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Abstract 
This paper is concerned with the automatic induction of parsimonious neural networks. 
In contrast to other program induction situations, network induction entails parametric 
learning as well as structural adaptation. We present a novel representation scheme called 
neural trees that allows efficient learning of both network architectures and parameters 
by genetic search. A hybrid evolutionary method is developed for neural tree induction 
that combines genetic programming and the breeder genetic algorithm under the uni- 
fied framework of the minimum description length principle. The method is successfully 
applied to the induction of higher order neural trees while still keeping the resulting struc- 
tures sparse to ensure good generalization performance. Empirical results are provided 
on two chaotic time series prediction problems of practical interest. 

Program induction, genetic programming, higher order neural networks, neural tree 
representation, minimum description length principle, time series prediction, breeder 
genetic algorithm. 
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1. Introduction 

Higher order neural networks (HONNs) are a generalization of the multilayer perceptrons 
(MLPs), where the presence or absence of nonlinear interactions between different inputs is 
directly modeled in the network topologies (Kowalczyk & Ferra, 1994). HONNs provide 
inherently more powerful learning capabilities than standard MLPs (Fahner & Eckmiller, 
1994). Despite these potential benefits, the HONNs are limited practically by the com- 
binatorial explosion of higher order terms with increasing problem size. A closely related 
disadvantage is that complete higher order neurons do not produce good generalization. 

Most current methods for avoiding combinatorial explosion rely on a priori knowledge 
about the problem of generating and preselecting useful higher order terms (Kowalczyk 
& Ferra, 1994). This inherently limits the number of applications to which higher order 
networks are applied because in most neural network applications, little knowledge exists 
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about the solution to the problem in question. Another class of algorithms attempts to avoid 
combinatorial explosion by setting a bound on the highest order (Giles & Maxwell, 1987). 
There are, however, many important classes of functions that are of high or even unlimited 
order (Minsky & Papert, 1969). These algorithms tend to force a task into an assumed 
architecture class rather than fitting an appropriate architecture to the task. 

The  present work takes the opposite approach: We want to explore a more general 
class of higher order architectures while keeping the resulting structures sparse to promote 
good generalization. This is an inductive learning problem in which both the model and 
its parameters should be fitted to the data. The problem matches well with the genetic 
programming (GP) paradigm (Koza, 1992) in  that both the size and shape of structures are 
to be evolved. On the other hand, this problem is contrasted with typical GP applications, 
where evolved programs contain only a small number of numerical components. 

The  search space for neural network induction consists of two levels. One is the space of 
all possible network architectures (models). The  other is the space of all possible weight con- 
figurations for a given architecture (parameters). The  difficulty here is that an architecture 
cannot be evaluated without the assignment of weights, and likewise, a weight vector cannot 
be evaluated without knowing the underlying networkarchitecture. Both optimizations must 
be interleaved, as was done in the GNARL system (Angeline, Saunders, & Pollack, 1994), 
which constructs recurrent neural networks using evolutionary programming. However, 
relatively few GP applications have analyzed the interaction between structural adaptation 
and parametric learning. 

In this paper we present a hybrid evolutionary method in which the neural architectures 
are evolved by GP, and the parameters are fitted by a local search based on the breeder 
genetic algorithm (BGA), a real-valued genetic algorithm designed for continuous param- 
eter optimization (Miihlenbein & Schlierkamp-Voosen, 1994). The  crux of the method is 
the neural tree representation, a tree representation of a neural network with various neu- 
ron types. This representation scheme allows efficient adaptation of network architectures 
and parameters by simple genetic operators. Neural trees can represent a wide range of 
nonlinear mappings. They do not require an explicit decoding process, allowing training 
and evaluation to be performed directly with genotype. The  subtree crossover developed 
for GP naturally applies to this representation. Neural trees are also very convenient for 
evolutionary optimization of weight values. 

A minimum description length (MDL)-based fitness function is used to achieve parsimo- 
nious programs without sacrificing the training accuracy of the evolved programs. Parsimony 
is important to minimize the variance error and thus to improve the generalization accu- 
racy of the programs (Zhang & Miihlenbein, 1995, 1996). Other techniques developed for 
improving the efficiency of the entire induction process include libraries of building blocks, 
local fitness-based crossover, injection and pruning of submodules, and scheduling of genetic 
operators. The  method investigated is successfully applied to the induction of a broad class 
of HONNs with unlimited order while still keeping the resulting structures sparse. Empir- 
ical results are provided on two benchmarking time series prediction problems, namely, the 
Mackey-Glass equation and chaotic fluctuations in a far-infrared laser. 

The paper is organized as follows. Section 2 provides background on higher order 
neurons. Section 3 presents the neural tree representation scheme. Section 4 describes the 
evolutionary algorithms for adapting the structures and weights of neural trees. Section 5 
provides the experimental results and analyzes the characteristics of the proposed method. 
Section 6 presents conclusions. A theoretical analysis of computational complexity for the 
neural tree induction problem is given in the Appendix. 
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Figure 1. Multilayer, fully connected, strictly layered MLP (left). Single-layer, fully connected 
HONN (right). 

