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Abstract

Zero Determinant strategies are a new class of probabilistic and conditional strategies that are
able to unilaterally set the expected payoff of an opponent in iterated plays of the Prisoner’s Dilemma
irrespective of the opponent’s strategy (coercive strategies), or else to set the ratio between the player’s
and their opponent’s expected payoff (extortionate strategies). Here we show that Zero Determinant
strategies are at most weakly dominant, are not evolutionarily stable, and will instead evolve into
less coercive strategies. We show that Zero Determinant strategies with an informational advantage
over other players that allows them to recognize each other can be evolutionarily stable (and able to
exploit other players). However, such an advantage is bound to be short-lived as opposing strategies
evolve to counteract the recognition.

Evolutionary Game Theory (EGT) has been around for over 30 years, but apparently the theory
still has surprises up its sleeve. Recently, Press and Dyson discovered a new class of strategies within
the realm of two-player iterated games that allow one player to unilaterally set the opponent’s payoff,
or else extort the opponent to accept an unequal share of payoffs [1, 2]. This new class of strategies,
named “Zero Determinant” (ZD) strategies, exploits a curious mathematical property of the expected
payoff for a stochastic conditional “memory-one” strategy. In the standard game of EGT called the
Prisoner’s Dilemma (PD), the possible moves are termed “Cooperate” (C) and “Defect” (D) (as the
original objective of evolutionary game theory was to understand the evolution of cooperation [3–5]), and
the payoffs for this game can be written in terms of a payoff matrix

(

C D

C R S
D T P

)

, (1)

where the payoff is understood to be given to the “row” player (e.g., for the pair of plays “DC”, the
player who chose D obtains payoff T while the opponent receives payoff S).

As opposed to deterministic strategies such as “Always Cooperate” or “Always Defect”, stochastic
strategies are defined by probabilities to engage in one move or the other. “Memory-one” strategies
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make their move depending on theirs as well as their opponent’s last move: perhaps the most famous
of all memory-one strategies within the iterated Prisoner’s Dilemma (IPD) game called “Tit-for Tat”
plans its moves as a function of only its opponent’s last move. Memory-one probabilistic strategies are
defined by four probabilities, namely to cooperate given the four possible outcomes of the last play. While
probabilistic one-memory iterated games were studied as early as 1990 [6,7] and more recently by us [8],
the existence of ZD strategies still took the field by surprise (even though such strategies had in fact been
discovered earlier [9, 10]) .

Stochastic conditional strategies are defined by a set of four probabilities p1, p2, p3, p4 to cooperate
given that the last encounter between this player and his opponent resulted in the outcome CC (p1),CD
(p2), DC (p3) or DD (p4). ZD strategies are defined by fixing p2 and p3 to be a very specific function of p1
and p4 as described in Methods. Press and Dyson show that when playing against the ZD strategy, the
payoff that an opponent O reaps is defined by the payoffs (1) and only the two remaining probabilities
p1 and p4 (p2 and p3 being fixed by Eq. (14))

E(O,ZD) = f(~p) =
(1− p1)P + p4R

1− p1 + p4
, (2)

while the the ZD strategist’s payoff against O

E(ZD,O) = g(~p, ~q) (3)

is still a complicated function of both ZD’s and O’s strategy that is too lengthy to write down here [but
see Methods for the mean payoff given the standard [3] PD values (R,S, T, P ) = (3, 0, 5, 1)].

In Eqs. (2,3) we adopted the notation of a payoff matrix where the payoff is given to the “row-
player”. Note that the payoff that the ZD player forces upon its opponent is not necessarily smaller than
what the ZD player receives. For example, the payoff for ZD against the strategy “All-D” that defects
unconditionally at every move ~q = (0, 0, 0, 0) is

E(ZD, All-D) = P +
p4(R− P )

1− p1 + p4

(

R− S

P − T

)

, (4)

which is strictly lower than (2) for all games in the realm of the PD parameters.
Interestingly, a ZD strategist can also extort an unfair share of the payoffs from the opponent, who

however could refuse it (turning the game into a version of the Ultimatum Game [12]). In extortionate
games, the strategy being preyed upon can increase their own payoff by modifying their own strategy ~q,
but this only increases the extortionate strategy’s payoff. As a consequence, Press and Dyson conclude
that a ZD strategy will always dominate any opponent that adapts its own strategy to maximize their
payoff, for example by Darwinian evolution [1].

