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Abstract. We discuss a model for evolutionary game dynamics in a growing,

network-structured population. In our model, new players can either make

connections to random preexisting players or preferentially attach to those

that have been successful in the past. The latter depends on the dynamics of

strategies in the game, which we implement following the so-called Fermi rule

such that the limits of weak and strong strategy selection can be explored.

Our framework allows to address general evolutionary games. With only two

parameters describing the preferential attachment and the intensity of selection,

we describe a wide range of network structures and evolutionary scenarios.

Our results show that even for moderate payoff preferential attachment, over

represented hubs arise. Interestingly, we find that while the networks are

growing, high levels of cooperation are attained, but the same network structure

does not promote cooperation as a static network. Therefore, the mechanism of

payoff preferential attachment is different to those usually invoked to explain the

promotion of cooperation in static, already-grown networks.
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1. Introduction

Classical game theory is a branch of applied mathematics that has been developed to describe

strategic interaction between fully rational individuals [1]. Evolutionary game theory is an

elegant way to abandon the often problematic rationality assumption of classical game theory

and to introduce a natural dynamics to that classical concept [2, 3]. In the past, evolutionary

game theory has been used to describe either cultural learning dynamics or genetic reproduction

under frequency dependent selection [4]. More recently, it has attracted a lot of interest in the

physics community in the context of nonlinear dynamics [5, 6], disordered systems [7]–[9],

finite size effects [10, 11], or spatially extended systems [12]–[18]. Statistical mechanics

provides a powerful tool to describe evolutionary game dynamics in spatially extended,

structured populations. Besides, in the last decade network theory has contributed significantly

to our quantitative understanding of structured systems which go beyond the regularity of simple

lattices [19].

A typical setup is the following: agents are assigned to the nodes of a network, which can

be a regular lattice or have a more complex structure. Then, agents play an evolutionary game in

which more successful strategies spread on the system. Describing these systems analytically is

tedious and only possible in special cases [20]–[23]. Moreover, there are few general statements

that can be made on evolutionary dynamics in such spatial systems [24].

Here, we drop another simplifying assumption and consider evolutionary games in

growing, network-structured populations. In other words, instead of taking a growth algorithm

for a particular network and later simulating evolutionary dynamics on that network, we

grow the network while the evolutionary game is played. The interplay between growth and

evolutionary game dynamics leads to interesting network structures and allows to disentangle

effects based on topology from effects based on growth of the network.

2. Growing structured populations

We address the case of a growing population in which new individuals establish connections

to the existing individuals, see also [25]. The newcomers can either connect to m arbitrary

individuals or preferentially attach to those that have been successful players in the past. Success

is based on the cumulated payoff π from an evolutionary game, which each individual plays with
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all its neighbors on the network. For the model itself, we do not have to specify the kind of the

game or the number of strategies.

We start from a small complete network of N0 individuals of one strategy. Subsequently,

new individuals arrive and form connections to existing individuals. Evolutionary dynamics

proceeds in the following ways:

(1) In each time step, every individual j plays with all its neighbors and obtains an accumulated

payoff π j .

All players chose between their old strategy and the strategy of a randomly selected

neighbor synchronously. Player j will adopt the strategy of its randomly selected neighbor

i with probability

T j→i =
e+β·πi

e+β·πi + e+β·π j
, (1)

where β is the intensity of selection. With probability 1 − T j→i , it will stick to its old

strategy. For β ≪ 1, selection is weak and the game is only a linear correction to random

strategy choice. For strong selection, β → ∞, it will always adopt a better strategy and

it will never adopt a worse strategy. This process is routinely used in evolutionary game

dynamics [13, 26, 27].

(2) Every τ time steps, a new individual with a random strategy is added to the system. For

τ ≪ 1, several nodes are added before individuals change strategies. For τ ≫ 1, the

network grows very slowly and the game dynamics can bring the system close to

equilibrium before a new node is added. The new individual establishes m links to

preexisting nodes, which are chosen preferentially according to their performance in the

game in the last time step. Node j is chosen as an interaction partner with probability

p j =
e+α·π j

∑N

l=1 e+α·πl

, (2)

where N is the number of nodes that already exist when the new node is added. The

remaining m − 1 links are added in the same way, excluding double links. For α = 0,

the newcomer attaches to a randomly chosen existing node. For small α, attachment is

approximately linear with payoff. For high α, the newcomers will make connections to

only very few nodes with high payoffs. For α → ∞, all newcomers will always attach to

the m most successful players.

