
��   International Journal of Data Warehousing & Mining, 3(4), ��-�2, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

AbSTrACT

This article presents a new evolutionary algorithm (EA) for induction of mixed decision trees. In non-
terminal nodes of a mixed tree, different types of tests can be placed, ranging from a typical inequality 
test up to an oblique test based on a splitting hyper-plane. In contrast to classical top-down methods, the 
proposed system searches for an optimal tree in a global manner, that is it learns a tree structure and 
finds tests in one run of the EA. Specialized genetic operators are developed, which allow the system to 
exchange parts of trees, generating new sub-trees, pruning existing ones as well as changing the node 
type and the tests. An informed mutation application scheme is introduced and the number of unprofitable 
modifications is reduced. The proposed approach is experimentally verified on both artificial and real-life 
data and the results are promising. Scaling of system performance with increasing training data size was 
also investigated.

Keywords: decision trees; evolutionary algorithms; global induction; mixed decision trees

INTrODUCTION 
Decision trees (Murthy, 1998) are one of the 
most frequently applied data mining approaches. 
There exist many induction algorithms, which 
tackle the problem of building decision trees in a 
different way. Most frequently, they differ in the 
measure for the test assessment, but also in the 
type of search in solution space (i.e., top-down 
vs. global). From a user’s point of view, one of 
the most important features of a decision tree 
is a test representation in the internal nodes. 
In typical univariate trees, two types of tests 
are usually permitted. For a nominal attribute, 

mutually exclusive sets of feature values are 
associated with each branch, whereas for a 
continuous valued feature inequality tests are 
applied. In the case of multivariate trees, more 
than one feature can be used to create a test. 
Oblique tests based on a splitting hyper-plane 
are the most widely used form of multivariate 
tests. Most of the DT-based systems are homoge-
neous, which means that they take advantage of 
only one type of test (i.e., univariate or oblique). 
C4.5 (Quinlan, 1993) can be treated as one of 
the best-known representatives of the first type, 
whereas OC1 (Murthy, Kasif, & Salzberg, 1994) 
is a good example of an oblique tree inducer. 
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These two systems belong to the group of 
decision tree algorithms, which represent the 
de-facto standard for empirical evaluations and 
are commonly used for comparisons.

The term mixed decision trees was proposed 
by Llora and Wilson (2004) to describe trees in 
which different types of tests can be exploited. 
One of the first and best-known examples of 
such an approach is the CART system (Breiman, 
Friedman, Olshen, & Stone, 1984). This system 
is able to search for a linear combination of non-
nominal features in each node and it compares 
the obtained test with the best univariate test. 
However, it should be noted that CART has a 
strong preference for simpler tests; it rarely uses 
the more elaborate splits. Another form of a 
hybrid classifier is proposed by Brodley (1995). 
Her MCS system combines univariate tests, 
linear machines, and instance-based classifiers 
(k-NN) and during the top-down generation of 
a tree classifier it recursively applies automatic 
bias selection. Recently, a fine-grain parallel 
model GALE (Llora et al., 2004) was applied to 
generate decision trees, which employ inequal-
ity and oblique tests.

There are two main approaches to the deci-
sion tree induction: top-down and global. The 
first one is based on a greedy recursive procedure 
of test searching and sub-node creation until a 
stopping condition is met. The locally optimal 
tests according to the predefined criteria are 
chosen in each step, but such a procedure does 
not guarantee the global optimality of the final 
tree. This problem can be easily observed when 
there is a strong interaction between features. 
Only treating them together can lead to the 
optimal solution. Additionally, the post-prun-
ing is usually applied after the actual top-down 
induction to avoid the problem of over-fitting 
the training data. It should be noted that post-
pruning techniques have only limited ability to 
correct the tree structure. The C4.5 and OC1 
systems apply the top-down approach and are 
used for the comparison in this article.

In contrast to the classical top-down ap-
proach, global algorithms try to simultaneously 
search for both the tree structure and all tests in 
non-terminal nodes. This process is obviously 

much more computationally complex but it can 
reveal hidden regularities, which are almost 
undetectable by greedy methods. The global 
induction is mainly represented by systems 
based on evolutionary approach.

