
�� International Journal of Data Warehousing & Mining, 3(4), ��-�2, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

AbSTrACT

This article presents a new evolutionary algorithm (EA) for induction of mixed decision trees. In non-
terminal nodes of a mixed tree, different types of tests can be placed, ranging from a typical inequality
test up to an oblique test based on a splitting hyper-plane. In contrast to classical top-down methods, the
proposed system searches for an optimal tree in a global manner, that is it learns a tree structure and
finds tests in one run of the EA. Specialized genetic operators are developed, which allow the system to
exchange parts of trees, generating new sub-trees, pruning existing ones as well as changing the node
type and the tests. An informed mutation application scheme is introduced and the number of unprofitable
modifications is reduced. The proposed approach is experimentally verified on both artificial and real-life
data and the results are promising. Scaling of system performance with increasing training data size was
also investigated.

Keywords: decision trees; evolutionary algorithms; global induction; mixed decision trees

INTrODUCTION
Decision trees (Murthy, 1998) are one of the
most frequently applied data mining approaches.
There exist many induction algorithms, which
tackle the problem of building decision trees in a
different way. Most frequently, they differ in the
measure for the test assessment, but also in the
type of search in solution space (i.e., top-down
vs. global). From a user’s point of view, one of
the most important features of a decision tree
is a test representation in the internal nodes.
In typical univariate trees, two types of tests
are usually permitted. For a nominal attribute,

mutually exclusive sets of feature values are
associated with each branch, whereas for a
continuous valued feature inequality tests are
applied. In the case of multivariate trees, more
than one feature can be used to create a test.
Oblique tests based on a splitting hyper-plane
are the most widely used form of multivariate
tests. Most of the DT-based systems are homoge-
neous, which means that they take advantage of
only one type of test (i.e., univariate or oblique).
C4.5 (Quinlan, 1993) can be treated as one of
the best-known representatives of the first type,
whereas OC1 (Murthy, Kasif, & Salzberg, 1994)
is a good example of an oblique tree inducer.

Evolutionary Induction of Mixed
Decision Trees1

Marek	Kretowski,	Bialystok	Technical	University,	Poland

Marek	Grzes,		Bialystok	Technical	University,	Poland

IGI PUBLISHING

This paper appears in the publication, International Journal of Data Warehousing and Mining, Volume 3, Issue 4
edited by David Taniar© 2007, IGI Global

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.igi-pub.com

ITJ3905

International Journal of Data Warehousing & Mining, 3(4), ��-�2, October-December 2007 ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

These two systems belong to the group of
decision tree algorithms, which represent the
de-facto standard for empirical evaluations and
are commonly used for comparisons.

The term mixed decision trees was proposed
by Llora and Wilson (2004) to describe trees in
which different types of tests can be exploited.
One of the first and best-known examples of
such an approach is the CART system (Breiman,
Friedman, Olshen, & Stone, 1984). This system
is able to search for a linear combination of non-
nominal features in each node and it compares
the obtained test with the best univariate test.
However, it should be noted that CART has a
strong preference for simpler tests; it rarely uses
the more elaborate splits. Another form of a
hybrid classifier is proposed by Brodley (1995).
Her MCS system combines univariate tests,
linear machines, and instance-based classifiers
(k-NN) and during the top-down generation of
a tree classifier it recursively applies automatic
bias selection. Recently, a fine-grain parallel
model GALE (Llora et al., 2004) was applied to
generate decision trees, which employ inequal-
ity and oblique tests.

There are two main approaches to the deci-
sion tree induction: top-down and global. The
first one is based on a greedy recursive procedure
of test searching and sub-node creation until a
stopping condition is met. The locally optimal
tests according to the predefined criteria are
chosen in each step, but such a procedure does
not guarantee the global optimality of the final
tree. This problem can be easily observed when
there is a strong interaction between features.
Only treating them together can lead to the
optimal solution. Additionally, the post-prun-
ing is usually applied after the actual top-down
induction to avoid the problem of over-fitting
the training data. It should be noted that post-
pruning techniques have only limited ability to
correct the tree structure. The C4.5 and OC1
systems apply the top-down approach and are
used for the comparison in this article.

In contrast to the classical top-down ap-
proach, global algorithms try to simultaneously
search for both the tree structure and all tests in
non-terminal nodes. This process is obviously

much more computationally complex but it can
reveal hidden regularities, which are almost
undetectable by greedy methods. The global
induction is mainly represented by systems
based on evolutionary approach.

Evolutionary computations (Michalewicz,
1996) are stochastic techniques, which have
been inspired by the process of biological
evolution. Their success is attributed to the
ability to avoid local optima, which is their
main advantage over greedy search methods.
Evolutionary techniques are known to be useful
in many data mining tasks (Freitas, 2002). They
were successfully applied in the framework of
both top-down and global systems to learning
univariate (Fu, Golden, Lele, Raghavan, &
Wasil, 2003; Koza, 1991; Nikolaev & Slavov,
1998; Papagelis & Kalles, 2001) and oblique
trees (Bot & Langdon, 2000; Chai, Huang,
Zhuang, Zhao, & Sklansky, 1996; Cantu-Paz
& Kamath, 2003; Kretowski, 2004).

