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To better control the scope of information propagation and understand its dynamic characteristics, we propose an information
propagation model based on evolutionary game theory. e model can simulate an individual’s strategy selection in social
networks when facing two pieces of competitive information, whereby “competitive information” is defined as two pieces of
information which have the opposite meaning. First, a reasonable payoff function is designed for individuals based on pairwise
interaction. Second, each individual selects a friend it trusts. ird, a probability value is used to indicate whether an individual
imitates the strategy of the selected friend. In the model, we consider not only the heterogeneous influence of friends’ strategies on
individual decision-making in the process of communication but also the attenuation of individuals’ attention to information
when information about friends is received repeatedly. e simulation results show that our model can accurately simulate the
propagation of two pieces of competitive information. Furthermore, we find that the basic payoff that accrues to individuals as a
result of spreading their information and the network topology are two factors that significantly influence the propagation result.
e results provide effective insights into how to better control and guide public opinion.

1. Introduction

In recent years, face-to-face conversation has gradually been
replaced by online communication using online social
software such as Facebook, WeChat, Twitter, and so on. e
timeliness and convenience of online social software has
enabled the propagation of information at an unprecedented
speed [1]. e wide use of social software virtually speeds up
the formation of public opinion. Public opinion has a sig-
nificant effect on society. It is difficult for people to avoid
being affected by public opinion in some way. Positive public
opinion can potentially make society more stable. However,
negative public opinion can be fake, anonymous, and un-
official [2, 3] and can be used to cause social unrest, trigger
large-scale social upheaval, as well as to shape financial
markets [4–6]. It is difficult to estimate the magnitude of the
impact of negative public opinion on the social trust system.
e essence of positive and negative public opinion is a kind

of collective behavior that is characterized by information
propagation.e low cost and lack of punitive consequences
can lead to a plethora of negative opinions being propagated.
us, in order to control and guide public opinion and
thereby reduce potentially negative impacts, it is necessary to
analyze the inner mechanism of information propagation
and research its rules and characteristics [7].

Establishing a reasonable social network model through
complex network theory to quantitatively research the in-
formation propagation process has become a prevailing
point of interest for current research [8–13]. e most
common approach is to build an undirected graph, where
each node represents a user or an individual and edges
express the relationships between individuals. en, some
nodes are selected as the source nodes to begin the prop-
agation through the networks. In the process of propagation,
whether an individual will transmit the information it re-
ceives is related to the social influence of the individual who
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transmits the information. ,is measure of social influence
will affect individuals’ thought and behavior. ,ere are two
kinds of influence propagation models that can be used to
capture this phenomenon: the linear threshold model and
the independent cascade model [14]. Most previous works
have focused on the analysis of influence propagation on the
static network structure and the discovery of the subset of
the most influential individuals. However, these studies are
limited in that they have not clarified the impact of the
information content on the propagation results.

Strategy selection based on game theory can be applied
to address this gap. Specifically, it can be used to consider the
influence of different friends on individuals and to fully
consider the perceived accuracy of the information based on
the recognition degree of the information. In a game theory
approach, each node has to select a strategy at a given step,
whereby “strategy selection” means that the individual
chooses whether to spread the information. If an individual
approves the information based on their interaction with
their friends, they choose to spread it. Otherwise, the in-
dividual stays silent. It is obvious that the individual’s
strategy is influenced by their interaction with their friends
[15]. ,us, the result of the information propagation is
determined by the strategy selected by the individuals in the
network.

Strategy selection is the main research focus of game
theory. Some research studies show that game theory pro-
vides a mathematical model for analyzing the strategic in-
teraction between rational decision-makers [16–19]. Sun
et al. [20] studied a knowledge propagation model by game
theory. In game theory, individuals are typically presumed to
exhibit complete rationality and have complete information
[17]. Nowak and May [21] analyzed the two-dimensional
square lattice-repeated prisoner’s dilemma game and
thereby introduced the spatial structure evolution game for
the first time. Evolutionary game theory combines game
theory with a dynamic evolution process and focuses on how
individuals who exhibit bounded rationality optimize their
payoff through adaptive learning over time during the re-
peated game [22]. Riehl and Cao [23] investigated the
control of evolutionary games on networks in which each
edge represents a two-player repeated game between
neighboring agents. In essence, the process of information
propagation based on complex networks is represented by
the process of the game for each payoff recipient [24–26]. In
contrast to other dissemination behavior, whether the in-
formation is spread is determined by the game players. In
this analysis, the information spreaders and receivers are the
players in the game. As time evolves, each player gambles
with their friends and updates their strategy to maximize
their payoff.