2. Higher Order Neurons 

HONNs are a generalization of the MLPs (Minsky & Papert, 1969), where the presence or 
absence, order, and strengths of nonlinear interactions between different inputs are directly 
modeled and are thus closely mirrored in the network topologies. Figure 1 illustrates the 
structures of an MLP and an HONN. MLPs employ one or more layers of the summation 
(or sigma) units that compute a linear sum of weighted inputs: 

i 
where w,o is the bias term, and 3 are the inputs to the ith neuron. The  higher order 
interactions are implicitly represented in MLPs by a cascade of several layers of sigma units. 
In contrast, HONNs make explicit use of higher order terms or pi (product) units. In the 
case of the H O W  depicted in Figure 1 (right), each of the order-6 neurons at the output 
layer computes 

In general, the net input of the complete higher order neuron is given by the multinomial 
expansion 

a€ {0,1}” aE{O,I}” j - I  
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Figure 2. An order-restricted neural network and an unlimited-order sparse network. (left) Multilayer, 
hierarchical, fully connected, regular, and strictly layered HONN; (right) Multilayer, hierarchical, 
partially connected, irregular, and nonstrictly layered sparse HOhX. 

where r A  E R, a = 0 1 , .  . . , N,, E (0, l}", and x denotes the original input vector. T h e  2" 
nionomials T ,  are referred to as if'alsh functions (Coldberg, 1989). T h e y  are orthogonal 
and span the space of real-valued functions defined over binary strings. T h e  expansion 
coefficients isoo, 00, co(r..ol, . . . , icI I can be interpreted as synaptic weights of orders cy=, aj. 

Sote  that a complete higher order neuron can be represented by a tree consisting of a 
summation (sigma) unit and 2'' product (pi) units. 

T h e  complete higher order neuron is practically limited by the combinatorial explosion 
ofhigher order terms with increasing number of inputs. T h e  number of parameters necessary 
for specifying an order k neuron is 7-k. = C:=,, ,,C,, where ii is the number of inputs. A closely 
related disadvantage is that it does not produce a generalization; it makes up  a fast distributed 
memory with a target fixed at  each corner of the hypercube (Fahner & Eckmiller, 1994). 

One  way to achieve sensible generalization, and to avoid the problem of combinatorial 
explosion a t  the same time, is to cut off all terms in expansion that exceed a certain order. For 
instance, the GMDH algorithm (Ivaknenko, 197 1) uses as the basis function the polynomials 
of second degree: 

where s, and .yk are elements of input vector x = (.SI,X~, . . . , xT t ) .  This  seems a successful 
stratem, especially for problems with a limited degree of nonlinearity, and helps to avoid 
overfitting when noise is present. However, if the order of the problem exceeds the allowed 
order. cascade of terms in multilayer networks is necessary. Figure 2 (left) illustrates an 
order-restricted network having a strictly layered, fully connected regular architecture. 

In this work we follow a more general approach that makes minimal architectural con- 
straints in order to explore a broad class of higher order networks. An example of the 
structure evolved in our framework is shown in Figure 2 (right). The re  is n o  explicit limit 
on the order of weights. Thus ,  interactions of arbitrary orders computed by the ultimate 
higher order neuron can be realized within our framework. Cascading of higher order t e r m  
in multilayers is permitted. No bound is enforced in the number of layers of the network. 
Instead, the overall network size is controlled implicitly by a complexity penalty imposed on  
the fitness function. T h e  nenvork structures are not strictly layered, that is, each layer can 
have a mixture of sigma and pi units, and connections between nonneighboring layers are 
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allowed. The  network may contain partial connectivity, which is useful for the economic 
representation of arbitrary higher order interactions. 

3. Neural Tree Encoding 

The question of how the possible programs are represented as a genotype is critical to the 
worlung of an evolutionary approach to program induction. The  representation or encoding 
used not only determines the class of programs that could possibly evolve but also constrains 
the choice of the evaluation process and thus the efficiency of problem solving. 

3.1 Related Work 
Existing representation methods for neural networks can be roughly divided into two cat- 
egories: direct and indirect encoding (Balakrishnan & Honavar, 1995). Direct encoding 
schemes use a fixed structure, such as a connection matrix or bitstrings, that precisely spec- 
ifies the architecture of the corresponding neural network. This encoding scheme requires 
little effort to decode. However, matrix structures have limited flexibility in expressing 
topologies of the network structure with variable layers. Bitstrings are not flexible enough to 
represent various partial connectivity without further annotation. Genetic operators need to 
be applied carefully to preserve the topological constraints of networks (Belew, McInerney, 
& Schraudolph, 1991). 

Indirect encoding schemes use rewrite rules to specify a set of construction rules that 
are recursively applied to yield the phenotype. Examples include graph generation gram- 
mars (Kitano, 1990) and cellular encoding (Gruau, 1993). This approach is interesting in 
that it simulates in some sense the developmental process. Subtree crossover applies well 
to these representations. In addition, experimental evidence has shown that the cellular en- 
coding scheme is effective in evolving modular structures consisting of similar substructures 
(Gruau, 1993). However, the grammatical encoding does not seem appropriate for exploring 
a huge number of partial interaction possibilities, as required in our application. In addi- 
tion, grammatical encoding requires execution of rewrite rules for every conversion from 
genotype to phenotype. This makes network training an expensive phase, since training of 
neural networks requires a large number of evaluations and each evaluation needs a separate 
decoding. 

Section 3.2 suggests an alternative representation that combines the advantages of direct 
and indirect encoding schemes. It is powerful and flexible in expressing a broad class of 
feedforward architectures. It is decoding efficient and convenient for genetic operations. 

3.2 Neural Trees 
L e t N l ( d ,  S) denote the set ofall possible trees ofmaximum depth d and maximum b branches 
for each node. The  nonterminal nodes represent neural units, and the neuron type is an 
element of the basis function set .F = {neuron types}. Each terminal node is labeled with 
an element from the terminal set 7 = { X I ,  x2,. . . , x n } ,  where x; is the zth component of the 
external input x. Each link ( j ,  i) represents a directed connection from nodej to node z and is 
associated with a value wq, called the synaptic weight. The  members o f N l ( d ,  b) are referred 
to as neural trees. In the case of .F = {C, ll}, the trees are specifically called sigma-pi neural 
trees (Zhang & Miihlenbein, 1994). The  root node is also called the output unit and the 
terminal nodes are called input units. Nodes that are not input or output units are hidden 
units. The  layer of a node is defined as the longest path length to any terminal node of 
its subtree. The size of search space for the induction of neural trees is calculated in the 
Appendix. 

