is superior even though it more closely

matches biological systems. In this section, we compare the two approaches empirically in both

the mountain car and server job scheduling domains. Many other empirical comparisons of Dar-

winian and Lamarckian systems have been conducted previously (D. Whitley, 1994; Yamasaki and

Sekiguchi, 2000; Pereira and Costa, 2001) but ours is novel in that individual learning is based on a

TD function approximator. In other words, these experiments address the question: when trying to

approximate a TD value function, is a Darwinian or Lamarckian approach superior?

Figure 10 compares the performance of Darwinian and Lamarckian NEAT+Q in both the moun-

tain car and server job scheduling domains. In both cases, we use off-line NEAT+Q, as the on-line

versions tend to mute the differences between the two implementations. Though both implementa-

901

WHITESON AND STONE

Figure 9: A comparison of the performance of softmax NEAT+Q and several alternative methods

in the server job scheduling domain.

tions perform well in both domains, Lamarckian NEAT+Q does better in mountain car but worse

in server job scheduling. Hence, the relative performance of these two approaches seems to depend

critically on the dynamics of the domain to which they are applied. In the following section, we

present some additional results that elucidate which factors affect their performance.

-300

-250

-200

-150

-100

-50

 0

 0 200 400 600 800 1000

S
co

re

Episode (x1000)

Uniform Moving Average Score Per Episode

-15000

-14500

-14000

-13500

-13000

-12500

-12000

-11500

-11000

-10500

-10000

 0 200 400 600 800 1000

S
co

re

Episode (x1000)

Uniform Moving Average Score Per Episode

(a) Mountain Car (b) Server Job Scheduling

Darwinian NEAT+Q

Lamarckian NEAT+Q

Lamarckian NEAT+Q

Darwinian NEAT+Q

Figure 10: A comparison of Darwinian and Lamarckian NEAT+Q in the mountain car and server

job scheduling domains.

902

EVOLUTIONARY FUNCTION APPROXIMATION FOR REINFORCEMENT LEARNING

5.6 Continual Learning Tests

In this section, we assess the performance of the best networks discovered by NEAT+Q when eval-

uated for many additional episodes. We compare two scenarios, one where the learning rate is

annealed to zero after 100 episodes, just as in training, and one where it is not annealed at all. Com-

paring performance in these two scenarios allows us to assess the effect of continual learning on the

evolved networks.

We hypothesized that NEAT+Q’s best networks would perform well under continual learning

in the mountain car domain but not in server job scheduling. This hypothesis was motivated by

the results of early experiments with NEAT+Q. Originally, we did not anneal α at all. This setup

worked fine in the mountain car domain but in scheduling it worked only with off-line NEAT+Q;

on-line NEAT+Q actually performed worse than off-line NEAT+Q! Annealing NEAT+Q’s learning

rate eliminated the problem, as the experiments in Section 5.2 verify. If finding weights that remain

stable under continual learning is more difficult in scheduling than in mountain car, it could explain

this phenomenon, since ε-greedy and softmax selection, by giving many more episodes of learning

to certain networks, could cause those networks to become unstable and perform poorly.

To test the best networks without continual learning, we selected the final generation champion

from each run of off-line Darwinian NEAT+Q and evaluated it for an additional 5,000 episodes, i.e.

50 times as many episodes as it saw in training. During these additional episodes, the learning rate

was annealed to zero by episode 100, just as in training. To test the best networks with continual

learning, we repeated this experiment but did not anneal the learning rate at all. To prevent any

unnecessary discrepancies between training and testing, we repeated the original NEAT+Q runs

with annealing turned off and used the resulting final generation champions.

Figure 11 shows the results of these tests. In the mountain car domain, performance remains

relatively stable regardless of whether the networks continue to learn. The networks tested without

annealing show more fluctuation but maintain performance similar to those that were annealed.

However, in the scheduling domain, the networks subjected to continual learning rapidly plummet

in performance whereas those that are annealed continue to perform as they did in training. These

results directly confirm our hypothesis that evolutionary computation can find weights that perform

well under continual learning in mountain car but not in scheduling. This explains why on-line

NEAT+Q does not require an annealed learning rate in mountain car but does in scheduling.

These tests also shed light on the comparison between Darwinian and Lamarckian NEAT+Q

presented in Section 5.5. A surprising feature of the Darwinian approach is that it is insensitive to

the issue of continual learning. Since weight changes do not affect offspring, evolution need only

find weights that remain suitable during one individual’s lifetime. By contrast, in the Lamarckian

approach, weight changes accumulate from generation to generation. Hence, the TD updates that

helped in early episodes can hurt later on. In this light it makes perfect sense that Lamarckian

NEAT+Q performs better in mountain car than in scheduling, where continual learning is problem-

atic.

These results suggest that the problem of stability under continual learning can greatly exacer-

bate the difficulty of performing neural network function approximation in practice. This issue is

not specific to NEAT+Q, since Q-learning with manually designed networks achieved decent per-

formance only when the learning rate was properly annealed. Darwinian NEAT+Q is a novel way of

coping with this problem, since it obviates the need for long-term stability. In on-line evolutionary

computation annealing may still be necessary but it is less critical to set the rate of decay precisely.