The global approach based on evolution-
ary algorithms for decision tree induction was
investigated in our previous articles. We showed
that homogeneous trees, univariate (Kretowski
& Grzes, 2005a) or oblique (Kretowski & Grzes
2005b, 2006) can be effectively induced and
we demonstrated that globally generated clas-
sifiers are generally less complex with at least
comparable accuracy. In this article, we want to
merge the two developed methods in one system,
which will be able to induce mixed trees.

The rest of the article is organized as fol-
lows. In the next section our global system for
induction of mixed decision trees is presented.
Experimental validation of the approach on both
artificial and real-life datasets is presented in
the third section. The article finishes with our
conclusion.

GLObAL INDUCTION OF
MIXED DECISION TrEES
The algorithm proposed in this article applies
a global approach to decision tree induction
based on evolutionary computation. The general
structure of the proposed solution follows a
typical evolutionary framework (Michalewicz,
1996).

70 International Journal of Data Warehousing & Mining, 3(4), ��-�2, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

In our previous research, we applied such
a technique to build homogenous decision
trees. In each of investigated algorithms, one
test type was used i.e. axis-parallel or oblique.
Two separate systems to induce decision trees
with these two kinds of tests were developed,
tested, and presented in our previous articles
Kretowski et al. (2005a, 2005b, 2006). GDT-AP
is a version, which uses axis-parallel and GDT-
OB oblique tests. For a detailed description of
these solutions we refer the reader to (Kretowski
et al., 2005a) for the description of the GDT-AP
and (Kretowski et al., 2005b, 2006) GDT-OB
system. Both systems produce decision trees us-
ing evolutionary computation of decision trees,
which are encoded as individuals in a natural
tree-like structure. The processed populations
can contain a large variety of individuals of
different structure and tests in internal nodes. In
GDT-AP, we allow axis-parallel tests on numeri-
cal and nominal attributes. Special informed
types of modifications of individuals are used
to realize genetic operators because decision
trees are extremely sensitive on any changes
in upper parts of them especially. We try to ap-
ply genetic operators in the informed way. For
example for nominal tests, we use regrouping
of symbolic values. It allows obtaining different
combinations of these values and finding better
inner disjunction. In GDT-OB, multivariate tests
based on a hyper-plane are used. These types
of tests require different rationality in applied
genetic operators. One of the most important
things in this case is feature selection. It requires
a specialised mutation operator, which elimi-
nates features when corresponding weights in
the hyper-plane are set to zero.

The evolutionary process incorporated in
both GDT-AP and GDT-OB systems is steered
by the fitness function, which seems to be the
most sensitive part of the entire solution. In
our case we use a penalised fitness function,
which tries to balance the influence of the test
set accuracy of the evaluated tree against its
complexity. Such an approach requires defin-
ing a user specified parameter, which balances
the influence of both these factors. Our previ-
ous analysis showed that it is possible to find

relatively good values of this parameter which
lead to the best or very good results on most of
evaluated (for particular value of this parameter)
datasets. Experiments showing the tuning of this
parameter are presented in our previous work
(Kretowski et al., 2005b).

In this article, we present a continuation and
unification of our work and propose a combined
solution, which can induce decision trees with
both axis-parallel and oblique tests.

In this section, a relatively detailed descrip-
tion of this approach is presented especially
with respect to issues that are specific to mixed
trees.

representation, Initialization, and
Termination Condition
A mixed decision tree is a complicated tree
structure, in which the number of nodes, test
types, and even the number of test outcomes are
not known in advance for a given learning set.
Moreover additional information (e.g., about
input feature vectors associated with each node
should be accessible during the induction). As a
result, decision trees are not specially encoded
in individuals and they are represented in their
actual form.

There are three possible test types in internal
nodes: two univariate and one multivariate. In
the case of univariate tests, a test representation
depends on the considered attribute type. For
nominal attributes, at least one attribute value
is associated with each branch starting in the
node, which means that an internal disjunction
is implemented. For continuous-valued features,
typical inequality tests with two outcomes are
used. In order to speed up the search process
only boundary thresholds (a boundary threshold
for the given attribute is defined as a midpoint
between such a successive pair of examples in
the sequence sorted by the increasing value of
the attribute, in which the examples belong to
two different classes) are considered as potential
splits and they are calculated before starting
the EA. Finally, an oblique test with binary
outcome can also be applied as a multivariate
test. A splitting hyper-plane is represented by
a fixed size table of real values corresponding

International Journal of Data Warehousing & Mining, 3(4), ��-�2, October-December 2007 71

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

to the weight vector and the threshold. The
inner product is calculated to decide where an
example is routed.

Before starting the actual evolution, an
initial population is created. All initial trees
are homogeneous, but half of the population
is initialized with univariate tests and the other
part with oblique tests. A simple top-down
algorithm is applied to generate all individu-
als. In each potential internal node it chooses
randomly a pair of objects from different classes
and searches for a test, which separates them
to distinct sub-trees. In the case of a univari-
ate tree, such a test can be directly constructed
for any feature with different feature values.
When an oblique test is necessary, the splitting
hyper-plane is perpendicular to the segment
connecting the two drawn objects and placed
in a halfway position.

