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ABSTRACT  35 

Aim Grammomys are mostly arboreal rodents occurring in forests, woodlands and 36 

thickets throughout sub-Saharan Africa. We investigated whether the divergence events 37 

within the genus follow the existing evolutionary scenario for the development of African 38 

forests since the late Miocene.  39 

Location Sub-Saharan African forests and woodlands. 40 

Methods We inferred the molecular phylogeny of Grammomys using Bayesian and 41 

maximum likelihood methods and DNA sequences of 351 specimens collected from 42 

across the distribution of the genus. We mapped the genetic diversity, estimated the 43 

divergence times by a relaxed clock model and compared evolution of the genus with 44 

forest history. 45 

Results Phylogenetic analysis confirms the monophyly of Grammomys and reveals five 46 

main Grammomys lineages with mainly parapatric distributions: (1) the poensis group in 47 

Guineo-Congolese forests; (2) the selousi group with a distribution mainly in coastal 48 

forests of southern and eastern Africa; (3) the dolichurus group restricted to the 49 

easternmost part of South Africa; (4) the macmillani group in the northern part of eastern 50 

and Central Africa with one isolated species in Guinean forests; and (5) the surdaster 51 

group, widely distributed in eastern Africa south of the equator. Every group contains 52 

well supported sublineages suggesting the existence of undescribed species. The earliest 53 

split within the genus (groups 1 versus 2-5) occurred in the late Miocene, and coincides 54 

with the formation of the Rift Valley which resulted in the east-west division of the 55 

initially pan-African forest. The subsequent separation between groups (2 versus 3-5) 56 

also dates to the end of the Miocene and suggests the split between Grammomys from 57 
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coastal to upland forests in eastern Africa followed by a single dispersal event into 58 

western Africa during the Pleistocene.  59 

Conclusions The evolutionary history of the genus Grammomys reflects closely the 60 

accepted scenario of major historical changes in the distribution of tropical African 61 

forests since the late Miocene.  62 

  63 
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INTRODUCTION 64 

Tropical forests in Africa contain rich biodiversity. For example, the Eastern Arc 65 

Mountains support ca 3300 km2 of forest that harbours 211 endemic or nearly endemic 66 

vertebrate species (Rovero et al., 2014) whereas the Albertine Rift mountains host the 67 

largest suite of endemic mammals on the continent (Plumptre et al., 2007). However, 68 

biological diversity is not equally distributed across the African tropics (e.g. de Klerk et 69 

al., 2002), but knowledge of its distribution is crucial in prioritizing conservation activity.  70 

 71 

A recent study of forest composition in tropical Africa identified six floristic clusters 72 

associated with particular environmental conditions (Fayolle et al., 2014; Fig. 1). The 73 

origin of these forest types is the outcome of a complex evolutionary history that started 74 

from a single continuous equatorial forest that covered sub-Saharan Africa during the 75 

period of humid climate of the Early and Middle Miocene (Plana, 2004). By the Late 76 

Miocene, tectonic uplift created the Rift Valley and split the pan-African rainforest into 77 

the Guineo-Congolese forests in western and Central Africa and the forests situated east 78 

of the rift. The rift formation combined with declining global temperatures and changes 79 

in monsoon winds resulted in an arid climate that caused the disappearance of forests 80 

along the slope of the rift mountains, hence creating the so-called "arid corridor" that 81 

periodically connected the northern (Sudanian and Somalian) and southern (Zambezian) 82 

savannas (Bobe, 2006). However, some old mountain ranges (e.g. Albertine Rift and 83 

Eastern Arc mountains) served as long-term forest refugia allowing the evolution of 84 

species-rich communities (e.g. Loader et al., 2014). Throughout this period, West 85 

(=Guinean) and Central (=Congolese) African forests continued to exist as a single unit 86 
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that underwent periodic fragmentation during the Pleistocene (Maley, 1996). Since the 87 

Middle Pleistocene, the forested mountain chains in eastern Africa also underwent 88 

fragmentation, as suggested by increasing proportions of C4 vegetation, most likely 89 

indicating the origin of the current tropical grasslands around these mountains (Cerling, 90 

1992). 91 

 92 

Based on the concept of phylogenetic niche conservatism (Wiens & Donoghue, 2004), 93 

this study proposes to use a phylogeographic approach for forest-dwelling mammals to 94 

investigate the evolutionary history and past connections among African forests.  95 

Phylogeographic patterns for widely distributed taxa with specific ecological 96 

requirements can be used to test alternative hypotheses of African forest evolution. 97 

Although an increasing number of studies have used this approach on sub-Saharan 98 

vertebrates (e.g. Huntley & Voelker, 2016), so far few studies have targeted widespread 99 

taxa living in various forest types (for a rare example see Couvreur et al., 2008). It is in 100 

this context that we have used DNA sequences to infer for the first time the phylogeny of 101 

thicket rats of the genus Grammomys. These partly arboreal rodents, belonging to the 102 

tribe Arvicanthini (Ducroz et al., 2001, Lecompte et al., 2008, Missoup et al., 2016), 103 

occur in a variety of forests and woodlands in sub-Saharan Africa. Although 11 to 14 104 

