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a b s t r a c t

Radial Basis Function Neural Networks (RBFNNs) have been successfully employed in several function 
approximation and pattern recognition problems. The use of different RBFs in RBFNN has been reported in the 
literature and here the study centres on the use of the Generalized Radial Basis Function Neural Networks 
(GRBFNNs). An interesting property of the GRBF is that it can continuously and smoothly repro-duce different RBFs 
by changing a real parameter �. In addition, the mixed use of different RBF shapes in only one RBFNN is allowed. 
Generalized Radial Basis Function (GRBF) is based on Generalized Gaussian Distribution (GGD), which adds a shape 
parameter, �, to standard Gaussian Distribution. Moreover, this paper describes a hybrid approach, Hybrid 
Algorithm (HA), which combines evolutionary and gradient-based learning methods to estimate the architecture, 
weights and node topology of GRBFNN classifiers. The feasibility and benefits of the approach are demonstrated by 
means of six gene microarray classi-fication problems taken from bioinformatic and biomedical domains. Three 
filters were applied: Fast Correlation-Based Filter (FCBF), Best Incremental Ranked Subset (BIRS), and Best 
Agglomerative Ranked Subset (BARS); this was done in order to identify salient expression genes from among the 
thousands of genes in microarray data that can directly contribute to determining the class membership of each 
pattern. After different gene subsets were obtained, the proposed methodology was performed using the selected 
gene subsets as new input variables. The results confirm that the GRBFNN classifier leads to a promising 
improvement in accuracy.

1. Introduction

In traditional RBFNN, the Gaussian function is selected as the 
network activation function [1,2], although other functional forms 
have been used for the RBFNNs including some types of thin-plate 
spline functions, multi-quadratic functions and sigmoidal functions 
[3].

Nevertheless, there are still some problems in standard 
Gaussian RBFNN. First, if, the underlying curve representing 
training pat-terns is nearly constant in a specific interval, it is 
difficult to utilize a Gaussian function to approximate this constant 
valued function unless its width tends to infinity. In this case, a 
RBFNN would be an inefficient model to approximate constant 
valued functions.

Second, in high-dimensional space, all pairwise distance 
between patterns seem to be very similar, i.e., the distances to 
nearest and furthest neighbours look nearly identical. Therefore, 
the widely used Gaussian kernel and Euclidean distance are not

necessarily appropriate functions to quantify similarity in high
dimensional spaces because distances in this kind of problem are
concentrated and the Gaussian kernel loses its interpretation in
terms of locality around its centre [4,5]. Despite this, the use of
Euclidean distance in high-dimensional space is not questioned in
the machine learning community since it corresponds to distance
as we define it in our three-dimensional world.

Third, several papers have included this as future experimenta-
tion to be performed with more general RBF models that achieve
a good compromise between low training effort and flexible mod-
elling capabilities [6–9].

In order to take care of these problems, a new activation function
is presented in this paper. The proposed RBF is based on General-
ized Gaussian Distribution (GGD) [10]. GGD adds a shape parameter
� to the normal distribution. In the same way that GGD adds a �
shape parameter to Gaussian Distribution, the novel RBF proposed,
called Generalized Radial Basis Function (GRBF), also adds a � shape
parameter to standard Gaussian RBF (SRBF). The GRBF allows better
matching between the shape of the kernel and the distribution of
the distances, since the � parameter provokes concavity or convex-
ity around the point where the distance is the radii of the kernel, r.
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On the other hand, although a great number of algorithms have
been developed to estimate the parameters of a RBFNN for a fixed
topology, most of them are hill-climbing procedures, which usually
fall in a local optimum. Evolutionary algorithms (EAs) have proved
to be very effective and robust search methods for locating zones
in the search space where good solutions can be found, even if this
space is large and contains multiple local optimums. The applica-
tion of the EA to optimize RBFNN is justified by a smaller overall
computational cost, compared to the methods of trial and error,
and their robustness as opposed to constructive/pruning methods.

In general EAs are less efficient than local search techniques in
finding the local optimum, so it is convenient to allow the EA to
select initial solutions in good areas of the search space, and to
locate local optimum in these areas afterwards. For that reason,
a Hybrid Algorithm (HA) was employed to estimate the parame-
ters of the model proposed. The HA combines both a global search
procedure, EA, and a local improvement procedure based on gradi-
ent descent, the iRprop+ algorithm. Thus, the EA optimizes RBFNN
parameters so that RBFNN parameters are located in an area of
global optimum and, the iRprop+ algorithm refines its parameters
to improve the results reported by the EA.

The performance of the proposed methodology was evaluated in
six well-known deoxyribonucleic acid (DNA) microarray classifica-
tion problems. DNA microarray allows relative levels of ribonucleic
acid (RNA) or messenger RNA (mRNA) abundance to be determined
in a set of tissues or cell populations for thousands of genes simul-
taneously.

The importance of the use of Artificial Neural Networks (ANNs)
in the classification of microarray gene expression [11] as an alter-
native to other techniques was stated in several research works
[12,13] due to their flexibility and the high degree of accuracy
in their fit to experimental data. These datasets were selected to
justify the use of this kernel model in the classification of high
dimensionality problems. Furthermore, other soft computing tech-
niques have been implemented to address this problem [14–16].

The motivation for applying feature selection (FS) techniques
has shifted from being optional to becoming a real prerequisite for
model building. A typical microarray dataset may contain thou-
sands of genes but only a small number of samples (often less
than two hundred). Theoretically, having more genes should give
us more discriminating power. However, this can cause several
problems: increased computational complexity and cost; too many
redundant or irrelevant genes; and estimation degradation in the
classification error.

There are two ways to group feature selection algorithms,
depending on the evaluation measure chosen: one, according to
the model used (filter or wrapper) and two, according to the way
in which the features are evaluated (individually or by subsets).
The filter model evaluates features according to heuristics based
on overall data characteristics, notwithstanding the classification
method applied, whereas the wrapper uses the behaviour of the
target classification algorithm as the feature evaluation criterion.

Based on the generation procedure, FS can be divided into
individual feature ranking (FR) and feature subset selection (FSS)
[17,18]. FR measures feature-class relevance, then ranks features
by their scores and selects the top-ranked ones. In contrast, FSS
attempts to find a set of features that performs well. It integrates the
metrics for measuring feature-class relevance and feature–feature
interactions.

A hybrid model was proposed to handle large datasets to take
advantage of the above two approaches (FR, FSS). These meth-
ods decouple relevance analysis and redundancy analysis, and
have proven to be more effective than ranking methods and
more efficient than subset evaluation methods in many tradi-
tional high-dimensional datasets. In this framework, FCBF (Fast
Correlation-Based Filter) [19], BIRS (Best Incremental Ranked
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Fig. 1. Probability density function of the Generalized Gaussian Distribution (GGD)

with different values of �, c = 0 and r = 1.