Evolutionary computations (Michalewicz, 
1996) are stochastic techniques, which have 
been inspired by the process of biological 
evolution. Their success is attributed to the 
ability to avoid local optima, which is their 
main advantage over greedy search methods. 
Evolutionary techniques are known to be useful 
in many data mining tasks (Freitas, 2002). They 
were successfully applied in the framework of 
both top-down and global systems to learning 
univariate (Fu, Golden, Lele, Raghavan, & 
Wasil, 2003; Koza, 1991; Nikolaev & Slavov, 
1998; Papagelis & Kalles, 2001) and oblique 
trees (Bot & Langdon, 2000; Chai, Huang, 
Zhuang, Zhao, & Sklansky, 1996; Cantu-Paz 
& Kamath, 2003; Kretowski, 2004).

The global approach based on evolution-
ary algorithms for decision tree induction was 
investigated in our previous articles. We showed 
that homogeneous trees, univariate (Kretowski 
& Grzes, 2005a) or oblique (Kretowski & Grzes 
2005b, 2006) can be effectively induced and 
we demonstrated that globally generated clas-
sifiers are generally less complex with at least 
comparable accuracy. In this article, we want to 
merge the two developed methods in one system, 
which will be able to induce mixed trees.

The rest of the article is organized as fol-
lows. In the next section our global system for 
induction of mixed decision trees is presented. 
Experimental validation of the approach on both 
artificial and real-life datasets is presented in 
the third section. The article finishes with our 
conclusion.

GLObAL INDUCTION OF 
MIXED DECISION TrEES
The algorithm proposed in this article applies 
a global approach to decision tree induction 
based on evolutionary computation. The general 
structure of the proposed solution follows a 
typical evolutionary framework (Michalewicz, 
1996).
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In our previous research, we applied such 
a technique to build homogenous decision 
trees. In each of investigated algorithms, one 
test type was used i.e. axis-parallel or oblique. 
Two separate systems to induce decision trees 
with these two kinds of tests were developed, 
tested, and presented in our previous articles 
Kretowski et al. (2005a, 2005b, 2006). GDT-AP 
is a version, which uses axis-parallel and GDT-
OB oblique tests. For a detailed description of 
these solutions we refer the reader to (Kretowski 
et al., 2005a) for the description of the GDT-AP 
and (Kretowski et al., 2005b, 2006) GDT-OB 
system. Both systems produce decision trees us-
ing evolutionary computation of decision trees, 
which are encoded as individuals in a natural 
tree-like structure. The processed populations 
can contain a large variety of individuals of 
different structure and tests in internal nodes. In 
GDT-AP, we allow axis-parallel tests on numeri-
cal and nominal attributes. Special informed 
types of modifications of individuals are used 
to realize genetic operators because decision 
trees are extremely sensitive on any changes 
in upper parts of them especially. We try to ap-
ply genetic operators in the informed way. For 
example for nominal tests, we use regrouping 
of symbolic values. It allows obtaining different 
combinations of these values and finding better 
inner disjunction. In GDT-OB, multivariate tests 
based on a hyper-plane are used. These types 
of tests require different rationality in applied 
genetic operators. One of the most important 
things in this case is feature selection. It requires 
a specialised mutation operator, which elimi-
nates features when corresponding weights in 
the hyper-plane are set to zero.

The evolutionary process incorporated in 
both GDT-AP and GDT-OB systems is steered 
by the fitness function, which seems to be the 
most sensitive part of the entire solution. In 
our case we use a penalised fitness function, 
which tries to balance the influence of the test 
set accuracy of the evaluated tree against its 
complexity. Such an approach requires defin-
ing a user specified parameter, which balances 
the influence of both these factors. Our previ-
ous analysis showed that it is possible to find 

relatively good values of this parameter which 
lead to the best or very good results on most of 
evaluated (for particular value of this parameter) 
datasets. Experiments showing the tuning of this 
parameter are presented in our previous work 
(Kretowski et al., 2005b).

In this article, we present a continuation and 
unification of our work and propose a combined 
solution, which can induce decision trees with 
both axis-parallel and oblique tests.

In this section, a relatively detailed descrip-
tion of this approach is presented especially 
with respect to issues that are specific to mixed 
trees.

representation, Initialization, and 
Termination Condition
A mixed decision tree is a complicated tree 
structure, in which the number of nodes, test 
types, and even the number of test outcomes are 
not known in advance for a given learning set. 
Moreover additional information (e.g., about 
input feature vectors associated with each node 
should be accessible during the induction). As a 
result, decision trees are not specially encoded 
in individuals and they are represented in their 
actual form.