Grammomys species are currently recognized, the monophyly of the genus remains 105 

uncertain and its taxonomic sampling incomplete (Musser & Carleton, 2005). Because 106 

these climbing rats are widely distributed in sub-Saharan forests and woodlands, they 107 

may represent a suitable model group to trace the evolutionary histories of the forested 108 

habitats in which they occur. Moreover, the fact that they represent a genus originating 109 
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during the radiation of Arvicanthini ca 8 Ma (Ducroz et al., 2001) provides an 110 

opportunity to study their evolutionary history since the Late Miocene, a crucial era for 111 

the development of African forests.   112 

 113 

Over the past decades we have collected material of Grammomys rats from a large part of 114 

their distribution for molecular sampling. We inferred for the first time the phylogeny of 115 

the genus that we used together with estimated divergence dates as a proxy for the 116 

evolutionary histories of the different forest types in tropical Africa in which they occur. 117 

Lastly, based on observed diversity, we identified the geographic areas and genetic clades 118 

in which future taxonomic studies are most likely to result in discoveries of new 119 

Grammomys species. 120 

 121 

MATERIALS AND METHODS 122 

Sampling  123 

The study is based on 351 specimens of Grammomys genotyped for at least one genetic 124 

marker (Table S1 in Appendix S1). The tissue samples were stored in 96% ethanol, 125 

DMSO or liquid nitrogen until DNA extraction. All fieldwork complied with legal 126 

regulations in the respective African countries and sampling was carried out in 127 

accordance with local legislation (see Acknowledgements).  In total, the analysed dataset 128 

includes genetic information on specimens collected from 170 localities in 18 African 129 

countries (Fig. 1).  130 

 131 

DNA sequencing  132 
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We collected the sequences for mitochondrial markers, either the cytochrome b gene 133 

(CYTB, 334 new sequences and 11 from GenBank), the 16S rRNA gene (16S, 164 new 134 

sequences) or both, for all 351 specimens. For 112 selected specimens we also obtained 135 

sequences of the nuclear gene for interphotoreceptor binding protein (IRBP, 110 new 136 

sequences and two from GenBank) to match detected mitochondrial diversity as far as 137 

possible with sequences from a nuclear locus (Table S1 in Appendix S1). Primers and 138 

PCR protocols for DNA from fresh material are detailed in Table S1 in Appendix S2.  139 

PCR products were Sanger sequenced from both sides in a commercial laboratory. 140 

Genetic data obtained from fresh material were complemented by eight museum samples 141 

(mostly dry skins) (Appendix S1) pyrosequenced on GS Junior using the CYTB mini-142 

barcode protocol (Galan et al., 2012). This approach was used for samples from 143 

geographical areas that are difficult to access today or from the type localities of G. dryas 144 

and G. poensis (see more details in Bryja et al., 2014a) 145 

 146 

Phylogenetic reconstructions within Grammomys and genetic distances 147 

Sequences of CYTB, 16S and IRBP were edited and aligned in SEQSCAPE 2.5 (Applied 148 

Biosystems), producing final alignments of 1140, 575 and 1261 bp, respectively.  We 149 

first reconstructed the mitochondrial phylogeny using the concatenated CYTB and 16S 150 

dataset, because preliminary separate analyses of these two loci provided very similar 151 

topologies (not shown). We performed the final phylogenetic analyses with a reduced 152 

mtDNA dataset of 157 specimens (155 sequences of CYTB and 115 of 16S) (Appendix 153 

S1), representing the main mtDNA lineages identified by preliminary analyses (not 154 

shown). The remaining 194 specimens (identical and/or shorter sequences from the same 155 
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or neighbouring localities) were unambiguously assigned to particular lineages by 156 

neighbour-joining analysis (bootstrap support > 90%; not shown) in MEGA 6.06 (Tamura 157 

et al., 2013). These data were used to increase the precision with which we mapped the 158 

geographical distribution of phylogenetic clades and assigned type material to particular 159 

genetic groups. To assess the monophyly of Grammomys reliably, we used as outgroups 160 

24 mitochondrial sequences of 13 genera within the tribe Arvicanthini (sensu Lecompte 161 

et al., 2008), eight sequences of species from other tribes of Murinae and one species of 162 

the subfamily Gerbillinae (Table S2 in Appendix S1). We used PARTITIONFINDER 1.0.1 163 

(Lanfear et al., 2012) to detect partitions and the most suitable substitution models 164 

simultaneously. Using the Bayesian information criterion (BIC), the best scheme 165 

supported four partitions (Table S2 in Appendix S2).  166 

 167 

Mitochondrial phylogeny was analysed by maximum likelihood (ML) and Bayesian 168 

inference (BI) approaches. ML analysis was performed using RAXML 8.0 (Stamatakis, 169 

2014). Because simpler models are not available in RAXML, the GTR+G model (option -170 

m GTRGAMMA) was selected for the four partitions (option -q). The robustness of the 171 

nodes was evaluated by the default bootstrap procedure with 1,000 replications (option -# 172 

1000). Bayesian analysis of evolutionary relationships was performed in MRBAYES 3.2.1 173 