Subset) [20] and BARS (Best Agglomerative Ranked Subset) [21] are
the methods proposed to obtain relevant features and to remove
redundancy. These features are considered input variables in the
network models (GRBFNN) that we propose in this paper

One of the major advantages of the proposed method is the
reduced number of features and GRBFs included in the final expres-
sion, since the HA reduces its complexity by pruning connections
and hidden nodes. This can result in a better interpretability of the
model, which is especially important when dealing with real prob-
lems. Therefore, using the proposed approach, the feature selection
is performed in two stages: firstly, in preprocessing by means of the
feature selector and secondly, in the HA by pruning connections.

This paper is organized as follows: Section 2 formally presents
the GRBF model considered in this work and the main charac-
teristics of the algorithm used for training the model. Section 3
introduces the feature selection algorithms used in this paper.
Section 4 describes the experiments carried out and discusses the
results obtained. Finally, Section 5 completes the paper with the
main conclusions and future directions suggested by this study.

2. Classification method

2.1. Generalized Gaussian Distribution

Although Gaussian Distribution has a principal role in statisti-
cal applications, the analysis of real data often leads to rejecting the
hypothesis that data have been generated by normal distribution. In
these circumstances the adoption of more flexible models allowing
the representation of data generated by distributions in an area near
the Gaussian one may be appropriate. In particular, models which
embed Gaussian distribution as a special case are of great interest,
since their use permits deviations to be dealt with from normality,
while preserving the possibility to test the adequacy of Gaussian
distribution to the data. Generalized Gaussian Distribution (GGD)
adds only one additional parameter to Gaussian distribution, the
shape parameter �. The GGD can approximate a large class of sta-
tistical distributions by modifying this parameter, for instance: the
Gaussian distribution is obtained for � = 2, the Laplacian distribu-
tion for � = 1, and by making � → 0 we can obtain a distribution
close to uniform distribution (Fig. 1). The analytical equation for the
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Fig. 2. Radial unit activation in one-dimensional space with c = 0 and r = 1 for the

Generalized RBF (GRBF) with different values of �.

probability density function of GGD, for a unidimensional input
variable is given by

pj(x; �i, cj, rj) =
�j

2rjŴ(1/�j)
exp

(

−
‖x − cj‖

�j

r
�j

j

)

, j = 1, . . . , J (1)

where J is the number of classes in the problem, cj, rj and �j > 0 are
the mean, the scale or width and a shape parameters, respectively,
and �j > 0 of the ith class-conditional distribution, respectively.

Ŵ(z) =
∫ ∞

0
�z−1ezdz, for z > 0. The scale parameter rj that expresses

the width of the distribution is related to the normal standard devi-
ation by the equation:

rj = �j

√

Ŵ(1/�j)

Ŵ(3/�j)
(2)

Based on the GGD probability distribution, we define a novel
RBF, by removing the constraints of a probability function, that can
generalize to the Standard Gaussian RBF (SRBF) by adding a new
parameter � which can relax or contract the basis functions. In this
way, the Generalized Radial Basis Function (GRBF) is defined using
the following expression, for a K-dimensional input space:

�(x) = exp

(

−
‖x − cj‖

�j

r
�j

j

)

(3)

where K is the number of inputs, xi = (x1i, . . ., xKi) is the vector of
measurements, rj the width of the GRBF, cj = (cj1, . . ., cjK) the centre
and �j the exponent of the jth GRBF. Fig. 2 presents the radial unit
activation for the GRBF for different values of �.

From Fig. 2, another observation can be made: the shape of is
approximately rectangular for high values of �. This implies that
the GRBF kernel should be a good candidate for approximating con-
stant functions at specific intervals. Moreover, as shown in Fig. 2,
GRBF has a unique maximum at radial symmetry, and a local sup-
port property which complies with the fundamental properties of
RBF used in Artificial Neural Networks (ANNs). Finally, due to the �
parameter of the GRBF kernel, concavity or convexity is provoked
around the point where the distance is the radii of the kernel, so the
GRBF demonstrates appropriate kernel functions to quantify sim-
ilarity in high dimensional spaces. When a normal distribution is
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Fig. 3. Probability density of a point from a normal distribution to be at distance q.

assumed, the probability density function to find a point at distance
q from the mean of the distribution is given by:

f (q, d) =
qd−1

2(d/2)−1
×

e−q2/2

Ŵ(d/2)
(� = 1), (4)

where d is the input data dimension. For one dimension (d = 1), f(q,
d) is maximum at the mean, but when the dimension grows, f(q, d)
moves away from the mean (see Fig. 3a). Therefore, the probability
of finding patterns near the mean, when the dimension is high,
is almost zero. In conclusion, SRBF are no longer local in higher
dimensions, and those models that have been seen as sums of local
kernels do not behave as such in high dimensions.

Fig. 3b shows that the GRBF provides better matching to the pat-
terns in high dimensional spaces, because the � parameter allows
modification of the shape of the GRBF curvature. As can be observed
in Fig. 3b when d = 100, the SRBF needs a high value of r to model
these patterns. When the SRBF has a high value of r, it has a slightly
pronounced curvature which causes the SRBF to assign very similar
grades of membership to the patterns located far from the cluster
centre.

This effect can be observed in Fig. 3b: when d = 2, the SRBF shows
its ability to fit distance distribution, assigning membership values



Fig. 4. Hybrid Algorithm (HA) framework.

in the interval [0, 1]; however when d = 100, the SRBF assigns mem-
bership values in the interval [0.27–0.57], while the GRBF assigns
membership values in the interval [0–1]. In our opinion and based
also on the experimental results (Section 4.4), this justifies our con-
sidering GRBF to be an appropriate kernel to quantify similarity in
high dimensional spaces.

2.2. Base classifier: probabilistic Generalized Radial Basis

Functions

In a classification problem, measurements xi, i = 1, 2, . . ., K, of
a single individual (or object) are taken, and the individuals are
to be classified into one of the J classes based on these measure-
ments. A training sample D = {(xn, yn) ; n = 1, 2, . . ., N} is available,
where xn = (x1n, . . ., xkn) is the random vector of measurements tak-
ing values in � ⊂ RK , and yn is the class level of the nth individual,
where the common technique of representing class levels using a
“1-of-J” encoding vector is adopted, y = (y(1), y(1), . . ., y(J)), and the
Correctly Classified Rate or accuracy of the classifier is defined by

C = (1/N)
∑N

n=1
I(C(xn) = yn), where I(.) is the zero-one lost func-

tion.
In order to tackle this classification problem, the outputs of the

GRBF model have been interpreted from the point of view of prob-
ability through the use of the softmax activation function, which is
given by:

gl(x, �l) =
exp fl(x, �l)

∑J

j=1
exp fj(x, �j)

, l = 1, 2, . . . , J (5)

where J is the number of classes in the problem, fj(x, �l) is the output
of the j output neuron for pattern x and gl(x, �l) is the probability
a pattern x has of belonging to class j. The model to estimate the
function fl(x, �l) is defined by the following equation:

fl(x, �l) = ˇl
0 +

M
∑

j=1

ˇl
j exp

(

−
‖x − cj‖

�j

r
�j

j

)

, l = 1, 2, . . . , J (6)

where M is the number of GRBFs or number of nodes in the hidden
layer.