903

WHITESON AND STONE

-16000

-15000

-14000

-13000

-12000

-11000

-10000

-9000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

S
co

re

Episode

Uniform Moving Average Score Per Episode

-85

-80

-75

-70

-65

-60

-55

-50

-45

-40

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

S
co

re

Episode

Uniform Moving Average Score Per Episode

(a) Mountain Car (b) Server Job Scheduling

NEAT+Q without annealing

NEAT+Q with annealing

NEAT+Q without annealing

NEAT+Q with annealing

Figure 11: A comparison of the performance of the best networks evolved by NEAT+Q when

tested, with and without annealing, for an additional 5,000 episodes.

When learning ends, it prevents only a given individual from continuing to improve. The system

as a whole can still progress, as evolution exerts selective pressure and learning begins anew in the

next generation.

6. Discussion

The results in the mountain car domain presented in Section 5, demonstrate that NEAT+Q can suc-

cessfully train neural network function approximators in a domain which is notoriously problematic

for them. However, NEAT+Q requires many more episodes to find good solutions (by several or-

ders of magnitude) than CMACs do in the same domain. This contrast highlights an important

drawback of NEAT+Q: since each candidate network must be trained long enough to let Q-learning

work, it has very high sample complexity. In ongoing research, we are investigating ways of making

NEAT+Q more sample-efficient. For example, preliminary results suggest that, by pre-training net-

works using methods based on experience replay (Lin, 1992), NEAT+Q’s sample complexity can

be dramatically reduced.

It is not surprising that NEAT+Q takes longer to learn than CMACs because it is actually solving

a more challenging problem. CMACs, like other linear function approximators, require the human

designer to engineer a state representation in which the optimal value function is linear with respect

to those state features (or can be reasonably approximated as such). For example, when CMACs

were applied to the mountain car domain, the two state features were tiled conjunctively (Sutton,

1996). By contrast, nonlinear function approximators like neural networks can take a simpler state

representation and learn the important nonlinear relationships. Note that the state representation

used by NEAT+Q, while discretized, does not include any conjunctive features of the original two

state features. The important conjunctive features are represented by hidden nodes that are evolved

automatically by NEAT.

904

EVOLUTIONARY FUNCTION APPROXIMATION FOR REINFORCEMENT LEARNING

Conjunctively tiling all state features is feasible in mountain car but quickly becomes impractical

in domains with more state features. For example, doing so in the scheduling domain would require

16 CMACs, one for each action. In addition, each CMAC would have multiple 16-dimensional

tilings. If 10 tilings were used and each state feature were discretized into 10 buckets, the resulting

function approximator would have 16× 10× 1016 cells. Conjunctively tiling only some state fea-

tures is feasible only with a large amount of domain expertise. Hence, methods like NEAT+Q that

automatically learn nonlinear representations promise to be of great practical importance.

The results in the scheduling domain demonstrate that the proposed methods scale to a much

larger, probabilistic domain and can learn schedulers that outperform existing non-learning ap-

proaches. The difference in performance between the best learned policies and the linear pro-

gramming upper bound is 75% better than that of the baseline random scheduler and 38% better

than that of the next best method, the cµ scheduler. However, the results also demonstrate that non-

learning methods can do quite well in this domain. If so, is it worth the trouble of learning? We

believe so. In a real system, the utility functions that the learner maximizes would likely be drawn

directly from Service Level Agreements (SLAs), which are legally binding contracts governing how

much clients pay their service providers as a function of the quality of service they receive (Walsh

et al., 2004). Hence, even small improvements in system performance can significantly affect the

service provider’s bottom line. Substantial improvements like those demonstrated in our results, if

replicated in real systems, could be very valuable indeed.

Overall, the main limitation of the results presented in this paper is that they apply only to neu-

ral networks. In particular, the analysis about the effects of continual learning (Section 5.6) may

not generalize to other types of function approximation that are not as prone to instability or diver-

gence if over-trained. While evolutionary methods could in principle be combined with any kind

of function approximation, in practice it is likely to work well only with very concise representa-

tions. Methods like CMACs, which use many more weights, would result in very large genomes and

hence be difficult for evolutionary computation to optimize. However, since such methods methods

become impractical as the number of state features and actions grow, concise methods like neu-

ral networks may become increasingly important in harder domains. If so, evolutionary function

approximation could be an important tool for automatically optimizing their representations.

7. Related Work

A broad range of previous research is related in terms of both methods and goals to the techniques

presented in this paper. This section highlights some of that research and contrasts it with this work.

7.1 Optimizing Representations for TD Methods

A major challenge of using TD methods is finding good representations for function approximators.

This paper addresses that problem by coupling TD methods with evolutionary techniques like NEAT

that are proven representation optimizers. However, many other approaches are also possible.