Here we show that ZD strategies (those who fix the opponent’s payoff as well as those who extort) are
actually evolutionarily unstable, are easily outcompeted by fairly common strategies, and quickly evolve
to become non-ZD strategies. However, if ZD strategies can determine who they are playing against
(either by recognizing a tag or by analyzing the opponent’s response), ZD strategists are likely to be very
powerful agents against unwitting opponents.

Results

Effective payoffs and Evolutionarily Stable Strategies

In order to determine whether a strategy will succeed in a population, Maynard Smith proposed the
concept of an “Evolutionarily Stable Strategy” (or ESS) [4]. For a game involving arbitrary strategies
I and J , the ESS is easily determined by an inspection of the payoff matrices of the game as follows: I
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is an ESS if the payoff E(I, I) when playing itself is larger than the payoff E(J, I) between any other
strategy J and I, i.e., I is ESS if E(I, I) > E(J, I). In case E(I, I) = E(J, I), then I is an ESS if at the
same time E(I, J) > E(J, J). These equations teach us a fundamental lesson in evolutionary biology: it
is not sufficient for a strategy to outcompete another strategy in direct competition, that is, winning isn’t
everything. Rather, a strategy must also play well against itself. The reason for this is that if a strategy
plays well against an opponent but reaps less of a benefit competing against itself, then it will be able to
invade a population but will quickly have to compete against its own offspring and its rate of expansion
slows down. This is even more pronounced in populations with a spatial structure, where offspring are
placed predominantly close to the progenitor. If the competing strategy in comparison plays very well
against itself, then a strategy that only plays well against an opponent may not even be able to invade.

If we assume that two opponents play a sufficiently large number of games, their average payoff
approaches the payoff of the Markov stationary state [1, 11]. We can use this mean expected payoff as
the payoff to be used in the payoff matrix E that will determine the ESS. For ZD strategies playing O
(other) strategies, we know that ZD enforces E(O,ZD)=f(~p) shown in equation (2), while ZD receives
g(~p, ~q) [Eq. (3)]. But what are the diagonal entries in this matrix? We know that ZD enforces the score
(2) regardless of the opponent’s strategy, which implies that it also enforces this on another ZD strategist.
Thus, E(ZD,ZD)=f(~p). The payoff of O against itself only depends on O’s strategy ~q: E(O,O)=h(~q), and
is the key variable in the game once the ZD strategy is fixed. The effective payoff matrix then becomes

E =

(

f(~p) g(~p, ~q)
f(~p) h(~q)

)

. (5)

Note that by writing mean expected payoffs into a matrix such as (5), we have effectively defined a new
game in which the possible moves are ZD and O. It is in terms of these moves that we can now consider
dominance and evolutionary stability of these strategies.

The payoff matrix of any game can be brought into a normalized form with vanishing diagonals
without affecting the competitive dynamics of the strategies by subtracting a constant term from each
column [13], so the effective payoff (5) is equivalent to

E =

(

0 g(~p, ~q)− h(~q)
0 0

)

. (6)

We notice that the fixed payoff f(~p) has disappeared, and the winner of the competition is determined
entirely from the sign of g(~p, ~q)−h(~q), as seen by an inspection of the ESS equations. If g(~p, ~q)−h(~q) > 0,
the ZD strategy is a weak ESS (see, e.g., [14], p. 55). If g(~p, ~q)− h(~q) < 0, the opposing strategy is the
ESS. In principle, a mixed strategy (a population mixture of two strategies that are in equilibrium) can
be an ESS [4] but this is not possible here precisely because ZD enforces the same score on others as it
does on itself.