Evolutionary game theory provides an effective frame-
work for simulating the process of information propagation
in this context. ,e literature has considered how complex
network knowledge can be integrated with game theory, and
certain methods to simulate the real network information
propagation process have been proposed. Jiang et al. [27]
proposed an evolutionary game theoretical framework to
model the dynamic information diffusion process in social

networks. Li et al. [28] investigated the rumor diffusion
process according to the evolutionary game framework. ,e
author shows that punishing the higher degree nodes is the
most effective measure to reduce the spread of a rumor.
Jonnalagadda et al. [29] proposed a method of community
discovery based on evolutionary game theory. Kermani et al.
[30] used evolutionary game theory to identify the most
influential node in information propagation. Etesami et al.
[31] studied a class of games known as diffusion games that
model the competitive behavior of a set of social actors on an
undirected, connected social network.

Most existing works on information propagation that
apply evolutionary game theory focus on single-information
scenarios. In the real world, the phenomenon of multi-
information spreading is highly prevalent and much more
complicated [32]. Many works contributed to competing
pathogens. Beutel et al. [33] defined and studied the problem
of partial competition, where two viruses/products provide
partial immunity against each other. Chen et al. [34] pro-
posed a model where two strains compete with each other at
the expense of common susceptible individuals on hetero-
geneous networks by using pairwise approximation closed
by the probability-generating function (PGF). Similarly,
when a rumor appears, corresponding information refuting
the rumor might be released by authoritative organizations.
In this case, two pieces of information about a topic are
spread in the network at the same time and they compete for
believers. ,ese two pieces of information are referred to as
“competitive information” throughout this paper. Given the
societal importance of this topic, more research is needed to
effectively simulate the propagation of competitive infor-
mation. To this end, it is important to consider that an
individual’s friends have different levels of ability in terms of
spreading competitive information. Past research has con-
sidered the heterogeneous influences of various friends on
information spreading [35]. However, in most previous
works, the ability of different friends to spread information is
stable throughout the whole evolution process. To more
accurately depict real-life processes, it is necessary to in-
corporate dynamic changes in heterogeneous influences as
time evolves.

In this study, a propagation model that analyzes two
pieces of competitive information is proposed based on
evolutionary game theory. ,e time step of propagation is
considered as one round in an evolutionary game. In each
round, each individual selects one of their friends based on
the dynamic spreading ability of their friends. Specifically,
the individual decides whether to imitate the strategy that
the selected friend has adopted. In the specific context of
information propagation in social networks, an individual’s
attention to the information that the selected friend believes
has a significant effect on whether it chooses to update their
current strategy. ,e number of rounds for which an in-
dividual receives a piece of information but does not spread
it can be used to express the attention to an individual
toward the information. In this study, the influence of an
individual’s attention to the information that the selected
friend believes is considered in the model design. ,e results
of the modeling exercise suggest that evolutionary game
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theory is very well suited for modeling the competitive
information propagation. ,e proposed propagation model
is deemed to be effective and practical; namely, the simu-
lation results show that the average degree and average
clustering coefficient have a significant influence on the
propagation results. In addition, it is exemplified that the
propagation result can be controlled by adjusting the value
of each parameter.

,e remainder of this paper is organized as follows. In
Section 2, the model for the propagation of two pieces of
competitive information is introduced in detail. Section 3
presents and discusses the simulation results. ,e paper is
concluded in Section 4.

2. Modeling the Propagation of Two Pieces of
Competitive Information in a Social Network

In this section, the propagation model for two pieces of
competitive information using evolutionary game theory is
presented. We first analyze the player’s payoffs, utility
function, and the game rules, and then updated rules are
designed according to evolutionary game theory. Table 1
clarifies the main symbols used in the model developed in
this paper and their specific meanings.