Evolutionary Computation Volume 5, Number 2 217 



B.-T Zhang, P. Ohm, and H. Miihlenbein 

Different neuron types are distinguished in the way that net inputs are computed. For 
the evolution of higher order networks, we consider two types of units. Sigma units compute 
the sum of weighted inputs from the lower layer: 

J 

where yl are the inputs to the ith neuron. Pi units compute the product of weighted inputs 
from the lower layer: 

J 

where y, are the inputs to i .  The output of a neuron is computed either by the threshold 
response function 

1 : net, 2 0 
- 1 : net,  < 0 

y, = a(izet,) = 

or the siginoid transfer function 

where net, is the net input to the unit computed by Equation 6 or 7. 
A higher order network with m output units can be represented by m sigma-pi neural 

trees. That is, the genotype A, of the ith individual in our evolutionary framework consists 
of m neural trees: 

(10) '4, = (A,J ,A,,?,  . . . , A  ,,,,I ), V k  E { 1, . . . , m} A,,k E N 7 ( 4  b)  

The population A(g) of generation g is the collection of neural networks in their tree rep- 
resentation: 

where '52 is the size of the population. 
The  neural tree representation does not restrict the functionality, since any feedforward 

network can be represented with a forest of neural trees (Fig. 3 ) .  The  connections between 
input units to arbitrary units in the network are also possible, since input units can appear 
more than once in the neural tree representation. The  output of one unit can be used as 
an input to more than one unit. In implementation, we have used the concept of library 
in which frequently used fit submodules are stored as hidden units and multiply reused (see 
Section 4.2 below for a more detailed description). This leads to the construction of modular 
structures and reduces memory requirements for representing the population. 

Neural trees do not require decoding for their fimess evaluation. Training and eval- 
uation of fitness can be performed directly on the genotype, since both the genotype and 
phenotype are equivalent. Since subtree crossover used in genetic programming (Koza, 1992) 
applies without modification to this representation, we can use G P  as the main evolutionary 
engine. 

4. Evolving Higher Order Neural Trees 

4.1 Initialization, Selection, and Termination 
The main elements in using GP to evolve a population of programs (in this case, the neural 
tree programs) for solving a given problem are (1) the set of program primitives, namely the 
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Figure 3. Genotype (bottom) and its phenotype (top) of a sparse HONN. 

set of terminals 7 and the function set F; (2) fitness measure F ;  ( 3 )  the control parameters, 
such as population size M and maximum number of generations gmaX; and (4) termination 
criterion. In evolving the higher order networks, the function set is defined as F = {C, n}. 
Although this function set contains only two elements, a realization of it is more complex: 
A nonterminal node u, is instantiated with the following structure: 

where bj denotes the number of inputs of the ith unit; wio is the bias; and w j , j  # 0 are 
connection weights from un i t j  to i. The terminal set is defined as 7 = { x l , x * ,  . . . ,xn}, 
where n is the number of external inputs. 

The  population is initialized with randomly generated neural trees. The  number of 
layers is chosen from a uniform distribution over [l,dmax], where dmaX is the user-specified 
value. Each of the nonterminal and terminal nodes is randomly assigned a label from the 
function set 3 and the terminal set 7,  respectively. The  number of inputs bj for each 
neuron is chosen from a uniform distribution over [l, b,,], where bmx is a user-supplied 
value. Typical values of dmx and b,, set at simulations are d,, = 3 and b,, = n, where n 
is the number of external inputs. The  weights are initialized with random values selected 
uniformly from the range [ - 1, I]. Although not necessary, some background knowledge on 
the problem, if available, may help improve the efficiency of evolution and can be exploited 
in the initialization phase. This knowledge includes labeling of unit types, branching factors, 
and tree depth. 

In each generation, the trees are evaluated by a fitness function (defined in Section 4.4 be- 
low). We use an elitist truncation selection strategy, as in BGA (Muhlenbein & Schlierkamp- 
Voosen, 1994) and GNARL (Angeline, Saunders, & Pollack, 1994). The  top r% of best 
individuals are selected as parents, from which M individuals of the next generation are 
produced. The  best individual so far is kept by replacing the worst individual in the current 
population. The  typical value of r in the simulation studies was 7 = 50%. Generating an off- 
spring involves three steps: crossover, mutation, and local search. Crossover and mutation 

Evolutionary Computation Volume 5, Number 2 219 



B.-T Zhang, P. Ohm, and H. Miihlenbein 

modify the structural features of the networks, and local search fine tunes the weights for a 
fixed architecture. New populations are iteratively generated until the following condition 
IS met: 

The first condition says that the evolution stops if the fitness value of the best individual 
in the population Fl,err(g) = F(&*(g)) reaches the prespecified value F,a,,. The second 
temination case is when the variance of population fitness Vnr(g) = Vnr(A(g)) goes down 
to the prespecified value Vnl;,,,,. Finally, the process terminates if the generation number g 
exceeds the specified maximum g,,,., . 

4.2 GP-Based Structural Adaptation 
Structural adaptations alter the topology, size, depth, and shape of neural networks: The  
first three are changed by crossover and the last by mutations. 

As with other GP methods, crossover is performed by exchanging subtrees of parent 
trees. Because of the closure propert). of tree representations (Koza, 1992), no syntactic 
restriction is necessary in choosing the crossover points. Instead of producing two offspring, 
we create only one, which allows a guided crossover by subtree evaluation. 