(Ronquist & Huelsenbeck, 2003). Three heated and one cold chain were employed in a 174 

partitioned analysis, and runs were initiated from random trees. Two independent runs 175 

were conducted with 5 million generations each and trees and parameters were sampled 176 

every 1000 generations. Convergence was checked using TRACER 1.5 (Rambaut & 177 

Drummond, 2007). For each run, the first 25% of sampled trees were discarded as burn-178 
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in. Bayesian posterior probabilities (PP) were used to assess branch support of the 179 

Markov chain Monte Carlo (MCMC) tree. 180 

 181 

The number of base substitutions per site of CYTB averaging over all sequence pairs 182 

between and within groups was calculated as uncorrected p-distance as well as using the 183 

Kimura 2-parameter (K2P) model. The groups were defined on the basis of phylogenetic 184 

analysis (see below and Fig. 2). This analysis was conducted in MEGA 6.06 and involved 185 

155 CYTB sequences representing 28 mitochondrial lineages.  186 

 187 

For the phylogenetic analyses of 101 retained nuclear IRBP sequences from all but one of 188 

the mitochondrial lineages (m6 was missing because no IRBP sequence was obtained), 189 

heterozygous sequences were phased using FASTPHASE (Scheet & Stephens, 2006) 190 

implemented in DNASP 5.10 (Librado & Rozas, 2009). Using PARTITIONFINDER 1.0.1 191 

and BIC, the best scheme supported two partitions (Table S2 in Appendix S2). 192 

Phylogenetic analyses were performed in RAXML and MRBAYES as described above.  193 

 194 

Dated phylogeny of Arvicanthini  195 

The ML and BI analyses of the concatenated mitochondrial dataset resulted in different 196 

phylogenetic positions for the poensis group (see below). The ML tree suggests that the 197 

poensis group represents a separate lineage within Arvicanthini, and does not belong to 198 

Grammomys. As the basal divergences within this tribe were poorly supported (not 199 

shown), we attempted to increase their degree of support by adding more mitochondrial 200 

and nuclear sequences. The enhanced dataset contained four mitochondrial (CYTB, 201 
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COI+COII+ATPase8, 16S, 12S) and five nuclear markers (IRBP, RAG1, GHR, BRCA1, 202 

AP5). In total, this multi-locus dataset included 34 species of Arvicanthini (sensu 203 

Lecompte et al., 2008) comprising 14 genera. The genus Grammomys was represented by 204 

sequences of representatives of the five groups that were identified by the mitochondrial 205 

phylogeny. As outgroups, we used representatives of six other tribes of Murinae (Table 206 

S3 in Appendix S1). The total length of the concatenated dataset was 9458 bp with 46% 207 

missing data. We performed analyses in RAXML and MRBAYES using the partitioned 208 

datasets (Table S2 in Appendix S2) as described above. 209 

 210 

The same dataset was used to estimate the times to most recent common ancestors 211 

(TMRCAs) of the clades that were identified by earlier analyses. We used a relaxed clock 212 

model with branch rates drawn from an uncorrelated lognormal distribution in BEAST 213 

1.8.2 (Drummond et al. 2012). Calibration of the molecular clock was based on four 214 

fossil taxa. Three represent the oldest records of three Arvicanthine genera 215 

(Lemniscomys, Arvicanthis, Aethomys) from the Lemudong´o locality 1, Kenya (Manthi, 216 

2007; 6.12-6.08 Ma), for which we used exponential priors with mean = 1.0 and offset = 217 

6.1 for TMRCA of these genera. The fourth calibration point was represented by the 218 

Mus/Arvicanthis split (Kimura et al., 2015; 11.1 Ma), for which we set an exponential 219 

prior with mean 1.0 and offset 11.1. For more details see Table S4 in Appendix S2. For 220 

divergence dating analysis we used the partitioned multi-locus dataset (Table S2 in 221 

Appendix S2) with priors set to the Yule speciation process, and we constrained the tree 222 

topology based on the results of the previous ML analysis. We used a linked partition 223 

tree, and unlinked clock and site models. The MCMC simulations were run twice with 20 224 
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million iterations, with genealogies and model parameters sampled every 1000 iterations. 225 

The outputs from BEAST were analysed as described above, following the removal of 226 

25% trees as burn-in. All phylogenetic analyses were run on CIPRES Science Gateway 227 

(Miller et al., 2010). 228 

 229 

Species tree and dating of divergences within Grammomys 230 

We used the concatenated mitochondrial sequences (CYTB + 16S) and unphased nuclear 231 

IRBP genes of the genus Grammomys to obtain a dated species tree under the fully 232 

Bayesian framework implemented in the *BEAST package (Heled & Drummond, 2010), 233 

an extension of BEAST 1.8.2 (Drummond et al., 2012). Alignments for mitochondrial and 234 

nuclear genes were given separate and unlinked substitution, clock and tree models (the 235 

latter was linked for two mitochondrial markers). The monophyly of the five main 236 

lineages was constrained and the tree was calibrated (relaxed log-normal clock, 237 

secondary calibration) using the TMRCAs of the main Grammomys lineages estimated 238 

from the primary divergence date analysis of Arvicanthini (Table S4 in Appendix S2). 239 

Two independent runs were carried out for 20 million generations with sampling every 240 