We consider a finite set of individuals as a social network
where individuals are nodes and contacts between indi-
viduals are edges. ,e network is modeled as an undirected
graph, denoted by G. G� (V, E), where V is the set of nodes
and E is the set of edges. N denotes the number of nodes in
the set V, and M denotes the number of edges in the set E.
We assume that the graph is simple; that is, no vertex is
connected to itself, and there are no parallel edges. Two
nodes of G are said to be friends if there is an edge between
them. In the process of information propagation, individuals
exist in the network in three possible states: ignorant, be-
lievers of the first piece of information, and believers of the
second piece of information. ,ey could be represented as I,
B1, and B2, respectively. Imeans that the individual has never
heard any information or has heard a certain piece of in-
formation but has not spread it. An individual in state B1

(B2) has chosen to spread the first (second) piece of in-
formation. However, if the same individual receives the
other piece of information and chooses to spread it at a later
time, this individual changes their state to B2 (B1). We as-
sume that the information is propagated by direct contacts of
spreaders with others. ,e state transition diagram is shown
in Figure 1.

2.1. +e Players’ Payoffs. Initially, some individuals are se-
lected to be in state B1 or B2 at random. All other individuals
are in state I. ,en, the information may be propagated over
the network depending on other individuals’ spreading
actions; individuals choose whether to spread the infor-
mation. For each individual, the decision to spread the
information is determined by many factors, including the
individual’s own interest in this information, actions of their
friends, the degree to which they believe their friends, and so
on. Suppose that individuals in the network are only

Table 1: Model notation and definitions.

Notation Definition

δi(t) ,e strategy set of i at time t

gij(t)
,e payoff of i for one pairwise interaction with

friend j at time t

u1
,e basic payoff of individuals who choose strategy

A

u2
,e basic payoff of individuals who choose strategy

B

α1

,e bonus attained by an individual who believes
one piece of information when their friend chooses

the same strategy

α2

,e punishment accrued by an individual who
believes either piece of information when their

friend chooses to believe the other competing piece
of information

Ui(t) ,e total payoff of individual i at time t
Ni ,e friends set of individual i
ki ,e number of friends connected to individual i

ki1(t)
,e number of friends connected to individual i at

time t who adopt strategy A

ki2(t)
,e number of friends connected to individual i at

time t who adopt strategy B

r∗i (t)
,e friend of individual iwho attains the minimum

payoff
qu ,e sensitivity to payoffs of individuals

psi⟶j(t)
,e probability that individual i believes its friend j

at time t

ε
,e environment noise factors, which reflect the
individual uncertainty at the time when strategy

updates occur

wij∗(t)
,e number of times individual i has received the
information that is believed by their friend j∗

before time t

sij∗(t)
,e number of times individual i and j∗ have
adopted different strategies when i receives the

information believed by j∗ before time t

pi⟶j∗(t + 1)
,e probability that individual i will adopt the

strategy of friend j at time t+ 1

I
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Figure 1: ,e state transition diagram of the propagation process
for two pieces of competitive information.
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permitted to interact with their friends and they repeatedly
interact with their friends. ,us, friends’ actions can in-
fluence the individuals’ decisions on information propa-
gation. As discussed above, the propagation of two pieces of
competitive information is analyzed based on evolutionary
game theory in this paper.

Information propagation can be modeled as evolu-
tionary games in networks as follows. ,e players in the
game are theN individuals.,ree strategies can be defined to
correspond to each individual’s state. Accordingly, the
strategy of individual i can be denoted as δi, δi ∊ {A, B, C},
where A and B indicate whether individual i is in state B1 or
B2. If the individual i does not believe any information, they
choose strategy C. Different payoffs can be achieved by each
individual according to the different strategies. In this
scenario, payoff represents an individual’s prestige in the
eyes of their friends.,e payoff is used to evaluate the impact
of individuals’ strategy choices. Spreading behavior that
occurs without any purpose, which thereby does not lead to
any payoff for the individual, is not considered in this model.
,erefore, the individual has no benefit from choosing
strategy C, and the corresponding payoff is zero. An indi-
vidual gains a basic payoff when it chooses either strategy A
or B and the corresponding friend chooses strategy C. ,e
spreading of information can change an individual’s prestige
among their friends; that is, the spreading of correct in-
formation will improve prestige, while the spreading of
wrong information will reduce prestige. It is assumed that
individuals spread information in the hope of getting more
endorsements from friends. In general, the more endorse-
ments an individual has, the more likely their message is to
be correct. ,us, if an individual adopts strategy A or B, they
obtain a bonus payoff if their friend chooses the same
strategy and a punishment payoff if their friend chooses to
believe the competitive information. ,e payoffs of an in-
dividual depending on the strategy a friend chooses are
depicted in Table 2.