One strategy is to train the function approximator using supervised methods that also optimize

representations. For example, Rivest and Precup (2003) train cascade-correlation networks as TD

function approximators. Cascade-correlation networks are similar to NEAT in that they grow in-

ternal topologies for neural networks. However, instead of using evolutionary computation to find

such topologies, they rely on the network’s error on a given training set to compare alternative rep-

resentations. The primary complication of Rivest and Precup’s approach is that cascade-correlation

905

WHITESON AND STONE

networks, like many representation-optimizing supervised methods, need the training set to be both

large and stable. TD methods do not naturally accommodate this requirement since they produce

training examples only in sequence. Furthermore, those examples quickly become stale as the val-

ues upon which they were based are updated. Rivest and Precup address this problem using a

novel caching system that in effect creates a hybrid value function consisting of a table and a neu-

ral network. While this approach delays the exploitation of the agent’s experience, it nonetheless

represents a promising way to marry the representation-optimizing capacity of cascade-correlation

networks and other supervised algorithms with the power of TD methods.

Mahadevan (2005) suggests another strategy: using spectral analysis to derive basis functions

for TD function approximators. His approach is similar to this work in that the agent is responsible

for learning both the value function and its representation. It is different in that the representation is

selected by analyzing the underlying structural properties of the state space, rather than evaluating

potential representations in the domain.

A third approach is advanced by Sherstov and Stone (2005): using the Bellman error generated

by TD updates to assess the reliability of the function approximator in a given region of the state or

action space. They use this metric to automatically adjust the breadth of generalization for a CMAC

function approximator. An advantage of this approach is that feedback arrives immediately, since

Bellman error can be computed after each update. A disadvantage is that the function approxima-

tor’s representation is not selected based on its actual performance, which may correlate poorly with

Bellman error.

There is also substantial research that focuses on optimizing the agent’s state and action rep-

resentations, rather than the value function representation. For example, Santamaria et al. (1998)

apply skewing functions to state-action pairs before feeding them as inputs to a function approxima-

tor. These skewing functions make the state-action spaces non-uniform and hence make it possible

to give more resolution to the most critical regions. Using various skewing functions, they demon-

strate improvement in the performance of TD learners. However, they do not offer any automatic

way of determining how a given space should be skewed. Hence, a human designer still faces the

burdensome task of manually choosing a representation, though in some domains using skewing

functions may facilitate this process.

Smith (2002) extends this work by introducing a method that uses self-organizing maps to

automatically learn nonlinear skewing functions for the state-action spaces of TD agents. Self-

organizing maps use unsupervised learning methods to create spatially organized internal represen-

tations of the inputs they receive. Hence, the system does not use any feedback on the performance

of different skewing functions to determine which one is most appropriate. Instead it relies on the

heuristic assumption that more resolution should be given to regions of the space that are more fre-

quently visited. While this is an intuitive and reasonable heuristic, it does not hold in general. For

example, a reinforcement learning agent designed to respond to rare emergencies may spend most

of its life in safe states where its actions have little consequence and only occasionally experience

crisis states where its choices are critical. Smith’s heuristic would incorrectly devote most of its

resolution to representing the value function of the unimportant but frequently visited states. Evolu-

tionary function approximation avoids this problem because it evaluates competing representations

by testing them in the actual task. It explicitly favors those representations that result in higher

performance, regardless of whether they obey a given heuristic.

906

EVOLUTIONARY FUNCTION APPROXIMATION FOR REINFORCEMENT LEARNING

McCallum (1995) also presents a method for optimizing an agent’s state representation. His ap-

proach automatically learns tree-structured short-term memories that allow reinforcement learning

agents to prevent the state aliasing that results from hidden state.

7.2 Combining Evolutionary Computation with Other Learning Methods

Because of the potential performance gains offered by the Baldwin Effect, many researchers have

developed methods that combine evolutionary computation with other learning methods that act

within an individual’s lifetime. Some of this work is applied to supervised problems, in which

evolutionary computation can be coupled with any supervised learning technique such as backprop-

agation in a straightforward manner. For example, Boers et al. (1995) introduce a neuroevolution

technique that, like NEAT, tries to discover appropriate topologies. They combine this method

with backpropagation and apply the result to a simple supervised learning problem. Also, Giraud-

Carrier (2000) uses a genetic algorithm to tune the parameters of RBF networks, which he applies

to a supervised classification problem.

Inducing the Baldwin Effect on reinforcement learning problems is more challenging, since they

do not automatically provide the target values necessary for supervised learning. The algorithms

presented in this paper use TD methods to estimate those targets, though researchers have tried many

other approaches. McQuestion and Miikkulainen (1997) present a neuroevolutionary technique that

relies on each individual’s parents to supply targets and uses backpropagation to train towards those

targets. Stanley et al. (2003) avoid the problem of generating targets by using Hebbian rules, an

unsupervised technique, to change a neural network during its fitness evaluation. The network’s

changes are not directed by any error signal but they allow the network to retain a memory of

previously experienced input sequences. Hence their approach is an alternative to recurrent neural

networks. Downing (2001) combines genetic programming with Q-learning using a simple tabular

representation; genetic programming automatically learns how to discretize the state space.

