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Abstract

Evolutionary game dynamics in finite populations can be described by a frequency dependent,
stochastic Wright-Fisher process. We consider a symmetric game between two strategies, A and B.
There are discrete generations. In each generation, individuals produce offspring proportional to
their payoff. The next generation is sampled randomly from this pool of offspring. The total
population size is constant. The resulting Markov process has two absorbing states corresponding
to homogeneous populations of all A or all B. We quantify frequency dependent selection by
comparing the absorption probabilities to the corresponding probabilities under random drift. We
derive conditions for selection to favor one strategy or the other by using the concept of total
positivity. In the limit of weak selection, we obtain the 1/3 law: if A and B are strict Nash
equilibria then selection favors replacement of B by A, if the unstable equilibrium occurs at a
frequency of A which is less than 1/3.
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1 Introduction

Evolutionary game theory is the study of frequency dependent selection. The relative fitness
of two (or more) phenotypes (strategies) is not constant, but depends on the composition of
the population. Traditionally, evolutionary game dynamics are studied by deterministic
differential equations describing infinitely large populations. A wide-spread system is the
celebrated replicator dynamic which was introduced by Taylor & Jonker (1978) and
Hofbauer, Schuster & Sigmund (1979). Other game dynamics include imitation dynamics,
best-response dynamics, monotone selection dynamics and adjustment dynamics, see e.g.
Hofbauer & Sigmund (1998). All of these are deterministic descriptions applying to
infinitely large populations. Papers that deal with stochastic modifications include those of
Foster & Young (1990), Fudenberg & Harris (1992), Corradi & Sarin (2000), Dostálková &
Kindlmann (2004) and Imhof (2005a). For recent reviews and comprehensive treatments of
evolutionary game dynamics see Fudenberg & Tirole (1991), Binmore (1993, 1998),
Weibull (1995), Samuelson (1997), Fudenberg & Levine (1998), Hofbauer & Sigmund
(1998, 2003), Gintis (2000), Nowak & Sigmund (2004) and Imhof (2005b).

Imagine two strategies A and B engaged in a symmetric game with payoff matrix
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(1)

Consider an infinite population and denote by x the frequency of A and by 1 − x the
frequency of B. The payoff of A is fA = ax + b(1 − x). The payoff of B is fB = cx + d(1 − x).
The average payoff of the population is f̄ = xfA + (1 − x)fB. The replicator dynamics assume
that strategies reproduce proportional to their payoff. We have

This can be written as

If a > c and b > d then A dominates B; the only stable equilibrium is x = 1. If a < c and b < d
then B dominates A; the only stable equilibrium is x = 0. If a > c and b < d then A and B are
bi-stable; both x = 0 and x = 1 are stable equilibria; there is an unstable equilibrium at x* = (d
−b)/(a−b−c+d). If a < c and b > d then A and B co-exist; both x = 0 and x = 1 are unstable
equilibria; the only stable equilibrium is given by x* = (d−b)/(a−b−c+d).

If a > c then A is a strict Nash equilibrium. The equilibrium x = 1 is stable; an infinitesimally
small amount of B cannot invade. A closely related concept is evolutionary stability
(Maynard Smith 1982). A is an evolutionarily stable strategy (ESS) if either a > c or both a
= c and b > d. Again, if A is an ESS, then strategy B cannot invade. Note that strict Nash
implies ESS, but the converse does not hold. In both cases, however, a homogeneous
population of A is protected by natural selection against invasion by B.

The replicator dynamics and the uninvadability of a strict Nash equilibrium (and an ESS)
hold in the limit of infinitely large population size. It is natural to study evolutionary game
dynamics in finite populations. There are various approaches to studying game dynamics in
finite populations (Schaffer 1988, Kandori et al. 1993, Fogel et al. 1998, Ficici & Pollack
2000, Schreiber 2001). In one such approach, a frequency dependent Moran process was
investigated (Nowak et al. 2004, Taylor et al. 2004, Fudenberg et al. 2004). Again, let us
consider the interaction between two strategies A and B as given by payoff matrix (1). In
each step of the stochastic process, one individual is chosen for reproduction with
probability proportional to fitness. The offspring of this individual will replace a randomly
chosen individual. The total population size is constant and given by N. In the absence of
mutation, there are two absorbing states, corresponding to all A or all B. Denote by ρAB the
probability that a single A player in a population of N − 1 B players will generate a lineage
that will take over the whole population. We say that selection favors A replacing B if ρAB >
1/N, because for neutral drift the corresponding fixation probability would be 1/N.