Evolutionary dynamics of ZD via replicator equations

ZD strategies are defined by setting two of the four probabilities in a strategy to specific values so that
the payoff E(O,ZD) depends only on the other two, but not on the strategy O. In Ref. [1], the authors
chose to fix p2 and p3, leaving p1 and p4 to define a family of ZD strategies. The requirement of a
vanishing determinant limits the possible values of p1 (the probability to cooperate if in the previous
move both players cooperated) to close to 1, while p4 must be near (but not equal to) zero. Let us
study an example ZD strategy defined by the values p1 = 0.99 and p4 = 0.01. The results we present
do not depend on the choice of the ZD strategy. An inspection of Eq. (2) shows that, if we use the
standard payoffs of the Prisoner’s Dilemma (R,S, T, P ) = (3, 0, 5, 1), then f(~p) = 2. If we study the
strategy “All-D” (always defect, defined by the strategy vector ~q = (0, 0, 0, 0) as opponent) we find that
g(~p, ~q) = 0.75, while h(~q) = 1. As a consequence, g(~p, ~q) − h(~q) is negative and All-D is the ESS, that
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Figure 1. Mean expected payoff of arbitrary ZD strategies playing “Pavlov”. The payoff
g(~p, ~qPAV) (red surface) defined by the allowed set (p1, p4) (shaded region) against the strategy Pavlov,
given by the probabilities ~qPAV = (1, 0, 0, 1). Because g(~p, ~qPAV) is everywhere smaller than h(~qPAV) = 3
(except on the line p1 = 1), it is Pavlov which is the ESS for all allowed values (p1, p4), according to
Eq. (6). For p1 = 1, ZD and Pavlov are equivalent as the entire payoff matrix (6) vanishes (even though
the strategies are not the same).

is, ZD will lose the evolutionary competition with All-D. However, this is not surprising as ZD’s payoff
against All-D is in fact lower than what ZD forces All-D to accept, as mentioned earlier. But let us
consider the competition of ZD with the strategy “Pavlov”, which is a strategy of “win-stay-lose-shift”
that can outperform the well-known “Tit-for-Tat” strategy in direct competition [15]. Pavlov is given by
the strategy vector ~qPAV = (1, 0, 0, 1), which (given the ZD strategy ~p described above and the standard
payoffs) returns E(ZD,PAV)=11/27≈ 2.455 to the ZD player, while Pavlov is forced to receive f(~p) = 2.
Thus, ZD wins every direct competition with Pavlov. Yet, Pavlov is the ESS because it cooperates with
itself, so h(~q) = 3. We show in Figure 1 that the dominance of Pavlov is not restricted to the example
ZD strategy p1 = 0.99 and p4 = 0.01, but holds for all possible ZD strategies within the allowed space.

We can check that Pavlov is the ESS by following the population fractions as determined by the
replicator equations [5, 13, 16], which describe the frequencies of strategies in a population

π̇i = πi(wi − w̄), (7)

where πi is the population fraction of strategy i, wi is the fitness of strategy i, and w̄ is the average fitness
in the population. In our case, the fitness of strategy i is the mean payoff for this strategy, so

wZD = πZDE(ZD,ZD) + πOE(ZD,O) (8)

wO = πZDE(O,ZD) + πOE(O,O) (9)

and w̄ = πZDwZD + πOwO. We show πZD and πAllD (with πZD + πAllD = 1) in Fig. 2 as a function of
time for different initial conditions, and confirm that Pavlov drives ZD to extinction regardless of initial
density.

Evolutionary dynamics of ZD in agent-based simulations

It could be argued that an analysis of evolutionary stability within the replicator equations ignores the
complex game play that occurs in populations where the payoff is determined in each game, and where
two strategies meet by chance and survive based on their accumulated fitness. We can test this by
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Figure 2. Population fractions of ZD vs. Pavlov over time. Population fractions πZD (blue)
and πPAV (green) as a function of time for initial ZD concentrations πZD(0) between 0.1 and 0.9.

following ZD strategies in contest with Pavlov in an agent-based simulation with a fixed population size
of Npop = 1, 024 agents, a fixed replacement rate of 0.1% and using a fitness-proportional selection scheme
(a death-birth Moran process, see Methods).

Figure 3. Population fractions using agent-based simulations and replicator equations.