There are three possible test types in internal 
nodes: two univariate and one multivariate. In 
the case of univariate tests, a test representation 
depends on the considered attribute type. For 
nominal attributes, at least one attribute value 
is associated with each branch starting in the 
node, which means that an internal disjunction 
is implemented. For continuous-valued features, 
typical inequality tests with two outcomes are 
used. In order to speed up the search process 
only boundary thresholds (a boundary threshold 
for the given attribute is defined as a midpoint 
between such a successive pair of examples in 
the sequence sorted by the increasing value of 
the attribute, in which the examples belong to 
two different classes) are considered as potential 
splits and they are calculated before starting 
the EA. Finally, an oblique test with binary 
outcome can also be applied as a multivariate 
test. A splitting hyper-plane is represented by 
a fixed size table of real values corresponding 
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to the weight vector and the threshold. The 
inner product is calculated to decide where an 
example is routed.

Before starting the actual evolution, an 
initial population is created. All initial trees 
are homogeneous, but half of the population 
is initialized with univariate tests and the other 
part with oblique tests. A simple top-down 
algorithm is applied to generate all individu-
als. In each potential internal node it chooses 
randomly a pair of objects from different classes 
and searches for a test, which separates them 
to distinct sub-trees. In the case of a univari-
ate tree, such a test can be directly constructed 
for any feature with different feature values. 
When an oblique test is necessary, the splitting 
hyper-plane is perpendicular to the segment 
connecting the two drawn objects and placed 
in a halfway position.

The recursive partitioning is finished when 
all training objects in a node belong to the same 
class or the number of objects in a node is lower 
than the predefined value (default value: 5).

Application of the above simple (but fast) 
algorithm to the full training data leads to the 
population of initial trees, which are generally 
diverse but too large compared to the final tree. 
It is especially visible in case of big datasets 
composed of thousands of feature vectors and 
it obviously slows down the evolution. In order 
to avoid the aforementioned problem, randomly 
chosen subsamples of the original training data 
(10% of data, but not more then 500 examples) 
are used to generate initial trees.

The evolutionary induction terminates 
when the fitness of the best individual does not 
improve during a fixed number of generations 
(default value is equal to 1000) or the maximum 
number of generations (default value: 10000) 
is reached.

Genetic Operators
There are two specialized genetic operators 
corresponding to the classical mutation and 
crossover. Application of both operators can 
result in changes of the tree structure and tests 
in non-terminal nodes.

A mutation-like operator is applied with 
a given probability to a tree (default value is 
0.8) and it guarantees that at least one node 
of the selected individual is mutated. In this 
article we extended the operator application 
scheme proposed in Kretowski et al. (2006). 
Firstly, the type of the node (leaf or internal 
node) is randomly chosen with equal prob-
ability and if a mutation of a node of this type 
is not possible, the other node type is chosen. 
A ranked list of nodes of the selected type is 
created and a mechanism analogous to ranking 
linear selection (Michalewicz, 1996) is applied 
to decide which node will be affected. While 
concerning internal nodes, the location (the 
level) of the node in the tree and the quality of 
the subtree starting in the considered node are 
taken into account. It is evident that modifica-
tion of the test in the root node affects whole 
tree and has a great impact, whereas mutation 
of an internal node in lower parts of the tree has 
only a local impact. In the proposed method, 
nodes on higher levels of the tree are mutated 
with lower probability and among nodes on the 
same level the number of misclassified objects 
by the subtree is used to sort them. Additionally, 
perfectly classifying nodes with only leaves as 
descendants and with a test composed of one 
feature are excluded from a ranking, because 
their mutation cannot improve the fitness. As for 
leaves, the number of objects from other classes 
than the decision assigned to the leaf is used 
to put them in order, but homogenous leaves 
are not included. As a result, leaves, which are 
worse in terms of classification accuracy, are 
mutated with higher probability. In Figure 1, 
an example of constructing the ranking lists of 
leaves and internal nodes is presented.

To specify how probabilities presented 
in this figure were calculated, the existence 
of the ordered list of internal nodes or leaves 
is assumed. The calculation of discussed 
probabilities is the same for these two types 
of lists. Figure 1 shows how to obtain these 
ordered lists. The probability P(i) to select a 
node, which is at the position i in the given 
sorted list, is calculated according to Equation 
1 (Michalewicz, 1996):
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where N represents the number of nodes in the 
list and SP stands for selective pressure. Vari-
ables i and j represent positions in the list and 
are in the range [1,N]. Linear ranking allows 
values of selective pressure in [1.0, 2.0]. In 

this case 1.2 was used. Values of probabilities 
given in Figure 1 were also obtained with this 
default value of SP parameter.