The recursive partitioning is finished when
all training objects in a node belong to the same
class or the number of objects in a node is lower
than the predefined value (default value: 5).

Application of the above simple (but fast)
algorithm to the full training data leads to the
population of initial trees, which are generally
diverse but too large compared to the final tree.
It is especially visible in case of big datasets
composed of thousands of feature vectors and
it obviously slows down the evolution. In order
to avoid the aforementioned problem, randomly
chosen subsamples of the original training data
(10% of data, but not more then 500 examples)
are used to generate initial trees.

The evolutionary induction terminates
when the fitness of the best individual does not
improve during a fixed number of generations
(default value is equal to 1000) or the maximum
number of generations (default value: 10000)
is reached.

Genetic Operators
There are two specialized genetic operators
corresponding to the classical mutation and
crossover. Application of both operators can
result in changes of the tree structure and tests
in non-terminal nodes.

A mutation-like operator is applied with
a given probability to a tree (default value is
0.8) and it guarantees that at least one node
of the selected individual is mutated. In this
article we extended the operator application
scheme proposed in Kretowski et al. (2006).
Firstly, the type of the node (leaf or internal
node) is randomly chosen with equal prob-
ability and if a mutation of a node of this type
is not possible, the other node type is chosen.
A ranked list of nodes of the selected type is
created and a mechanism analogous to ranking
linear selection (Michalewicz, 1996) is applied
to decide which node will be affected. While
concerning internal nodes, the location (the
level) of the node in the tree and the quality of
the subtree starting in the considered node are
taken into account. It is evident that modifica-
tion of the test in the root node affects whole
tree and has a great impact, whereas mutation
of an internal node in lower parts of the tree has
only a local impact. In the proposed method,
nodes on higher levels of the tree are mutated
with lower probability and among nodes on the
same level the number of misclassified objects
by the subtree is used to sort them. Additionally,
perfectly classifying nodes with only leaves as
descendants and with a test composed of one
feature are excluded from a ranking, because
their mutation cannot improve the fitness. As for
leaves, the number of objects from other classes
than the decision assigned to the leaf is used
to put them in order, but homogenous leaves
are not included. As a result, leaves, which are
worse in terms of classification accuracy, are
mutated with higher probability. In Figure 1,
an example of constructing the ranking lists of
leaves and internal nodes is presented.

To specify how probabilities presented
in this figure were calculated, the existence
of the ordered list of internal nodes or leaves
is assumed. The calculation of discussed
probabilities is the same for these two types
of lists. Figure 1 shows how to obtain these
ordered lists. The probability P(i) to select a
node, which is at the position i in the given
sorted list, is calculated according to Equation
1 (Michalewicz, 1996):

72 International Journal of Data Warehousing & Mining, 3(4), ��-�2, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

1..

(1)2 2(1)
(1)()

(1)2 2(1)
(1)j N

iSP SP
NP i

jSP SP
N=

−
− + −

−=
 −
− + − − 

∑
 (1)

where N represents the number of nodes in the
list and SP stands for selective pressure. Vari-
ables i and j represent positions in the list and
are in the range [1,N]. Linear ranking allows
values of selective pressure in [1.0, 2.0]. In

this case 1.2 was used. Values of probabilities
given in Figure 1 were also obtained with this
default value of SP parameter.

Modifications performed by the mutation
operator depend on the node type (i.e., if the
considered node is a leaf node or an internal
node). For a non-terminal node, a few pos-
sibilities exist:

• A completely new test of the same or dif-
ferent type can be drawn; new tests are

Figure 1. Preparation step before applying actual mutation: creation of two ranked lists of
internal nodes and leaves

Oblique test

Univariate
test

Oblique
test

Univariate
test

Figure 2. Changing the test type: a) simplifying oblique test to univariate one b) extending axis-
parallel test to oblique one

(a) (b)

Node Prob
N1
N2
N4

0.27
0.33
0.40

Ranking of internal nodes

L5

N4

L4
N3

N2

L1

N1

520

20 20

10 10

0 0

02 Prob
0.4
0.6

L4
L1

Leaf

International Journal of Data Warehousing & Mining, 3(4), ��-�2, October-December 2007 73

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

created in the same way as described for
the initialization,

• The existing test can be altered by shifting
the splitting threshold (continuous-valued
feature), by re-grouping feature values
(nominal features) or by shifting the hyper-
plane (oblique test); these modifications
can be purely random or can be performed
according to the adapted dipolar operator
(Kretowski, 2004),

• An oblique test can be simplified to the
corresponding inequality test by eliminat-
ing (zeroing) the smallest coefficients or an
axis-parallel test can be transformed into
oblique one (see Figure 2),

• A test can be replaced by another test or
tests can be interchanged,

• One sub-tree can be replaced by another
sub-tree from the same node,

• A node can be transformed (pruned) into
a leaf.

Modifying a leaf makes sense only if it
contains objects from different classes. The leaf
is transformed into an internal node and a new
test is randomly chosen. The search for effective
tests can be recursively repeated for all newly
created descendants (leaves). As a result, the
mutated leaf can be replaced by a subtree, which
potentially accelerates the evolution.