As mentioned above, u1 (u2) represents the basic payoff
of individuals who choose the strategy A (B). It is clear that
u1> 0 and u2> 0. Parameter α1 represents the bonus attained
by an individual who believes one piece of information at the
time when their friend chooses the same strategy. Parameter
α2 denotes the punishment that accrues to an individual who

believes either piece of information when their friend
chooses to believe the competitive one.

,e most fundamental issue in our model is that, for
each individual, which strategy should be chosen among the
previously described? ,e answer depends not only on the
payoff functions of strategies but also on the interaction type
of the network. ,e pairwise interaction enables us to
consider the strategy selection based on a single node in a
social network, whereby individuals interact in pairs to
acquire their payoffs. ,e time-related interaction is nor-
mally bursty. Zhang et al. [36] proposed a gaming temporal
network model, which reproduces the burstiness of human
activities solely by a well-known strategy “Generous Tit-for-
Tat.” Our approach takes the burstiness feature into con-
sideration by imitating the more efficient strategies of
friends, where the more efficient strategies refer to the
strategies of gaining more payoff. In general, a network game
can be defined as Γg � (G, δi(t) | i ∈ V , gij(t) | i ∈
V, j ∈ Ni}), where gij(t) is the payoff of i for one pairwise
interaction with its friend j at time t and Ni is the friend set
of individual i. ,us, the total payoff of individual i equals
the sum of payoffs between the i-th individual and their
friends, which is represented by the following equation:

Ui(t) � 
j∈Ni

gij(t), i ∈ V.
(1)

More specifically, the total payoff of individual i equals
the sum of payoffs among the i-th individual and their
friends. ,is is calculated as follows:

Ui(t) � 
j∈Ni

gij(t) �

ki + ki1(t) × α1 − ki2(t) × α2(  × u1, δi � A,

ki + ki2(t) × α1 − ki1(t) × α2(  × u2, δi � B,

0, δi � C,

⎧⎪⎪⎨⎪⎪⎩ (2)

where ki is the number of friends connected to the individual
i. In addition, individual i has ki1 (t) friends who adopt
strategy A and ki2 (t) friends who adopt strategy B at time t.
δi is the strategy of individual i.

2.2.+eUpdateRules. In the beginning, all individuals adopt
strategyC. ,en, some nodes are randomly selected to define

their strategy as either A or B. Suppose at time t, an individual
receives a piece of information that it does not believe. ,en,
at time t+ 1, it needs to decide whether to believe the newly
received information, and this is determined by two steps.
First, the individual selects a friend according to the different
spreading ability of friends. Second, it decides whether to
imitate the strategy that the selected friend adopts.

Table 2: ,e payoff of an individual, depending on their strategy
and their friend’s strategy.

,e strategy of i ,e strategy of friend j ,e payoff of i

A A (1 + α1) · u1
A B (1 − α2) · u1
A C u1
B A (1 − α2) · u2
B B (1 + α1) · u2
B C u2
C A 0
C B 0
C C 0
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In real social networks, different friends have a different
level of spreading ability with respect to any one friend [35].
We use the payoffs to represent the level of spreading ability
of different friends. ,us, the friend that has a higher payoff
is more likely to be selected. ,e probability that the j-th
friend is selected is given by

psi⟶j(t) �
Uj(t) − Ur∗

i
(t)(t) + 1/qu(  

r∈Ni
Uj(t) − Ur∗i (t)(t) + 1/qu(  , (3)

where r∗i (t) is the friend of individual i who has the min-
imum payoff. ,is variable is expressed as

r∗i (t) � ri(t) ∣ min
r∈Ni

Ur(t) . (4)

Considering the sensitivity to the payoffs of individuals,
a parameter qu (qu > 0) is included.,is parameter amplifies
or lessens the heterogeneity in the influence ability of the
different friends of any individual. If qu is large, psij (t) is
sensitive to Uj (t), which means that a small perturbation in
Uj (t) can lead to a big change of psij (t). On the other hand, if
qu is small, psij (t) is insensitive to Uj (t), which means that a
big perturbation inUj (t) can lead to a small change in psij (t).