Since m links and a single node are added in each τ time steps, the average degree of the

network is given by

N0(N0 − 1) 1

2
+ m t

τ

N0 + t

τ

, (3)

where t is the number of time steps that has passed. Throughout this work, we will concentrate

on m = 2 and N0 = 3.

Let us first focus on the simplest case in which each interaction leads to the same payoff,

which we set to one. Then, the payoffs π j are just the number of interactions an individual has,

i.e. the degree κ j of the node (normalizing by the degree of the node would essentially wash

out the effect of the topology at this point [28, 29]). Evolutionary dynamics of strategies has no

consequences and thus, the topology is independent of β. This allows us to discuss the growth
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dynamics without any complications arising from the dynamics of strategies. We have several

simple limiting cases:

• For α = 0, the newcomer attaches at random to a new node. This leads to a network in

which the probability that a node has k links decays exponentially fast with k. This situation

corresponds to the case studied in [30], as individuals introduced earlier are likely to get

more links. In this case, topology is independent of strategies for all intensities of selection

β even when individuals play different strategies leading to different payoffs. Whenever

α > 0, there is an interplay between topological dynamics and strategy dynamics.

• For α ≪ 1, we can linearize p j . In this case, we obtain

p j =
α−1 + κ j

∑N

k=1 (α−1 + κk)
. (4)

Thus, we recover the linear preferential attachment model introduced by Dorogovtsev

et al [31]. When strategies differ in their payoffs, then not only the degree but also the

strategy of the nodes and their neighbors will influence the probability to attach to a node.

• When α is large, we will typically observe a network in which m of the N0 nodes of

the initial complete network will be connected to almost all nodes that have been added

during the growth stage. The emergence of these super-hubs hinges on the nonlinearity in

equation (2).

Examples for the network structures in these limiting cases are given in figure 1. Next, we

turn to evolutionary games in which the payoff per interaction is no longer constant, but depends

on the strategies of the two interacting individuals. In general, such an interplay of evolutionary

dynamics of the strategies and the payoff-preferential attachment will change the structure of

the network.

3. Playing evolutionary games during growth

In principle, our framework allows to address any game between individuals, even repeated

games or games with many strategies can be considered. However, we focus on the prisoner’s

dilemma here as an example of a one-shot game with two strategies [32]–[34]. Two players can

choose between cooperation and defection. In the simplest case, there is a cost c to cooperation,

whereas a cooperative act from an interaction partner leads to a benefit b (> c). The game can

be written in the form of a payoff matrix,

(

C D

C b − c −c

D b 0

)

. (5)

No matter what the opponent does, defection leads to a higher payoff (due to b > b − c

and 0 > −c). Thus selfish, rational players should defect. Similarly, if the payoff determines

reproductive fitness, evolution will lead to the spread of defection. However, the payoff for

mutual defection is smaller than the payoff for mutual cooperation (b − c > 0) and thus players

face a dilemma. One way to resolve the dilemma is to consider structured populations in which

players only interact with their neighbors [35]. Here, we follow this line of research and consider

in addition growing populations, as discussed above.

New Journal of Physics 11 (2009) 083031 (http://www.njp.org/)

http://www.njp.org/


5

0 5 10 15 20 25 30 35 40
k

10
–6

10
–4

10
–2

10
0

)
k(

P

10
0

10
1

10
2

10
3

10
4

k

10
–6

10
–4

10
–2

10
0

)
k(

P

10
0

10
1

10
2

10
3

k

10
–6

10
–4

10
–2

10
0

)
k (

P

(a)

(b)

(c)

Figure 1. Networks for a game in which both strategies have identical payoffs,

such that the payoff is given by the degree of a node. The left-hand side shows the

degree distributions of networks of size N = 104, while the right-hand side shows

snapshots of networks of N = 100 nodes. (a) For α = 0.0, the degree distribution

decays exponentially. (b) For α = 0.1, some highly connected nodes appear in

the network and the degree distribution begins to resemble a power-law. (c)

Already for α = 1.0, the vast majority of nodes (>99.9%) have only two links.