There are also several variants of crossover
operators (applied with a default probability
0.2). All of them start with selecting the cross-

over positions in two affected individuals. One
node is randomly chosen in each of two trees.
In the most straightforward variant, the subtrees
starting in the selected nodes are exchanged.
This corresponds to the classical cross-over from
genetic programming. In the second variant,
which can be applied only when non-internal
nodes are randomly chosen and the numbers of
outcomes are equal, only tests associated with
the nodes are exchanged. The last variant is
also applicable only when non-internal nodes
are drawn and the numbers of descendants are
equal. In this case, branches, which start from
the selected nodes, are exchanged in random
order.

The application of any genetic operator can
result in a necessity for relocation of the input
vectors between parts of the tree rooted in the
modified node. Additionally the local maximi-
zation of the fitness is performed by pruning
lower parts of the sub-tree on the condition that
it improves the value of the fitness.

It was observed by Bennett, Cristianini,
Shave-Taylor, and Wu (2000) that enlarging
the margin in oblique decision trees (the mar-
gin is defined as the distance between decision
boundary and the closest input feature vectors)
is profitable in term of classification accuracy.
In the presented system, a simple mechanism
called centring based on this observation is
introduced and it is applied to the best decision
tree found. In case of an oblique test, centring
is performed as follows: the closest two objects

{a} {b} {c} {a} {b or c}

... ...

Figure 3. Merging leaves with the same decision, simplifying nominal tests using inner disjunc-
tion

74 International Journal of Data Warehousing & Mining, 3(4), ��-�2, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

to the splitting hyper-plane are determined on
the opposite sides of it and if the objects found
belong to different classes, the hyper-plane is
shifted (centred) by modifying the threshold.
In case of a univariate inequality test, the
threshold can also be shifted to half distance
between corresponding feature values. It should
be noted that such a post-processing does not
change the fitness corresponding to the final
tree. Obviously, the centring cannot be applied
to tests based on nominal features. For them,
another kind of test improvement is used. If
there is an internal node with nominal test, and
there are descendant leaves, which have the
same decision, then such leaves are merged and
inner disjunction is used in the splitting node
(see Figure 3).

Fitness Function
The evolutionary search process is very sensi-
tive to its fitness function. When concerning
a classification task it is well known that the
direct optimization of the classifier accuracy
measured on the learning set leads to an over-fit-
ting problem. In a typical top-down induction of
decision trees, the over-specialization problem
is mitigated by defining a stopping condition
and by applying a post-pruning (Esposito,
Malerba, & Semeraro, 1997). In our approach,
the search for an optimal structure is embedded
into the evolutionary algorithm by incorporat-
ing a complexity term in the fitness function. A
similar idea is used in cost complexity pruning
in the CART system. The fitness function is
maximized and has the following form:

Re() () (() 1.0)classFitness T Q T Comp T= − −

 (2)

where QReclass (T) is the training accuracy (re-
classification quality) of the tree T and α is the
relative importance of the classifier complexity
(default value is 0.005). In the simplest form
the tree complexity Comp(T) can be defined as
the classifier size, which is usually equal to the
number of nodes. The penalty associated with
the classifier complexity increases proportion-
ally with the tree size and prevents classifier

over-specialization. Subtracting 1.0 eliminates
the penalty when the tree is composed of only
one leaf (in majority voting).

This simple complexity definition is ad-
equate for a homogeneous tree composed of only
univariate tests. However, when oblique tests are
also considered, it seems that a more elaborate
solution is necessary. It is rather straightforward
that an oblique split based on a few features is
more complex than a univariate test and that
we should apply preference to simpler tests as
an inductive bias. As a consequence the tree
complexity should also reflect the complexity
of the tests. However, it is not easy to definitely
decide how to balance different test complexi-
ties because it depends on the problem solved
and user preferences. In such a situation we
decided to define the tree complexity Comp(T)
in a flexible way and allow the user to tune its
final form:

[]
int ()

() () 1 (() 1)leaf
n N T

Comp T N T F n
∈

= + + −∑
 (3)

where Nleaf (T) and Nint(T) are sets of leaves
and internal nodes correspondingly, F(n) is the
number of features used in the test associated
with the node n and β∈[0, 1] is the relative
importance of the test complexity (default value
0.2). The complexity of the tree is defined as a
sum of the complexities of the nodes and it is
assumed that for leaves and internal nodes with
univariate tests the node complexity is always
equal to 1.0. It can be also observed that when
β=1 the number of features included in the test
is used as the node complexity, and if β=0, then
the node complexity is 1.0.