Using the softmax activation function presented in Eq. (5), the
class predicted by the NN corresponds to the node in the output
layer with the greatest output value.

The function used to evaluate a GRBF Neural Network (GRBFNN)
is the function of cross-entropy error and it is given by the following
expression:

l(�) =
N

∑

n=1

[−
J

∑

l=1

y
(l)
n fl(xn, �l) + log

J
∑

l=1

expfl(xn, �l)] (7)

where � = (�1, . . ., �J).
The error surface associated with the model is very convoluted

with numerous local optima and the Hessian matrix of the error
function l(�) is, in general, indefinite. Moreover, the optimal num-
ber of basis functions in the model (i.e. the number of hidden nodes
in the neural network) is unknown. Thus, we estimate the param-
eters � by means of a Hybrid Algorithm (HA).

2.3. Hybrid Algorithm

The proposed Hybrid Algorithm (HA) is composed by two stages.
In the first stage, an Evolutionary Algorithm is used as a global
stochastic search algorithm which generates candidate RBFNNs. In
the second stage, the iRprop+ algorithm performs a local optimiza-
tion procedure to the best RBFNN individual of the last generation.
Fig. 4 describes the procedure to estimate the parameters of
GRBFNN.

The basic framework of the EA is the following: the search begins
with an initial population of RBFNNs and, in each iteration, the
population is updated using a population-update algorithm which
evolves both its structure and weights. The population is subject to
operations of replication and mutation. The main characteristics of
the algorithm are the following:

1. Representation of the individuals. The algorithm evolves architec-
tures and connection weights simultaneously, each individual
being a fully specified RBFNN. The neural networks are rep-
resented using an object-oriented approach and the algorithm
deals directly with the RBFNN phenotype. Each connection is
specified by a binary value indicating if the connection exists,
and the real value representing its weights.

2. Error and fitness functions. We consider l(�) (Eq. 7) as the
error function of an individual g in the population. The fit-
ness measure needed for evaluating the individuals is a strictly
decreasing transformation of the error function l(�) given by
A(�) = (1/1 + l(�)), where 0 < A(�) ≤ 1.

3. Initialization of the population. The initial population is gener-
ated trying to obtain RBFNNs with the maximum possible fitness.



First, 5000 random RBFNNs are generated. The centres of the
radial units are firstly defined by the k-means algorithm for dif-
ferent values of k, where k ∈ [Mmin, Mmax], Mmin and Mmax being
the minimum and maximum numbers of hidden nodes allowed
for any RBFNN model in the HA. The widths of the RBFNNs are ini-
tialized to the geometric mean of the distance to the two nearest
neighbourhood and the � parameter to 2, since when � = 2 the
GRBF reduces to the standard Gaussian RBF (SRBF). A random
value in the [− I, I] interval is assigned for the weights between
the hidden layer and the output layer. The individuals obtained
are evaluated using the fitness function and the initial population
is finally obtained by selecting the best 500 RBFNNs.

4. Parametric and structural mutations. Parametric mutation con-
sists of a simulated annealing algorithm [22]. Structural
mutation implies a modification in the structure of the RBFNNs
and allows the exploration of different regions in the search
space, helping to keep the diversity of the population. There are
four different structural mutations: hidden node addition, hid-
den node deletion, connection addition and connection deletion.
These four mutations are applied sequentially to each network.
More information about the genetic operators proposed can be
seen in [23]. It is important to note the structural and parametric
mutations of �:
• Structural mutation: If the structural mutator adds a new node

in the RBFNN, the � parameter is assigned to 2, since when � = 2
the GRBF reproduces to the Gaussian RBF.

• Parametric mutation: The � parameter is updated by adding a
ε value, where ε ∈ [− 0.25, 0.25], since the modification of the
GRBF is very sensitive to the � variation (Fig. 2).

5. iRprop+Local Optimizer. The local optimization algorithm used in
our paper is the iRprop+ [24] optimization method. The iRprop+
is believed to be a fast and robust learning algorithm. This algo-
rithm applies a backtracking strategy (i.e. it decides whether to
take a step back along a weight direction or not by means of
a heuristic). In the methodology proposed, we run the EA and
then apply the local optimization algorithm to the best solution
obtained by the EA in the last generation. Further details about
the adaptation of the iRprop+ local improvement procedure to
the softmax activation function can be seen in Appendix A of the
paper.

Since the accuracy of the GRBFNN model was evaluated with
bioinformatic datasets and a typical microarray dataset may
contain thousands of genes, applying the FS techniques are a
prerequisite for building the GRBFNN model in this context. The
methodology proposed is shown in detail in Fig. 5.

3. Hybrid-generation feature selection

3.1. Introduction

The limitations of both the approaches introduced in Section
1 (FR and FSS) in high-dimensional spaces, clearly suggest the
need for a hybrid model. The three methods used in this work can
be labelled as this kind of framework, Hybrid-Generation Feature
Selection.

In feature subset selection, it is a fact that two types of fea-
tures are generally perceived as being unnecessary: features that
are irrelevant to the target concept, and features that are redundant
due to other features.

The purpose of a feature subset algorithm is to identify rele-
vant features according to a definition of relevance. However, the
notion of relevance in machine learning has not yet been rigorously
defined by common agreement [25].

On the other hand, notions of feature redundancy are normally
in terms of feature correlation. It is widely accepted that two fea-
tures are redundant to each other if their values are completely
correlated. There are two widely used types of measures for the cor-
relation between two variables: linear and non-linear. In the linear,
the Pearson correlation coefficient is used, and in the case of non-
linear, many measures are based on the concept of entropy, or the
measurement of the uncertainty of a random variable. Symmetrical
uncertainty (SU) [26] is frequently used, defined as

SU(x, y) = 2
[

IG(x|y)

H(x) + H(y)

]

where H(x) = −
∑K

i
P(xi)log2(P(xi)) is the entropy of a variable x

and IG(x|y) = H(x) − H(x|y) is the information gain from x provided
by y. Both of them are between pairs of variables. However, it may
not be as straightforward in determining feature redundancy when
one is correlated with a set of features.

CFS [27] is one of well-known techniques to rank the relevance
of features by measuring correlation between features and classes
and between features and other features. The heart of the CFS
(Correlation-based Feature Selection) algorithm contains a heuris-
tic for evaluating the worth or merit of a subset of features. This
heuristic takes into account the usefulness of individual features
for predicting the class label, along with the level of intercorrela-
tion among them. The hypothesis on which the heuristic is based is:
Good feature subsets contain features that are highly correlated with

the class, yet uncorrelated with one another.

MeritS =
k × rcf

√

k + k × (k − 1) × rff

where MeritS is the heuristic of a feature subset S containing k fea-
tures, rcf the average feature-class correlation, and rff the average
feature–feature intercorrelation. For discrete class problems, CFS
first discretizes numeric features and then uses symmetrical uncer-
tainty to estimate the degree of association between the discretized
features.

