Evolutionary Games and Population Dynamics

Josef Hofbauer, Karl Sigmund

Contents

.

Pref	face	page xi
Intro	oduction for game theorists	xiv
Intro	oduction for biologists	XX
About this book		xxvi
	Part one: Dynamical Systems and Lotka–Volterra Equations	1
1	Logistic growth	3
1.1	Population dynamics and density dependence	3
1.2	Exponential growth	4
1.3	Logistic growth	5
1.4	The recurrence relation $x' = Rx(1-x)$	5
1.5	Stable and unstable fixed points	6
1.6	Bifurcations	7
1.7	Chaotic motion	9
1.8	Notes	• 10
2	Lotka–Volterra equations for predator–prey systems	11
2.1	A predator-prey equation	11
2.2	Solutions of differential equations	12
2.3	Analysis of the Lotka–Volterra predator–prey equation	13
2.4	Volterra's principle	15
2.5	The predator-prey equation with intraspecific competition	16
2.6	On ω -limits and Lyapunov functions	18
2.7	Coexistence of predators and prey	19
2.8	Notes	21
3	The Lotka–Volterra equations for two competing species	22
3.1	Linear differential equations	22
3.2	Linearization	24

3.3	A competition equation	26
3.4	Cooperative systems	28
3.5	Notes	30
4	Ecological equations for two species	31
4.1	The Poincaré-Bendixson theorem	31
4.2	Periodic orbits for two-dimensional Lotka-Volterra equations	33
4.3	Limit cycles and the predator-prey model of Gause	34
4.4	Saturated response	37
4.5	Hopf bifurcations	38
4.6	Notes	40
5	Lotka–Volterra equations for more than two populations	42
5.1	The general Lotka–Volterra equation	42
5.2	Interior rest points	43
5.3	The Lotka–Volterra equations for food chains	45
5.4	The exclusion principle	47
5.5	A model for cyclic competition	48
5.6	Notes	53
	Part two: Game Dynamics and Replicator Equations	55
6	Evolutionarily stable strategies	57
6 6.1	Evolutionarily stable strategies Hawks and doves	57 57
-		
6.1	Hawks and doves	57
6.1 6.2	Hawks and doves Evolutionary stability	57 59
6.1 6.2 6.3	Hawks and doves Evolutionary stability Normal form games	57 59 61
6.16.26.36.4	Hawks and doves Evolutionary stability Normal form games Evolutionarily stable strategies	57 59 61 62
 6.1 6.2 6.3 6.4 6.5 	Hawks and doves Evolutionary stability Normal form games Evolutionarily stable strategies Population games	57 59 61 62 65
 6.1 6.2 6.3 6.4 6.5 6.6 	Hawks and doves Evolutionary stability Normal form games Evolutionarily stable strategies Population games Notes	57 59 61 62 65 66
 6.1 6.2 6.3 6.4 6.5 6.6 7 	Hawks and doves Evolutionary stability Normal form games Evolutionarily stable strategies Population games Notes Replicator dynamics	57 59 61 62 65 66 67
 6.1 6.2 6.3 6.4 6.5 6.6 7 7.1 	Hawks and doves Evolutionary stability Normal form games Evolutionarily stable strategies Population games Notes Replicator dynamics The replicator equation	57 59 61 62 65 66 67 67
 6.1 6.2 6.3 6.4 6.5 6.6 7 7.1 7.2 	Hawks and doves Evolutionary stability Normal form games Evolutionarily stable strategies Population games Notes Replicator dynamics The replicator equation Nash equilibria and evolutionarily stable states	57 59 61 62 65 66 67 67 67
 6.1 6.2 6.3 6.4 6.5 6.6 7 7.1 7.2 7.3 	Hawks and doves Evolutionary stability Normal form games Evolutionarily stable strategies Population games Notes Replicator dynamics The replicator equation Nash equilibria and evolutionarily stable states Strong stability	57 59 61 62 65 66 67 67 67 69 72
 6.1 6.2 6.3 6.4 6.5 6.6 7 7.1 7.2 7.3 7.4 	Hawks and doves Evolutionary stability Normal form games Evolutionarily stable strategies Population games Notes Replicator dynamics The replicator equation Nash equilibria and evolutionarily stable states Strong stability Examples of replicator dynamics	57 59 61 62 65 66 67 67 67 69 72 74
 6.1 6.2 6.3 6.4 6.5 6.6 7 7.1 7.2 7.3 7.4 7.5 7.6 7.7 	Hawks and doves Evolutionary stability Normal form games Evolutionarily stable strategies Population games Notes Replicator dynamics The replicator equation Nash equilibria and evolutionarily stable states Strong stability Examples of replicator dynamics Replicator dynamics and the Lotka–Volterra equation Time averages and an exclusion principle The rock–scissors–paper game	57 59 61 62 65 66 67 67 67 69 72 74 77 78 79
 6.1 6.2 6.3 6.4 6.5 6.6 7 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 	Hawks and doves Evolutionary stability Normal form games Evolutionarily stable strategies Population games Notes Replicator dynamics The replicator equation Nash equilibria and evolutionarily stable states Strong stability Examples of replicator dynamics Replicator dynamics and the Lotka–Volterra equation Time averages and an exclusion principle The rock–scissors–paper game Partnership games and gradients	57 59 61 62 65 66 67 67 67 69 72 74 77 78 79 82
 6.1 6.2 6.3 6.4 6.5 6.6 7 7.1 7.2 7.3 7.4 7.5 7.6 7.7 	Hawks and doves Evolutionary stability Normal form games Evolutionarily stable strategies Population games Notes Replicator dynamics The replicator equation Nash equilibria and evolutionarily stable states Strong stability Examples of replicator dynamics Replicator dynamics and the Lotka–Volterra equation Time averages and an exclusion principle The rock–scissors–paper game	57 59 61 62 65 66 67 67 67 69 72 74 77 78 79
 6.1 6.2 6.3 6.4 6.5 6.6 7 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 	Hawks and doves Evolutionary stability Normal form games Evolutionarily stable strategies Population games Notes Replicator dynamics The replicator equation Nash equilibria and evolutionarily stable states Strong stability Examples of replicator dynamics Replicator dynamics and the Lotka–Volterra equation Time averages and an exclusion principle The rock–scissors–paper game Partnership games and gradients	57 59 61 62 65 66 67 67 67 69 72 74 77 78 79 82