EXPErIMENTAL rESULTS
The proposed approach to learning mixed deci-
sion trees is assessed on both artificial and real
life datasets and is compared to the well-known
top-down univariate (C4.5 Quinlan, 1993) and
oblique (OC1 Murthy et al., 1994) decision tree
systems. It is also compared to two homogenous
versions of our global GDT system: univariate

International Journal of Data Warehousing & Mining, 3(4), ��-�2, October-December 2007 7�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

GDT-AP (Kretowski et al., 2005a) and oblique
GDT-OB (Kretowski et al., 2006). All prepared
artificial datasets comprise training and testing
parts. In the case of data from a UCI reposi-
tory (Blake, Keogh, & Merz, 1998) for which
testing data is not provided, 10-fold stratified
cross-validation was employed. Each experi-
ment on all stochastic algorithms (i.e., all except
C4.5) was performed 10 times and the average
result of such an evaluation was presented. The
number of leaves is the complexity measure
(size) of compared trees. The OC1 system was
run with different values of the seed that initial-
izes the random number generator. Our system
is initialized by the system time.

A statistical analysis of the obtained results
was done by the Friedman test with the cor-
responding Dunn’s multiple comparison test
(significance level equal to 0.05) as recom-
mended by Demsar (2006).

We also perform an experiment to quantify
the scalability of our evolutionary algorithm.
This experiment, which is performed on larger

artificial datasets is presented and discussed at
the end of this section.

Artificial Datasets
Two types of artificial datasets are used. Some of
them (see e.g., normchessap in Figure 4) require
axis-parallel and others (ls2 in Figure 4) oblique
tests. Such a methodology is used to assess the
flexibility of the proposed approach.

The prefix chess in suggested names in-
dicates the so-called chessboard domain and
the given numbers represent the number of
partitions at each axis. For example chess3x3
(Figure 6a) means that it is the two dimensional
domain with three intervals in each dimension.
Chess2x2x2 has three dimensions and two
intervals at each of them. The abbreviation ob
given after prefix chess means that it is a ro-
tated (i.e. oblique) chessboard like chessob4cl
in Figure 4. Chessob2cl is analogous except it
has two classes.

The prefix norm reflects not clearly defined
borders between classes and normal distribution

Figure 4. Examples of artificial datasets

7� International Journal of Data Warehousing & Mining, 3(4), ��-�2, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

(rnorm in the R system was used) of generated
observations (e.g., normchessap, which has
overlapping borders in contrast to ls2). Obser-
vations in other datasets were generated with
uniform distribution. Normchessap represents
axis-parallel chessboard with overlapping
borders and normchessob its rotated, oblique
version. Dataset synth was taken from the col-
lection of datasets used in this book (Ripley,
1996).

Two datasets with prefix ls represent
linearly separable domain where classes are
divided by a hyper-plane: x1+...+xn<xn+1+...+xm,
where n = 0.5m and m = 2 in ls2 and m = 10
in ls10. The datasets with prefix zebra contain
oblique stripes. Zebra2 is presented in Figure
4 and zebra1 is similar except it has three re-
gions. All datasets with prefix zebra (including
zebra3 presented in Figure 6b) were generated
using Figure 6 from (Cantu-Paz et al., 2003)
as a template.

Most of the datasets have two continuous-
valued features and only the ls10 (linearly sepa-
rable) dataset has 10 features and chess2x2x2
has three features. The number of examples was
varied and depends on the number of distinct
regions. In the training part it ranged from 1000
(for simple 2-dimensional problems) to 4000
(for ls10). The testing part is twofold larger in
each case.

The results on the range of datasets de-
signed for this investigation are collected in
Figure 5. Because we analyze artificial data
in this experiment, we know how the optimal
solution can be represented (in terms of used
tests). There are certain classification tasks, like
for instance the classical chessboard problem,
that suit very well univariate decision trees.
There are also linearly separable datasets (like
ls10) for which splits based on hyper-planes are
highly recommended to avoid a staircase-like
structure. The main aim of our endeavour in this

Dataset
C4.5 OC1 GDT-Mix GDT-AP GDT-OB

size quality size quality size quality size quality size quality

chess2x2 1 50 10.1 89.3 4 99.8 4 99.8 4 99.3

chess2x2x2 1 50 23.8 71 8 99.7 8 99.7 8.2 97

chess3x3 9 99.7 21.1 73.7 9 99.3 9 99.7 9.9 97.1

chessob2cl 33 95.6 7 77.3 4.1 99.1 17.9 92.6 4.7 99.1

chessob4cl 35 94.6 4.3 49.8 4 98.9 18 92.1 4.4 98.4

house 21 97.4 8.2 92.8 3.8 96.9 13.3 96.6 4 96.7

ls10 284 77.3 7.3 95.3 2 97.6 18.8 70.7 2 97.2

ls2 22 97 2 99.7 2 99.9 14 95.7 2 99.9

normal 5 90 7.3 87.9 3.8 89.6 25.7 86.9 4 90

normchessap 1 50 11.2 85.5 4 95.5 4.2 95.5 4 95.4

normchessob 19 93 11 83.3 4 93.6 9.3 92.6 4 93.6

normwave 15 94 8.4 90.3 4 94.4 9.1 93.5 4 94.9

zebra1 25 95.3 3 83.5 3 99.6 15.3 94.6 3 99.3

zebra2 2 59.5 4.8 94.1 4 98.2 21.4 91.6 4.4 98.7

zebra3 57 91.2 8.2 24.3 8.4 97 31.5 88.8 8.8 96.8

Figure 5. Results on artificial data

International Journal of Data Warehousing & Mining, 3(4), ��-�2, October-December 2007 77