Population fractions πZD (blue tones) and πPAV (green tones) for two different initial concentrations.
The solid lines show the average of the population fraction from 40 agent-based simulations as a
function of evolutionary time measured in updates, while the dashed lines show the corresponding
replicator equations. Because time is measured differently in agent-based simulations as opposed to the
replicator equations, we applied an overall scale to the time variable of the Runge-Kutta simulation of
Eq. (7) to match the agent-based simulation.

In Fig. 3 we show the population fractions πZD and πPAV for two different initial conditions [πZD(0) =
0.4 and 0.6], using a full agent-based simulation (solid lines) or using the replicator equations (dotted
lines). While the trajectories differ in detail (likely because in the agent-based simulations generations
overlap, the number of encounters is not infinite but dictated by the replacement rate, and payoffs are
accumulated over eight opponents randomly chosen from the population), the dynamics are qualitatively
the same. (This can also be shown for any other stochastic strategy ~q playing against a ZD strategy.)
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Note that in the agent-based simulations, strategies have to play the first move unconditionally. In the
results presented in Fig. 3, we have set this “first move” probability to pC = 0.5 for both Pavlov and ZD.

Agent-based simulations thus corroborate what the replicator equations have already told us, namely
that ZD strategies have a hard time surviving in populations because they suffer from the same low payoff
that they impose on other strategies if faced with their own kind. However, ZD can win some battles,
in particular against strategies that cooperate. For example, the stochastic cooperator GC [“general
cooperator”, defined by ~q = (0.935, 0.229, 0.266, 0.42)] is the evolutionarily dominating strategy (the
fixed point) that evolved at low mutation rates in Ref. [8]. GC is a cooperator that is very generous,
cooperating after mutual defection almost half the time. GC loses out (in the evolutionary sense) against
ZD because E(Z,GC)=2.125 while E(GC,GC)=2.11 (making ZD a weak ESS), and ZD certainly wins
(again in the evolutionary sense) against the unconditional deterministic strategy “All-C” that always
cooperates [see Eq. (16) in the Methods]. If this is the case, how is it possible that GC is the evolutionary
fixed point rather than ZD, when strategies are free to evolve from random ancestors [8]?

Mutational instability of ZD strategies

To test how ZD fares in a simulation where strategies can evolve (in the previous sections, we only
considered the competition between strategies that are fixed), we ran evolutionary (agent-based) simu-
lations in which strategies are encoded genetically. The genome itself evolves via random mutation and
fitness-proportional selection. For stochastic strategies, the probabilities are encoded in 5 genes (one
unconditional and four conditional probabilities drawn from a uniform distribution when mutated) and
evolved as described in the Methods and in Ref. [8]. Rather than starting the evolution runs with ran-
dom strategies, we seeded them with the particular ZD strategy we have discussed here (p1 = 0.99 and
p4 = 0.01). These simulations show that when we use a mutation rate that favors the strategy GC as the
fixed point, ZD evolves into it even though ZD outcompetes GC at zero mutation rate as we saw in the

Figure 4. Evolution of probabilities on the evolutionary line of descent. Evolution of
probabilities p1 (blue), p2 (green), p3 (red) and p4 (teal) on the evolutionary line of descent of a
well-mixed population of 1,024 agents, seeded with the ZD strategy
(p1, p2, p3, p4) = (0.99, 0.97, 0.02, 0.01). Lines of descent (see Methods) are averaged over 40 independent
runs. Mutation rate per gene µ = 1%, replacement rate r = 1%.
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previous section. In Fig. 4, we show the four probabilities that define a strategy over the evolutionary line
of descent, followed over 50,000 updates of the population (with a replacement rate of 1%, this translates
on average to 500 generations). The evolutionary line of descent (LOD) is created by taking one of the
final genotypes that arose, and following its ancestry backwards mutation by mutation, to arrive at the
ZD ancestor used to seed the simulation [17]. (Because of the competitive exclusion principle [18], the
individual LODs of all the final genotypes collapse to a single LOD with a fairly recent common ancestor).
The LOD confirms what we had found earlier [8], namely that the evolutionary fixed points are inde-
pendent of the starting strategy and simply reflect the optimal strategy given the amount of uncertainty
(here introduced via mutations) in the environment. We thus conclude that ZD is unstable in another
sense (besides not being an ESS): it is genetically or mutationally unstable, as mutations of ZD are likely
not ZD, and we have shown earlier that ZD generally does not do well against other strategies that defect
but are not ZD themselves.