vi

	Contents	vii
8.2	Monotone selection dynamics	88
8.3	Selection against iteratively dominated strategies	90
8.4	Best-response dynamics	93
8.5	Adjustment dynamics	97
8.6	A universally cycling game	98
8.7	Notes	100
9	Adaptive dynamics	101
9.1 ·	The repeated Prisoner's Dilemma	101
9.2	Stochastic strategies for the Prisoner's Dilemma	103
9.3	Adaptive Dynamics for the Prisoner's Dilemma	104
9.4	An ESS may be unattainable	107
9.5	A closer look at adaptive dynamics	108
9.6	Adaptive dynamics and gradients	109
9.7	Notes	112
10	Asymmetric games	113
10.1	Bimatrix games	113
10.2	The Battle of the Sexes	114
	A differential equation for asymmetric games	116
	The case of two players and two strategies	119
10.5	5	122
10.6	Notes	125
11	More on bimatrix games	126
11.1	Dynamics for bimatrix games	126
11.2	Partnership games and zero-sum games	127
	Conservation of volume	132
11.4	Nash-Pareto pairs	135
11.5	5 1	137
11.6	Notes	139
	Part three: Permanence and Stability	141
12	Catalytic hypercycles	143
12.1	The hypercycle equation	143
12.2	Permanence	145
12.3	The permanence of the hypercycle	149
12.4	The competition of disjoint hypercycles	151
12.5	Notes	152
13	Criteria for permanence	153
13.1	Permanence and persistence for replicator equations	153

13.2	Brouwer's degree and Poincaré's index	155
13.3	An index theorem for permanent systems	158
13.4	Saturated rest points and a general index theorem	159
13.5	Necessary conditions for permanence	162
13.6	Sufficient conditions for permanence	166
13.7	Notes	170
14	Replicator networks	171
14.1	A periodic attractor for $n = 4$	171
14.2	Cyclic symmetry	173
14.3	Permanence and irreducibility	175
14.4	Permanence of catalytic networks	176
14.5	Essentially hypercyclic networks	177
14.6	Notes	180
15	Stability of <i>n</i> -species communities	181
15.1	Mutualism and M-matrices	181
15.2	Boundedness and B-matrices	185
15.3	VL-stability and global stability	191
15.4	P-matrices	193
15.5	Communities with a special structure	196
15.6	D-stability and total stability	199
15.7	Notes	201
16	Some low-dimensional ecological systems	203
16.1	Heteroclinic cycles	203
16.2	Permanence for three-dimensional Lotka-Volterra systems	206
16.3	General three-species systems	211
16.4	A two-prey two-predator system	213
16.5	An epidemiological model	216
16.6	Notes	219
17	Heteroclinic cycles: Poincaré maps and characteristic matrices	220
1 7.1	Cross-sections and Poincaré maps for periodic orbits	220
17.2	Poincaré maps for heteroclinic cycles	221
17.3	Heteroclinic cycles on the boundary of S_n	224
17.4	The characteristic matrix of a heteroclinic cycle	227
17.5	Stability conditions for heteroclinic cycles	230
17.6	Notes	232

	Contents	ix
	Part four: Population Genetics and Game Dynamics	233
18	Discrete dynamical systems in population genetics	235
18.1	Genotypes	235
18.2	The Hardy–Weinberg law	236
18.3	The selection model	237
18.4	The increase in average fitness	238
18.5	The case of two alleles	240
18.6	The mutation-selection equation	241
18.7	The selection-recombination equation	243
18.8	Linkage	245
18.9	Fitness under recombination	247
18.10	Notes	248
19	Continuous selection dynamics	249
19.1	The selection equation	249
19.2	Convergence to a rest point	251
19.3	The location of stable rest points	254
19.4	Density dependent fitness	256
19.5	The Shahshahani gradient	257
19.6	Mixed strategists and gradient systems	261
19.7	Notes	264
20	Mutation and recombination	265
20.1	The selection-mutation model	265
20.2	Mutation and additive selection	266
20.3	Special mutation rates	268
20.4	Limit cycles for the selection-mutation equation	270
20.5	Selection at two loci	273
20.6	Notes	277
21	Fertility selection	278
21.1	The fertility equation	278
21.2	Two alleles	280
21.3	Multiplicative fertility	282
21.4	Additive fertility	285
21.5	The fertility-mortality equation	286
21.6	Notes	288
22	Game dynamics for Mendelian populations	289
22.1	Strategy and genetics	289
22.2	The discrete model for two strategies	292
22.3	Genetics and ESS	295

	ESS and long-term evolution Notes	298 300
Refer Index		301 321

÷

4

Ņ