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

work is to show that GDT-Mix can easily adjust
to the specific problem. The analysis of Figure
5 proved that the GDT-Mix inducer performs
better on axis parallel data when compared to
oblique systems and on linearly separable data
when compared to axis parallel systems. It is
also important that statistical analysis does not
show significant differences between the GDT-
Mix algorithm and the systems specialized for
certain problems when a comparison is made
on such problems. Our universal system per-
forms as well as the specialized systems. This
is its very strong point. The statistical test on
all artificial datasets indicates that GDT-Mix
is significantly better in terms of quality than
C4.5, OC1 and GDT-AP. As for GDT-OB, it is
statistically better than OC1. The comparisons
based on the second measure (the tree size) are
also favourable. Statistical analysis reveals that
GDT-Mix produces significantly smaller trees
than C4.5, GDT-AP and OC1. This score is easily
justified for typical univariate inducers, because
in the case of problems, which require oblique
splits our GDT-Mix, system takes advantage
of such splits.

Discussed results show that the proposed
algorithm is more flexible in terms of rep-
resentation, which can be modified during
the induction. For that reason, more detailed
analysis of these results aims at investigating
the obtained decision trees. Such trees for
relatively complex axis parallel and linearly
separable classification tasks are presented in
Figure 6. These trees present a promising result
because the GDT-Mix system managed to find
the type of tests that suit the data in the best way
and was able to apply them to build trees that
perform very competitively while comparing
to results of specialized systems. In Figure 6a
and 6b, splits from decision trees are addition-
ally drawn to present how the input space is
partitioned by the global inducer. These splits
show that trees obtained in this experiment have
an optimal structure (the empirical superiority
of global induction).

real-Life Data
Results on real-life data are divided into two
groups. In the first one, GDT−Mix is compared
with all evaluated algorithms on datasets where

Figure 6. Decision trees obtained by GDT-Mix system for chess3x3 and zebra3 datasets (b) and
(d) and the corresponding dataset scatterplots with drawn splits (a) and (c)

7� International Journal of Data Warehousing & Mining, 3(4), ��-�2, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

the instances have only numeric (continuous)
feature values (Figure 7). In the second group,
the proposed system is compared with univari-
ate tree induction algorithms on datasets that
have both nominal and continuous attributes
(Figure 8).

The analysis of these results shows that
there are no statistically significant differences
in the quality between the compared algorithms
on all datasets. This is a favourable result.
It means that the GDT-Mix system, which is
designed to be universal to different kinds of
tasks, performs as well as specialized counter-
parts. In the case of the size of the tree, the same
statistical analysis of the Figure 8 indicates that
GDT-Mix produces significantly smaller trees
than C4.5 and GDT-AP. A detailed inspection
of this table shows that there are some datasets
(e.g., heart) for which there is evident difference
in the tree size, which shows the superiority of
the GDT-Mix algorithm. This is a very useful
feature of mixed trees. As for the Figure 7, there
is a statistically significant difference in terms
of the size. GDT-Mix and GDT-OB produced
smaller trees than C4.5 and GDT-AP.

One of the decision trees obtained for the
real-life heart data is presented in Figure 9. This
dataset was chosen for investigation because it

contains both nominal and continuous attributes
and represents a quite easily understood problem
(at least in terms of outcomes of the classifier).
Figure 9 presents one of the decision trees
(there were 10 runs of the algorithm on each
dataset) that were obtained in our experiment
for the heart data. In the presented tree, all three
types of possible tests are used. This example
underlines the advantage of decision trees of
being self explanatory and easy to understand.
In mixed decision trees, we can have tests both
on nominal and continuous attributes, which is
a desirable feature of this system.

Evaluation of Algorithm
Performance on Large Datasets
One of the most significant deficiencies of solu-
tions based on evolutionary techniques is that
they are supposedly slow, especially on large,
real-life problems. In order to check how well
our solution can deal with large datasets, a
performance test is presented in Figure 10. The
experiment was conducted on two artificial da-
tasets: ls5 and chess3x3 with different numbers
of generated observations (102 ÷ 105).

The promising outcome of this experiment
is that it shows that our algorithm can deal with
relatively large datasets (100000 observations)

Dataset
C4.5 OC1 GDT-Mix GDT-AP GDT-OB

size quality size quality size quality size quality size quality

balance-sc. 57 77.5 5.4 90 2.6 89.5 32.8 78.2 3.2 89.1

bcw 22.8 94.7 4.7 91.2 2 96.7 6.6 95.8 2 96.9

bupa 44.6 64.7 5.8 65.6 3.5 68.6 69.3 62.8 3 71.3

glass 39 62.5 4.5 55.7 11.6 66.4 40.4 63.6 11.6 68.8

page-blocks 82.8 97 15.6 96.6 3 94.9 7.5 96.4 3 95.3

pima 40.6 74.6 6.5 69.6 2.2 75.4 14.3 73.8 2.1 75.3

sat 435 85.5 58.3 78.9 6.4 81.5 19.2 83 7 83.1

vehicle 138.6 72.7 21.6 66.4 8.8 65.4 45.1 70.3 7.7 65.7

waveform 107 73.5 10.5 77.4 4.2 80.5 36.2 72.3 4.2 82.2

wine 9 85 3.2 87 4.2 91.5 5.2 86.3 4.8 90.9

Figure 7. Results on real datasets with only continuous attributes

International Journal of Data Warehousing & Mining, 3(4), ��-�2, October-December 2007 7�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Dataset
C4.5 GDT-Mix GDT-AP