,en, the individuals will decide whether to imitate the
strategy of the selected friend. Specifically, we consider that
when an individual repeatedly receives a piece of infor-
mation, the degree of individual’s attention to the infor-
mation is proportional to the number of times that the
individual received the information but did not spread it.
Combining the attention degree with the payoffs gap be-
tween the individual and the selected friend, we express the
probability of individuals imitating the strategy of the se-
lected friend as follows:

pi⟶j∗(t + 1) �
exp − s2ij∗(t)/wij∗(t) 

1 + exp Ui(t) − Uj∗(t) /ε . (5)

In (5), the denominator is based on the Fermi function
[37], which states that the individual i is more likely to adopt
the strategy of friend j∗ in t+1 round if j∗ has a higher payoff
than i in the round at time t. Otherwise, the individual i is
more likely to maintain their original strategy. Parameter ε
describes the noise factors, which reflect an individual’s un-
certainty when they have to update their strategy. ε⟶ 0
represents complete rationality; ε⟶ +∞ infers complete
randomness of a strategy decision. ,e numerator is an ex-
ponential (exp) function, and it denotes the attenuation degree
of individual i attention to the information friend j∗ believed.
Let wij∗(t) denote the number of times individual i receives
the information that is believed by their friend j∗ before time t.
sij∗(t) denotes the number of times individuals i and j∗ adopt
different strategies when i receives the information believed by
j∗ before time t. ,e exp function is an incremental function.
With the increase in sij∗(t), the value of (− s2ij∗(t)/wij∗(t))
decreases and exp function decreases, which ultimately leads
to the decrease in the whole probability function. ,us,
equation (5) can exactly express the probability of individuals
imitating the strategy of the selected friend.

Evolutionary game theory studies how a group of players
converge to a stable equilibrium after a period of strategic
interactions. ,e final equilibrium state is defined as the
evolutionary stable state (ESS). Evolutionary stability
strategy refers to when an individual conducting any small
number of mutation strategies cannot invade the whole
population, which means that the whole population does not
change in the long run. In the scenario of competitive in-
formation propagation, we obtain the ESS through iterative
experimental simulation.When the number of nodes in each
state fluctuates very little, the evolution is considered to be
relatively stable.

3. Experimental Data and Analysis of Results

To support our analysis of the propagation of the two pieces
of competitive information in the evolutionary game model,
we conduct an information propagation experiment using
real-world social networks. We use data from four different
regions, supplied by the website http://networkrepository.
com/. For simplicity, we only select the maximal connected
subgraphs. ,e network properties are listed in Table 3,
whereby 〈k〉 � 1/NNi�1ki is the average degree,
〈c〉 � 1/NNi�12 ×mi/ki × (ki − 1) is the average clustering
coefficient, and mi denotes the number of links between i’s
friends.

In this section, we randomly select 0.1% nodes as the
propagation sources of the competitive information. ,is
means the initial fractions of individuals in the states of B1

and B2 are 0.1%.,en, two pieces of competitive information
begin to spread over the network. Let ρI, ρB1, and ρB2 denote
the final average fractions of individuals in the states of I, B1,
and B2, respectively. As time goes on, ρI, ρB1, and ρB2 reach a
steady state. ,e numerical results are averaged over 500
independent runs performed using parameters modeled off
four real social networks.