2000 generations in BEAST. The resulting parameter and tree files from the two runs were 241 

examined for convergence in TRACER 1.5 and combined in LOGCOMBINER 1.8.2 242 

(Drummond et al., 2012) after removing 10% burn-in. A maximum clade credibility tree 243 

was calculated in TREEANNOTATOR 1.8.2 (Drummond et al., 2012). 244 

 245 

Biogeographical analysis 246 
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The dispersal-extinction-cladogenesis model of LAGRANGE (DEC model; Ree & Smith, 247 

2008) estimates geographic range evolution using a phylogenetic tree with branch lengths 248 

scaled to time, geographic (habitat) areas for all tips, and an adjacent matrix of plausibly 249 

connected areas. We used the optimization on multiple trees (i.e. Bayes-Lagrange or S-250 

DEC model) implemented in the in RASP 3.1 software (Yu et al., 2015) to take into 251 

account topological uncertainty. RASP computes the likelihood values of all possible 252 

ancestral distributions in LAGRANGE and, relying on a composite Akaike weight, it 253 

summarizes the biogeographic reconstructions across trees. 254 

 255 

Using the distribution data for particular lineages (Fig. 3), we assigned the distribution of 256 

tips on the species tree to six main forest types defined by Fayolle et al. (2014; see Fig. 257 

1B). In S-DEC analysis, the maximum number of current and ancestral ranges was set at 258 

two (as currently no lineage occurs in more than two main forest types) and all six areas 259 

were allowed to be mutually connected in the past. For background phylogenetic 260 

information we used 18000 trees from the species tree analysis in *BEAST. The 261 

probability of ancestral areas was plotted in the form of pie-charts along the species tree.  262 

 263 

RESULTS 264 

Phylogenetic analysis of the mitochondrial dataset and distribution of genetic 265 

variability 266 

The topology of mitochondrial Grammomys trees was similar in ML and BI analyses, 267 

except for the position of the poensis group (see below). Based on the topology and 268 

statistical support for the branches of the inferred tree we defined five main genetic 269 



14 
 

 14 

groups within the genus (Fig. 2; for the tree with tip labels and outgroups see Appendix 270 

S3). These groups have largely parapatric distribution ranges with up to three groups 271 

partially overlapping in north-eastern Tanzania and south-eastern Kenya (Fig. 1). The 272 

group names are based on the ongoing taxonomic revision of the genus (J. Bryja et al., 273 

unpublished data). 274 

 275 

(1) The poensis group includes specimens from Guineo-Congolese forests on the north 276 

bank of the Congo River, including montane forests of the Cameroon volcanic line (Fig. 277 

1). In BI analysis the poensis group formed a sister clade to the remaining Grammomys 278 

taxa (Fig. 2), but in ML topology it formed a deeply divergent lineage with unresolved 279 

relationships to other genera of Arvicanthini. The group can be subdivided into four 280 

lineages (p1-p4; Fig. 2) with parapatric distributions. The most distinct populations (= 281 

p1) are found in Gabon, isolated by the river Ogooué (Fig. 3A). The lineage p2 may 282 

correspond to G. kuru (Thomas & Wroughton, 1907), described from north-eastern 283 

Democratic Republic of the Congo (DRC). Grammomys poensis was described from 284 

Bioko Island and corresponds to lineage p4 (Eisentraut, 1965). 285 

 286 

(2) The selousi group is named after a recently described species, G. selousi Denys et al., 287 

2011, from south-eastern Tanzania, for which CYTB sequence of type material was 288 

included in the analysis. The group is subdivided into five lineages with allopatric or 289 

parapatric distribution ranges within a narrow belt along the East African coast (se1-se5; 290 

Figs 2 & 3A) and appears to prefer lowland forests, e.g. coastal forests inhabited by se4 291 

and se5 (but the latter also occurs in the Usambara Mts and hills of south-eastern Kenya; 292 
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Fig. 3A). The only lineage within this group that is restricted to highlands is se1 in the 293 

Southern Rift Mountains (SRM) of southern Tanzania and northern Malawi. The South 294 

African lineage se3 may represent G. cometes (Thomas & Wroughton, 1908). 295 

 296 

3) The dolichurus group occurs south of the Zambezi (Fig. 3B). Our sample size was 297 

too small for detailed analysis of internal genetic structure, but the three lineages seem to 298 

correspond to populations distributed along a north-south trajectory (not shown).    299 

 300 

4) The macmillani group is composed of eight highly divergent genetic lineages (m1-301 

m8; Figs 2 & 3A). Based on mostly non-overlapping distributions, three lineages can be 302 

assigned to earlier species descriptions, although comparisons with type material are 303 

required to confirm our current taxonomic interpretation. The m4 lineage is probably G. 304 

macmillani (Wroughton, 1907) described from Wouida, north of Lake Turkana in 305 

Ethiopia); m1 corresponds to G. dryas (Thomas, 1907) described from the Ruwenzori 306 

Mts in Uganda, and m3 to G. buntingi (Thomas, 1911), which is the only Grammomys 307 

species occurring west of the Dahomey gap. Furthermore, m5 may represent G. gazellae 308 

