
P1: SAD

Applied Intelligence KL638-01-Cho October 15, 1998 15:12

Applied Intelligence 9, 191–200 (1998)
c© 1998 Kluwer Academic Publishers. Manufactured in The Netherlands.

Evolutionary Learning of Modular Neural Networks
with Genetic Programming

SUNG-BAE CHO
Department of Computer Science, Yonsei University, 134 Shinchon-dong, Sudaemoon-ku, Seoul 120-749, Korea;

and ATR Human Information Processing Research Laboratories, 2-2 Hikaridai, Seika-cho,
Soraku-gun, Kyoto 619-02, Japan

KATSUNORI SHIMOHARA
ATR Human Information Processing Research Laboratories, 2-2 Hikaridai, Seika-cho, Soraku-gun,

Kyoto 619-02, Japan

Abstract. Evolutionary design of neural networks has shown a great potential as a powerful optimization tool.
However, most evolutionary neural networks have not taken advantage of the fact that they can evolve from modules.
This paper presents a hybrid method of modular neural networks and genetic programming as a promising model
for evolutionary learning. This paper describes the concepts and methodologies for the evolvable model of modular
neural networks, which might not only develop new functionality spontaneously, but also grow and evolve its own
structure autonomously. We show the potential of the method by applying an evolved modular network to a visual
categorization task with handwritten digits. Sophisticated network architectures as well as functional subsystems
emerge from an initial set of randomly-connected networks. Moreover, the evolved neural network has reproduced
some of the characteristics of natural visual system, such as the organization of coarse and fine processing of stimuli
in separate pathways.

Keywords: neural networks, evolutionary computation, modules, emergence

1. Introduction

The design of neural networks by evolutionary algo-
rithms has attracted great interest in the quest to de-
velop adaptive systems that can change architectures
and learning rules according to differing environments.
There are more than one hundred publications that dis-
cuss evolutionary design methods applied to neural
networks [1–7]. One of the important advantages of
evolutionary neural networks is their adaptability to
a dynamic environment, and this adaptive process is
achieved through the evolution of connection weights,
architectures and learning rules [5].

Designing the optimal architecture of neural net-
works can be formulated as searching in the space in
which each point represents an architecture. The per-
formance level of all the architectures forms a surface

in the space. There are several characteristics in such
a surface which make evolutionary algorithms promis-
ing candidates with respect to conventional learning
models [8].

Most of the previous evolutionary neural networks,
however, show little structural constraints. Some net-
works assume total connectivity between all nodes.
Others assume a hierarchical, multilayered structure
where each node in a layer is connected to all nodes
in neighboring layers. However, there is a large body
of neuropsychological evidence showing that the hu-
man information processing system consists of mod-
ules, which are subdivisions in identifiable parts, each
with its own purpose or function.

The question may then be raised on how to design
neural networks with various modules. There have also
been extensive works to design efficient architectures

P1: SAD

Applied Intelligence KL638-01-Cho October 15, 1998 15:12

192 Cho and Shimohara

from an engineering point of view which has produced
some success in several problems [9–11]. However,
we know of no comprehensive analytical solution to the
problem of relating architecture to function. This paper
focuses on the evolutionary method that makes very
few assumptions about the functions to be performed
by the architecture.

The architecture of the brain has resulted from a
long evolutionary process in which a large set of spe-
cialized subsystems emerged interactively carrying out
the tasks necessary for survival and reproduction, but
it appears that learning a large-scale task from scratch
in such networks may take a very long time. There-
fore, this paper takes a module as a building block for
modular neural networks. Each module has the abil-
ity to autonomously categorize input activation pat-
terns into discrete categories, and representations are
distributed over modules rather than over individual
nodes. Among the general principles are modularity,
locality, self-induced noise, and self-induced learning.
The proposed model of evolutionary neural networks
is able not only to develop new functionality sponta-
neously but also to grow and evolve its own structure
autonomously.

The rest of this paper is organized as follows. Sec-
tion 2 briefly discusses some related works. In Sec-
tion 3, we present the evolutionary modular neural
networks in detail, and the simulation results with the
problem of recognizing handwritten digits are shown
in Section 4.

2. Related Works

Related work involves various kinds of growth-model
coding for evolving neural networks: Kitano [3] and
Gruau and Whitley [12] use grammatical encoding to
develop artificial neural networks. Harp et al. [1] try to
evolve the gross anatomy and general operating param-
eters of a network by encoding areas and projections
onto them into the genome. Nolfi and Parisi [13] use
an abstraction of axon growth to evolve connectivity
architectures. Most of these models do not aspire to be
biologically defensible, though.

In contrast, a number of other researchers have
looked at more biologically inspired models of evolu-
tionary process: Some work is based on the grammar-
based approach first developed by Lyndenmayer. For
instance, Mjolsness et al. [14] use grammatical rules
to account for morphological change, coupled to a

dynamical neural network to model the internal regu-
latory dynamics of the cell. Fleischer and Barr [15]
have a hard-coded model for gene-expression that they
combine with a cell simulation program.

It is the combination of a biologically defensible
model of development with evolutionary methods that
we would like to apply to the design of neural net-
works, something that at this point in time has not yet
been addressed in the existing literature. The point of
this research is to utilize modules as building blocks for
developing neural networks by an evolutionary mecha-
nism that is quite similar to genetic programming [16].