Several criteria for subtree evaluation have been proposed in the literature, including 
the error of the substree, error difference, frequency of subtrees, use of the average fitness of 
population, correlation-based selection, and combination of frequency and error difference 
(see Rosca, 1995, and references therein). We measure the local fitness as a combination of 
the local error and size of the subtree, similar to the global fitness (defined as Equation 2 2 ) .  
The use of the size term biases evolution to choose smaller building blocks against complex 
ones. 

From two parent trees A ,  and B,, the offspring C, is generated by the following procedure 
(Fig. 4): 

1. Select a subtree a ofA,, the one that  has worst (largest) local fitness value. 

2 .  Select a subtree b of B,, the one that has best (smallest) local fitness value. 

3. Produce a n  offspring C,, by copying A, and replacing n with b. 

4. Consider all subtrees whose root lies on the path from b to the root of C, as potential 
building blocks. 

The first two steps involve choosing crossover points. A similar method for guiding sub- 
tree crossover was also employed by Iba (Iba & de Garis, 1996). The  last step is used in 
conjunction with the library of building blocks. 

Building blocks in the population are discovered and reused during a run. To avoid the 
combinatorial explosion of the candidates, we confine them as the offspring Cl’s subtrees 
whose root lies on the path from b to the root of C,. If the local fitness of the subtree exceeds 
a threshold, then it is added to the library. The  size of the library is limited. If the library is 
full and a candidate is found fitter than the worst in the library, then the candidate replaces 
the worst element. This allows “forgetting” of less fit substructures for the sake of better fit 
building blocks. Similar concepts have been employed in GLiB (Angeline & Pollack, 1993), 
,%IA (Rosca, 1995), and autoniatically defined functions (ADFs) (Koza, 1993; O’Reilly, 1996) 
to promote the induction of modular solutions. 
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Figure 4. Fitness-based crossover and the search for building blocks. (Bottom) The offspring Cj’s 
subtrees whose root lies on the path from b to the root of Cj (thick lines) are tested for addition to the 
library. 

The library elements are used similar to the way in which crossover is performed: An 
element a of the library is substituted for a single node of a randomly chosen individual 
in the population. A possible side effect of this building block injection operation is the 
tendency to increase tree size; since there are generally more nodes in the lower layers (near 
the terminals) than in the upper layers (near the root node), and the substitution of library 
elements for nodes in the lower layers increases an individual’s size, the individuals might 
tend to grow by building block injection. As a counteroperation to the growing tendency, 
a heuristic for explicitly pruning the trees is also implemented. When pruning, a subtree is 
replaced by its descendant subtree if the descendant subtree is fitter than the subtree itself. 

Three different types of mutations are distinguished. First, mutation is used to change 
the neuron type. This is performed by randomly choosing a neuron type from the function 
set F that is different from the current neuron type. For instance, a sigma unit can be 
changed to a pi unit, and vice versa. The  second type of mutation is to change the input unit 
label. Here, an index value is randomly chosen from the terminal set 7 that is different from 
the current index value assigned to the input node. The  third kind of mutation is used to 
modify weight values. This is applied in conjunction with local search for weight adaptation, 
as described next in Section 4.3. 

4.3 BGA-Based Parametric Learning 
Adaptation of weights and biases is performed by local search. Because of the generality of 
neuron types, we use for local search another evolutionary method that does not make any 
limiting assumptions, such as continuity or differentiability, required for neural net training 
algorithms. During the local search, the structure of the network is fixed. The  search 
attempts to find only a rough approximation of local optima, since a perfect search would 
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be too expensive, considering the fact that the network undergoes a structural change in the 
next generation. 

A local search for a network consists of a number of LS,, iterations at most. Each 
iteration applies only parametric mutation that perturbs the weight vector w of A, with 
exponential noise, a method used by BGA (Muhlenbein & Schlierkamp-Voosen, 1994). If 
the newly generated network A,' is fitter than the old one A,, then the new one is set as the 
current network and the next iteration continues. The  local search can terminate before 
LS,,, iterations if no better weight vector is found for a significantly long time. Typically, 
LS,,, was set a t  10 to 100 in experiments. 

A new weight vector w is generated by applying a gene mutation to each element w, 
with the probability of pi,,,@t. The mutation of a gene is performed by adding a value from 
the interval [ - R, R] ,  where the range R denotes the maximum size of mutation steps. The  
new weight value zr,' of r ,  is computed as follows: 

r,' = w, i R, . 5 ,  with I ,  = 2-" ' I  and E [0,1] (14) 
The random number rj is chosen from a uniform distribution over [0, I]. The  density function 
o(Z) and the distribution function @(Z) for the random variable Z = 2-" ' 1  are given as 

o(2) 
1 

K .  In (2) . z 
PT t 

I @(-I = Pr(Z L z )  = . In (z)  K . In (2) 

The exponential characteristic of 6 = 2-".') E [2-",  11 ensures that the mutation step size of 
maximum value R, is possible, but small steps are more frequent. The constant K determines 
the shape of the exponentional function and thus influences the probability of choosing large 
mutation steps: the larger the value K ,  the less the probability of tahng large steps. K also 
determines the smallest step size R, . 2-".  The  exponential mutation is contrasted with the 
Gaussian mutation implemented in evolution strategies and evolutionary programming (Fo- 
gel, Fogel, & Porto, 1990) such that very large steps take place with only a small probability. 