(Thomas, 1910), a taxon described from South Sudan and synonymised with G. 309 

macmillani (Hutterer & Dieterlen 1984). 310 

 311 

5) The surdaster group is named after G. surdaster (Thomas & Wroughton, 1908), a 312 

synonym of G. dolichurus (Musser & Carleton, 2005). However, if the dolichurus group 313 

is an exclusively southern African clade (see above), we recommend applying the name 314 

surdaster to populations north of the Zambezi as has been suggested by Musser & 315 
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Carleton (2005). The surdaster group is sister to the macmillani group in all 316 

mitochondrial trees. Both groups have largely parapatric distribution ranges with a 317 

relatively narrow overlap in northern Tanzania and in the Albertine Rift. The surdaster 318 

group is widespread in the eastern African highlands between the equator and the 319 

Zambezi River (except for a single locality in central Mozambique; Fig. 1), and may also 320 

occur in Angola and southern DRC as suggested by su5 from the Kikwit area in south-321 

western DRC (see also the distribution map in Monadjem et al. 2015 under the name G. 322 

dolichurus). The group can be divided into 10 well supported mitochondrial lineages with 323 

mostly parapatric distribution ranges (su1-su10; Figs 2 & 3B). The relations among them 324 

are unresolved, although in most topologies su1 is sister to all the other lineages and su5-325 

su7 and su8-su10 are monophyletic clades. 326 

 327 

Genetic distances  328 

Genetic distances for CYTB within and among mitochondrial lineages of Grammomys are 329 

summarized in Table S3 in Appendix S2. Uncorrected p-distances (and similarly K2P-330 

corrected distances) among lineages belonging to different groups were high and ranged 331 

from 8.4% (m5 × su2) to 18.7% (p2 × se5). The genetic distances among lineages within 332 

each group ranged between 6 and 12% (Table 1), except for the surdaster group, in which 333 

11 of 45 lineage pairs differed by less than 5% (Appendix S2).   334 

 335 

Analysis of nuclear IRBP gene 336 

The phylogenetic analysis of phased IRBP sequences provided a less resolved tree (Fig. 337 

S1 in Appendix S2). Of five major mitochondrial clades, only two (poensis and selousi) 338 
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were reliably recovered by IRBP. The poensis group formed a clade with the genus 339 

Thallomys exclusive of the other Grammomys clades. In the selousi group, only se1 and 340 

se3 were significantly supported. In the macmillani group, the geographically adjacent 341 

m1 and m2 clades from the Albertine Rift Mts differed substantially in IRBP sequences, 342 

while m3 from western Africa was significantly supported as the sister taxon of m5 from 343 

Central Africa. There was no obvious structure in the surdaster group, and specimens 344 

assigned to different mitochondrial lineages often had very similar or identical IRBP 345 

sequences (Fig. S1 in Appendix S2).  346 

 347 

Monophyly and phylogenetic position of Grammomys 348 

The multi-locus ML and BI phylogenies yielded very similar topologies that validated the 349 

Arvicanthini tribe (Fig. S2 in Appendix S2). All Grammomys representatives clustered in 350 

a monophyletic clade, but with low support for the placement of the poensis group. Sister 351 

groups that diverged successively were Thallomys and Aethomys, though the nodes were 352 

weakly supported. Surprisingly, Grammomys was reconstructed as distantly related to 353 

Thamnomys, a genus that historically has been thought to be closely affiliated to it 354 

(Musser & Carleton, 2005). Thamnomys diverged at the beginning of the Arvicanthini 355 

radiation, and appears to be the sister genus of Oenomys. The remaining arvicanthine 356 

genera formed three well supported clades: (1) Hybomys + Stochomys, (2) Desmomys + 357 

Rhabdomys, and (3) Arvicanthis + Pelomys + Lemniscomys; and two lineages with long 358 

and unresolved branches (Dasymys and Micaelamys). 359 

 360 

Divergence dating within Arvicanthini and species tree of Grammomys 361 
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The time of divergence between Grammomys and its sister genus Thallomys was 362 

estimated as Late Miocene (median TMRCA= 8.83 Ma; Fig. S2 in Appendix S2). Soon 363 

after their split, the poensis group diverged from the rest of the genus (TMRCA of 364 

Grammomys = 8.21 Ma). The selousi group then separated (6.58 Ma) from the three 365 

remaining groups, which diverged from each other in the Pliocene. Based on secondary 366 

calibration of the species tree, TMRCAs of lineages within the five main Grammomys 367 

groups are mostly Pleistocene in age, i.e. < 2.5 Ma (Fig. 4). 368 

 369 

Biogeographical analysis 370 

The most probable scenario of the S-DEC model proposed the continuous distribution of 371 

ancestral Grammomys in the Late Miocene forests that covered eastern and Central 372 

Africa, followed by a vicariance event that separated the Central (the poensis group) and 373 