Modifications performed by the mutation 
operator depend on the node type (i.e., if the 
considered node is a leaf node or an internal 
node). For a non-terminal node, a few pos-
sibilities exist:

• A completely new test of the same or dif-
ferent type can be drawn; new tests are 

Figure 1. Preparation step before applying actual mutation: creation of two ranked lists of 
internal nodes and leaves
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Oblique 
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Figure 2. Changing the test type: a) simplifying oblique test to univariate one b) extending axis-
parallel test to oblique one
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created in the same way as described for 
the initialization,

• The existing test can be altered by shifting 
the splitting threshold (continuous-valued 
feature), by re-grouping feature values 
(nominal features) or by shifting the hyper-
plane (oblique test); these modifications 
can be purely random or can be performed 
according to the adapted dipolar operator 
(Kretowski, 2004),

• An oblique test can be simplified to the 
corresponding inequality test by eliminat-
ing (zeroing) the smallest coefficients or an 
axis-parallel test can be transformed into 
oblique one (see Figure 2),

• A test can be replaced by another test or 
tests can be interchanged,

• One sub-tree can be replaced by another 
sub-tree from the same node,

• A node can be transformed (pruned) into 
a leaf.

Modifying a leaf makes sense only if it 
contains objects from different classes. The leaf 
is transformed into an internal node and a new 
test is randomly chosen. The search for effective 
tests can be recursively repeated for all newly 
created descendants (leaves). As a result, the 
mutated leaf can be replaced by a subtree, which 
potentially accelerates the evolution.

There are also several variants of crossover 
operators (applied with a default probability 
0.2). All of them start with selecting the cross-

over positions in two affected individuals. One 
node is randomly chosen in each of two trees. 
In the most straightforward variant, the subtrees 
starting in the selected nodes are exchanged. 
This corresponds to the classical cross-over from 
genetic programming. In the second variant, 
which can be applied only when non-internal 
nodes are randomly chosen and the numbers of 
outcomes are equal, only tests associated with 
the nodes are exchanged. The last variant is 
also applicable only when non-internal nodes 
are drawn and the numbers of descendants are 
equal. In this case, branches, which start from 
the selected nodes, are exchanged in random 
order.

The application of any genetic operator can 
result in a necessity for relocation of the input 
vectors between parts of the tree rooted in the 
modified node. Additionally the local maximi-
zation of the fitness is performed by pruning 
lower parts of the sub-tree on the condition that 
it improves the value of the fitness.

It was observed by Bennett, Cristianini, 
Shave-Taylor, and Wu (2000) that enlarging 
the margin in oblique decision trees (the mar-
gin is defined as the distance between decision 
boundary and the closest input feature vectors) 
is profitable in term of classification accuracy. 
In the presented system, a simple mechanism 
called centring based on this observation is 
introduced and it is applied to the best decision 
tree found. In case of an oblique test, centring 
is performed as follows: the closest two objects 

{a} {b} {c} {a} {b or c}

... ...

Figure 3. Merging leaves with the same decision, simplifying nominal tests using inner disjunc-
tion
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to the splitting hyper-plane are determined on 
the opposite sides of it and if the objects found 
belong to different classes, the hyper-plane is 
shifted (centred) by modifying the threshold. 
In case of a univariate inequality test, the 
threshold can also be shifted to half distance 
between corresponding feature values. It should 
be noted that such a post-processing does not 
change the fitness corresponding to the final 
tree. Obviously, the centring cannot be applied 
to tests based on nominal features. For them, 
another kind of test improvement is used. If 
there is an internal node with nominal test, and 
there are descendant leaves, which have the 
same decision, then such leaves are merged and 
inner disjunction is used in the splitting node 
(see Figure 3).