Due to the high computational cost in a high dimensional
domain, we discard the wrapper approach, and the three methods
use correlation concepts as relevance and redundancy criteria.

3.2. Fast Correlation-Based Filter (FCBF)

Aiming to achieve high efficiency, FCBF calculates
SU–correlation between any Fi feature and class C generating
a list in descending order, and heuristically decides a Fi feature
to be relevant if it is highly correlated with class C, i.e., if SUi,c > ı,
where ı is a relevance threshold which can be determined by users.
The relevant features selected are then subject to redundancy
analysis. Similarly, FCBF evaluates the SU-correlation between
individual features for redundancy analysis based on an approx-
imate Markov blanket concept. For two relevant Fi and Fj (i /= j)
features, Fj can be eliminated if SUi,c ≥ SUj,c and SUi,j ≥ SUj,c. The
iteration starts from the first element in the ranking and continues
as follows. For all the remaining features, if Fi happens to form an
approximate Markov blanket for Fj, Fj will be removed from the
list. After one round of filtering features based on Fi, the algorithm
will take the remaining feature right next to Fi as the new reference
to repeat the filtering process. The algorithm stops when no more
features can be eliminated. Fig. 6 describes the FCBF method.

3.3. Best Incremental Ranked Subset (BIRS)

BIRS considers that relevance and redundancy concepts are
included in the following “incremental usefulness” definition:
given a sample of data, an evaluation measure L, a feature space



Fig. 5. Flow diagram of the GRBF method.

F and a feature subset S (S ⊆ F), the feature Fi is incrementally use-
ful to L with respect to S if the evaluation of the hypothesis that
L produces using the group of features {Fi}∪ S is better than the
evaluation achieved using just the subset of features S. i.e., if Fi is
not incrementally useful to L with respect to S, then the evaluation
value given the subset S is equal or better than the subset evalua-
tion result known {Fi}∪ S. It suggests that Fi gives no information
beyond what is already in S, therefore, Fi could be removed safely,
or in this case, Fi would not be added to S. However, since the com-
putational complexity to determine all possible interactions among
features is very high (mainly in high-dimensional domains), BIRS
considers using a guided search in preference to an ordered list of
attributes.

BIRS deals with incremental ranked usefulness in order to devise
an approach to explicitly identify relevant features and not take
into account redundant features. The idea is to choose the Fi fea-
ture from a ranked list one by one in the following way: firstly, the
features are ranked according to some evaluation measure (SUi,c);
secondly, BIRS deals with the list of features once, crossing the rank-
ing from the beginning to the last ranked feature. The evaluation
results using CFS with the first feature in the list are obtained and it
is marked as selected. The result is obtained again with the first and
second features. The second will be marked as selected depending
on whether the evaluation obtained is statistically significantly bet-
ter. The process is repeated until the last feature on the ranked list
is reached. Finally, the algorithm returns the best subset found, and



Fig. 6. FCBF algorithm.

it will not contain irrelevant or redundant features. Fig. 7 describes
the BIRS method.

3.4. Best Agglomerative Ranked Subset (BARS)

BARS is called agglomerative due to the way it constructs the
final subset of selected features. The method begins by generating a
ranking. Then, pairs of features are obtained with the ranking’s first
features, in combination with each one of the remaining features
on the list. The pairs of features are ranked according to the value
of the evaluation, and the process is repeated, that is, the subsets
made up by the first sets on the new list are compared with the rest
of the sets.

The process continues until the final subset obtained. Step one
generates a feature ranking ranging from best to worst according
to a correlation measure (CFS). Next, a list of solutions is generated,
in such a way that a solution for each individual feature is cre-
ated and the same ranking order is maintained. The agglomerative
search consists of making a subset of relevant features by joining
subsets with a lower number of features. With every iteration a
new list of solutions from the previous structure is generated. Each
candidate set, made by joining two sets from the previous list of
solutions, will become part of the next list of solutions if, when the
subset evaluator (CFS) is applied to it, it gives back a higher measure
value than the one obtained with the best (or first) subset from the
previous list of solutions. To prevent the algorithm from becoming
prohibitively time consuming, new sets of features are generated
by joining the first sets to the remaining previous list of solutions.
That is, the first set on the list is joined to the second set, next the
first set is joined to the third set, and so on until the end of the list.
Next, the second set of the list is joined to the third set, the second
set and the fourth set, and so on until the last set on the list. This
process of combining a set of features with the rest of the sets on the
list is carried out with the best k feature sets from the previous list
of solutions. The process ends when only one feature subset is left,
or when combining the subsets no longer causes an improvement.

At the end, the algorithm returns the best positioned feature subset
of all the subsets evaluated. Fig. 8 describes a sequence of numbered
steps of the BARS method.

4. Experiments

This section presents the experimental results and analysis of
GRBF models on 6 public microarray datasets with high dimen-
sionality/small sample size. At the beginning, the datasets and
several machine learning algorithms used in this analysis are briefly
described. Subsequently, experimental results are given and dis-
cussed with respect to various aspects.

4.1. Microarray data

To validate the effectiveness of our method, a series of exper-
iments were performed on 6 publicly available gene microarray
datasets (Table 1). These datasets were taken from bioinformatic
and biomedical domains. They are often used to validate the
performance of the classifier and gene selector. Due to high dimen-
sionality and small sample size, gene selection is an essential
prerequisite for further data analysis. Brief descriptions of them
are given in continuation.

Breast consists of 97 samples collected from breast cancer
patients. 46 of them are from patients labelled as relapse, the rest
of the 51 samples are from patients who remain healthy from the
disease and are regarded as non-relapse. Each sample is described
by 24,481 genes.

CNS (Central Nervous System) is derived from patient sam-
ples in embryonal tumours of the central nervous system. The total
number of genes to be tested is 7129 and the number of samples is
60. There are two types of samples in the dataset, where 21 are
survivors (who survive the treatment) and 39 are failures (who
succumbed to the disease).

Colon uses Affymetrix oligonucleotide arrays to monitor
expression levels of over 6500 human genes from 40 tumour and
22 normal colon tissue samples. The 2000 genes with the highest
minimal intensity across the 62 tissues were used in this analysis.

Leukaemia refers to the primary disorders of bone marrow.
This dataset contains 72 samples with malignant neoplasms of
haematopoietic stem cells, of which 47 are acute lymphobastic

leukaemia (ALL) and 25 acute myeloid leukaemia (AML). The total
number of genes to be tested is 7129.

Lung has 12,600 genes in 203 samples. The 203 samples consist
of 139 lung adenocarcinomas (AD), 21 squamous (SQ) cell carci-
noma cases, 20 pulmonary carcinoid (COID) tumours and 6 small
cell lung cancer cases (SCLC), as well as 17 normal lung (NL) sam-
ples.

GCM contains 190 samples. These samples are divided into 14
varieties of tumour. The expression levels of 16,063 genes are
reported.

Fig. 7. BIRS algorithm.