Nolfi et al. (1994) present a neuroevolutionary system that adds extra outputs to the network

that are designed to predict what inputs will be presented next. When those inputs actually arrive,

they serve as targets for backpropagation, which adjusts the network’s weights starting from the

added outputs. This technique allows a network to be adjusted during its lifetime using supervised

methods but relies on the assumption that forcing it to learn to predict future inputs will help it select

appropriate values for the remaining outputs, which actually control the agent’s behavior. Another

significant restriction is that the weights connecting hidden nodes to the action outputs cannot be

adjusted at all during each fitness evaluation.

Ackley and Littman (1991) combine neuroevolution with reinforcement learning in an artificial

life context. Evolutionary computation optimizes the initial weights of an “action network” that

controls an agent in a foraging scenario. The weights of the network are updated during each indi-

vidual’s lifetime using a reinforcement learning algorithm called CRBP on the basis of a feedback

signal that is also optimized with neuroevolution. Hence, their approach is similar to the one de-

scribed in this paper, though the neuroevolution technique they employ does not optimize network

topologies and CRBP does not learn a value function.

XCS (Butz and Wilson, 2002), based on learning classifier systems (Lanzi et al., 2000), combine

evolutionary computation and reinforcement learning in a different way. Each member of the pop-

ulation, instead of representing a complete policy, represents just a single classifier, which specifies

the action the agent should take for some subset of the state space. Hence, the population as a whole

907

WHITESON AND STONE

represents a single evolving policy. Classifiers are selected for reproduction based on the accuracy

of their value estimates and speciation is used to ensure the state space is properly covered.

Other combinations of evolutionary computation with other learning methods include Arita and

Suzuki (2000), who study iterated prisoner’s dilemma; French and Messinger (1994) and Sasaki

and Tokoro (1999), who use artificial life domains; and Niv et al. (2002) in a foraging bees domain.

Another important related method is VAPS (Baird and Moore, 1999). While it does not use

evolutionary computation, it does combine TD methods with policy search methods. It provides

a unified approach to reinforcement learning that uses gradient descent to try to simultaneously

maximize reward and minimize error on Bellman residuals. A single parameter determines the

relative weight of these goals. Because it integrates policy search and TD methods, VAPS is in much

the same spirit as evolutionary function approximation. However, the resulting methods are quite

different. While VAPS provides several impressive convergence guarantees, it does not address the

question of how to represent the value function.

Other researchers have also sought to combine TD and policy search methods. For example,

Sutton et al. (2000) use policy gradient methods to search policy space but rely on TD methods to

obtain an unbiased estimate of the gradient. Similarly, in actor-critic methods (Konda and Tsitsiklis,

1999), the actor optimizes a parameterized policy by following a gradient informed by the critic’s

estimate of the value function. Like VAPS, these methods do not learn a representation for the value

function.

7.3 Variable Evaluations in Evolutionary Computation

Because it allows members of the same population to receive different numbers of evaluations, the

approach to on-line evolutionary computation presented here is similar to previous research about

optimizing noisy fitness functions. For example, Stagge (1998) introduces mechanisms for deciding

which individuals need more evaluations for the special case where the noise is Gaussian. Beielstein

and Markon (2002) use a similar approach to develop tests for determining which individuals should

survive. However, this area of research has a significantly different focus, since the goal is to find

the best individuals using the fewest evaluations, not to maximize the reward accrued during those

evaluations.

The problem of using evolutionary systems on-line is more closely related to other research

about the exploration/exploitation tradeoff, which has been studied extensively in the context of

TD methods (Watkins, 1989; Sutton and Barto, 1998) and multiarmed bandit problems (Bellman,

1956; Macready and Wolpert, 1998; Auer et al., 2002). The selection mechanisms we employ in our

system are well-established though, to our knowledge, their application to evolutionary computation

is novel.

8. Future Work

There are many ways that the work presented in this paper could be extended, refined, or further

evaluated. This section enumerates a few of the possibilities.

Using Different Policy Search Methods This paper focuses on using evolutionary methods to

automate the search for good function approximator representations. However, many other forms of

policy search such as PEGASUS (Ng and Jordan, 2000) and policy gradient methods (Sutton et al.,

2000; Kohl and Stone, 2004) have also succeeded on difficult reinforcement learning tasks. TD

908

EVOLUTIONARY FUNCTION APPROXIMATION FOR REINFORCEMENT LEARNING

methods could be combined with these methods in the same way they are combined with evolution-

ary computation in this paper. In the future, we plan to test some of these alternative combinations.

Reducing Sample Complexity As mentioned in Section 6, one disadvantage of evolutionary

function approximation is its high sample complexity, since each fitness evaluation lasts for many

episodes. However, in domains where the fitness function is not too noisy, each fitness evaluation

could be conducted in a single episode if the candidate function approximator was pre-trained using

methods based on experience replay (Lin, 1992). By saving sample transitions from the previous

generation, each new generation could be be trained off-line. This method would use much more

computation time but many fewer sample episodes. Since sample experience is typically a much

scarcer resource than computation time, this enhancement could greatly improve the practical ap-

plicability of evolutionary function approximation.