Fitness Function
The evolutionary search process is very sensi-
tive to its fitness function. When concerning 
a classification task it is well known that the 
direct optimization of the classifier accuracy 
measured on the learning set leads to an over-fit-
ting problem. In a typical top-down induction of 
decision trees, the over-specialization problem 
is mitigated by defining a stopping condition 
and by applying a post-pruning (Esposito, 
Malerba, & Semeraro, 1997). In our approach, 
the search for an optimal structure is embedded 
into the evolutionary algorithm by incorporat-
ing a complexity term in the fitness function. A 
similar idea is used in cost complexity pruning 
in the CART system. The fitness function is 
maximized and has the following form:

Re( ) ( ) ( ( ) 1.0)classFitness T Q T Comp T= − −

    (2)

where QReclass (T) is the training accuracy (re-
classification quality) of the tree T and α is the 
relative importance of the classifier complexity 
(default value is 0.005). In the simplest form 
the tree complexity Comp(T) can be defined as 
the classifier size, which is usually equal to the 
number of nodes. The penalty associated with 
the classifier complexity increases proportion-
ally with the tree size and prevents classifier 

over-specialization. Subtracting 1.0 eliminates 
the penalty when the tree is composed of only 
one leaf (in majority voting).

This simple complexity definition is ad-
equate for a homogeneous tree composed of only 
univariate tests. However, when oblique tests are 
also considered, it seems that a more elaborate 
solution is necessary. It is rather straightforward 
that an oblique split based on a few features is 
more complex than a univariate test and that 
we should apply preference to simpler tests as 
an inductive bias. As a consequence the tree 
complexity should also reflect the complexity 
of the tests. However, it is not easy to definitely 
decide how to balance different test complexi-
ties because it depends on the problem solved 
and user preferences. In such a situation we 
decided to define the tree complexity Comp(T) 
in a flexible way and allow the user to tune its 
final form:

[ ]
int ( )

( ) ( ) 1 ( ( ) 1)leaf
n N T

Comp T N T F n
∈

= + + −∑
    (3)

where Nleaf (T) and Nint(T) are sets of leaves 
and internal nodes correspondingly, F(n) is the 
number of features used in the test associated 
with the node n and β∈[0, 1] is the relative 
importance of the test complexity (default value 
0.2). The complexity of the tree is defined as a 
sum of the complexities of the nodes and it is 
assumed that for leaves and internal nodes with 
univariate tests the node complexity is always 
equal to 1.0. It can be also observed that when 
β=1 the number of features included in the test 
is used as the node complexity, and if β=0, then 
the node complexity is 1.0.

EXPErIMENTAL rESULTS
The proposed approach to learning mixed deci-
sion trees is assessed on both artificial and real 
life datasets and is compared to the well-known 
top-down univariate (C4.5 Quinlan, 1993) and 
oblique (OC1 Murthy et al., 1994) decision tree 
systems. It is also compared to two homogenous 
versions of our global GDT system: univariate 
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GDT-AP (Kretowski et al., 2005a) and oblique 
GDT-OB (Kretowski et al., 2006). All prepared 
artificial datasets comprise training and testing 
parts. In the case of data from a UCI reposi-
tory (Blake, Keogh, & Merz, 1998) for which 
testing data is not provided, 10-fold stratified 
cross-validation was employed. Each experi-
ment on all stochastic algorithms (i.e., all except 
C4.5) was performed 10 times and the average 
result of such an evaluation was presented. The 
number of leaves is  the complexity measure 
(size) of compared trees. The OC1 system was 
run with different values of the seed that initial-
izes the random number generator. Our system 
is initialized by the system time.

A statistical analysis of the obtained results 
was done by the Friedman test with the cor-
responding Dunn’s multiple comparison test 
(significance level equal to 0.05) as recom-
mended by Demsar (2006).

We also perform an experiment to quantify 
the scalability of our evolutionary algorithm. 
This experiment, which is performed on larger 

artificial datasets is presented and discussed at 
the end of this section.

Artificial Datasets
Two types of artificial datasets are used. Some of 
them (see e.g., normchessap in Figure 4) require 
axis-parallel and others (ls2 in Figure 4) oblique 
tests. Such a methodology is used to assess the 
flexibility of the proposed approach.

The prefix chess in suggested names in-
dicates the so-called chessboard domain and 
the given numbers represent the number of 
partitions at each axis. For example chess3x3 
(Figure 6a) means that it is the two dimensional 
domain with three intervals in each dimension. 
Chess2x2x2 has three dimensions and two 
intervals at each of them. The abbreviation ob 
given after prefix chess means that it is a ro-
tated (i.e. oblique) chessboard like chessob4cl 
in Figure 4. Chessob2cl is analogous except it 
has two classes.