Table 1

Characteristics of the six datasets used for the experiments: feature selection type (FS), number of instances (Size), number of Real (R), Binary (B) and Nominal (N) input

variables, total number of inputs (# In), number of classes (# Out), per-class distribution of the instances (Distribution), minimum and maximum number of hidden nodes

used for each dataset ([Mmin , Mmax]) and the number of generations (# Gen).

Dataset Source FS Size R B N # In # Out Distribution [Mmin , Mmax] Gen

Breast Van’t Veer et al. [40] BARS 97 183 – – 183 2 (46,51) [1, 3] 100

BIRS 261 – – 261

FCBF 493 – – 493

CNS Pomeroy et al. [41] BARS 60 187 – – 187 2 (21,39) [1, 3] 10

BIRS 206 – – 206

FCBF 170 – – 170

Colon Alon et al. [42] BARS 62 58 – – 58 2 (40,22) [1, 3] 10

BIRS 93 – – 93

FCBF 59 – – 59

Leukaemia Golub et al. [43] BARS 72 225 – – 225 2 (42,25) [1, 3] 50

BIRS 240 – – 240

FCBF 203 – – 203

Lung Bhattacharjee et al. [44] BARS 203 237 – – 237 5 (139,17,6,21,20) [5, 8] 100

BIRS 263 – – 263

FCBF 250 – – 250

GCM Ramaswamy et al. [45] BARS 253 311 – – 311 14 (11,10,11,11,22, [25, 28] 400

BIRS 288 – – 288 11,10,10,30,11,

FCBF 264 – – 264 11,11,11,20)

In these 6 microarray datasets, all gene expression values are
numeric. For convenience sake, they were standardized before our
experiments, that is, for each gene represented, the mean and
standard deviation were zero and one, respectively, after the stan-
dardized operation had been performed.

4.2. Alternative statistical and artificial intelligence methods used

for comparison purposes

Different state-of-the-art statistical and artificial intelligence
algorithms have been implemented for comparison purposes.
Specifically, the results of the following algorithms have been com-
pared to the GRBF method presented in this paper:

1. A Gaussian Radial Basis Function Network (RBFN) [28], deriving
the centres and width of hidden units using k-means, and com-
bining the outputs obtained from the hidden layer using logistic
regression.

2. The MultiLogistic (MLogistic) algorithm. It is a method for
building a multinomial logistic regression model with a ridge

estimator to guard against overfitting by penalizing large coeffi-
cients [29].

3. The SimpleLogistic (SLogistic) algorithm. It is based on apply-
ing LogitBoost algorithm with simple regression functions and
determining the optimum number of iterations by a five fold
cross-validation [30].

4. The C4.5 classification tree inducer [31].
5. The Naive Bayes standard learning algorithm (NaiveBayes) [28].
6. The Logistic Model Tree (LMT) [30] classifier.
7. The IB1 classifier [32]. It uses a simple distance measure to find

the training instance closest to the given test instance, and pre-
dicts the same class as this training instance.

8. The Support Vector Machine (SVM) classifier [33] with RBF ker-
nels.

These algorithms have been selected for comparison since they
are some of the best performing algorithms in recent literature
on classification problems. Many of these approaches have also
been tested before in the classification problem on microarray gene
expression. The detailed description and some previous results of
these methods can be found in [34,28,30].

Fig. 8. BARS algorithm.



Table 2

Comparison of the proposed method to other probabilistic methods: mean and standard deviation (SD) of the accuracy results (CG(%)) from 30 executions, mean accuracy

(CG( %)) and mean ranking (R).

Dataset FS Method (CG(%))

RBFN MLogistic SLogistic C4.5 NaiveBayes LMT IB1 SVM GRBF

Result Result Result Result Result Result Result Result Mean ± SD

Breast BARS 80.00 80.00 72.00 72.00 52.00 72.00 76.00 80.00 83.06 ± 2.07

BIRS 72.00 76.00 64.00 64.00 76.00 64.00 80.00 84.00 82.26 ± 5.32

FCBF 80.00 84.00 84.00 64.00 80.00 84.00 76.00 76.00 86.66 ± 3.53

CNS BARS 80.00 73.33 66.66 66.66 66.66 66.66 73.33 66.67 76.88 ± 3.38

BIRS 80.00 93.33 60.00 73.33 80.00 60.00 86.66 66.67 82.00 ± 3.97

FCBF 86.66 100.00 80.00 60.00 86.66 80.00 93.33 66.67 96.44 ± 5.46

Colon BARS 93.75 93.75 100.00 81.25 93.75 100.00 87.75 62.50 100.00 ± 0.00

BIRS 81.25 68.75 67.50 87.50 81.25 87.50 81.25 62.50 85.83 ± 4.32

FCBF 87.50 75.00 81.25 75.00 81.25 75.00 81.25 62.50 86.04 ± 3.91

Leukaemia BARS 94.44 100.00 88.89 83.33 100.00 88.89 94.44 66.67 100.00 ± 0.00

BIRS 94.44 100.00 94.44 83.33 100.00 94.44 100.00 66.67 100.00 ± 0.00

FCBF 94.44 94.44 83.33 83.33 100.00 83.33 100.00 66.67 100.00 ± 0.00

Lung BARS 96.07 96.07 98.03 94.11 96.07 98.03 98.03 98.03 99.64 ± 0.98

BIRS 94.11 90.19 98.03 94.11 98.03 98.03 98.03 98.03 98.45 ± 0.67

FCBF 94.11 94.11 98.03 74.50 94.11 98.03 94.11 94.11 97.50 ± 0.98

GCM BARS 75.00 73.07 63.49 57.69 75.00 71.15 59.61 75.00 82.32 ± 4.30

BIRS 76.92 78.84 75.00 57.69 78.84 75.00 75.00 76.92 79.87 ± 3.45

FCBF 82.00 80.76 71.15 48.07 71.15 67.30 69.23 80.76 79.75 ± 4.90

CG( %) 85.70 86.20 80.32 73.32 83.93 81.29 84.66 75.02 89.81

RCG
4.41 4.22 5.69 7.69 4.66 5.58 4.69 6.05 1.97

The best result is in bold face and the second best result in italics.

4.3. Experimental design

The evaluation of the different models has been performed using
two different measures: Correctly Classified Rate (CCR) or accuracy
and Root Mean Square Error (RMSE). CCR represents threshold met-
rics and RMSE a rank metric. RMSE is a metric corresponding to the
expected value of the squared error loss or quadratic loss. RMSE

is a frequently used measurement of the differences between val-
ues predicted by a model or an estimator, and the values actually
observed in what is being modelled or estimated.

All the parameters used in the HA (Section 2.3) except the max-
imum and minimum number of RBFs in the hidden layer ([Mmin,
Mmax]) and the number of generations (# Gen) have the same values
in all problems analysed below (Table 1). The connections between
hidden and output layer are initialized in the [− 5, 5] interval (i.e.
[− I, I] = [− 5, 5]). The size of the population is N = 500. For the struc-
tural mutation, the number of nodes that can be added or removed
is within the [1,2] interval, and the number of connections to add
or delete in the hidden and the output layers during structural
mutations is within the [1,7] interval.