East African groups (Fig. 4). The poensis group subsequently diverged by vicariance to 374 

p1 (Wet Central Africa) and remaining lineages (Moist Central Africa), from where the 375 

lineage p4 dispersed into West Africa (Nigeria). In East Africa, the ancestors of the 376 

selousi group dispersed to coastal forests in the Late Miocene, but lineage se1 remained 377 

in the uplands and split by vicariance from the rest of the group. The ancestral areas of 378 

both the macmillani and surdaster groups are clearly situated in the East African 379 

mountain forests. From there, a single dispersal event to wet-moist West African forests 380 

followed by diversification occurred in the m3 lineage (Fig. 4). 381 

 382 

DISCUSSION 383 

Deep divergence in Grammomys and the fragmentation of Miocene forests 384 
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The multi-locus phylogeny of Arvicanthini supports the monophyly of Grammomys.  The 385 

> 8 Ma divergence between the poensis group and the remaining lineages makes it one of 386 

the oldest intrageneric divergences among African murids (assuming that the poensis 387 

group remains in the genus Grammomys, which could be re-evaluated using the data 388 

presented here). This finding thus fits the model of fragmentation of the African Miocene 389 

forest into the current Guineo-Congolese forests and coastal and mountain forests in East 390 

Africa at this time (Lovett, 1993; Plana, 2004). The formation of the Rift Valley and the 391 

decline in global temperatures during the Late Miocene resulted in greater rainfall 392 

seasonality, and the spread of grassy vegetation and fragmentation of forests situated east 393 

of the rift (Bobe, 2006). An increasing number of studies have shown that the genetic 394 

diversification between animal and plant taxa occurring in both the central and eastern 395 

African forests started during the Late Miocene. For example, the splits between 396 

Congolese and eastern African species of the plant genera Uvariodendron and Monodora 397 

are dated to ca 8.4 Ma (Couvreur et al., 2008). Similarly, the contraction and 398 

fragmentation of the Pan-African forest at this time played a key role in the 399 

diversification of some groups of African chameleons (Tolley et al., 2013). Additionally, 400 

two rodent lineages, endemic to montane forests of East Africa (the denniae group of 401 

Hylomyscus and Praomys delectorum), split from their sister lineages living mostly in 402 

Guineo-Congolese forests at the beginning of the Praomyini radiation dated to the end of 403 

the Miocene (Demos et al., 2014; Lecompte et al., 2005; Missoup et al., 2012).  404 

 405 

Palaeoendemism in coastal forests of East Africa 406 
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The coastal forests of East Africa were recognised as a distinct phytogeographical unit by 407 

White (1983) and, more recently, by Fayolle et al. (2014). They exhibit a patchy 408 

distribution extending from southern Somalia to the Limpopo River in southern 409 

Mozambique and represent endangered centres of biodiversity. There is evidence that 410 

most of the coastal forest endemics, including mammals, are palaeoendemics (Burgess et 411 

al., 1998). Phylogenetic reconstruction of Grammomys revealed the split of the selousi 412 

group from other East African Grammomys ca 6.5 Ma (Fig. 4), indicating a Late Miocene 413 

separation of coastal and highland forests in eastern Africa (Fig. 6). This is concordant 414 

with the divergence time (ca 6.5 Ma) proposed by Mikula et al. (2016) between the genus 415 

Beamys (a rodent typical of African coastal forests), and its sister genus Cricetomys 416 

(widespread in various African forests). The Grammomys lineage se3 from east coastal 417 

South Africa suggests a historical connection between coastal forests in East Africa and 418 

those further south, which has not been reported before. Species inhabiting these coastal 419 

forests are able to reach higher altitude forests (possibly via riverine gallery forests) as 420 

suggested by the presence of se2 in the Mulanje Mts, se5 in the Usambara Mts and the 421 

observation that Beamys occurs in coastal forests as well as in the Southern Rift 422 

Mountains (SRM) (Happold, 2013). The clear north-south structuring within the selousi 423 

group reflects the fragmented nature of coastal forests; this separation may be maintained 424 

by large rivers (e.g. Rufiji, Zambezi, Limpopo) as observed for other lowland species 425 

(Bartáková et al., 2015; McDonough et al., 2015). Alternative hypotheses of divergence 426 

within coastal forests include climatic changes in the Plio-Pleistocene or increases in sea 427 

level, shrinking suitable habitats into isolated fragments situated at higher elevations 428 

(Burgess et al., 1998).  429 
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 430 

Evolution of the eastern Afromontane biodiversity hotspot during Plio-Pleistocene 431 

climatic oscillations  432 

A reversal of the cooling trend occurred in the Early Pliocene. This represented the 433 

warmest period over the last 5 Myr, leading to the suggestion that East African forests 434 

may have expanded at this time, especially at higher elevations (Feakins & deMenocal, 435 

2010). More continuous forest cover probably facilitated the dispersion of the dolichurus 436 

group in south-eastern Africa during that period. However, after 3.5 Ma temperatures 437 

decreased and the Plio-Pleistocene aridification events linked with significant expansion 438 

of grass-dominated ecosystems in East Africa generated more diverse mosaic 439 

environments (Bobe, 2006). Within the genus Grammomys, these environmental changes 440 

are reflected by intensive radiations that occurred in the eastern Afromontane hotspot, 441 

especially in the Eastern Arc Mountains and Southern Rift Mountains (EAM + SRM; the 442 

surdaster group) and the Kenyan Highlands and Albertine Rift Mountains (KH+ARM; 443 

the macmillani group) (Fig. 5). The overlap in the distribution ranges of mammal species 444 