Stability of extortionate ZD strategies

Extortionate ZD strategies (“ZDe” strategies) are those that set the ratio of the ZD strategist’s payoff
against a non-ZD strategy [1] rather than setting the opponent’s absolute payoff. Against a ZDe strategy,
all the opponent can do (in a direct matchup) is to increase their own payoff by optimizing their strategy,
but as this increases ZDe’s payoff commensurately, the ratio (set by an extortion factor χ, where χ = 1
represents a fair game) remains the same. Press and Dyson show that for ZDe strategies with extortion
factor χ, the best achievable payoffs for each strategy are [using the conventional IPD values (R,S, T, P ) =
(3, 0, 5, 1)]

E(O,ZDe) =
12 + 3χ

2 + 3χ
, (10)

E(ZDe,O) =
2 + 13χ

2 + 3χ
, (11)

which implies that E(ZDe,O) > E(O,ZDe) for all χ > 1. However, ZDe plays terribly against other ZDe
strategies, who are defined by a set of probabilities given in Ref. [1]. Notably, ZDe strategies have p4 = 0,
that is, they never cooperate after both opponents defect. It is easy to show that for p4 = 0, the mean
payoff E(ZDe,ZDe) = P in general, that is, the payoff for mutual defection. As a consequence ZDe can
never be an ESS (not even a weak one) as E(O,ZDe) > E(ZDe,ZDe) for all finite χ ≥ 1, except when
χ → ∞, where ZDe can be ESS along with an opponent’s strategy that has a mean payoff E(O,O) not
larger than P . We note that the celebrated strategy “Tit-for-Tat” is technically a ZDe strategy, albeit a
trivial one as it always plays fair (χ=1).

Given that ZD and ZDe are evolutionarily unstable against a large fraction of stochastic strategies, is
there no value to this strategy then? We will argue below that strategies that play ZD against non-ZD
strategies but a different strategy (for example cooperation) against themselves, may very well be highly
fit in the evolutionary sense, and emerge in appropriate evolution experiments.

ZD strategies that can recognize other players

Clearly, winning against your opponents isn’t everything if this impairs the payoff against similar or
identical strategies. But what if a strategy could recognize who they play against, and switch strategies
depending on the nature of the opponent? For example, such a strategy would play ZD against others,
but cooperate with other ZD strategists instead. It is in principle possible to design strategies that use a
(public or secret) tag to decide between strategies. Riolo et al. [19] designed a game where agents could
donate costly resources only to players that were sufficiently similar to them (given a tag). This was
later abstracted into a model in which players can use different payoff matrices (such as those for the
Prisoner’s Dilemma or the “Stag Hunt” game) depending on the tag of the opponent [20]. Recognizing
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another player’s identity can in principle be accomplished in two ways: the players can simply record an
opponent’s tag and select a strategy accordingly [21], or they can try to recognize a strategy by probing
the opponent with particular plays. When using tags, it is possible that players cheat by imitating the
tag of the opponent [22] (in that case it is necessary for players to agree on a new tag so that they can
continue to reliably recognize each other).

A tag-based ZD strategy (“ZDt”) can cooperate with itself, while playing ZD against non-ZD players.
Let us first test that using tags renders ZDt evolutionarily stable against a strategy that ZD loses to,
namely All-D. The effective payoff matrix becomes (using the standard payoff values and our example
ZD strategy p1 = 0.99, p4 = 0.01)

(

ZDt AllD

ZDt 3 0.75
AllD 2 1

)