The prefix norm reflects not clearly defined 
borders between classes and normal distribution 

Figure 4. Examples of artificial datasets
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(rnorm in the R system was used) of generated 
observations (e.g., normchessap, which has 
overlapping borders in contrast to ls2). Obser-
vations in other datasets were generated with 
uniform distribution. Normchessap represents 
axis-parallel chessboard with overlapping 
borders and normchessob its rotated, oblique 
version. Dataset synth was taken from the col-
lection of datasets used in this book (Ripley, 
1996).

Two datasets with prefix ls represent 
linearly separable domain where classes are 
divided by a hyper-plane: x1+...+xn<xn+1+...+xm, 
where n = 0.5m and m = 2 in ls2 and m = 10 
in ls10. The datasets with prefix zebra contain 
oblique stripes. Zebra2 is presented in Figure 
4 and zebra1 is similar except it has three re-
gions. All datasets with prefix zebra (including 
zebra3 presented in Figure 6b) were generated 
using Figure 6 from (Cantu-Paz et al., 2003) 
as a template.

Most of the datasets have two continuous-
valued features and only the ls10 (linearly sepa-
rable) dataset has 10 features and chess2x2x2 
has three features. The number of examples was 
varied and depends on the number of distinct 
regions. In the training part it ranged from 1000 
(for simple 2-dimensional problems) to 4000 
(for ls10). The testing part is twofold larger in 
each case.

The results on the range of datasets de-
signed for this investigation are collected in 
Figure 5. Because we analyze artificial data 
in this experiment, we know how the optimal 
solution can be represented (in terms of used 
tests). There are certain classification tasks, like 
for instance the classical chessboard problem, 
that suit very well univariate decision trees. 
There are also linearly separable datasets (like 
ls10) for which splits based on hyper-planes are 
highly recommended to avoid a staircase-like 
structure. The main aim of our endeavour in this 

Dataset
C4.5 OC1 GDT-Mix GDT-AP GDT-OB

size quality size quality size quality size quality size quality

chess2x2 1 50 10.1 89.3 4 99.8 4 99.8 4 99.3

chess2x2x2 1 50 23.8 71 8 99.7 8 99.7 8.2 97

chess3x3 9 99.7 21.1 73.7 9 99.3 9 99.7 9.9 97.1

chessob2cl 33 95.6 7 77.3 4.1 99.1 17.9 92.6 4.7 99.1

chessob4cl 35 94.6 4.3 49.8 4 98.9 18 92.1 4.4 98.4

house 21 97.4 8.2 92.8 3.8 96.9 13.3 96.6 4 96.7

ls10 284 77.3 7.3 95.3 2 97.6 18.8 70.7 2 97.2

ls2 22 97 2 99.7 2 99.9 14 95.7 2 99.9

normal 5 90 7.3 87.9 3.8 89.6 25.7 86.9 4 90

normchessap 1 50 11.2 85.5 4 95.5 4.2 95.5 4 95.4

normchessob 19 93 11 83.3 4 93.6 9.3 92.6 4 93.6

normwave 15 94 8.4 90.3 4 94.4 9.1 93.5 4 94.9

zebra1 25 95.3 3 83.5 3 99.6 15.3 94.6 3 99.3

zebra2 2 59.5 4.8 94.1 4 98.2 21.4 91.6 4.4 98.7

zebra3 57 91.2 8.2 24.3 8.4 97 31.5 88.8 8.8 96.8

Figure 5. Results on artificial data
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work is to show that GDT-Mix can easily adjust 
to the specific problem. The analysis of Figure 
5 proved that the GDT-Mix inducer performs 
better on axis parallel data when compared to 
oblique systems and on linearly separable data 
when compared to axis parallel systems. It is 
also important that statistical analysis does not 
show significant differences between the GDT-
Mix algorithm and the systems specialized for 
certain problems when a comparison is made 
on such problems. Our universal system per-
forms as well as the specialized systems. This 
is its very strong point. The statistical test on 
all artificial datasets indicates that GDT-Mix 
is significantly better in terms of quality than 
C4.5, OC1 and GDT-AP. As for GDT-OB, it is 
statistically better than OC1. The comparisons 
based on the second measure (the tree size) are 
also favourable. Statistical analysis reveals that 
GDT-Mix produces significantly smaller trees 
than C4.5, GDT-AP and OC1. This score is easily 
justified for typical univariate inducers, because 
in the case of problems, which require oblique 
splits our GDT-Mix, system takes advantage 
of such splits.