occurring in the main blocks of the Afromontane region (i.e. EAM+SRM versus 445 

KH+ARM) is generally very low (e.g. Carleton et al., 2015), suggesting that the faunas 446 

of the  EAM+SRM and the KH+ARM pursued long-term independent evolutionary 447 

trajectories. The distribution ranges for the macmillani and surdaster groups reported in 448 

this study appear to agree with this scenario (Fig. 1).  449 

 450 

Demos et al. (2014) provided evidence of repeated Pleistocene connections between 451 

small mammal taxa inhabiting forests of the Albertine Rift Mts and the Kenyan 452 
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Highlands. This explains the sister-group relationship between two lineages restricted to 453 

high elevations of the Albertine Rift Mts (i.e. palaeoendemics m1 + m2) and the rest of 454 

the macmillani group, the geographic origin of which is presumed to be in the Kenyan 455 

highlands. It can be argued that during one of the humid Pleistocene periods, lineage m4 456 

from the Kenyan highlands colonized the southern Kenyan and northern Tanzanian 457 

mountains (e.g. the volcanoes in the Rift Valley inhabited by m7 and m8). Subsequently, 458 

the lineage leading to m5 appears to have descended from high, humid montane forest to 459 

drier, forested savanna habitats. We hypothesize that an increased ability to colonize drier 460 

habitats may have allowed Grammomys to colonize relatively large areas at the interface 461 

between the Guineo-Congolese forests and the Sudanian savanna, and consequently, the 462 

Guinean forests-savanna mosaic of West Africa (m3; see below). 463 

 464 

The diversification events within the surdaster group may also be linked to Pleistocene 465 

climatic changes. There is increasing evidence that, during humid periods within the last  466 

2 Myr, the currently fragmented mountain forests of the EAM and SRM were repeatedly 467 

united, allowing the periodic exchange of forest-dependent faunas. However, it is 468 

unlikely that a single spatio-temporal scenario applies for all faunal components, as even 469 

species with presumably similar ecological requirements may have different responses to 470 

the same environmental changes (Carleton & Stanley, 2012). For example, phylogenetic 471 

reconstructions of the forest-dependent rodent Praomys delectorum revealed two distinct 472 

lineages corresponding to the Usambara Mts in the north and Nguru Mts in the south, 473 

which are separated by the wide savanna belt in north-eastern Tanzania (Bryja et al., 474 

2014b).  However both sides of this belt are inhabited by a single mitochondrial 475 
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Grammomys lineage (su10; Fig. 3). Such conflicting patterns may be due to a lower 476 

dependency of Grammomys on the prevailing ecological conditions in humid montane 477 

forests. This would have allowed them to colonize both miombo woodlands (lineage su4) 478 

and savanna-forest mosaics on the south-eastern edge of the Congolese forests (su5-su7). 479 

Such distribution patterns have not been observed in previously studied forest specialists 480 

restricted to the EAM and SRM (e.g. Bryja et al., 2014b; Lawson, 2010; Loader et al., 481 

2014; Tolley et al., 2011). 482 

 483 

Long-distance dispersal along the northern edge of the Congo Basin 484 

In order to explain similarities between eastern and western African montane forests and 485 

grasslands, many authors have assumed that, during climatic changes and especially 486 

during colder periods, the mountain floras and faunas must have extended to the 487 

lowlands, which facilitated dispersal between mountain massifs (White, 1981). The zones 488 

characterized by the mosaic of forest and savanna north of the Congo basin are among 489 

the least known areas of Africa. However, our results concerning the distribution of 490 

Grammomys m5 suggest that there is a clear biogeographical connection between Uganda 491 

(+ westernmost Kenya) and Central Africa (north-eastern DRC, CAR, South Sudan). 492 

This link is not only indicated by this study, but also by earlier studies which revealed 493 

that  identical genetic lineages of other rodents occur in this forest/savanna mosaic, e.g. 494 

Mus cf. bufo (Bryja et al., 2014a), or Aethomys hindei (Monadjem et al., 2015). The 495 

biogeographic scenario suggests that, during humid phases, the Pleistocene lowland 496 

forests of the Congo Basin extended further north than they do today. This situation may 497 

have allowed the ancestors of Grammomys m3+m5 from eastern Africa to disperse along 498 
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the northern margin of the Congolese forest and colonize north-eastern DRC, CAR and 499 

South Sudan (Fig. 5). It seems plausible that, after the northern edge of the lowland 500 

forests in the Congo Basin receded, some populations persisted in the resulting relict 501 

forests in forest-savanna mosaics (i.e. G. m5 in CAR), montane areas (probably G. 502 

aridulus in Jebel Marra region in Sudan; Fig. 1) or adapted to new environments, where 503 

Grammomys mice were previously absent (G. buntingi = m3 in West Africa).  504 

 505 

CONCLUSION 506 

This is the first phylogenetic study of Grammomys rodents that includes samples from 507 

most of its distribution area in sub-Saharan Africa. Our results suggest that the genus is 508 

monophyletic and unrelated to Thamnomys, and that its intrageneric divergences are 509 

among the oldest in African murids (> 8 Ma). The majority of the five detected clades 510 

have parapatric distribution ranges, and the times of divergence estimated among these 511 

clades agree with accepted scenarios for the evolutionary history of the African forests 512 

since the Late Miocene. The distribution of these lineages does not agree with the current 513 

taxonomy. Our results suggest that a revision of this genus will lead to discoveries of new 514 

species, especially in highland and coastal forests in East Africa. Finally, since the 515 

discovery of four Plasmodium parasites in Grammomys from the Democratic Republic of 516 