size quality size quality size quality

australian 39 87 2.4 87.5 22.8 84.6

cars 31 97.7 3 97.9 4 98.7

cmc 136.8 52.2 4 55.4 13.1 53.8

german 77 73.3 3.8 72.4 16.5 73.4

heart 22 77.1 6.1 78.4 44.9 74.2

solar 20 73.1 4 71.3 33.7 73.6

vote 5 97 2 97 13.5 95.6

Figure 8. Results on real datasets with both continuous and nominal attributes

Figure 9. The decision tree for heart data found by GDT-Mix

Figure 10. Performance of the algorithm on scaled up datasets (the number of observations in
the range of 100÷10000)

2 3 4 �

0

10

20

30

40

�0

�0

��

�0

��

70

7�

�0

��

�0

��

100

Te
st

 s
et

 a
cc

ur
ac

y

log(size)

Ti
m

e[
s]

/1
03

chest pain type
{asymptomatic} {typical, atypical, non-anginal}

{fixed, reversible}{normal}

vessels<0.�

no heart disease

no heart disease heart disease

thai

thai
{fixed, reversible}{normal}

no heart disease

heart disease

heart disease

heart disease

vessels<0.�

12*(Resting blood pressure)
-�*(MaxHeartRate)<�2�

�0 International Journal of Data Warehousing & Mining, 3(4), ��-�2, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

in acceptable time. This time varies between
about 2 (chess3x3) and 11 (ls5) hours as mea-
sured on a typical machine (Xeon 3.2GHz, 2GB
RAM). There is an interesting (in the context
of mixed decision trees) explanation for this
discrepancy. The chess3x3 dataset belongs to
the class of tested problems for which the best
solution contains only axis parallel splits. ls5
on the other hand requires only one test which
is based on hyper-plane. In our previous work
on evolutionary induction of decision trees we
have noticed that induction of oblique deci-
sion trees usually requires more computation
time (because of, for example, the calculation
of the inner product to determine location of
observations and more time consuming evo-
lutionary operators). On the tested datasets,
GDT-Mix produces the optimal (at least in
terms of representation) outcome. That is, an
axis parallel decision tree for the chess3x3 da-
taset and oblique (with one expected internal
node) decision tree for the ls5 dataset. Because
the returned trees are of the desired type, it is
highly probable that most of the population in
especially later generations was dominated by
trees of this type. It is a favourable observation
for mixed decision trees algorithm which can
flexibly choose the type of tests used in induced
decision trees and by doing this make the induc-
tion process more efficient. The evaluation of
the chess3x3 dataset on oblique decision tree
algorithm would lead to increase of experiment
time but probably not up to the value obtained
for ls5 because chess3x3 has two whereas ls5
has five attributes.

CONCLUSION AND
FUTUrE WOrKS
In the article, a new evolutionary algorithm
for global induction of mixed decision trees
is proposed. In the unified framework, both
univariate and oblique tests are searched and
applied in non-terminal nodes for optimal data
splitting. The defined fitness function enables
the controlling of the inductive biases.

Experimental validation shows that the
algorithm is able to adapt to the problem

being solved and to locally choose the most
suitable test representation. Even though the
evolutionary induction is computationally more
complex than classical top-down approaches,
we proved that it can be effectively applied to
large datasets.

The presented approach is still under
development. We are considering introducing
additional test types, especially multivariate
tests. Furthermore, the fitness function and
especially the impact of the definition of the
complexity term on the resulting decision tree
will be studied in more detail. Obtained results
are promising. But further analysis of the fitness
function may lead to interesting results. In this
problem especially, where the complexity of the
decision tree comprises at least two factors: the
number of nodes and the number of features
used in these nodes. Minimum description
length might be considered as one of the first-
line choices.

Our approach applies mutation operators
in an informed way (informed selection of
individuals or parts of individuals to mutate).
It uses ranking of nodes to decide which nodes
should or should not be modified in a particular
way. One possible improvement to our system
is to use a similar informed approach to imple-
ment the crossover operator. At the moment
this operator is uniformed. Used in this way,
might be destructive, because the meaning of
the sub-tree of a decision tree is very context
dependent. When we move one sub-tree to a
different location it might become useless given
the new context and have to be pruned out.

Finally, is it a well-known fact that evolu-
tionary techniques are well-suited for parallel
architectures. We plan to speed up our system
by re-implementing it in a distributed environ-
ment. It is especially important in the context of
modern data mining applications, where huge
learning sets are analyzed.

ACKNOWLEDGMENT
This work was supported by the grant W/WI/5/05
from Bialystok Technical University.

International Journal of Data Warehousing & Mining, 3(4), ��-�2, October-December 2007 �1

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

rEFErENCES
Blake, C., Keogh, E., & Merz, C. (1998). UCI re-

pository of machine learning databases. Irvine,
CA: University of California, Department of
Computer Science.