If A and B are strict Nash equilibria, then there is an unstable equilibrium of the replicator
dynamics at a frequency of A given by x* = (d − b)/(a − b − c + d). For the frequency
dependent Moran process, it can be shown that selection favors A replacing B if x* < 1/3.
This surprisingly simple ‘1/3 law’ holds in the limit of weak selection and sufficiently large
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population size N. In particular, it turns out that the conditions of a strict Nash equilibrium
or an evolutionarily stable strategy (ESS) do not imply protection by natural selection
against invasion and replacement in finite populations.

The Moran process is well known in population genetics (Moran 1962, Bürger 2000, Ewens
2004) where it is normally used to study the dynamics of constant selection in finite
populations. The Moran process describes a biological population with asynchronous
reproduction. At any one time step a single individual is chosen for reproduction. There are
overlapping generations. In contrast, the Wright-Fisher process describes a biological
population with discrete generations. All individuals reproduce at the same time. They
generate a pool of offspring from which the next generation is chosen (Ewens 2004). Both
synchronous and asynchronous reproduction occur in biological populations, but in
population genetics the Wright-Fisher process is more widespread than the Moran process
(Ewens 2004). Therefore, we would like to extend our analysis of evolutionary game
dynamics in finite populations also to the Wright-Fisher process.

This is a difficult endeavour. The Moran process is a birth-death process and consequently
allows simple explicit solutions for the absorption probabilities. In contrast, the Wright-
Fisher process that we study here is a Markov process nearly all of whose one-step transition
probabilities are strictly positive, and the process does not allow such explicit solutions.
Nevertheless we can derive analytic results and outline similarities and differences between
the two processes. In particular, it turns out that the same ‘1/3 law’ holds for the Wright-
Fisher process.

A common approach to analysing Wright-Fisher-type processes for large finite populations
is to derive mathematically more tractable diffusion approximations. In the present paper we
do not rely on such an approximation and study the Markov chain directly. In so doing we
take advantage of the fact that the transition matrix is totally positive, which gives useful
information on the fixation probabilities. Most of our results apply to every finite population
size. Starting from these general results, we also derive two assertions for sufficiently large
finite populations (Theorems 4 and 5). It is, however, straightforward to check whether a
given population size is indeed large enough in order that these assertions hold. This would
not be the case had we used the diffusion approximation.

2 A Frequency Dependent Wright-Fisher Model

Consider a finite population consisting of N individuals, each playing either A or B. If i
players use strategy A, every A-player faces N − i opponents using strategy B and i − 1
opponents using A. Under random mating, the expected payoff to A-players is therefore
given by

Similarly, the expected payoff to B-players is

Imhof and Nowak Page 3

J Math Biol. Author manuscript; available in PMC 2012 February 15.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



We assume that the degree to which the payoffs contribute to fitness is specified by a
parameter w ∈ [0, 1]. Thus the fitness of A- and B-players is

respectively. Both in the deterministic replicator model for infinite populations and in the
stochastic replicator model of Fudenberg and Harris (1992), the evolution of the population
is determined by the difference between the fitness of each strategy and the average fitness.
Consequently, for these models the parameter w would affect only the speed of evolution,
but would not influence the long-run behavior as long as w > 0. For finite population
models, however, the parameter w does have an impact on the long-run behavior. Note that
the case w = 0 corresponds to neutral selection.

We now define a Wright-Fisher process with frequency dependent fitness to describe the
evolution of the finite population. We assume throughout that all payoffs are positive.
Suppose that in the current generation i individuals use strategy A. Then the composition of
the next generation is determined through N independent binomial trials, where in each trial,
the probability of producing an A-player is given by ifi/(ifi + (N − i)gi). Let X(n) denote the
number of A-players in the nth generation. Then {X(n)} is a discrete-time Markov chain with
state space {0, …, N} and transition probabilities

(2)

The states 1, …, N − 1 are transient, and the states 0 and N are absorbing. For every initial
configuration of the population, the process {X(n)} will reach one of the absorbing states in
finite time and will then stay there forever. That is, within finite time, the whole population
will use the same strategy.