For the selection of the SVM hyperparameters (regularization
parameter, C, and width of the Gaussian functions, ), a grid search
algorithm has been applied with a ten-fold cross-validation, using
the following ranges: C ∈ {2−5, 2−3, . . ., 215} and  ∈ {2−15, 2−13,
. . ., 23}.

The experimental design was conducted using a holdout cross
validation procedure with 3n/4 instances for the training dataset
and n/4 instances for the generalization dataset. In order to evaluate
the stability of the methods, the evolutionary algorithm is run 30
times.

The HA and the model proposed was implemented in JAVA. We
also used “libsvm” [35] to obtain the results of the SVM method,
and WEKA1 to obtain the results of the remaining methods.

1 http://www.cs.waikato.ac.nz/ml/weka/

4.4. Comparison of the GRBF model with other classifiers

In this subsection, the GRBF model is compared to other base
line classifiers. The purpose of this section is to show the improve-
ment in accuracy in the classification problem of the microarray
gene expression. Tables 2 and 3 show the mean and the standard
deviation of the correct classification rate (CG) and the Root Mean
Square Error (RMSEG) in the generalization set for each dataset and
the RBFN, MLogistic, SLogistic, C4.5, NaiveBayes, LMT, IB1, SVM and
GRBF methods. Based on the mean CG and RMSEG, the ranking of
each method in each dataset (R = 1 for the best performing method
and R = 9 for the worst one) is obtained and the mean accuracy and
RMSE (CG and RMSEG) and the mean ranking (RCG

and RRMSEG
) are

also included in Tables 2 and 3.
From the analysis of the results, it can be concluded, from a

purely descriptive point of view, that the GRBF method obtained
the best results for ten datasets in CG and for fourteen datasets
in RMSEG. Furthermore, the GRBF method yield the best mean
(CG = 89.81 %) and ranking (RCG

= 1.97) in CG, and, taking RMSEG

into account, the GRBF got the best performance in both measures
(RMSEG = 0.18, RRMSEG

= 1.75).
To determine the statistical significance of the rank differences

observed for each method in the different datasets, we have carried
out a non-parametric Friedman test [36] with the ranking of CG and
RMSEG of the best models as the test variables (since a previous
evaluation of the CG and RMSEG values results in rejecting the nor-
mality and the equality of the variances’ hypothesis). The test shows
that the effect of the method used for classification is statistically
significant at a significance level of 5%, as the confidence inter-
val is C0 = (0, F0.05 = 2.00) and the F-distribution statistical values
are F* = 8.19 /∈ C0 for CG and F* = 9.19 /∈ C0 for RMSEG. Consequently,
we reject the null-hypothesis stating that all algorithms perform
equally in mean ranking.

Based on this rejection, the Nemenyi post hoc test is used to
compare all the classifiers to each other. This test considers that
the performance of any two classifiers is deemed significantly

http://www.cs.waikato.ac.nz/ml/weka/


Table 3

Comparison of the proposed method to other probabilistic methods: Mean and Standard Deviation (SD) of the RMSE results (RMSG) from 30 executions, mean RMSE (RMSEG)

and mean ranking (RRMSEG
).

Dataset FS Method (RMSEG)

RBFN MLogistic SLogistic C4.5 NaiveBayes LMT IB1 SVM GRBF

Result Result Result Result Result Result Result Result Mean ± SD

Breast BARS 0.42 0.44 0.41 0.53 0.69 0.41 0.48 0.34 0.38 ± 0.01

BIRS 0.52 0.46 0.53 0.58 0.48 0.53 0.44 0.38 0.36 ± 0.02

FCBF 0.41 0.37 0.34 0.57 0.43 0.34 0.48 0.42 0.33 ± 0.04

CNS BARS 0.43 0.50 0.57 0.54 0.57 0.57 0.51 0.47 0.44 ± 0.02

BIRS 0.43 0.25 0.51 0.50 0.44 0.51 0.36 0.47 0.34 ± 0.04

FCBF 0.37 0.00 0.46 0.61 0.36 0.46 0.25 0.47 0.18 ± 0.06

Colon BARS 0.13 0.25 0.18 0.43 0.24 0.18 0.35 0.49 0.09 ± 0.06

BIRS 0.40 0.56 0.37 0.35 0.43 0.37 0.43 0.49 0.38 ± 0.02

FCBF 0.33 0.50 0.36 0.48 0.43 0.39 0.43 0.49 0.16 ± 0.01

Leukaemia BARS 0.23 0.00 0.32 0.40 0.00 0.32 0.23 0.47 0.00 ± 0.00

BIRS 0.33 0.00 0.20 0.40 0.00 0.20 0.00 0.47 0.00 ± 0.00

FCBF 0.23 0.23 0.40 0.39 0.00 0.40 0.00 0.47 0.00 ± 0.00

Lung BARS 0.12 0.11 0.08 0.15 0.12 0.08 0.08 0.20 0.05 ± 0.01

BIRS 0.12 0.19 0.08 0.13 0.08 0.08 0.08 0.14 0.07 ± 0.05

FCBF 0.15 0.13 0.08 0.31 0.15 0.08 0.15 0.17 0.11 ± 0.04

GCM BARS 0.18 0.19 0.22 0.24 0.18 0.20 0.24 0.22 0.17 ± 0.07

BIRS 0.18 0.16 0.17 0.23 0.17 0.17 0.18 0.20 0.15 ± 0.04

FCBF 0.15 0.15 0.18 0.26 0.20 0.21 0.20 0.18 0.15 ± 0.08

RMSEG 0.28 0.24 0.30 0.39 0.27 0.30 0.27 0.36 0.18

RRMSEG
4.47 4.38 4.88 7.58 5.02 5.05 5.05 6.77 1.75

The best result is in bold face and the second best result in italics.

different if their mean ranks differ by at least the critical difference
(CD):

CD = q

√

K(K + 1)

6D
(8)

where K and D are the number of classifiers and datasets, and the q

value is derived from the studentized range statistic divided by
√

2
[37,38]. However, it has been noted that the approach of comparing
all classifiers to each other in a post hoc test is not as sensitive
as the approach of comparing all classifiers to a given classifier (a
control method). One approach to this latter type of comparison is
the Bonferroni–Dunn test. This test can be computed using Eq. (8)
with appropriate adjusted values of q [38].

The results of the Bonferroni–Dunn and Nemenyi tests for
˛ = 0.10 and ˛ = 0.05 can be seen in Tables 4 and 5, using the
corresponding critical values (and also in the Bonferroni critical
difference diagrams of Fig. 9). From the results of this test, it can be
concluded that GRBF obtains a significantly higher RMSEG ranking
when compared to all methods for ˛ = 0.05 and a significantly bet-
ter CG ranking when compared to all methods except MLogistic for
˛ = 0.10, which justifies the proposal.