Due to the large costs for local search, we have used various heuristics for applying 
local search. One heuristic is to use local search immediately after fitness evaluation to some 
portion, say, the top 50%, of the population instead of all its members. Another heuristic 
is to adapt the intensity of local search, LS,n,,, during a run. For instance, a small number 
of local search steps is used during the earlier phase, whereas a large number of local search 
steps are used after fit individuals have appeared. A combination of both strategies is also 
possible. For instance, local search is applied with low intensity a t  each generation to only 
50% of the whole population until a specified fitness is reached, after which local search 
alone is intensively applied to the best 10% of the population. 

4.4 Occam's Razor-MDL-Based Fitness Function 
Our objective is to find a neural program or model A whose evaluationfi(x) best approximates 
the deciired relation?($ given an input x. The data misfit of the program for the dataset D 
is measured byE(D1A) = EL, (yc -f4(~))', where N is the number of training examples. 
Considering the program as a Gaussian model of the data, the likelihood of the training data 
is described by P(DIA) = & exp ( - 3E(DIA)), where Z(3)  is a normalizing constant, and 3 
is a positive constant determining the sensitivity of the probability to the error value. 

The Bayesian model comparison techniques choose between alternative models by trad- 
ing off the simplicity of a model against the associated data misfit. Thus, it is reasonable to 
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define genetic programming as the maximization of the posterior probability: 

Abest = arg max {P(A;lD)} = arg max {P(DIAi)P(Ai)) 
A,EA A,EA 

(17) 

where the arg function takes its argument as its result. Here the Bayes rule P(AID) = 
P(DIA)P(A)/P(D) is used. 

Though the Bayesian inference is very useful in theory, it is not very convenient to deal 
with in practice. Alternatively, we can use the model complexity; according to coding theory 
(Rissanen, 1986), if P(x) is given, then its code length is given as L(P(x)) = - log(P(x)). 
Maximizing P(DIA)P(A) is thus equivalent to minimizing code length: 

L(AID) = L(P(DIA)P(A)) = - log(P(DIA)P(A)) = L(DIA) + L(A) (18) 

where L(DIA) = - logP(D1A) and L(A) = - logP(A). Here, L(DIA) is the code length of 
the data when encoded using the model A as a predictor for the data D, and L(A) is the 
length of the model itself. This leads to the MDL principle (Rissanen, 1986). The idea is to 
estimate the simplest density that has high likelihood by minimizing the total length of the 
description of the data: 

(19) 

An implementation of MDL typically requires knowing the true underlying probability 
distribution or an approximation of it. In general, however, the distribution of underlying 
data structure is unknown, and the exact formula for the fitness function is impossible to 
obtain. This is why “pure” MDL approaches have some difficulty and should be used with 
care in GP. 

Statistical theories suggest that too small a program lacks the learning capability, whereas 
too large a program may generalize poorly on unseen data (Geman, Bienenstock, & Doursat, 
1992). A finite set of search points and the maximum depth of trees are usually set as user- 
defined parameters in order to control tree sizes, but an appropriate depth is not known 
beforehand. What we need in practice is a general mechanism that can flexibly control the 
program complexity to find the most parsimonious program while satisfying the desirable 
training accuracy. 

For an effective balancing of accuracy and parsimony of evolved structures, we proposed 
(Zhang & Muhlenbein, 1995) to measure the fitness of a program A ,  given a training set D 
in its most general form as 

Abert = arg min {L(A,ID)} = arg min {L(DIA,) + L(A,)} 
A,EA A,EA 

F(AID) = Fo + FA = PE(DIA) + (YC(A) (20) 

where the parameters (Y and P control the trade-off between complexity C(A) and fitting 
error E(DIA) of the program. In this framework, GP is considered a search for a program 
that minimizes F(AID), or 

Ahest = arg min {F(AilD)} = arg min {PE(DIAJ + aC(A;)) 
A,EA A,€A 

Now we describe a general adaptive technique that balances (Y and p in unknown en- 
vironments. Care must be taken in applying the MDL principle to G P  so that redundant 
structures are pruned when possible, but at  the same time premature convergence is avoided. 
Avoiding the loss of diversity is especially important in early generations, whereas strong 
pruning is desirable to get parsimonious solutions and improve generalization performance 
later in the run. 
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To balance the parsimony with accuracy dynamically, we fix the error factor /3 at each 
generation and change the complexity factor a adaptively. Let E,(g) and C,(g) denote the 
error and complexity of the zth individual a t  generation g. T h e  raw complexity of neural 
trees can be measured as the sum of the number of units, weights, and layers. T h e  fitness of 
an individual i a t  generation g is defined as follows: 

Fr(g) = Er(g) + (~(R)C,(R) (22) 
where 0 5 E,(g) 5 1 and C,(g) > 0 are assumed. Here, n(g) is called the adaptive Occam 
factor and expressed as 

where S is the size of the training set. T h e  user-defined constant t specifies the maximum 
training error allowed for the final solution. 

Note that a(g) depends on El,,& - 1) and kj,e3,(g). El,,rt(g - 1) is the error of the best 
program o f  generation g - 1. C/,,.&) is the size of the best program a t  generation g estimated 
at generation g - 1 (see Zhang & Miihlenbein, 1995, for more details). Cb,,(g) is used for the 
normalization of the complexity factor. In essence, two adaptation phases are distinguished. 
\$'hen &,,(g - 1) > t, n(g) decreases as the training error falls, since El,,,(g - 1) 5 1. 
This encourages fast error reduction at the early stages of evolution. For Eb,,(g - 1) 5 f, 
in contrast, as E/,p.ct(g) approaches 0, the relative importance of complexity increases due to 
E,,,,,,(g - 1) << 1. This emphasizes stronger Complexity reduction a t  the final stages to obtain 
parsimonious solutions. 