In addition, m = 2 of the N0 = 3 initial nodes are connected to almost all other

nodes (degree distributions are obtained from an average over 100 networks, note

that the x-axis is linear in (a), but logarithmic in (b) and (c)).
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Figure 2. The average level of cooperation under strong selection (β = 1) and

α = 1 depending on the timescale of attachment, τ . Cooperation benefits most

from small values of τ , i.e. when many new nodes are added before players

update their strategies. For random attachment (α = 0, inset) cooperation does

not emerge, only for high benefit to cost ratios a few cooperators prevail (m = 2,

N0 = 3, values obtained from 102 averages over networks of final size N = 1000,

averaged when the network stops growing).

Typically, one is interested in the promotion of cooperation on different network structures.

Figure 2 shows the average level of cooperation for strong selection as a function of τ . It turns

out that payoff preferential attachment increases the level of cooperation significantly compared

to random attachment. This effect is also present for weak selection, but less pronounced.

Cooperation increases most for small τ , i.e. when many nodes are added before strategies are

changed. This puts the system further from equilibrium, whereas the case of large τ means that

strategies have been equilibrated at least locally before the next new individual with a random

strategy is added to the system. Note that for τ larger than a certain value, cooperation levels

become independent of τ , which points out that playing once a given number of new players

are incorporated is enough to reach a dynamical equilibrium.

Since there is an interaction between strategy dynamics and network growth, the topology

will change under selection. In figure 3, we show how the topology for the prisoner’s dilemma

changes with the benefit to cost ratio b/c, the intensity of selection β and the attachment

parameter α (see also figure 1). It turns out that the influence of the game on the degree

distribution is relatively weak, for small degrees a clear difference is only found for large α

and small b/c. The distribution of the relatively few nodes with many connections, however, is

more sensitive to changing either b/c or β.

4. Promotion of cooperation in growing networks

As in most structured populations, cooperators that are disadvantageous in the prisoner’s

dilemma benefit from the spatial structure in a well-mixed population. Of course, this effect
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Figure 3. Impact of the game dynamics on the degree distribution at the end of

network growth. Left column corresponds to α = 0.1, while the right one is for

α = 1. In general, game dynamics has only a weak impact on the topology of the

system. However, there is a trend that stronger selection increases the number

of nodes with fewer links and decreases the number of highly connected nodes

(N0 = 3, m = 2, τ = 0.1, distributions averaged 103 over realizations of networks

of 103 nodes each).
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Figure 4. The average level of cooperation 〈c〉 104 time steps after the network

stops growing. For α = 0.1 (left) the level of cooperation exceeds 50% only

for very high benefit to cost ratios b/c. For α = 1.0 (right), the abundance of

cooperators is significantly higher. Even for neutral strategy dynamics (β = 0),

payoff preferential attachment can lead to high levels of cooperation in this case

(N0 = 3, m = 2, τ = 0.1, averages over 103 different networks of size 103).

is larger when cooperation becomes more profitable, i.e. when the benefit to cost ratio b/c

increases. It turns out that for weak payoff preferential attachment (small α), the promotion of

cooperation is relatively weak and levels of cooperation beyond 50% are only reached when

cooperation is very profitable, see figure 4. However, when the probability to attach to the most

successful nodes becomes large (large α), then the average fraction of cooperators becomes

larger, approaching one when the benefit cost ratio b/c is high.

Interestingly, for small b/c ratios, the abundance of cooperators decreases with increasing

β, whereas it increases with the intensity of selection for large b/c ratios. The existence of a

threshold for intermediate b/c can be illustrated as follows for large α: assume that we start

from N0 fully connected cooperator nodes. For τ < 1, we add 1/τ nodes with m = 2 links,

on average half of them defectors and half of them cooperators. All new players interact only

with the initial cooperator nodes, such that an initial cooperator will on average obtain (m/N0τ)

new links. The payoff of a new defector is mb. The average payoff of an initial cooperator is

(b − c)(N0 − 1 + (1/2)(m/N0τ)) − c(1/2)(m/N0τ). Both payoffs are identical for

b

c
=

(1/τ) + (N0(N0 − 1)/m)

(1/2τ) − N0 + (N0(N0 − 1)/m)
. (6)

For large b/c, cooperators will dominate in the very beginning of network growth. The threshold

increases with τ and decreases with N0: the larger the initial cooperator cluster and the more

nodes are added before strategies are updated, the easier it is for cooperation to spread initially.