Let xi denote the probability that the process, starting from X(0) = i, ends up in state N. Of
particular interest is ρAB = x1, the probability that a single invading A-player can take over a
population of B-players. If x1 is larger than the corresponding fixation probability for a
neutral mutant, we say that selection favors A replacing B.

To emphasize to dependence on w, we write xi = xi(w). If w = 0, the process {X(n)} is a
martingale, and the absorption probabilities are given by

(3)

Thus selection favors A replacing B if ρAB = x1(w) > 1/N, and selection favors B replacing A
if ρBA = 1 − xN−1(w) > 1/N. For every w ∈ [0, 1], the probabilities xi(w) are the unique
solution of the linear equations

(4)
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We now describe the relation between the fixation probabilities ρAB, ρBA and the fitness
differences fi − gi. While the fixation probabilities involve global aspects of the dynamics
and are difficult to evaluate, the fitness differences reflect only local properties and are
simple functions of the underlying game matrix and the population size. Note that

We say that selection favors A invading B if f1 > g1, and say that selection favors B invading
A if fN−1 < gN−1. The next theorem holds for any fixed w ∈ (0, 1] and every population size
N ≥ 2.

Theorem 1

a. ) If f1 ≥ g1 and fN−1 ≥ gN−1 with at least one inequality being strict, then xk > k/N
for all k = 1, …, N − 1, in particular, ρAB > 1/N and ρBA < 1/N.

b. If f1 ≤ g1 and fN−1 ≤ gN−1 with at least one inequality being strict, then xk < k/N
for all k = 1, …, N − 1, in particular, ρAB < 1/N and ρBA > 1/N.

Thus if selection favors A invading B and opposes B invading A, then for every non-
degenerate initial composition of the population, the probability of fixation at all A is larger
than the benchmark obtained by neutral selection. We then say that selection favors A. In
particular, in this case, A replacing B is favored whereas B replacing A is opposed by
selection.

Proof of Theorem 1—We are interested in the signs of the differences

From (4),

(5)

Every entry of the matrix  is positive and since every row sum of P̃ is strictly less
then 1, so is the spectral radius of P̃. If f1 ≥ g1 and fN−1 ≥ gN−1 with at least one inequality
being strict, then the expression on the right-hand side of (5) is non-negative and does not
vanish identically. It now follows by Theorem 2.1 in Seneta (1981) that the solution satisfies
di > 0 for all i, proving a). Part b) follows by symmetry.

Corollary 1

Suppose c < b. Then there exists a number N0 ≥ 2, such that if the population size satisfies N
≤ N0, selection favors A in the sense that xi(w) > i/N, i = 1, …, N − 1.

This is obvious from Theorem 1 and the fact that if N = 2, then f1 − g1 = fN−1 − gN−1 = w(b
− c). Since Theorem 1 gives only a sufficient condition for selection to favor A, the maximal
N0 for which that condition is satisfied will in general be smaller than the maximal
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population size for which selection favors A. If selection is weak, the precise threshold can
be obtained from Theorem 3 a) in the next section.

We say that selection favors change if it favors both A replacing B and B replacing A.
Selection opposes change if neither A replacing B nor B replacing A is favored. The next
theorem gives necessary conditions for selection to favor or oppose change.

Theorem 2

Let N ≥ 3.

a. If ρAB < 1/N and ρBA < 1/N, then f1 < g1 and fN−1 > gN−1.

b. If ρAB > 1/N and ρBA > 1/N, then f1 > g1 and fN−1 < gN−1.

In words, if selection opposes change, then selection must already oppose A and B invading
each other. Selection can favor change only if mutual invasion is favored. Note that if N = 2,
then ρAB = 1 − ρBA, so that neither case a) nor case b) of Theorem 2 can occur. This explains
why only populations of size N ≥ 3 are considered here.

The proof of Theorem 2 uses the concept of total positivity, see Karlin (1968). A matrix is
called totally positive if all its minors of every order are non-negative.

Lemma 1

The transition matrix  with entries pij given by (2) is totally positive.