Discussed results show that the proposed 
algorithm is more flexible in terms of rep-
resentation, which can be modified during 
the induction. For that reason, more detailed 
analysis of these results aims at investigating 
the obtained decision trees. Such trees for 
relatively complex axis parallel and linearly 
separable classification tasks are presented in 
Figure 6. These trees present a promising result 
because the GDT-Mix system managed to find 
the type of tests that suit the data in the best way 
and was able to apply them to build trees that 
perform very competitively while comparing 
to results of specialized systems. In Figure 6a 
and 6b, splits from decision trees are addition-
ally drawn to present how the input space is 
partitioned by the global inducer. These splits 
show that trees obtained in this experiment have 
an optimal structure (the empirical superiority 
of global induction).

real-Life Data
Results on real-life data are divided into two 
groups. In the first one, GDT−Mix is compared 
with all evaluated algorithms on datasets where 

Figure 6. Decision trees obtained by GDT-Mix system for chess3x3 and zebra3 datasets (b) and 
(d) and the corresponding dataset scatterplots with drawn splits (a) and (c)
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the instances have only numeric (continuous) 
feature values (Figure 7). In the second group, 
the proposed system is compared with univari-
ate tree induction algorithms on datasets that 
have both nominal and continuous attributes 
(Figure 8).

The analysis of these results shows that 
there are no statistically significant differences 
in the quality between the compared algorithms 
on all datasets. This is a favourable result. 
It means that the GDT-Mix system, which is 
designed to be universal to different kinds of 
tasks, performs as well as specialized counter-
parts. In the case of the size of the tree, the same 
statistical analysis of the Figure 8 indicates that 
GDT-Mix produces significantly smaller trees 
than C4.5 and GDT-AP. A detailed inspection 
of this table shows that there are some datasets 
(e.g., heart) for which there is evident difference 
in the tree size, which shows the superiority of 
the GDT-Mix algorithm. This is a very useful 
feature of mixed trees. As for the Figure 7, there 
is a statistically significant difference in terms 
of the size. GDT-Mix and GDT-OB produced 
smaller trees than C4.5 and GDT-AP.

One of the decision trees obtained for the 
real-life heart data is presented in Figure  9. This 
dataset was chosen for investigation because it 

contains both nominal and continuous attributes 
and represents a quite easily understood problem 
(at least in terms of outcomes of the classifier). 
Figure 9 presents one of the decision trees 
(there were 10 runs of the algorithm on each 
dataset) that were obtained in our experiment 
for the heart data. In the presented tree, all three 
types of possible tests are used. This example 
underlines the advantage of decision trees of 
being self explanatory and easy to understand. 
In mixed decision trees, we can have tests both 
on nominal and continuous attributes, which is 
a desirable feature of this system.

Evaluation of Algorithm 
Performance on Large Datasets
One of the most significant deficiencies of solu-
tions based on evolutionary techniques is that 
they are supposedly slow, especially on large, 
real-life problems. In order to check how well 
our solution can deal with large datasets, a 
performance test is presented in Figure 10. The 
experiment was conducted on two artificial da-
tasets: ls5 and chess3x3 with different numbers 
of generated observations (102 ÷ 105).

The promising outcome of this experiment 
is that it shows that our algorithm can deal with 
relatively large datasets (100000 observations) 

Dataset
C4.5 OC1 GDT-Mix GDT-AP GDT-OB

size quality size quality size quality size quality size quality

balance-sc. 57 77.5 5.4 90 2.6 89.5 32.8 78.2 3.2 89.1

bcw 22.8 94.7 4.7 91.2 2 96.7 6.6 95.8 2 96.9

bupa 44.6 64.7 5.8 65.6 3.5 68.6 69.3 62.8 3 71.3

glass 39 62.5 4.5 55.7 11.6 66.4 40.4 63.6 11.6 68.8

page-blocks 82.8 97 15.6 96.6 3 94.9 7.5 96.4 3 95.3

pima 40.6 74.6 6.5 69.6 2.2 75.4 14.3 73.8 2.1 75.3

sat 435 85.5 58.3 78.9 6.4 81.5 19.2 83 7 83.1

vehicle 138.6 72.7 21.6 66.4 8.8 65.4 45.1 70.3 7.7 65.7

waveform 107 73.5 10.5 77.4 4.2 80.5 36.2 72.3 4.2 82.2

wine 9 85 3.2 87 4.2 91.5 5.2 86.3 4.8 90.9

Figure 7. Results on real datasets with only continuous attributes
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Dataset
C4.5 GDT-Mix GDT-AP