Iba, Kurita, de Garis, and Sat0 (1993) have used a pure MDL criterion for GP. They 
defined fitness as simply the sum of error and complexity costs, followed by a normalization 
of the total costs. Therefore, the complexity value is as important as the error value in 
determining the total fitness value of an individual. This works perfectly when the coding 
scheme exactly reflects the true probability distribution of the environment. One drawback 
in this impiementation of the MDL principle is the lack of flexibility in balancing accuracy 
with parsimony in unknown environments. That  is, there is a risk that the tree size may be 
penalized too much, resulting in premature convergence. In fact, Iba et  al. (1993) remark 
that this kind of MDL approach should be used carefully when evolving other structures. In 
contrast, the adaptive Occam method is a general adaptive technique that balances parsimony 
and complexity of programs in an unknown environment. 

5 Experimental Results and Analysis 

The goal in this section is to demonstrate the performance of the proposed method to 
solve problems of practical value. Sections 5.1 and 5.2 report the experimental results in 
comparison to previous work. Sections 5.3 and 5.4 analyze and discuss the properties of the 
method. 

5.1 Mackey-Glass Time Series 
One often-used benchmark problem for time series prediction is the Mackey-Glass differ- 
ential equation, a dynamical system created as a model for blood flow: 

d X ( t )  nx(t - r )  
- b.r(t) -_ - - 

dt 1 + x ' O ( t  ~ r )  

224 

(2 4) 
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Figure 5.  Mackey-Glass time series. 

For a = 0.2, b = 0.1, and 7 = 17, the trajectory is chaotic and lies on an attractor of fractal 
dimension of approximately 2.1. A time series from this system is plotted in Figure 5. Iba 
et al. (1993) used this problem for the demonstration of STROGANOFE This problem 
has also been solved by G P  based on a function set consisting of {+, -, *, %,sin, cos, k"}. 
Previous experiments used an instance of this problem with 7 = 30 and a function set of 
{+, -, *, /,sin,cos,expIO}. 

Since the initial values x(0) to x(17) were not given in the literature, and different 
authors have used different initial values, we have chosen the values so that the time series 
looks most like that of the method being compared: xo = 1.000, XI = 1.002, x2 = 1.000, 
X3 = 0.992, X4 = 0.983, Xg = 0.973, Xg = 0.966, X7 = 0.963, Xs = 0.972, X9 = 0.987, X1o = 1.004, 
x11 = 1.025,xl2 = 1.049,xl3 = 1.077,x14 = 1.101,xl5 = 1.123,xl6 = 1.139, andx17 = 1.133. 

10, for the one-step-ahead prediction. Here, the problem is to learn 
Figure 6 (left) shows the learning accuracy of the training data, x(t) values divided by 

(2 5 )  
STROGANOFFsolved this problem with a prediction error of4.7 x lop6 (Iba et al., 1993). It 
used second-order polynomials and took 1740 generations with a population size of 60. The 
solution was 13 polynomials of degree 2, containing 6 parameters each and 78 parameters in 
total. Parameter fitting of the polynomials was performed by the least mean squares method. 

Figure 6 (right) plots our results on the one-step-ahead prediction for the test data 
that are the continuing series. This run was made with a population size of M = 200 for 
80 generations. The  neural tree structure evolved for the above performance contained 59 
weights with 13 hidden units. The mean squared error of this solution is 0.6 x lop6. This 
error is eight times lower than the result of STROGANOFF described above. The results 
are summarized in Table 1. 

Figure 7 (top) shows the neural tree evolved to generate the series in Figure 6 compared 
with the structure evolved by STROGANOFF (Fig. 7, bottom right). Figure 7 (bottom 
left) depicts another neural tree that results in a somewhat worse performance but has a very 
sparse structure. The  evolutionary method seems to assign different credit to different inputs 
to find problem-specific solutions. It is interesting to observe in the neural tree solution that 
the inputs of the near past, such as x(10),x(9),x(8), etc., appear more often than the inputs 
with greater distance in the series; and in general, x(t - 1) appeared more often than the 
other inputs in solutions evolved in most experiments. 

This property of automatic architecture (feature) selection is an advantage of GP over 
the standard backpropagation in which an appropriate structure must be provided by the 
designer. In another set of experiments, we found that although backpropagation networks 
could achieve predictive accuracy comparable to the best neural tree, they required a good 

x(t + 10) = cp((x(t), X(t + l), . . . , x(t + 9)) 
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network structure that usually contained more parameters than the best neural trees. Detailed 
results are shown in Table 2 .  Here, the performance was measured in terms of the root mean 
square error divided by the standard deviation of the data. 

Prediction Hidden 

4.7 x 78 13 8 
0.6 x 59 13 4 

Error Units Units Layers 
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Figure 7. Sample solutions for the Mackey-Glass time series: (top and bottom left) neural tree solu- 
tions, (bottom right) the solution obtained by STROGANOFF. 

Table 2. Comparison of neural tree results against backpropagation networks for another set of 
Mackey-Glass experiments. Neural trees were evolved for 80 generations with a population size 
of 100. 

60 1 0.53 0.56 
1801 0.69 0.84 

5.2 
Figure 8 shows a series of 1000 measurements of chaotic intensity fluctuations. This data 
set was generated by sampling every other data point from far-infrared NH3 laser data in a 
physics laboratory. The  prediction of the data is sufficiently difficult to have been used as a 
benchmark problem in the 1992 Santa Fe time series competition (Hiibner, Weiss, Abraham, 
& Tang, 1993). Although the time series can approximately be described by three coupled 
nonlinear ordinary differential equations, the first 500 data points used for training show 
only two of five collapses, and thus the prediction of the next collapse is a difficult task 
based on so few instances. Although other methods, such as state-space reconstruction and 
standard backpropagation networks, could achieve satisfactory results for this problem, their 
design required careful analysis of the problem. The  main objective of our experiments is 
to demonstrate a comparable performance of the neural trees designed automatically by an 
evolutionary process. 