, (12)

and we note that now both ZDt and All-D can be an ESS. The game described by the matrix (12) belongs
to the class of coordination games (a typical example is the Stag Hunt game [23]), which means that the
interior fixed point of the dynamics (πZDt, πAllD) = (0.2, 0.8) is itself unstable [13] and the winner of
the competition depends on the initial density of strategies. This is a favorable game for ZDt, as it
will outcompete AllD as long a its initial density exceeds 20% of the population. What happens if the
opposing strategy acquires the capacity to distinguish self from non-self as well? The optimal strategy in
that case would defect against ZDt players, but cooperate with itself. The effective payoff matrix then
becomes (“CD” is the conditional defector)

(

ZDt CD

ZDt 3 0.75
CD 2 3

)

. (13)

This game is again in the class of coordination games, but the interior unstable fixed point is now
(πZDt, πCD) = (9/13, 4/13), which is not at all favorable for ZDt anymore as the strategy now needs
to constitute over 69% of the population in order to drive the conditional defector into extinction. We
thus find that tag-based play leads to dominance based on numbers (if players cooperate with their
own kind), where a tag-based ZD strategy is only favored if it is the only one that can recognize itself.
Indeed, tag-based recognition is used to enhance cooperation among animals via the so-called “green-
beard” effect [24, 25], and can give rise to cycles between mutualism and altruism [26]. Recognizing a
strategy from behavior rather than from a tag is discussed further below. Note that whether a player’s
strategy is identified by a tag or learned from interaction, in both cases it is communication that enables
cooperation [8].

Short-memory players cannot set the rules of the game

In order to recognize a player’s strategy via its actions, it is necessary to be able to send complex
sequences of plays, and react conditionally on the opponent’s actions. In order to be able to do this, a
strategy must be able to use more than just the previous plays (memory-one strategy). This appears
to contradict the conclusion reached in [1] that the shortest-memory player “sets the rule of the game”.
This conclusion was reached by correctly noting that in a direct competition of a long-memory player
and a short-memory player, the payoff to both players is unchanged if the longer memory player uses a
“marginalized” short-memory strategy. However, as we have seen earlier, in an evolutionary setting it is
necessary to not only take cross-strategy competitions into account, but also how the strategies fare when
playing against themselves, that is, like-strategies. Then, it is clear that a long-memory strategy will be
able to recognize itself (simply by noting that the responses are incompatible with a “marginal” strategy)
and therefore distinguish itself from others. Thus, it appears possible that evolutionarily successful ZD
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strategies can be designed that use longer memories to distinguish self from non-self. Of course, such
strategies will be vulnerable to mutated strategies that look sufficiently like a ZD player so that ZD will
avoid them (a form of defensive mimicry [27]), while being subtly exploited by the mimics instead.

Discussion

ZD strategies are a new class of conditional stochastic strategies for the iterated PD (and likely other
games as well) that are able to unilaterally set an opponent’s payoff, or else set the ratio of payoffs
between the ZD strategist and its opponent. The existence of such strategies is surprising, but they are
not evolutionarily (or even mutationally) stable in adapting populations. Evolutionary stability can be
determined by using the steady-state payoffs of two players engaged in an unlimited encounter as the
one-shot payoff matrix between these strategies. Applying Maynard Smith’s standard ESS conditions
to that effective payoff matrix shows that ZD strategies can be at most weakly dominant (their payoff
against self is equal to what any other strategy receives playing against them), but that it is the opposing
strategy that is most often the ESS. (ZDe strategies are not even weakly dominant, except for the limiting
case χ → ∞.) It is even possible that ZD strategies win every single matchup against non-ZD strategies
(such as against the strategy “Pavlov”), yet be evolutionarily unstable and be driven to extinction.

While this argument relies on using the steady-state payoffs, it turns out that an agent-based simu-
lation with finite iterated games reproduces those results almost exactly. Furthermore, ZD strategies are
mutationally unstable even when they are the ESS at zero mutation rate, because the proliferation of ZD
mutants that are not exactly ZD creates an insurmountable obstacle to the evolutionary establishment
of ZD. Rather than taking over, the ZD strategy instead evolves into a harmless cooperating or defecting
strategy (depending on the mutation rate, see [8]).