Addressing Non-Stationarity In non-stationary domains, the environment can change in ways

that alter the optimal policy. Since this phenomenon occurs in many real-world scenarios, it is im-

portant to develop methods that can handle it robustly. Evolutionary and TD methods are both well

suited to non-stationary tasks and we expect them to retain that capability when combined. In fact,

we hypothesize that evolutionary function approximation will adapt to non-stationary environments

better than manual alternatives. If the environment changes in ways that alter the optimal repre-

sentation, evolutionary function approximation can adapt, since it is continually testing different

representations and retaining the best ones. By contrast, even if they are effective at the original

task, manually designed representations cannot adapt in the face of changing environments.

On-line evolutionary computation should also excel in non-stationary environments, though

some refinement will be necessary. The methods presented in this paper implicitly assume a station-

ary environment because they compute the fitness of each individual by averaging over all episodes

of evaluation. In non-stationary environments, older evaluations can become stale and misleading.

Hence, fitness estimates should place less trust in older evaluations. This effect could easily be

achieved using recency-weighting update rules like those employed by table-based TD methods.

Using Steady-State Evolutionary Computation The NEAT algorithm used in this paper is an

example of generational evolutionary computation, in which an entire population is is evaluated

before any new individuals are bred. Evolutionary function approximation might be improved by

using a steady-state implementation instead (Fogarty, 1989). Steady-state systems never replace an

entire population at once. Instead, the population changes incrementally after each fitness evalua-

tion, when one of the worst individuals is removed and replaced by a new offspring whose parents

are among the best. Hence, an individual that receives a high score can more rapidly effect the

search, since it immediately becomes a potential parent. In a generational system, that individual

cannot breed until the beginning of the following generation, which might be thousands of episodes

later. Hence, steady-state systems could help evolutionary function approximation perform better

in on-line and non-stationary environments by speeding the adoption of new improvements. Fortu-

nately, a steady-state version of NEAT already exists (Stanley et al., 2005) so this extension is quite

feasible.

9. Conclusion

Reinforcement learning is an appealing and empirically successful approach to finding effective

control policies in large probabilistic domains. However, it requires a good deal of expert knowledge

909

WHITESON AND STONE

to put into practice, due in large part to the need for manually defining function approximator

representations. This paper offers hope that machine learning methods can be used to discover those

representations automatically, thus broadening the practical applicability of reinforcement learning.

This paper makes three main contributions. First, it introduces evolutionary function approx-

imation, which automatically discovers effective representations for TD function approximators.

Second, it introduces on-line evolutionary computation, which employs selection mechanisms bor-

rowed from TD methods to improve the on-line performance of evolutionary computation. Third, it

provides a detailed empirical study of these methods in the mountain car and server job scheduling

domains.

The results demonstrate that evolutionary function approximation can significantly improve the

performance of TD methods and on-line evolutionary computation can significantly improve evo-

lutionary methods. Combined, our novel algorithms offer a promising and general approach to

reinforcement learning in large probabilistic domains.

Acknowledgments

Thanks to Richard Sutton, Michael Littman, Gerry Tesauro, and Manuela Veloso for helpful discus-

sions and ideas. Thanks to Risto Miikkulainen, Nick Jong, Bikram Banerjee, Shivaram Kalyanakr-

ishnan, and the anonymous reviewers for constructive comments about earlier versions of this work.

This research was supported in part by NSF CAREER award IIS-0237699 and an IBM faculty

award.

Appendix A. Statistical Significance

To assess the statistical significance of the results presented in Section 5, we performed a series of

Student’s t-tests on each pair of methods in each domain. For each pair, we performed a t-test after

every 100,000 episodes. Tables 1 and 2 summarize the results of these tests for the mountain car

and server job scheduling domains, respectively. In each table, the values in each cell indicate the

range of episodes for which performance differences were significant with 95% confidence.

Appendix B. NEAT Parameters

Table 3 details the NEAT parameters used in our experiments. Stanley and Miikkulainen (2002)

describe the semantics of these parameters in detail.

910

EVOLUTIONARY FUNCTION APPROXIMATION FOR REINFORCEMENT LEARNING

Episodes Q-Learning Off-Line ε-Greedy Softmax Off-Line Softmax Lamarckian

(x1000) NEAT NEAT NEAT NEAT+Q NEAT+Q NEAT+Q

Q-Learning

Off-Line 300 to

NEAT 1000

ε-Greedy 200 to 200 to

NEAT 1000 1000

Softmax 200 to 200 to 200 to

NEAT 1000 1000 1000

Off-Line 200 to 200 to 200 to 200 to

NEAT+Q 1000 500 1000 1000

Softmax 100 to 200 to 200 to 900 to 200 to

NEAT+Q 1000 1000 1000 1000 1000

Lamarkian 200 to 200 to 200 to 200 to 200 to 100 to

NEAT+Q 1000 1000 1000 1000 1000 1000

Table 1: A summary of the statistical significance of differences in average performance between

each pair of methods in mountain car (see Figures 4, 6, 7 & 10). Values in each cell

indicate the range of episodes for which differences were significant with 95% confidence.