,e values of ρI, ρB1, and ρB2 for the different basic
payoffs u1 and u2 are shown in Figure 2. ,e other three
parameters are set to be α1 � 2, α2 � 2, and qu � 0.1. From top
to bottom, the rows correspond to the four social networks:
Hamsterster, Simmons81, Oberlin44, and Bowdoin47. It can
be observed from Figures 2(a), 2(d), 2(g), and 2(j) that ρI
decreases when u1 or u2 increases. Simulation results in
Figures 2(b), 2(e), 2(h), and 2(k) show that ρB1 increases
when u1 increases and u2 does not increase. From
Figures 2(c), 2(f), 2(i), and 2(l), we observe ρB2 increases
when u2 increases and u1 does not increase. In addition,
ρB1 > ρB2 when u1 is significantly bigger than u2. On the
contrary, ρB1 > ρB2 when u1 is significantly smaller than u2.
,us, in the competitive environment, the value of u1/u2 is a
key factor in determining the values of ρB1 and ρB2. As a
result of the characteristics of the four networks, under the
same level of payoffs, there are less ρI in the network with a
higher average degree. ,is means that, under the same level
of ratio of the payoffs for the two pieces of competitive
information, there are more believers in the network with a
higher average degree. ,e reason for this is that, when the
degree of an individual becomes larger, it has more op-
portunities to receive information.
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Figure 2: ,e values of ρI, ρB1, and ρB2 for different u1 and u2 payoffs in the four networks. Parameters are set as α1� 2, α2� 2, qu� 0.1, and
ε� 0.1. (a) ρI ofHamsterster; (b) ρB1 ofHamsterster; (c) ρB2 ofHamsterster; (d) ρI of Simmons81; (e) ρB1 of Simmons81; (f ) ρB2 of Simmons81;
(g) ρI of Oberlin44; (h) ρB1 of Oberlin44; (i) ρB2 of Oberlin44; (j) ρI of Bowdoin47; (k) ρB1 of Bowdoin47; (l) ρB2 of Bowdoin47.

Table 3: Comparison of network parameters among four real-world network datasets.

Networks Type N M 〈k〉 〈c〉

Hamsterster Undirected 2000 16097 16.097 0.54
Simmons81 Undirected 1510 32984 43.687 0.325
Oberlin44 Undirected 2920 89912 61.584 0.263
Bowdoin47 Undirected 2250 84386 75.01 0.294
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Figure 3 shows the values of ρI, ρB1, and ρB2 for the
different levels of bonus α1 in the four networks. ,e other
parameters are fixed with u1 � 0.4, u2 � 0.5, α2 � 3, and
qu � 0.1. When the evolution is stable, the values of ρI, ρB1,
and ρB2 are about 0.115, 0.345, and 0.54 in Hamsterster, 0.16,
0.31, and 0.53 in Simmons81, 0.16, 0.27, and 0.57 inOberlin44,
and 0.18, 0.275, and 0.545 in Bowdoin47. As the bonus pa-
rameter α1 increases, ρI decreases, while ρB1 and ρB2 increase.
,e effects on the result tend to be stable when α1 reaches a
fairly high level. Moreover, ρB2 is always larger than ρB1. ,is
is because u2 > u1, which means that the ignorant individuals
are more likely to believe the strategy that has a higher payoff.
Comparing the data of the four networks, it can be observed
that ρI falls faster in the network that has a higher average
clustering coefficient and a lower average degree. Further-
more, the difference between ρB1 and ρB2 in the network with
a lower average clustering coefficient exceeds that of the
network with a higher average clustering coefficient.

Figure 4 shows the values of ρI, ρB1, and ρB2 versus
different punishment levels, represented by α2, in the four

networks when α1 � 3. When the evolution is stable, the
values of ρI, ρB1, and ρB2 are about 0.93, 0.025, and 0.045 in
Hamsterster, 0.94, 0.022, and 0.038 in Simmons81, 0.954,
0.018, and 0.028 in Oberlin44, and 0.966, 0.015, and 0.019 in
Bowdoin47. As α2 increases, it can be observed that ρI
increases, while ρB1 and ρB2 decrease. ,is illustrates that
increasing the value of α2 inhibits the spread of the two
pieces of information. ,e inhibition caused by α2 for the
second piece of information is more obvious than for the
first piece of information, and the change rate obviously
speeds up at the beginning and smoothens toward the end
of the timeframe of repeated interactions. Moreover, it can
be seen that ρI increases faster in the network that has a
lower average clustering coefficient and higher average
degree. ,is is because the individual in state I is more
likely to believe the strategy that has a lower number of
opponents.