For ZD strategists to stably and reliably outcompete other strategies, they have to have an informa-
tional advantage. This “extra information” can be obtained either by using a tag to recognize each other
and conditionally cooperate or play ZD depending on this tag, or else by having a longer-memory strategy
that a player can use to probe the opponent’s strategy. Tag-based play leads effectively to a game in the
“coordination” class if players cooperate with themselves but not against the opponent, with the winner
determined by the initial density. Of course, such a tag- or an information-based dominance is itself
vulnerable to the evolution of interfering mechanisms by the exploited strategies, either by imitating the
tag (and thus destroying the information channel) or by evolving longer memories themselves. Indeed,
any recognition system that is gene-based is potentially subject to an evolutionary arms race [28,29]. In
the realm of host-parasite interactions, this evolutionary arms race is known as the Red Queen effect [30]
and appears to be ubiquitous throughout the biosphere.

Methods

Definition of ZD strategies

Let ~p = (p1, p2, p3, p4) be the probabilities of the “focal” player to cooperate given the outcomes
CC,CD,DC and DD of the previous encounter, and ~q = (q1, q2, q3, q4) the probabilities of an oppos-
ing strategy (hereafter the “O”-strategy). Given the payoffs (1) for the four outcomes, the game can
be described by a Markov process defined by these eight probabilities [11] (because this is an infinitely
repeated game, the probability to engage in the first move–which is unconditional–does not play a role
here). Each Markov process has a stationary state given by the left eigenvector of the Markov matrix
(constructed from the probabilities ~p and ~q, see [1]), which in this case describes the equilibrium of the
process. The expected payoff is given by the dot product of the stationary state and the payoff vector of
the strategy. But while the stationary state is the same for either player, the payoff vector–given by the
score received for each of the four possible plays CC, CD, DC, and DD–is different for the two players
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for the asymmetric plays CD and DC. The mean (that is, expected) payoff for either of these two players
calculated in this manner turns out to be a complicated function of 12 parameters: the eight probabilities
that define the players’ strategies, and the four payoff values in Eq. (1). The mathematical surprise
offered up by Press and Dyson concerns these expected payoffs: it is possible to force the opponent’s
expected payoff to not depend on ~q at all, by choosing [1]

p2 =
p1(T − P )− (1 + p4)(T −R)

R− P
, p3 =

(1− p1)(P − S) + p4(R− S)

R− P
. (14)

In this case, no matter which strategy O adopts, its payoff is determined entirely by ~p (the focal player’s
strategy) and the payoffs. Technically speaking, this is possible because the expected payoff is a linear
function of the payoffs for each of the four plays, and as a consequence it is possible for one strategy
to enforce the payoff of the opponent by a judiciously chosen set of probabilities that makes the linear
combination of determinants vanish (hence the name “zero determinant” strategies). This enforcement is
asymmetric because of the asymmetry in the payoff vectors introduced earlier: while the ZD player can
force the opponent’s payoff to not depend on their own probabilities, the payoff to the ZD player depends
on both the ZD player’s as well as the opponent’s probabilities. Furthermore, the expected payoff to the
ZD opponent (which as mentioned is usually a very complicated function) becomes very simple.

Note that the set of possible ZD strategies is larger than the set studied by Press and Dyson (a two-
dimensional subset of the three-dimensional set of ZD strategies, where dimension refers to the number
of independently varying probabilities, for example p1 and p4 as in Eq. (14)), but we do not expect that
extending the analysis to three dimensions will change the overall results as the third dimension will tend
to linearly increase the payoff of the opposing strategy (rather than keeping it fixed), which benefits the
opponent, not the ZD player.

Steady-state payoff to the ZD strategist

If we set the payoff matrix (1) to the standard values of the Prisoner’s Dilemma, i.e., (R,S, T, P ) =
(3, 0, 5, 1), the payoff Eq. (3) received by the ZD strategist (defined by the pair p1 and p4) playing against
an arbitrary stochastic strategy ~q can be calculated to be

10



g(~p, ~q) =
{

p24

[

q3(7q1 − 1) + 3q2(q1 − 5q3 − q4 − 1) + 2q4(9q3 − 5q1 + 2)

]