Episodes Q-Learning Off-Line ε-Greedy Softmax Off-Line Softmax Lamarckian

(x1000) NEAT NEAT NEAT NEAT+Q NEAT+Q NEAT+Q

Q-Learning

Off-Line 300 to

NEAT 1000

ε-Greedy 200 to 200 to

NEAT 1000 1000

Softmax 200 to 200 to not significant

NEAT 1000 1000 throughout

Off-Line 300 to 300 to 100 to 200 to

NEAT+Q 1000 500 1000 1000

Softmax 200 to 200 to 400 to 200 to 200 to

NEAT+Q 1000 1000 1000 1000 1000

Lamarckian 300 to 300 to 100 to 100 to 700 to 200 to

NEAT+Q 1000 1000 1000 1000 1000 1000

Table 2: A summary of the statistical significance of differences in average performance between

each pair of methods in server job scheduling (see Figures 4, 6, 7 & 10). Values in each cell

indicate the range of episodes for which differences were significant with 95% confidence.

911

WHITESON AND STONE

Parameter Value Parameter Value Parameter Value

weight-mut-power 0.5 recur-prop 0.0 disjoint-coeff (c1) 1.0

excess-coeff (c2) 1.0 mutdiff-coeff (c3) 2.0 compat-threshold 3.0

age-significance 1.0 survival-thresh 0.2 mutate-only-prob 0.25

mutate-link-weights-prob 0.9 mutate-add-node-prob (mn) 0.02 mutate-add-link-prob (ml) 0.1

interspecies-mate-rate 0.01 mate-multipoint-prob 0.6 mate-multipoint-avg-prob 0.4

mate-singlepoint-prob 0.0 mate-only-prob 0.2 recur-only-prob 0.0

pop-size (p) 100 dropoff-age 100 newlink-tries 50

babies-stolen 0 num-compat-mod 0.3 num-species-target 6

Table 3: The NEAT parameters used in our experiments.

References

D. Ackley and M. Littman. Interactions between learning and evolution. Artificial Life II, SFI

Studies in the Sciences of Complexity, 10:487–509, 1991.

T. Arita and R. Suzuki. Interactions between learning and evolution: The outstanding strategy

generated by the Baldwin Effect. Artificial Life, 7:196–205, 2000.

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem.

Machine Learning, 47(2-3):235–256, 2002.

L. Baird. Residual algorithms: Reinforcement learning with function approximation. In Proceed-

ings of the Twelfth International Conference on Machine Learning, pages 30–37. Morgan Kauf-

mann, 1995.

L. Baird and A. Moore. Gradient descent for general reinforcement learning. In Advances in Neural

Information Processing Systems 11. MIT Press, 1999.

J. M. Baldwin. A new factor in evolution. The American Naturalist, 30:441–451, 1896.

T. Beielstein and S. Markon. Threshold selection, hypothesis tests and DOE methods. In 2002

Congresss on Evolutionary Computation, pages 777–782, 2002.

R. E. Bellman. A problem in the sequential design of experiments. Sankhya, 16:221–229, 1956.

E. J. W. Boers, M. V. Borst, and I. G. Sprinkhuizen-Kuyper. Evolving Artificial Neural Networks

using the “Baldwin Effect”. In Artificial Neural Nets and Genetic Algorithms, Proceedings of the

International Conference in Ales, France, 1995.

J. A. Boyan and M. L. Littman. Packet routing in dynamically changing networks: A reinforcement

learning approach. In J. D. Cowan, G. Tesauro, and J. Alspector, editors, Advances in Neural

Information Processing Systems, volume 6, pages 671–678. Morgan Kaufmann Publishers, Inc.,

1994.

J. A. Boyan and A. W. Moore. Generalization in reinforcement learning: Safely approximating the

value function. In Advances in Neural Information Processing Systems 7, 1995.

912

EVOLUTIONARY FUNCTION APPROXIMATION FOR REINFORCEMENT LEARNING

M. V. Butz and S. W. Wilson. An algorithmic description of XCS. Soft Computing - A Fusion of

Foundations, Methodologies and Applications, 6(3-4):144–153, 2002.

R. H. Crites and A. G. Barto. Elevator group control using multiple reinforcement learning agents.

Machine Learning, 33(2-3):235–262, 1998.

K. Mathias D. Whitley, S. Gordon. Lamarckian evolution, the Baldwin effect and function opti-

mization. In Parallel Problem Solving from Nature - PPSN III, pages 6–15, 1994.

N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma. Adverserial classification. In Proceed-

ings of the 2004 ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 99–108, 2004.

K. L. Downing. Reinforced genetic programming. Genetic Programming and Evolvable Machines,

2(3):259–288, 2001.

L. Ertoz, A. Lazarevic, E. Eilerston, A. Lazarevic, P. Tan, P. Dokas, V. Kumar, and J. Srivastava.

The MINDS - Minnesota Intrustion Detection System, chapter 3. MIT Press, 2004.