Figure 5 shows the values of ρI, ρB1, and ρB2 versus
different qu. When qu increases to a certain value, the
number of individuals seems to become constant. When the
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Figure 3: ,e values of ρI, ρB1, and ρB2 for different α1 payoffs in the four networks. Parameters are set as u1 � 0.4, u2 � 0.5, α2 � 3, qu � 0.1,
and ε� 0.1. (a) Hamsterster; (b) Simmons81; (c) Oberlin44; (d) Bowdoin47.
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Figure 4: ,e values of ρI, ρB1, and ρB2 for different α2 payoffs in the four networks. Parameters are set as u1 � 0.4, u2 � 0.5, α1 � 3, qu � 0.1,
and ε� 0.1. (a) Hamsterster; (b) Simmons81; (c) Oberlin44; (d) Bowdoin47.
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Figure 5: Continued.
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evolution is stable, the values of ρI, ρB1, and ρB2 are about
0.21, 0.33, and 0.46 in Hamsterster, 0.135, 0.37, and 0.495 in
Simmons81, 0.145, 0.325, and 0.53 in Oberlin44, and 0.16,
0.33, and 0.51 in Bowdoin47. Figure 5 clearly shows that, as
qu increases, the values of ρI decrease, while ρB1 and ρB2
increase. ,is means that if the heterogeneity is further
amplified, the number of individuals spreading the two
pieces of information increase. ,e comparative experi-
mental data results based on the different network param-
eters show that the difference between ρB1 and ρB2 in the
network that has a lower average clustering coefficient and a
higher average degree is larger than in the networks that
have a higher average clustering coefficient and a lower
average degree.

Figures 3–5 illustrate that parameters α1, α2 , and qu
effectively control the information propagation range. In
particular, they accurately control the information that is
spread by the individuals if they receive a high basic payoff
from spreading the information. Moreover, this piece of
information gains more believers than the other, competitive
piece of information. ,us, this piece of information can be
recognized as the winner of the competitive game. Fur-
thermore, when two competitive messages travel in a net-
work with a lower average clustering coefficient and a larger
average degree, the number of individuals spreading the
information that prevails in the competition is relatively
large. ,is is because individuals will face a less heteroge-
neous environment (in terms of the strategies of their
friends) when making decisions in the networks that have a
higher average clustering coefficient. As a result, individuals
are unlikely to change their strategy once they believe either
of the pieces of information.

4. Conclusions

In this paper, we adopt evolutionary game theory to analyze
the propagation of two pieces of competitive information
throughout a social network. By using the payoff matrix to

abstract the individuals’ decision process, we propose a
propagation model for the two pieces of competitive in-
formation. Simulation results indicate that, when the system
reaches stability, a certain piece of information will win the
game if the individuals attain a larger basic payoff after
spreading it, whereby the higher payoff leads more indi-
viduals to prefer to spread this piece of information.
Moreover, the topology of networks also influences the
pairwise interaction of two pieces of competitive informa-
tion. Using the same parameters, the results show that the
network with a higher average degree has a lower number of
ignorant individuals. If the networks possess a lower average
clustering coefficient and a larger average degree, the gap in
the numbers of individuals trusting different pieces of in-
formation grows. ,is means that the number of individuals
spreading the information that wins the game significantly
surpasses the number of individuals believing the other piece
of information. Overall, the results show that the proposed
method is effective and practical for modeling the propa-
gation of two pieces of competitive information and provide
effective insights into how to better control and guide public
opinion.

Future work could examine how to incorporate the
nonoptimal or bounded rationality of players into the
model, how to incorporate the heterogeneous rationality of
players, and how to extend the model to more than two
pieces of competitive information. Furthermore, in this
paper, we assume that the individuals received the infor-
mation from their friends only. However, people could also
acquire the information in other ways (such as via the In-
ternet or from a newspaper). ,us, we advocate the de-
velopment of a more precise model to investigate more
complex propagation processes.

Data Availability

,e data used to support the findings of this study are
available from the corresponding author upon request.
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Figure 5:,e values of ρI, ρB1, and ρB2 versus different payoffs qu in the four networks. Parameters are set as u1 � 0.4, u2 � 0.5, α1 � 3, α2 � 3,
and ε� 0.1. (a) Hamsterster; (b) Simmons81; (c) Oberlin44; (d) Bowdoin47.
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