The proof of the lemma is in the appendix.

Proof of Theorem 2—We prove only a); the proof of b) is similar. Thus let

(6)

The fitness difference fi − gi is an affine function of i, that is, fi − gi is of the form α + βi.
Therefore, if f1 = g1 and fN−1 = gN−1, then fi = gi for every i. This would imply ρAB = ρBA =
1/N, contradicting (6). Hence f1 ≠ g1 or fN−1 ≠ gN−1. It now follows from (6) and Theorem 1
that

(7)

For an indirect argument assume that f1 > g1 and fN−1 < gN−1. Let δi = xi(w) − i/N. It was
shown in the proof of Theorem 1 that δ = (δ1, …, δN−1)T is the solution of [I − P̃] δ = h,

where , h = (h1, …, hN−1)T and hi = i(N − i)(fi − gi)/(N (ifi + (N − i)gi)), i = 1, …,

N − 1. As the spectral radius of P̃ is strictly less than 1, . Hence

(8)

where .
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It follows from Lemma 1 that P̃, a submatrix of the transition matrix, is totally positive.
Thus, in view of the Binet-Cauchy formula, every power P̃k is totally positive as well. The
assumption that f1 > g1 and fN−1 < gN−1 implies that the sequence h1, …, hN−1 has exactly
one sign change from + to −. It follows from the theorem on variation-diminishing
properties of totally positive matrices (Karlin 1968, page 233) that for every k, the sequence

 has either no sign change or exactly one, which must be from non-negative to

non-positive. Specifically, for every k,  for all i, or  for all i, or else there

exists some i0 = i0(k) such that  for i ≤ i0 and  for i > i0. Let

where inf ∅ = ∞. Then, for every k < k0,  and . Thus if k0 = ∞, then, by (8),

d1 ≥ 0, that is, ρAB ≥ 1/N, contradicting (6). Therefore, k0 < ∞. If  for all i, then for

every k ≥ k0, q(k) = P̃k−k0q(k0) is a non-negative vector. In particular,  for all k ≥ 0, so

that again ρAB ≥ 1/N, contradicting (6). A similar argument shows that if  for all i,
then ρBA ≥ 1/N, contradicting (6). Thus the assumption f1 > g1 and fN−1 < gN−1 must have
been false, and it follows from (7) that f1 < g1 and fN−1 > gN−1.

3 Weak Selection

Let us study the fixation probabilities when selection is weak, that is, when w is close to

zero. Observe that if the derivative  is positive, then selection favors A replacing B for

w > 0 sufficiently small. Set  and let  and  denote the derivatives of fi and gi with
respect to w. Then y1, …, yN−1 are the unique solution of the linear system

(9)

Indeed, from (4) and (3),

But  is just the expectation of a binomial random variable with parameters N
and ifi/(ifi + (N − i)gi), so that
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This shows that y1, …, yN−1 are a solution of (9). The solution is unique since the spectral

radius of the matrix  is strictly less than 1. It is shown in the appendix that the
solution is given by

(10)

The next theorem gives, for weak selection, a complete classification of the fixation
probabilities ρAB and ρBA in terms of a, b, c, d and N.

Theorem 3

Let

The following assertions hold for w > 0 sufficiently small.

a. If α > 0 and β > 0, then selection favors A: xi(w) > i/N for all i = 1, …, N − 1. If α
< 0 and β < 0, then selection favors B: xi(w) < i/N for all i = 1, …, N − 1.

b. If α > 0 and β < 0, then selection favors change: ρAB > 1/N and ρBA > 1/N.

c. If α < 0 and β > 0, then selection opposes change: ρAB < 1/N and ρBA < 1/N.

Proof—We have  and . Thus if α > 0 and β > 0, then

 and . It is obvious from (10) that this implies that  for all i = 1, …, N
− 1. Therefore, for w > 0 sufficiently small, xi(w) > xi(0) = i/N for all i. The other cases are
similar.