T. C. Fogarty. An incremental genetic algorithm for real-time learning. In Proceedings of the Sixth

International Workshop on Machine Learning, pages 416–419, 1989.

R. French and A. Messinger. Genes, phenes and the Baldwin effect: Learning and evolution in a

simulated population. Artificial Life, 4:277–282, 1994.

C. Giraud-Carrier. Unifying learning with evolution through Baldwinian evolution and Lamarckism:

A case study. In Proceedings of the Symposium on Computational Intelligence and Learning

(CoIL-2000), pages 36–41, 2000.

D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. 1989.

D. E. Goldberg and J. Richardson. Genetic algorithms with sharing for multimodal function opti-

mization. In Proceedings of the Second International Conference on Genetic Algorithms, pages

148–154, 1987.

F. Gomez, D. Burger, and R. Miikkulainen. A neuroevolution method for dynamic resource alloca-

tion on a chip multiprocessor. In Proceedings of the INNS-IEEE International Joint Conference

on Neural Networks, pages 2355–2361, 2001.

F. Gruau and D. Whitley. Adding learning to the cellular development of neural networks: Evolution

and the Baldwin effect. Evolutionary Computation, 1:213–233, 1993.

F. Gruau, D. Whitley, and L. Pyeatt. A comparison between cellular encoding and direct encoding

for genetic neural networks. In Genetic Programming 1996: Proceedings of the First Annual

Conference, pages 81–89, 1996.

G. E. Hinton and S. J. Nowlan. How learning can guide evolution. Complex Systems, 1:495–502,

1987.

913

WHITESON AND STONE

J. H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Appli-

cations to Biology, Control and Artificial Intelligence. University of Michigan Press, Ann Arbor,

MI, 1975.

J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer, 36(1):41–50,

January 2003.

N. Kohl and P. Stone. Machine learning for fast quadrupedal locomotion. In The Nineteenth Na-

tional Conference on Artificial Intelligence, pages 611–616, July 2004.

V. R. Konda and J. N. Tsitsiklis. Actor-critic algorithms. In Advances in Neural Information

Processing Systems 11, pages 1008–1014, 1999.

R. M. Kretchmar and C. W. Anderson. Comparison of CMACs and radial basis functions for

local function approximators in reinforcement learning. In International Conference on Neural

Networks, 1997.

M. G. Lagoudakis and R. Parr. Least-squares policy iteration. Journal of Machine Learning Re-

search, 4(2003):1107–1149, 2003.

P. L. Lanzi, W. Stolzmann, and S. Wilson. Learning classifier systems from foundations to applica-

tions. Springer, 2000.

L.-J. Lin. Self-improving reactive agents based on reinforcement learning, planning, and teaching.

Machine Learning, 8(3-4):293–321, 1992.

C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time

environment. Journal of the Association of Computing Machinery, 20(1):46–61, January 1973.

W. G. Macready and D. H. Wolpert. Bandit problems and the exploration/exploitation tradeoff. In

IEEE Transactions on Evolutionary Computation, volume 2(1), pages 2–22, 1998.

S. Mahadevan. Samuel meets Amarel: Automating value function approximation using global state

space analysis. In Proceedings of the Twentieth National Conference on Artificial Intelligence,

2005.

S. Mannor, R. Rubenstein, and Y. Gat. The cross-entropy method for fast policy search. In Pro-

ceedings of the Twentieth International Conference on Machine Learning, pages 512–519, 2003.

A. R. McCallum. Instance-based utile distinctions for reinforcement learning. In Proceedings of

the Twelfth International Machine Learning Conference, 1995.

A. McGovern, E. Moss, and A. G. Barto. Building a block scheduler using reinforcement learning

and rollouts. Machine Learning, 49(2-3):141–160, 2002.

P. McQuesten and R. Miikkulainen. Culling and teaching in neuro-evolution. In Thomas Bäck,

editor, Proceedings of the Seventh International Conference on Genetic Algorithms, pages 760–

767, 1997.

914

EVOLUTIONARY FUNCTION APPROXIMATION FOR REINFORCEMENT LEARNING

D. McWherter, B. Schroeder, N. Ailamaki, and M. Harchol-Balter. Priority mechanisms for OLTP

and transactional web applications. In Proceedings of the Twentieth International Conference on

Data Engineering, 2004.

A. Y. Ng and M. I. Jordan. PEGASUS: A policy search method for large MDPs and POMDPs.

In Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, pages 406–415.

Morgan Kaufmann Publishers Inc., 2000.

Y. Niv, D. Joel, I. Meilijson, and E. Ruppin. Evolution of reinforcement learning in foraging bees:

A simple explanation for risk averse behavior. Neurocomputing, 44(1):951–956, 2002.

S. Nolfi, J. L. Elman, and D. Parisi. Learning and evolution in neural networks. Adaptive Behavior,

2:5–28, 1994.

F. B. Pereira and E. Costa. Understanding the role of learning in the evolution of busy beaver: A

comparison between the Baldwin Effect and a Lamarckian strategy. In Proceedings of the Genetic

and Evolutionary Computation Conference (GECCO-2001), 2001.