The training set was generated from the time series as follows: three contiguous values 
X I  (t), xZ(t), q ( t )  were used as input for the tth training pattern, and the immediate next point 

Chaos in a Far-Infrared NH3 Laser 
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Figure 8. Laser intensity time series. 

x+(t) was used as the target value y( t )  to be predicted. Figure 9 (top) shows the learning 
accuracy for the training data, which contained SO0 data points. Figure 9 (middle) plots the 
one-step-ahead prediction for the next SO0 test points, which were not shown during the 
training phase. Figure 9 (bottom) is the difference between the true output and the predicted 
output for the test data. At the collapse points near t = 30,260, and 470, larger differences are 
observed than a t  the other data points. This is because the training data contained only two 
collapse points. This run was made with a population size o f M  = 250 for IS0 generations. 
Thi: parameter LS,,,,, was set to 20. 

T h e  convergence characteristics of the best and worst runs of 20 runs for learning 
the laser time series are depicted in Figure 10. T h e  left-hand figure depicts the evolution 
of fitness and error, whereas the right-hand figure shows the results in terms of correct 
classification rate. T h e  prediction output was counted as correct when it fell within the 
acceptance interval of the true value. Due to the elitist selection strategy, the fitness values 
of the best individuals decrease monotonically. 

It can be observed in Figure 10 (left) that the difference between fitness and error is large 
in early generations but is smaller as generation goes on. This indicates that the early stage 
focuses more on structural adaptation rather than parametric learning, the role of which 
reverses i n  the later stage. This is the reason why, given a limited resource, weight mutations 
should be intensively used instead of structural crossovers. T h e  fast decrease in fitness values 
around generation 100 in Figure 10 (left) is due to the increased intensity of local search, 
LS,,,,, = 1000, after reaching the fitness threshold. T h e  corresponding improvement in 
classification rate is also seen in Figure 10 (right). 

5.3 
Occam’s razor is a principle of  parsimony that says that the simpler model should be preferred 
to complex models if all other things are equal. T h e  effect of the Occam factor was investi- 
gated on the solution accuracy and complexity. In particular, we analyzed the generalization 
performance of various complex trees for the prediction of the laser and Mackey-Glass time 
series. A more broad and detailed treatment of this issue can be found in our previous work 
(Zhang 8r Muhlenbein, 1995). 

Figure I1 (left) compares the generalization accuracy for two different runs with the 
laser data. One run was made using Occam’s Razor in its fitness function (MDL-based 
fitness measure) and resulted in a relatively small neural tree structure of 3 layers containing 
8 hidden units and 19 units in total. T h e  other run was made without using a complexity 
penalty (but also used a maximum complexity limit), resulting in a larger structure of S layers 
containing 12 hidden units and a total of 37 units. T h e  use of the Complexity penalty evolved 

Occam’s Razor and Solution Quality 
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Figure 9. Results for the laser intensity time series: (top) performance for the training data; (middle 
two) prediction performance for the test data; (bottom) difference between true values and predicted 
values for the test data. 
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Figure 10. Evolution of performance for the best and worst runs for the laser data: (left) fitness and 
error for the best and worst individuals; (right) performance in percent of correct classifications. 

Figure 11. Generalization performance of two solutions with differing complexity: (left) laser data; 
(right) prediction of Mackey-Glass series x ( r )  from x(r - 85), .r(t - 91), and x(t  - 97). O K  indicates 
Occam's razor; u indicates units; hu indicates hidden units. 
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Figure 12. Evolution of fitness and complexity for the laser data. For this experiment, the local search 
was applied after generation (gen) 90, before which crossover and mutation were used as well. (Left) 
The top two curves plot the fitness of the worst (Wfit) and best (Bfit) individuals, and the bottom two 
curves show the error of the worst (Werr) and best (Berr) individuals, respectively. (Right) The  top 
and bottom curves show the size of worst and best individuals, whereas the middle curve is the mean 
size of the population. 

a more parsimonious structure. The  dotted line in Figure 11 (left) shows the error made by 
the large tree, which is generally larger than the error made by the smaller tree. 

Figure 11 (right) plots similar results obtained for the Mackey-Glass time series data. 
Here, the problem was to predict x(t) from x(t - 85), x(t - 91), and x(t - 97), and the tree 
with 220 units caused a larger generalization error than the tree with 110 units. The results 
demonstrate that the generalization performance of smaller trees is better than that of the 
larger ones, and the use of Occam’s razor is useful for improving generalization accuracy. 
The  generality of this argument both in theory and practice was extensively studied in Zhang 
and Muhlenbein (1 995). 

Figure 12 (left) plots the evolution of fitness and error of the best and worst individuals 
in each generation. The fast reduction in the error curves after generation 90 is due to 
the intensive application of local search. The  evolution of program complexity in terms of 
the number of layers is shown in Figure 12 (right). Comparing both figures, a tendency is 
observed for the program size to first grow and then shrink, during which the error of the 
best individual steadily decreases. This demonstrates the desired effect of the Occam’s razor 
implemented in our MDL-based adaptive fitness function; it promotes the growth of trees 
when significant error reduction is required, whereas it prefers smaller trees to larger ones 
when their errors are comparable. 

5.4 Library of Building Blocks 
The library can be considered a population of partial solutions that gets fitter during evolu- 
tion. New, fitter solutions are stored, and old, worse subsolutions get replaced. The  library 
plays the role of a kind of memory for good partial solutions and complements the genetic 
material in the population. 