Bennett, K., Cristianini, N., Shave-Taylor, J., &
Wu, D. (2000). Enlarging the margins in
perceptron decision trees. Machine Learning,
41, 295-313.

Bot, M., & Langdon, W. (2000). Application of
genetic programming to induction of linear clas-
sification trees. Proceedings of EuroGP’2000
(pp. 247.258). Springer, LNCS 1802.

Breiman, L., Friedman, J., Olshen, R., & Stone C.
(1984). Classification and regression trees.
Wadsworth International Group.

Brodley, C. (1995). Recursive automatic bias se-
lection for classifier construction. Machine
Learning, 20, 63-94.

Cantu-Paz, E., & Kamath, C. (2003). Inducing
oblique decision trees with evolutionary al-
gorithms. IEEE Transactions on Evolutionary
Computation, 7(1), 54-68.

Chai, B., Huang, T., Zhuang, X., Zhao, Y., & Sklan-
sky, J. (1996). Piecewise-linear classifiers using
binary tree structure and genetic algorithm.
Pattern Recognition, 29(11), 1905-1917.

Demsar, J. (2006). Statistical comparisons of classi-
fiers over multiple data sets. Journal of Machine
Learning Research, 7, 1-30.

Esposito, F., Malerba, D., & Semeraro, G. (1997).
A comparative analysis of methods for pruning
decision trees. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(5),
476-491.

Freitas A. (2002). Data mining and knowledge discov-
ery with evolutionary algorithms. Springer.

Fu, Z., Golden, B., Lele, S., Raghavan, S., & Wasil,
E. (2003). A genetic algorithm based approach
for building accurate decision trees. INFORMS
Journal of Computing, 15(1), 3-22.

Koza, J. (1991). Concept formation and decision
tree induction using genetic programming
paradigm. Proceedings of International Confer-

ence on Parallel Problem Solving from Nature-
-Proceedings of 1st Workshop (pp. 124-128).
Springer, LNCS 496.

Kretowski, M. (2004). An evolutionary algorithm
for oblique decision tree induction. Proceed-
ings of International Conference on Artificial
Intelligence and Soft Computing (pp. 423-437),
Springer, LNCS 3070.

Kretowski, M., & Grzes, M. (2005a). Global learning
of decision trees by an evolutionary Algorithm.
In: Information Processing and Security Sys-
tems, Springer, 401–410.

Kretowski, M., & Grzes, M. (2005b). Global induc-
tion of oblique decision trees: an evolutionary
approach. Proceedings of Intelligent Informa-
tion Processing And Web Mining. Springer
(pp. 309-318).

Kretowski, M., & Grzes, M. (2006). Evolutionary
learning of linear trees with embedded fea-
ture selection. Proceedings of International
Conference on Artificial Intelligence and Soft
Computing, Springer, LNCS 4029.

Llora, X., & Wilson, S. (2004). Mixed decision trees:
Minimizing knowledge representation bias in
LCS. Proceedings of Genetic and Evolution-
ary Computation Conference (pp. 797-809),
Springer, LNCS 3103.

Michalewicz, Z. (1996). Genetic algorithms +
data structures = evolution programs (3rd ed.).
Springer.

Murthy, S. (1998). Automatic construction of deci-
sion trees from data: A multidisciplinary survey.
Data Mining and Knowledge Discovery, 2,
345-389.

Murthy, S., Kasif, S., & Salzberg, S. (1994). A system
for induction of oblique decision trees. Journal
of Artificial Intelligence Research, 2, 1-33.

Nikolaev, N., & Slavov, V. (1998). Inductive genetic
programming with decision trees. Intelligent
Data Analysis, 2, 31-44.

Papagelis, A., & Kalles, D. (2001). Breeding decision
trees using evolutionary techniques. Proceed-
ings of International Conference on Machine
Learning (pp. 393-400), Morgan Kaufmann.

Ripley, B. D. (1996). Pattern recognition and neural
networks. Cambridge University Press.

�2 International Journal of Data Warehousing & Mining, 3(4), ��-�2, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Quinlan, J. (1993). C4.5: Programs for machine
learning. Morgan Kaufmann.

ENDNOTE
1 This article is an extended version of the paper

presented at DaWaK’06

Marek Grzes received an MSc degree in computer science from Bialystok Technical University (Poland).
After graduation in 2003, he has been working there as a teaching and research assistant. Since 2006, he
has been studying for a PhD degree at The University of York (United Kingdom).

Marek Kretowski received an MSc degree in computer science in 1996 from Bialystok Technical Univer-
sity, Poland. His PhD thesis, defended in 2002, was prepared in the framework of collaboration between
Laboratory of Signal and Image Processing (LTSI), University of Rennes 1, INSERM, France and faculty
of computer science, Bialystok Technical University, Poland. From 2000 to 2002 M. Kretowski was a
scholar of the French Government. Now he works as an assistant professor in the faculty of computer sci-
ence, Bialystok Technical University. His current research focuses on data mining methods and biomedical
applications of computer modeling.