L. D. Pyeatt and A. E. Howe. Decision tree function approximation in reinforcement learning. In

Proceedings of the Third International Symposium on Adaptive Systems: Evolutionary Compu-

tation and Probabilistic Graphical Models, pages 70–77, 2001.

N. J. Radcliffe. Genetic set recombination and its application to neural network topology optimiza-

tion. Neural computing and applications, 1(1):67–90, 1993.

M. Reidmiller. Neural fitted Q iteration - first experiences with a data efficient neural reinforcement

learning method. In Proceedings of the Sixteenth European Conference on Machine Learning,

pages 317–328, 2005.

F. Rivest and D. Precup. Combining TD-learning with cascade-correlation networks. In Proceedings

of the Twentieth International Conference on Machine Learning, pages 632–639. AAAI Press,

2003.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error

propagation. In Parallel Distributed Processing, pages 318–362. 1986.

J. Santamaria, R. Sutton, and A. Ram. Experiments with reinforcement learning in problems with

continuous state and action spaces. Adaptive Behavior, 6(2), 1998.

T. Sasaki and M. Tokoro. Evolving learnable neural networks under changing environments with

various rates of inheritance of acquired characters: Comparison between Darwinian and Lamar-

ckian evolution. Artificial Life, 5(3):203–223, 1999.

A. A. Sherstov and P. Stone. Function approximation via tile coding: Automating parameter choice.

In J.-D. Zucker and I. Saitta, editors, SARA 2005, volume 3607 of Lecture Notes in Artificial

Intelligence, pages 194–205. Springer Verlag, Berlin, 2005.

W. D. Smart and L. P. Kaelbling. Practical reinforcement learning in continuous spaces. In Proceed-

ings of the Seventeeth International Conference on Machine Learning, pages 903–910, 2000.

915

WHITESON AND STONE

A. J. Smith. Applications of the self-organizing map to reinforcement learning. Journal of Neural

Networks, 15:1107–1124, 2002.

P. Stagge. Averaging efficiently in the presence of noise. In Parallel Problem Solving from Nature,

volume 5, pages 188–197, 1998.

K. O. Stanley, B. D. Bryant, and R. Miikkulainen. Evolving adaptive neural networks with and

without adaptive synapses. In Proceeedings of the 2003 Congress on Evolutionary Computation

(CEC 2003), volume 4, pages 2557–2564, 2003.

K. O. Stanley, B. D. Bryant, and R. Miikkulainen. Evolving neural network agents in the NERO

video game. In Proceedings of the IEEE 2005 Symposium on Computational Intelligence and

Games, 2005.

K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topologies.

Evolutionary Computation, 10(2):99–127, 2002.

K. O. Stanley and R. Miikkulainen. Competitive coevolution through evolutionary complexification.

Journal of Artificial Intelligence Research, 21:63–100, 2004a.

K. O. Stanley and R. Miikkulainen. Evolving a roving eye for go. In Proceedinngs of the Genetic

and Evolutionary Computation Conference, 2004b.

R. Sutton. Learning to predict by the methods of temporal differences. Machine Learning, 3:9–44,

1988.

R. S. Sutton. Generalization in reinforcement learning: Successful examples using sparse coarse

coding. In Advances in Neural Information Processing Systems 8, pages 1038–1044, 1996.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge,

MA, 1998.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforcement

learning with function approximation. In Advances in Neural Information Processing Systems,

pages 1057–1063, 2000.

G. Tesauro. TD-Gammon, a self-teaching backgammon program, achieves master-level play. Neu-

ral Computation, 6(2):215–219, 1994.

J. A. van Mieghem. Dynamic scheduling with convex delay costs: The generalized cµ rule. The

Annals of Applied Probability, 5(3):809–833, August 1995.

W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das. Utility functions in autonomic systems. In

Proceedings of the International Conference on Autonomic Computing, pages 70–77, 2004.

C. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, Cambridge, 1989.

S. Whiteson and P. Stone. Adaptive job routing and scheduling. Engineering Applications of Arti-

ficial Intelligence, 17(7):855–869, 2004. Corrected version.

916

EVOLUTIONARY FUNCTION APPROXIMATION FOR REINFORCEMENT LEARNING

J. Wildstrom, P. Stone, E. Witchel, R. J. Mooney, and M. Dahlin. Towards self-configuring hard-

ware for distributed computer systems. In The Second International Conference on Autonomic

Computing, pages 241–249, June 2005.

K. Yamasaki and M. Sekiguchi. Clear explanation of different adaptive behaviors between Dar-

winian population and Lamarckian population in changing environment. In Proceedings of the

Fifth International Symposium on Artificial Life and Robotics, volume 1, pages 120–123, 2000.

X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423–1447, 1999.

W. Zhang and T. G. Dietterich. A reinforcement learning approach to job-shop scheduling. In

Proceedings of the 1995 Joint Conference on Artificial Intelligence, pages 1114–1120, 1995.

M. Zweben and M. Fox, editors. Intelligent Scheduling. Morgan Kaufmann, 1998.

917