We now turn to games that have two strict Nash equilibria and apply Theorem 3 to analyse
the Wright-Fisher process for large but finite populations. The result is surprising and
surprisingly simple: Let x* = (d−b)/(a−b−c+d), which is the invasion barrier in the infinite
population case. If x* < 1/3, selection favors A; if x* > 2/3, selection favors B; otherwise
selection opposes change. The last statement remains true even if not just one mutant but a
whole group of mutants tries to invade, provided the population is large enough in
comparison to the group. Moreover, whether selection opposes change from A to B more
strongly than change from B to A depends simply on whether x* < 1/2.

Write ρAB(i) = xi and ρBA(i) = 1 − xN−i.

Theorem 4

Suppose a > c and d > b. Let i0 be a fixed group size. Then there exist N0 ≥ 2 such that for
every population size N ≥ N0 the following holds, provided selection is sufficiently weak,
that is, 0 < w ≤ w0(N).

a. If x* < 1/3, then
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b. If 1/3 < x* < 1/2, then

c. If 1/2 < x* < 2/3, then

d. If 2/3 < x*, then

Proof—Note first that x* < 1/3 if and only if the leading coefficient a + 2b − c − 2d of the
polynomial defining α in Theorem 3 is positive; and x* < 2/3 if and only if the leading
coefficient of β is positive. Thus if x* < 1/3, then both α > 0 and β > 0 for N sufficiently
large. Part a) is therefore a consequence of Theorem 3 a). Part d) follows along similar lines.

To prove b) assume that 1/3 < x* < 1/2. This is equivalent to a + 2b − c − 2d < 0 < a + b − c

− d. Using the explicit expression (10) for  we obtain that for every fixed i,

Consequently, there exists a number N0 such that (d/dw)ρAB(i)|w=0 < 0 and (d/dw) [ρAB(i) −
ρBA(i)]|w=0 > 0 for every N ≥ N0 and every i = 1, …, i0. For these N and i, ρAB(i) < 1/N and
ρAB(i) − ρBA(i) > 0, provided 0 < w ≤ w0(N). This proves b). The proof of c) is analogous.

Suppose that in the situation of Theorem 4, x* < 1/3. By solving two quadratic equations one
may explicitly determine a number N0 such that for every N ≥ N0 both α and β are positive.
The assertion under part a) of Theorem 4 holds as soon as N ≥ N0. In the remaining cases it
is likewise straightforward to compute explicitly a value N0 such that the inequalities for the
fixation probabilities hold whenever N ≥ N0.

Example: Consider a game with payoff matrix

Then b > c and a + 2b > c + 2d, so that x* < 1/3. Under weak selection, the frequency
dependent Moran process introduced in Nowak et al. (2004) will favor A replacing B for
every population size N. In the Wright-Fisher model, however, selection favors A replacing
B for N = 2 and N ≥ 8, but opposes A replacing B for N = 3, …, 7.
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We next present a dual result to Theorem 4 for games with an interior equilibrium point x*.
If x* < 1/3, selection now favors B; if x* > 2/3, selection favors A. Otherwise selection favors
change, and whether selection favors change from A to B more strongly than change from B
to A depends simply on whether x* < 1/2.

Theorem 5

Suppose a < c and d < b. Let i0 be a fixed group size. Then there exist N0 ≥ 2 such that for
every population size N ≥ N0 the following holds, provided selection is sufficiently weak,
that is, 0 < w ≤ w0(N).

a) If x* < 1/3, then

b) If 1/3 < x* < 1/2, then

c) If 1/2 < x* < 2/3, then

a) If 2/3 < x*, then

The proof of Theorem 5 is similar to that of Theorem 4 and is therefore omitted. Note that it
is again straightforward to compute explicitly a threshold N0 such that the claimed
inequalities hold for every N ≥ N0.

4 A Different Playing Scheme

In calculating the fitness of A- and B-players we have so far used the expected payoffs for
random mating. That is, we assumed that between two consecutive time steps of the Markov
chain, either the game is infinitely often played or everyone plays everyone else exactly
once. A more realistic approach would be to assume that the game is played by finitely
many randomly chosen pairs. Then the realized payoffs are stochastic, since they depend on
what pairs have been chosen, and so the transition probabilities of the Wright-Fisher process
become more involved.