4.5. Analysis of performance: GRBF versus SVM

The low accuracy provided by the SVM classifier is especially
noteworthy. The reason for this has already been analysed by
Klement [39]. As noted in Section 1, the proposed classifier was
evaluated in gene microarray datasets. Such datasets have small
sample size and high dimensionality and a well-known effect; if
dimensionality is increased towards infinity, a finite set of points
will lose more and more of its spatial topology. At the limit, the
points will be located on the vertices of a regular simplex, i.e.
all samples have nearly the same distances to the origin as well
as from each other, and they are pair-wise orthogonal. Klement
showed that even comparatively low dimensional data will behave

as if infinitely dimensional. So, especially for low sample size data,
infinity is rather small.

The main findings of this study about the performance of SVM
in high dimensional and small sample size datasets were:

• Klement showed that the leave-one-out CV error for hard-margin
SVMs will approach 1 in high-dimensional feature spaces for
equal-sized classes drawn from the same distribution – despite
the expected error rate of 0.5, which would be the outcome for the
same setting in low dimensions. Moreover this observation was
generalized to two classes drawn from different distributions.

• Due to the counterintuitive geometric properties of only a few
samples in high-dimensional space and the asymmetries of a re-
sampling scheme such as leave-one-out crossvalidation, the soft-
margin approach did not increase the generalization performance
of the hard-margin SVM.

It should be emphasized that dealing especially with high-
dimensional but small sample size data leads to various
counterintuitive and unfamiliar side effects which can have sig-
nificant impact on training and validation.

4.6. Analysis of the best pair (classifier/feature selection

algorithm) for the classification problem of microarray gene

expression

The purpose of this last section is to determine which pair clas-
sifier/feature selection algorithm is the best methodology for the
classification of microarray genes. In Table 6, the mean and stan-
dard deviation of the correct classification rate and the root mean
square error in the generalization set (CG and RMSEG) are shown
for each family of feature selectors (BARS, BIRS and FCBF).

From the analysis of the results, it can be concluded, from a
purely descriptive point of view, that the GRBF model and the FCBF

feature selection algorithm obtained the best mean result both in
CG as well as in RMSEG. For this reason, the GRBF model and the
FCBF feature selection algorithm are recommended to improve the



Table 4

Comparison of the GRBF method with other approaches: Critical Difference (CD) values and differences of rankings of the Nemenyi and Bonferroni–Dunn tests, using GRBF

as the control method and CG as the test variable.

Nemenyi test

Method (i) Method (j)

RBFN MLogistic SLogistic C4.5 NaiveBayes LMT IB1 SVM GRBF

RBFN – 0.19 1.27 3 . 27• 0.25 1.16 0.27 1.63 2.44

MLogistic – – 1.47 3 . 47• 0.44 1.36 0.47 1.83 2.25

SLogistic – – – 2.00 1.02 0.11 1.00 0.36 3.72+
•

C4.5 – – – – 3.02+
• 2.11 3.00+

• 1.63 5.72+
•

NaiveBayes – – – – – 0.91 0.02 1.38 2.69+
◦

LMT – – – – – – 0.88 0.47 3.61+
•

IB1 – – – – – – – 1.36 2.72+
◦

SVM – – – – – – – – 4.08+
•

CD˛=0.1= 2.60, CD˛=0.05= 2.83

Bonferroni–Dunn test

Control Method Compared Method

RBFN MLogistic SLogistic C4.5 NaiveBayes LMT IB1 SVM GRBF

GRBF 2.44+
◦ 2.25 3.72+

• 5.72+
• 2.69+

• 3.61+
• 2.72+

• 4.08+
• –

CD˛=0.1= 2.28, CD˛=0.05= 2.48

•, ◦: Statistically difference with ˛ = 0.05 (•) and ˛ = 0.1 (◦).

+: The difference is in favour of Method (j) (Nemenyi test) or Control Method (Bonferroni–Dunn test).

Table 5

Comparison of the GRBF method with other approaches: Critical Difference (CD) values and differences of rankings of the Nemenyi and Bonferroni–Dunn tests, using GRBF

as the control method and RMSEG as the test variable.

Nemenyi test

Method (i) Method (j)

RBFN MLogistic SLogistic C4.5 NaiveBayes LMT IB1 SVM GRBF

RBFN – 0.08 0.41 3 . 11• 0.55 0.58 0.58 2.30 2.72+
◦

MLogistic – – 0.50 3 . 19• 0.63 0.66 0.66 2.38 2.63+
◦

SLogistic – – – 2.69+
◦ 0.13 0.16 0.16 1.88 3.13+

•
C4.5 – – – – 2.55 2.52 2.52 0.80 5.83+

•
NaiveBayes – – – – – 0.02 0.02 1.75 3.27+

•
LMT – – – – – – 0.00 1.72 3.30+

•
IB1 – – – – – – – 1.72 3.30+

•
SVM – – – – – – – – 5.02+

•
CD˛=0.1= 2.60, CD˛=0.05= 2.83

Bonferroni–Dunn test

Control Method Compared Method

RBFN MLogistic SLogistic C4.5 NaiveBayes LMT IB1 SVM GRBF

GRBF 2.72+
• 2.63+

• 3.13+
• 5.83+

• 3.27+
• 3.30+

• 3.30+
• 5.02+

• -

CD˛=0.1= 2.28, CD˛=0.05= 2.48

•, ◦: Statistically difference with ˛ = 0.05 (•) and ˛ = 0.1 (◦).

+: The difference is in favour of Method (j) (Nemenyi test) or Control Method (Bonferroni–Dunn test).

Table 6

Comparison of the proposed method to other baseline classifiers: Mean and Standard Deviation (SD) of the accuracy results (CG(%)) and RMSE results (RMSEG) for each feature

selection algorithm.

FS RBFN MLogistic SLogistic C4.5 NaiveBayes LMT IB1 SVM GRBF

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

Method (CG(%))

BARS 86.54 ± 9.20 86.03 ± 12.00 81.51 ± 16.15 75.84 ± 13.02 80.58 ± 19.14 82.78 ± 14.68 81.52 ± 14.53 74.81 ± 13.03 90.31 ± 10.69

BIRS 83.12 ± 9.21 84.51 ± 11.85 76.49 ± 16.10 76.66 ± 14.12 85.68 ± 10.48 79.82 ± 15.94 86.82 ± 10.16 75.79 ± 13.46 88.06 ± 8.86

FCBF 87.45 ± 5.98 88.05 ± 9.59 82.96 ± 8.71 67.48 ± 12.66 85.52 ± 10.39 81.27 ± 10.28 85.65 ± 11.98 74.45 ± 11.76 91.06 ± 8.03

Method (RMSEG)

BARS 0.25 ± 0.13 0.24 ± 0.19 0.29 ± 0.17 0.38 ± 0.15 0.30 ± 0.27 0.29 ± 0.17 0.31 ± 0.16 0.36 ± 0.13 0.19 ± 0.18

BIRS 0.33 ± 0.15 0.27 ± 0.20 0.31 ± 0.18 0.36 ± 0.16 0.26 ± 0.20 0.31 ± 0.18 0.24 ± 0.18 0.35 ± 0.15 0.22 ± 0.15

FCBF 0.27 ± 0.11 0.23 ± 0.17 0.30 ± 0.14 0.43 ± 0.14 0.26 ± 0.17 0.31 ± 0.14 0.25 ± 0.17 0.36 ± 0.15 0.16 ± 0.10

The best result is in bold face and the second best result in italics.