This argument shows qualitatively that a crossover in the abundance of cooperators should exist,

and therefore that above a certain threshold, it is easier for cooperation to spread. This argument

will hold quantitatively only in the very beginning of network growth.

In general, the average level of cooperation can be based on two very different scenarios:

either it is the fraction of realizations of the process that ultimately ends in full cooperation, or

it is the average abundance of cooperators in a network in which both cooperators and defectors
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Figure 5. The dependence of the probability of fixation for one strategy within

104 time steps after growth has stopped on the attachment parameter α (left

column α = 0.1, right column α = 1) for different intensities of selection β. For

small α, the degree distribution decays exponentially and fixation is relatively

fast, regardless of the intensity of selection. For α = 1.0, the network is more

heterogeneous. As discussed in the text, for intermediate values of b/c (≈ 3.5),

the probability of fixation within 104 time steps is smaller than for higher and

smaller b/c. For very high b/c and strong selection, one observes a coexistence

of cooperators and defectors for a very long time rather than fixation for

one of the strategies (N0 = 3, m = 2, τ = 0.1, averages over 103 independent

realizations of a network of 103 nodes).

are present. For any finite intensity of selection β, we have T j→i > 0, regardless of the payoffs.

Thus, after growth has stopped, our dynamics describes a recurrent Markov chain with two

absorbing states in which all players follow one of the two strategies. Therefore, ultimately

one of the two strategies will go extinct, in contrast to evolutionary processes that do not allow

disadvantageous strategies to spread [25]. However, the time to extinction can become very

large, in particular when the intensity of selection is high or the population size is large [27, 36].

In figure 5, we analyze this issue numerically. We address the probability that fixation (for either

cooperation or defection) occurs within 104 time steps after the network has stopped growing.

For small α, the results follow the intuition from well-mixed populations: fixation within this

time is more likely if the intensity of selection is weaker. With increasing benefit to cost ratio,

fixation times increase and a fixation within the first 104 time steps becomes less and less likely.

For large α, however, fixation is faster for strong selection (large β) for a wide range of

parameters. Only when the b/c ratio is very high are fixation times very large under strong

selection. This is based on the peculiar structure of the network obtained for large α. In addition,

we observe an area in figure 5 where the fixation time increases slightly before it decreases

again, i.e. the probability for fixation in the first 104 time steps has a minimum. Interestingly, this

occurs for the range of b/c ratios where the average levels of cooperation intersect at 50% for

the different intensities of selection. In this parameter region, neither cooperators nor defectors

are clearly favored. Thus, they will initially both spread. When the abundance of both strategies

is approximately constant in the beginning, then it will be more difficult to completely wipe

New Journal of Physics 11 (2009) 083031 (http://www.njp.org/)

http://www.njp.org/


10

out one strategy later. Thus, the increased time of fixation in the parameter region where the

abundance of cooperation becomes 50% makes intuitive sense.

5. Does cooperation benefit from growth or only from topology?

Typically, the promotion of cooperation in the prisoner’s dilemma is analyzed on static

networks. Our model allows a feedback between the game dynamics and the growth of the

network.

What happens when the network stops growing? Typically, one would expect that defectors

profit from growth, because there is a steady flow of new cooperators that they can potentially

exploit. Thus, cooperation should increase if the game dynamics proceeds on the fully grown,

static network. This has also been observed in a previous paper [25]. In contrast to that paper,

here we have changed the game dynamics in such a way that individuals sometimes can also

adopt a worse strategy. It has been shown that this seemingly small change can significantly

decrease the level of cooperation [37]. The overall level of cooperation drops significantly and

is only higher than 50% if cooperation is very profitable. In addition, the level of cooperation

now decays once the network no longer grows, see figure 6. This means that cooperators, not

defectors, benefit from the continuous supply of new players.