− p21

[

q2(5q3 + 6q4 + 2)− 2q3(13q4 + 3) + q1(20q4 − 6q2 + q3 + 4)

]

+ p4

[

q2(7q1 − 14q3 − 9q4 − 5) + q3(6q1 + 35q4 − 5)− 2q4(1 + 10q1)− 2

]

+ p1

[

q3(8q2 − p4 + 20p4q2 − 10) + q4

(

p4(9q2 − 44q3 − 8) + 12q2 − 39q3 + 20
)

+q1

(

p4(30q4 − 9q2 − 6q3 + 2) + 2q3 + 20q4 − 8q2 + 4
)

+ 7p4q2 + 4

]

+ 2q2(1 + q1) + q3(4− q1 − 3q2)− q4(20 + 6q2 − 13q3)− 4

}

/

(p1 − p4 − 1)

{

q3

[

q1 + p4(q1 − 3)− 4

]

+ q4

[

p4(5q1 − 6q3 − 3)− 3q3 + 5

]

+ q2

[

p4(q4 + 5q3 − 6q1 + 6) + q4 + 3q3 − 2q2 − 2)

]

− p1

[

q1(5q4 + q3 − 6q2 + 4) + q2(q4 + 5q3 + 2)− 6q3(1 + q4)

]

+ 4

}

(15)

Interesting limiting cases are the payoffs against All-D Eq. (4), as well as the payoff against an uncondi-
tional cooperator, given by

g(~p, ~q = ~1) = 3 +
4

3

(

1− p1
1− p1 + p4

)

. (16)

For the strategy Pavlov, using ~qPAV = (1, 0, 0, 1) in (15) yields

g(~p, ~qPAV) =
6 (2(1− p1) + p4)

2

(9(1− p1) + 2p4) (1− p1 + p4))
, (17)

or g(~p, ~qPAV) = 27/11 for the ZD strategy with p1 = 0.99 and p4 = 0.01.

Agent-based modeling of iterated game play

In order to study how conditional strategies such as ZD play in finite populations, we perform agent-
based simulations in which strategies compete against each other in a well-mixed population of 1,024
agents as in [31]. Every update, an agent plays one move against eight random other agents, and the
payoffs accumulate until either of the playing partners is replaced. The fitness of each player is the total
payoff accumulated, averaged over all eight players he faced. Because we replace 0.1% of the population
every update using a death-birth Moran process, on average an agent plays 500 moves against the same
opponent (each player survives on average 1/r = 1, 000 updates in the population). Agents cooperate or
defect with probability 0.5 on the first move as this decision is not encoded within the probabilistic set
of four (conditional) probabilities. We start populations at fixed mixtures of strategies (for example, ZD
versus Pavlov as in Fig. 3), and update the population until one of the strategies has gone to extinction.
In such an implementation, there are no mutations and as a consequence strategies do not evolve.
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Agent-based modeling of strategy evolution

To simulate the Darwinian evolution of stochastic conditional strategies, we encode the strategy into five
loci, encoding the conditional probabilities ~q = (q1, q2, q3, q4) as well as the unconditional probability
q0. Like in the simulation of iterated game play without mutations described above, agents play eight
randomly selected other agents in the (well-mixed) population, and are replaced with a set of genotypes
that survived the 1% removal per update and selected with a probability proportional to their fitness.
After the selection process, probabilities are mutated with a probability of 1% per locus. The mutated
probability is drawn from a uniformly distributed random number on the interval [0, 1]. In order to
visualize the course of evolution, we reconstruct the ancestral line of decent (LOD) of a population
by retracing the path evolution took backwards, from the strategy with the highest fitness at the end
of the simulation back to the ancestral genotype that served as the seed. Because there is no sexual
recombination between strategies, each population has a single line of descent after moving past the
most recent common ancestor of the population, that is, all individual LODs coalesce to one. The line
of descent recapitulates the evolutionary history of that particular run, as it contains the sequence of
mutations that gave rise to the successful strategy at the end of the run (see, e.g., [17, 32]). Because the
evolutionary trajectory for any particular locus is usually fairly noisy, we average trajectories over many
replicate runs in order to capture the selective pressures affecting each gene.
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