Table 7

Probability expression of the best GRBF model for the Colon dataset and using BARS as the feature selection algorithm. Performance of this model: Correct Classification

Rate (CCR) on the training set (CCRT), CCR on the generalization set (CCRG), and Root Mean Square Error (RMSE) on the training set (RMSET), RMSE on the generalization set

(RMSEG). Confusion Matrix (CM) for the training set (CMT) and CM for the generalization set (CMG).

Best GRBF Colon-BARS Multi-Classification Model
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accuracy value and root mean square error in the classification of
microarray gene expression.

4.7. Analysis of the best GRBF model obtained for the Colon

dataset using the BARS as the feature selection algorithm

As discussed above, the proposed method reduces the num-
ber of features using a two-step procedure. In the first stage, a
hybrid method of feature selection reduces the number of genes
from thousands to hundreds. In the second one, the HA reduces the
number of genes from hundreds to tens by pruning connections
and removing nodes in the hidden layer. This can result in a better
interpretability of the model, which is especially important when
dealing with real problems. In order to analyse the importance of
this feature reduction in the genome data sets, in this section, we
present an example of this reduction using the Colon datasets and
the BARS feature selector.

Thus, Table 7 includes the best predictor functions of the GRBF
model obtained for the Colon problem using BARS as the feature
selection algorithm. As discussed in Section 4, the dataset includes
58 input variables and the observations are to be classified in two
classes. From these predictor functions, the probability that each

pattern x has of belonging to each class can be easily derived by
using softmax functions.

As we can see in Table 7, the final GRBF model includes only
14 input variables, since feature selection has been performed in
two stages: first, the BARS algorithm reduces the input space of
2000 input variables to 58; secondly, the HA dynamically eliminates
variables by pruning connections.

As stated in subsection 4.1 mean and standard deviation of
datasets were zero and one, respectively, after performing the stan-
dardized operation. Based on this information, it is possible to rank
the most influential genes according to their discriminatory abil-
ity. Thus, the most relevant genes of the model in Table 7 (Colon
dataset) are those whose kernel average is close to zero, since
there is a greater likelihood of the kernel representing the values
obtained in this direction of the input space. The eight most influ-
ential genes are shown in decreasing order in the first column of
Table 8.

Besides reporting the gene accession number (Genbank) and
giving a brief description of the gene in Table 8, we point out
its ranking in works about gene selection published with respect
to the same dataset, although an asterisk indicates the presence
of the gene in the respective publication when no ranking was

8 7 6 5 4 3 2 1
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8 7 6 5 4 3 2

CD

GRBF

MLogistic

RBFN

SLogistic

NaiveBayes

IBI

LMT

SVM

C4.5

(b) Bonferroni (RMSEG)

Fig. 9. Comparison of the GRBF method with other approaches: graphic of performance comparison (˛ = 0.10). (a) Bonferroni (CG), (b) Bonferroni (RMSEG).



Table 8

The most relevant selected genes used by the final GRBF model in colon cancer data: Gene accession number (Genbank), description and [] denotes the rank in papers

published on the same dataset.

Genbank Description [46] [47] [48] [49] [50] [51] [52] [53] [54]

T41204 P14780 92 KD TYPE V COLLAGENASE PRECURSOR 26 21 16

J05032 Human aspartyl-tRNA synthetase alpha-2 subunit

mRNA, complete cds.

3 6 * 5

H08393 COLLAGEN ALPHA 2(XI) CHAIN (Homo sapiens) 2 6 3 5 1 5 2 1

R08021 INORGANIC PYROPHOSPHATASE (Bos taurus) 11 5

D14812 Homo sapiens KIAA0026 mRNA, complete cds. 3 18 10

M88108 Human p62 mRNA, complete cds. *

M34344 Human platelet Glycoprotein IIb (GPIIb) gene, exon 30.

R84411 SMALL NUCLEAR RIBONUCLEOPROTEIN ASSOCIATED

PROTEINS B AND B’ (HUMAN)

74 38 4

Number of genes: (26) (77) (80) (90) (46) (–) (15) (5) (50)

performed. The end of each column also shows the number of genes
selected in the corresponding reference.

As we can observe, in all cases, except for M34344, these genes
were among the high-ranked genes obtained by other methods. It
is noteworthy that the H08393 gene, one of the three most relevant
genes in our model, appears in the first positions in all the papers
in question but one. Therefore, our method not only is able to get
good accuracy values, but also proves that it can supply additional
valuable information with regard to feature influence.

5. Conclusions

In this paper, we analyse the performance of a novel Radial
Basis Function classifier, called Generalized Radial Basis Function
(GRBF), which is based on Generalized Gaussian distribution, in
DNA microarray classification. The coefficients of the neural net-
work classifier proposed are estimated by a Hybrid Algorithm (HA).
The HA proposed uses an Evolutionary Algorithm (EA) to locate the
GRBF near an optimal point (global). Then, the iRprop+ algorithm
(local search) is applied to the best GRBF obtained in the EA to reach
the optimal point. Due to the enormously high dimensionality of
the DNA microarray dataset, three algorithm filters were applied
to reduce noise and to improve accuracy classification.

The proposed methodology (composed of two stages) for
microarray gene classification allows thousands of features (24,481
in Breast) to be reduced to tens (14 in Colon). This reduction of
features is obtained by applying the feature selector that reported
the best results in terms of accuracy in the preprocessing stage, the
FCBF method, and by means of performing operations that removed
connections and hidden nodes incorporated by the Hybrid Algo-
rithm (HA). The average results for the 6 datasets using the FCBF
feature selector and the GRBF classifier show values over 91% in
accuracy and under 0.17 in RMSE.

Finally, because so few features obtained their best models, it
is possible to interpret them and then analyse the causal relation-
ship between gene characteristics and the probability of belonging
to each class. An example of the interpretation of the best model
has been discussed in the previous section on Colon/BARS datasets,
which was observed to correctly classify 100% of the patterns in
both classes of the generalization set.
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Appendix A. Adaptation of the iRprop+ algorithm to the

softmax function

We have carried out the adaptation of the iRprop+ local improve-
ment procedure to the softmax activation function (Eq. (5)) and
the cross-entropy error function (Eq. (7)). In this case, the gradient
vector is given by the following equation:

∇l(ˇl, c, r, q) =

(
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Finally, we have the following expressions for the output layer
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and for the hidden layer:
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where s = 1, 2, . . ., M, l = 1, 2, . . ., J − 1 and t = 1, 2, . . ., K
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