Figure 13 compares the final results with and without the library for the infrared laser 
problem. The comparison was made in terms of best and population-average performances 
for 40 runs each. A clear improvement of performance was achieved by using the library 
both for the best individual and the average performance of the population. 

For a more detailed analysis of the effect of the library, we examined the improvement 

Evolutionary Computation Volume 5, Number 2 23  1 



B.-T. Zhang, P. Ohm, and H. Miihlenbein 

0 020 

0018 

0 016 

0014 
VI 

goo12  

2 
j jOW8 

- 
0 010 

5 
0006 

0 W4 

0 W2 

OOOO 

0 25 

020 

3 
f 015 

: 010 

2 005 

- c 
8 

m 

- 
0 

ow 

005 

0 10 

i 002 t 

Figure 14. Comparison of fitness evolution with and without library (lib.). (Left) T h e  top two curves 
plot the average fitness of best individuals for 50 runs on the laser data: the upper one without using 
library, the lower one with library. T h e  bottom two curves are results for typical runs. (Right) T h e  
top rwo curves show the best fitness evolution without library and the bottom two the results of typical 
runs with library for learning a noisy polynomial function of degree 3 .  gen indicates generation. 
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of fitness values “immediately” after the insertion of building blocks. We also measured 
the average improvement of all individuals every 10 generations. It turned out that the best 
performance was significantly improved, but the average fitness was decreased. The  negative 
effect on the average performance seems attributable to the fact that the performance was 
measured immediately after the building block insertion. The  longer term effects, however, 
tend to be positive, since the weights of the inserted subtree get fitted to the new context 
during further generations. 

Figure 14 plots the fitness evolution for runs with library in comparison to those without 
using library. The  top two curves of the left-hand figure compare the average fitness of best 
individuals for 50 runs on the laser data, showing a clear positive effect on convergence speed 
of using library. Also shown are two typical runs with library. In many other applications 
that we examined, the use of library has led to a better solution in terms of both accuracy 
and parsimony, as exemplified in Figure 14 (right). Here, the top two curves plot the best 
fitness without library, whereas the bottom two show the results with library for learning a 
noisy polynomial function of degree 3.  

6 Conclusions 

A hybrid evolutionary framework was presented that combines G P  and the breeder genetic 
algorithm for the induction of a broad class of HONNs. The neural tree-encoding scheme 
was introduced and successfully applied to time series prediction problems of practical in- 
terest. 

Although the method presented can best be described in the G P  paradigm, it has several 
interesting features that extend the standard GP method. As opposed to other GP-evolved 
programs, the neural programs contain a large number of numerical as well as symbolic 
variables, posing a situation in which structures and parameters have to coevolve. The  present 
work exemplifies how to effectively extend the dynamic structure adaptation capability of 
GP through another evolutionary algorithm for parametric learning. 

Empirical studies have shown that the early stage focuses more on structural adaptation 
rather than parametric learning, the role of which reverses later in the run. Considering this 
observation and the fact that local search is expensive, we applied the local search to some 
portion of the population instead of all its members. The  intensity of local search was also 
adapted during the run. Generally, it is recommended to use a small LSmar for a large portion 
of the population early in the run and a large LS,, for a small portion of the population 
later in the run. 

The  generality of our approach is contrasted with various existing methods for the syn- 
thesis of higher order networks that investigate only restricted topological subsets rather than 
the complete class of networkarchitectures. This rather ambitious goal (see the Appendix for 
a complexity analysis of the problem) could be achieved by talung an evolutionary approach 
that allows minimal representational constraints. The  problem of “bloating” or unlimited 
growth of programs was dealt with by MDL-based parsimony control. The  efficiency of 
the tree induction process was further enhanced by incorporating several mechanisms, such 
as libraries of building blocks, local fitness-dependent crossover, injection and pruning of 
building blocks, as well as scheduling of the intensity and sequence of genetic operators. 
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Appendix. Theoretical Complexity of Neural Tree Induction 

We analyze computational requirements for solving the problem of neural tree induction. 
For simplicity, our analysis focuses on the set N l ( 4  b) of complete neural trees of depth d 
and branching factor b. The  size of architecture space will first be calculated and then the 
size of parameter space. 

Consider a complete tree of depth d and branching factor b. The number of nonterminal 
nodes in this tree structure is 

The number of terminal nodes is b". An instance of the tree consists of the nonterminal nodes 
with associated labels chosen from the function set 3 and the terminal nodes instantiated 
with labels from the terminal set 7. Thus, the number of possible architectures Nl(d ,  b) is 
given by 

= /3/'- . (A2) 
where IF1 and 171 are the sizes of .F and 7, respectively. 

The  parameters in the neural trees consist of connection weights and biases. The  
number of weights in the complete tree of depth d and branching factor b is the same as the 
number of nonterminal plus terminal nodes minus one (root node): 

The number of biases is the same as the number of nonterminal nodes: (&' - I ) /@ - 1). The  
total number of parameters is the sum of both: 

@ { + ' - b  v ' - 1  d + ' + b " b - l  +--- - 
b - l  b - l  b -  I 

If we assume for simplicity that the parameter takes a value from a set V of finite size IV(, the 
size of the parameter space is given by 

As an illustration, consider the program space of 131 = /{Z, ll}l = 2,  17-1 = 5, d = 3 ,  b = 5, and 
/ V /  = 100. In this case, the size of the structure space is /A/ = 2" . 5I2j ,  and the size of the 
weight space amounts to 1W = 1001'6, which prohibits any exhaustive search methods. 
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