In this section we study the simple case where at each time point n only one randomly
chosen pair plays the game. Every member of the population has fitness equal to 1, except
for the two players chosen. Their fitness is determined by the payoffs of the game. More
generally, the fitness of the two players is a convex combination of their initial fitness, also
equal to 1, and the payoffs. The degree to which the payoffs contribute to fitness is
measured by w ∈ [0, 1]. To calculate the transition probabilities for a frequency-dependent
Wright-Fisher process based on this mating scheme, suppose that in the present population i
players use strategy A and N − i players use B. Then the probabilities that a pair of A-
players, a mixed pair, or a pair of B-players is chosen are, respectively,
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If two A-players are chosen, the total fitness of all the A-players is i − 2 + 2(1 − w + wa) = i
+ 2w(a − 1) and the total fitness of the population is N + 2w(a − 1). In this case, the next
generation has a binomial distribution with parameters N and

The corresponding parameters for the two other possible pairs are

The transition probabilities are mixtures of three binomial distributions:

Let

Theorem 6

a. If α > 0 and γ > 0, then xi > i/N for all i = 1, …, N − 1, in particular ρAB > 1/N and
ρBA < 1/N.

b. If α < 0 and γ< 0, then xi < i/N for all i = 1, …, N − 1, in particular ρAB < 1/N and
ρBA > 1/N.

Proof—Set h(i) = E[X1|X0 = i] − i. As there are no mutations, h(0) = h(N) = 0. Furthermore,

which shows that h is polynomial of degree 3. Thus h can have at most one sign change in
(0, N). We have
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Hence if α > 0 and γ > 0, then h(1) > 0 and h(N − 1) > 0. This in turn implies that h(i) > 0 for
all i = 1, …, N − 1. That is, {Xn} is a submartingale, and it follows from the optional
stopping theorem (Karlin & Taylor 1975) that

This proves a). The proof of b) is similar.

All the results for weak selection presented in Section 3 hold unchanged for the mating

scheme of the present section. To see this set . Then, for i = 1, …, N − 1,

Thus the derivatives of the current fixation probabilities satisfy exactly the same system of
equations as those in Section 3, apart from an unimportant constant factor 2/N. It is therefore
obvious that Theorems 3 to 5 hold in the present situation as well.

5 Discussion

In this paper, we have studied a Wright-Fisher process with frequency-dependent selection
in order to investigate game dynamics in finite populations with discrete generations. We
have compared the probability ρAB that a single individual using strategy A takes over a
population of B-players with the corresponding probability under neutral drift, which is 1/N.
We say that selection favors A replacing B if ρAB > 1/N, selection favors change if ρAB > 1/N
and ρBA > 1/N, and selection opposes change if ρAB < 1/N and ρBA < 1/N. In the case of
strong selection, we have derived simple sufficient conditions for selection to favor one
strategy over the other and necessary conditions for selection to favor or oppose change,
respectively.

For weak selection, we have obtained a complete characterization for selection to favor one
strategy, or to favor or to oppose change. The characterization involves only two simple
quadratic polynomials in N. We have shown in an example that the frequency dependent
Wright-Fisher process can behave very differently from the frequency dependent Moran
process studied by Nowak et al. (2004) when the population is small. However, the
characterization yields that for sufficiently large (but finite) populations, the ‘1/3 rule’ of the
Moran process also holds for the Wright-Fisher process: in the coordination case, selection
favors A replacing B if the unstable equilibrium point is less than 1/3. Our result also shows
that in a finite population model, the standard ESS condition does not imply protection
against invasion and replacement. This is in stark contrast to the standard model for infinite
populations, the replicator dynamics, where every ESS is proof against invasion.
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Appendix

Proof of Lemma 1

The ith row of the transition matrix describes a binomial distribution with parameters N and
πi = ifi/(ifi + (N − i)gi). We will show that π0 < π1 · · · < πN. This implies that the matrix is
totally positive, see Karlin (1968), page 19. Note that πi < πi+1 is equivalent to E[X1|X0 = i] <
E[X1|X0 = i + 1], which seems reasonable but needs to be verified. Regarding i as a
continuous variable, one has

Proof of (10)

To solve (9), consider candidates of the form

Using the moment formulas for the binomial distribution, in particular

one may verify that

As the right-hand side of (9) coincides with a third degree polynomial in i that vanishes at i

= 0 and i = N, it follows that the solution can be written in the form . A
somewhat tedious calculation shows that
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