Congo (Vincke & Lips, 1948), no new rodent Plasmodium isolates have been obtained 517 

(Keeling & Rayner, 2015). We suggest that the taxonomic diversity reported for thicket 518 

rats might imply a significant underestimation of Plasmodium diversity. New surveys 519 

may lead to a better understanding of the origin and evolutionary history of these malaria 520 

causing blood parasites in rodents and other mammals. 521 
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Additional Supporting Information may be found in the online version of this article: 723 

 724 

Appendix S1 Collecting localities and genetic data. 725 
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Appendix S2 Additions to phylogenetic analyses. 727 

 728 

Appendix S3 Detailed Bayesian phylogeny of mtDNA. 729 
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KU723660- KU723673 (RAG1), KU723657- KU723659 (BRCA1) (see Appendix S1). 735 
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FIGURE LEGENDS 750 

Figure 1 (A) Distribution of sampled Grammomys specimens in sub-Saharan Africa. The 751 

five main genetic groups of Grammomys are represented by different symbols (see key). 752 

Black stars show type localities of currently valid species (except G. surdaster, which is 753 

considered a junior synonym of G. dolichurus) mentioned in the text. Main mountain 754 

blocks mentioned in the text are schematically demarcated by dashed lines: KH = Kenyan 755 

Highlands, ARM = Albertine Rift Mountains, EAM = Eastern Arc Mountains, SRM = 756 

Southern Rift Mountains. (B) Distribution of main forest types in sub-Saharan Africa. 757 

The dots represent localities downloaded from Fayolle et al. (2014). They correspond to 758 

the six floristic clusters defined by the analysis of 1175 tree species in 455 sampling sites 759 

of tropical African forests. 760 

 761 

Figure 2 Mitochondrial Bayesian tree of Grammomys based on concatenated alignment 762 

of 1140 bp of CYTB and 575 bp of 16S. The circles indicate statistical support for nodes, 763 

specifically 1000 bootstraps in maximum likelihood analysis (BS)/posterior probability 764 

from Bayesian analysis (PP). Only values BS>75 and PP>0.95 are shown. More detailed 765 

version of the tree with precise values of statistical support, tip labels and outgroups is 766 

shown in Appendix S3. 767 

 768 

Figure 3 Geographical distribution of genetic lineages within the five main Grammomys 769 

groups. Different groups are shown by different symbol shapes and different lineages by 770 

different symbol colours. The names of lineages correspond to those in Fig. 2 and 771 

putative species names for some are in parentheses (see text for more details). (A) 772 
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poensis (squares), selousi (circles) and macmillani (stars) groups; (B) dolichurus (stars) 773 

and surdaster (triangles) groups. 774 

 775 

Figure 4 Ultrametric Grammomys species tree from *BEAST. The pie-charts indicate the 776 

most probable ancestral areas of particular clades as estimated by S-DEC model in 777 

Bayes-Lagrange (Ree & Smith, 2008).  778 

 779 

Figure 5 Schematic illustration of major evolutionary events in Grammomys. (A) The 780 

fragmentation of Late Miocene pan-African forest into the ancestors of current Guineo-781 

Congolese forests (green) and East African montane and coastal forests (purple). (B) The 782 

split between Grammomys inhabiting montane (red) and coastal (yellow) forests in East 783 

Africa. (C) During the Pliocene the ancestors of the dolichurus (orange), surdaster (red) 784 

and macmillani (blue) groups split along a south-north trajectory. The long-term forest 785 

refugia for the surdaster and macmillani groups were probably located in the EAM + 786 

SRM for the former and in KH + ARM for the latter. (D) Pleistocene climatic cycles 787 

caused repeated fragmentations and expansions of forest habitats leading to 788 

diversification within all five main clades. One of the expansions of the macmillani clade 789 

involved the colonization of Guinean forests (m3 lineage) by the "northern route", i.e. 790 

north of the Congolese forests. Note that the ellipses at (A) and (B) show only 791 

schematically the positions of ancestral populations and do not indicate precise 792 

geographical locations.  793 

 794 
795 
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TABLES 796 

Table 1 Minimum and maximum genetic distances (K2P-corrected and uncorrected p-797 

distances) among lineages in four main Grammomys groups. Genetic variation within the 798 

dolichurus group was not analysed because of the low number of available sequences. 799 

 800 

Groups Min distance   Max distance   

  K2P-distance p-distance Lineages K2P-distance p-distance Lineages 

selousi 0.093 0.086 se2 x se3 0.127 0.114 se1 x se5 

poensis 0.072 0.067 p3 x p4 0.106 0.097 p1 x p2 

macmillani 0.064 0.061 m7 x m8 0.134 0.119 m2 x m6 

surdaster 0.037 0.036 su5 x su9 0.108 0.098 su1 x su2 

 801 