Next, we can ask whether the topologies that are obtained from the network growth are

powerful promoters of cooperation at all. This can be tested by taking the fully grown, static

network and run the game dynamics on the fixed network with initially random strategies,

50% cooperators and 50% defectors. Interestingly, this does not lead to any significant levels

of cooperation (cf figure 6). Thus, our model of network growth based on payoff preferential

attachment itself leads to comparably high levels of cooperation, while the resulting topology

alone does not support cooperation in the prisoner’s dilemma.

6. Discussion

Our model for evolutionary game dynamics in a growing, network-structured population is

a dynamical network model [38]. Here, the network grows, in contrast to most models for

evolutionary games on dynamical networks that consider a constant population size [39]–[51].

Individuals cannot break links and cannot control directly how many new individuals will

establish connections with them.

An important difference with previous work [25] is that under strong payoff preferential

attachment, the topology of the networks generated is dominated by the presence of a few hubs,

which attract most of the links of the rest of the nodes. The existence of very few hubs and a

large number of sparsely connected nodes in network models have been previously noticed [52].

In fact, it has been shown that when networks are grown following a nonlinear preferential

attachment rule of the sort p j =
kν

j
∑N

l=1 kν
l

, with ν > 1, star-like structures are obtained [53]. Here,

we have shown that the same kind of network is produced when the dynamics driving the

attachment process is dominated by the most successful players. Even when payoff preferential

attachment is not too strong (for instance, for α = 0.1), super-hubs emerge, a clear mark that

successful players are likely to attract many of the links of the new nodes.

If newcomers preferentially attach to the successful players in the game, then high levels

of cooperation are possible. But this cooperation hinges upon the growth of the network,
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Figure 6. Does cooperation benefit from the topology only or also from growth?

Here we analyze the average level of cooperation in three cases: (i) once the

network is fully grown, (ii) after the game dynamics has proceeded 104 additional

steps beyond the growth phase of the network and (iii) 104 time steps after

the fully grown network has been re-initialized with random strategies.

Clearly, the grown network itself does not promote cooperation significantly.

Instead, the growth phase is of crucial importance. The intensity of selection

has only a minor influence on the phenomenon. (a) β = 0.01, (b) β = 0.1 and (c)

β = 0.5 (N0 = 3, m = 2, τ = 0.1, averages over at least 102 networks of size 103,

α = 0.1 in all cases).

the population structure alone would not lead to such high levels of cooperation. Thus,

payoff preferential attachment differs from the usual promotion of cooperation in structured

populations. In particular, it has been suspected that heterogeneous structures favor cooperative

behavior due to the existence of hubs. However, as figure 6 shows, the presence of super-hubs is

not enough to sustain cooperation in the networks grown following the scheme discussed here.

In other models, the probability of adopting a strategy that performs worse is zero

[16, 23, 25]. In particular, together with synchronous updating of strategies, this can lead to

evolutionary deadlocks, i.e. situations in which both strategies stably coexist. Here, we have

adopted an update scheme in which individuals sometimes adopt a strategy that performs worse.

Due to the presence of such irrational moves, sooner or later (often much later) one strategy
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will reach fixation. However, when β and the ratio b/c are large enough, both cooperation and

defection can coexist for a long time.

Let us also remark that our growth mechanism also has another interesting feature: it has

been shown that the average level of cooperation obtained in static, scale-free networks, is

robust to a wide range of initial conditions [54]. However, for the networks grown using the

payoff preferential attachment, the initial average number of cooperators in the neighborhood

of the super-hubs determines the fate of cooperation in the whole network, leading to a much

more sensitive dependence on the initial state of the system. From this point of view, the weak

dependence on the initial conditions reported in static scale-free networks is not trivial.

Finally, we point out that it would be of further interest to study the model discussed here

with other 2 × 2 games. As we have shown, the game dynamics seems to have a weak impact

on the structure of the resulting networks. Whether or not this holds in general will elucidate

the question of the influence of different games on the network formation process. For instance,

within the model discussed in [45], different topologies emerge when different game dynamics

are implemented.

In summary, our model shows that the interplay of game dynamics and network growth

leads to complex network structures. Moreover, not only the structure of the interaction network

is important for the evolution of cooperation, but also the particular way this structure is

obtained. Our work shows that playing while growing can lead to radically different results

with respect to the most studied cases in which game dynamics proceeds in static networks.
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