size quality size quality size quality

australian 39 87 2.4 87.5 22.8 84.6

cars 31 97.7 3 97.9 4 98.7

cmc 136.8 52.2 4 55.4 13.1 53.8

german 77 73.3 3.8 72.4 16.5 73.4

heart 22 77.1 6.1 78.4 44.9 74.2

solar 20 73.1 4 71.3 33.7 73.6

vote 5 97 2 97 13.5 95.6

Figure 8. Results on real datasets with both continuous and nominal attributes

Figure 9. The decision tree for heart data found by GDT-Mix

Figure 10. Performance of the algorithm on scaled up datasets (the number of observations in 
the range of 100÷10000)
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in acceptable time. This time varies between 
about 2 (chess3x3) and 11 (ls5) hours as mea-
sured on a typical machine (Xeon 3.2GHz, 2GB 
RAM). There is an interesting (in the context 
of mixed decision trees) explanation for this 
discrepancy. The chess3x3 dataset belongs to 
the class of tested problems for which the best 
solution contains only axis parallel splits. ls5 
on the other hand requires only one test which 
is based on hyper-plane. In our previous work 
on evolutionary induction of decision trees we 
have noticed that induction of oblique deci-
sion trees usually requires more computation 
time (because of, for example, the calculation 
of the inner product to determine location of 
observations and more time consuming evo-
lutionary operators). On the tested datasets, 
GDT-Mix produces the optimal (at least in 
terms of representation) outcome. That is, an 
axis parallel decision tree for the chess3x3 da-
taset and oblique (with one expected internal 
node) decision tree for the ls5 dataset. Because 
the returned trees are of the desired type, it is 
highly probable that most of the population in 
especially later generations was dominated by 
trees of this type. It is a favourable observation 
for mixed decision trees algorithm which can 
flexibly choose the type of tests used in induced 
decision trees and by doing this make the induc-
tion process more efficient. The evaluation of 
the chess3x3 dataset on oblique decision tree 
algorithm would lead to increase of experiment 
time but probably not up to the value obtained 
for ls5 because chess3x3 has two whereas ls5 
has five attributes.

CONCLUSION AND 
FUTUrE WOrKS
In the article, a new evolutionary algorithm 
for global induction of mixed decision trees 
is proposed. In the unified framework, both 
univariate and oblique tests are searched and 
applied in non-terminal nodes for optimal data 
splitting. The defined fitness function enables 
the controlling of the inductive biases.

Experimental validation shows that the 
algorithm is able to adapt to the problem 

being solved and to locally choose the most 
suitable test representation. Even though the 
evolutionary induction is computationally more 
complex than classical top-down approaches, 
we proved that it can be effectively applied to 
large datasets.

The presented approach is still under 
development. We are considering introducing 
additional test types, especially multivariate 
tests. Furthermore, the fitness function and 
especially the impact of the definition of the 
complexity term on the resulting decision tree 
will be studied in more detail. Obtained results 
are promising. But further analysis of the fitness 
function may lead to interesting results. In this 
problem especially, where the complexity of the 
decision tree comprises at least two factors: the 
number of nodes and the number of features 
used in these nodes. Minimum description 
length might be considered as one of the first-
line choices. 

Our approach applies mutation operators 
in an informed way (informed selection of 
individuals or parts of individuals to mutate). 
It uses ranking of nodes to decide which nodes 
should or should not be modified in a particular 
way. One possible improvement to our system 
is to use a similar informed approach to imple-
ment the crossover operator. At the moment 
this operator is uniformed. Used in this way, 
might be destructive, because the meaning of 
the sub-tree of a decision tree is very context 
dependent. When we move one sub-tree to a 
different location it might become useless given 
the new context and have to be pruned out.

Finally, is it a well-known fact that evolu-
tionary techniques are well-suited for parallel 
architectures. We plan to speed up our system 
by re-implementing it in a distributed environ-
ment. It is especially important in the context of 
modern data mining applications, where huge 
learning sets are analyzed.
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