3. Evolutionary Modular Neural Networks

3.1. Overview

In order to evolve neural processing systems consist-
ing of modules, a population of the individuals having
various connectivity and size is maintained. Each in-
dividual is a modular neural network represented by
a tree-structured chromosome. The module derives its
basic internal structure from the neocortical minico-
lumn: Inhibitory connections are mostly short range,
while long-range connections are mostly excitatory. As
a mechanism for generating change and integrating the
changes into the whole system, genetic programming
produces the networks that have a variety of intermod-
ule connectivity and module sizes, and Hebb learn-
ing rule applies to excitatory intermodular connections,
whereas all intramodular connections are assumed to
remain fixed. Each module serves as a higher order
unit with a distinct structure and function.

Fig. 1 summarizes the overall algorithm for the pro-
posed method. The initial population is generated with
tree-structured chromosomes each of which is devel-
oped to a modular neural network of different con-
nectivity and module sizes. After the developmental
process, Hebb rule is applied to each network to train
the intermodular connections with a training set, yield-
ing a fitness value. If an acceptable solution is found,
the algorithm stops. Otherwise, the next population
is created from the current one with selection and ge-
netic operations: The selection step accepts the better
individuals into the mating pool, where genetic mani-
pulation generates the new population with crossover
and mutation operators. In our work to date, we have
used an evolutionary algorithm similar to genetic pro-
gramming with rank-based selection scheme [17].

P1: SAD

Applied Intelligence KL638-01-Cho October 15, 1998 15:12

Evolutionary Learning of Modular Neural Networks 193

Figure 1. Algorithm for the proposed method.

3.2. Modular Neural Networks

The basic elements and structure of a module is de-
signed to model neocortical minicolumns, as first pro-
posed by Murre [18]. The activation of nodei at time
t + 1, denoted asai (t + 1), is a function of its activa-
tion att , ai (t), and its input excitationei which may be
either positive or negative as follows:

• positive input:

ai (t + 1) = (1− k)ai (t)+ ei

1+ ei

× [1− (1− k)ai (t)], ei ≥ 0 (1)

• negative input:

ai (t + 1) = (1− k)ai (t)+ ei

1− ei

×(1− k)ai (t), ei < 0 (2)

where

ei =
∑

j

wi j aj (t) (3)

wi j denotes the weight of a connection from nodej to
nodei (see Fig. 2), andk is a constant between 0 and 1.
In our simulation, we setk as 0.05. In the activation

Figure 2. Interconnection between nodes.

rule, (1− k)ai (t) represents the autonomous decay of
the activation, ei

(1+ei)
squashes the input excitation to a

number between 0 and 1, and the third part causes an
asymptotic approach to the maximum (or minimum)
activation.

A module composed of the above nodes is loosely
based on the neural structure of the neocortical mini-
column. A single node is either excitatory or inhibitory,
but not both (Dale’s law). Processes in nodes only
rely on information that is locally available through
synapses or through locally dispersed neurotransmit-
ters (principle of locality). The internal connections in
a module is fixed and the weights of all intramodular
connections are nonmodifiable during learning process
(see Fig. 3 and Table 1).

R-nodes have modifiable connections to the R-nodes
in other modules and fixed connections to nodes in the
same module. They are the only nodes in a module
that may send or receive excitation to or from nodes
in other modules. V-nodes only have inhibitory outgo-
ing connections. A V-node inhibits all other nodes in a
module, and in particular inhibits each other so strongly

Figure 3. (a) Schematic diagram of the internal structure of a mod-
ule. (b) Simplified representation of the module (a).

P1: SAD

Applied Intelligence KL638-01-Cho October 15, 1998 15:12

194 Cho and Shimohara

Table 1. Weight values used in each module that
consists of several pairs of R-node and V-node.

Weights Value

Connects R-node to its paired V-node 0.5

Connects V-node to its paired R-node −1.2

Connects V-node to all R-nodes
other than paired R-nodes −10.0

Interconnects V-nodes −1.0

Connects V-nodes to A-node −0.6

Connects R-nodes to A-node 0.4

Connects A-node to E-node 1.0

Connects E-node to R-nodes 0.5

that competition arises among the V-nodes. The R- and
V-nodes form matched pairs as every V-node receives
excitatory input from only one R-node. A-nodes are
excited by all R-nodes in a module and inhibited by
all V-nodes. The activation of the A-node is a positive
function of the amount of competition in a module, and
E-node activation is a measure of the level of competi-
tion going on in a module.

The process goes with the resolution of a winner-
take-all competition between all R-nodes activated by
input. In the first presentation of a pattern to a module,
all R-nodes are activated equally, which results in a
state of maximal competition. It is resolved by the in-
hibitory V-nodes and a state-dependent noise mecha-
nism. The noise is proportional to the amount of com-
petition, as measured through the number of active
R-nodes by the A-node and E-node.

The functional characteristics of a module does not
depend on the size of the module, i.e., the number of
R- and V-nodes. This number of the R-V pairs can
be determined by the evolutionary process. The most
important feature of a module is to autonomously cate-
gorize input activation patterns into discrete categories,
which is facilitated as the association of an input pattern
with a unique R-node.

The interconnection between two modules means
that all R-nodes in one module are connected to all
R-nodes in the other module. These intermodule con-
nections are modifiable by Hebb rule with the following
equation:

1wi j (t + 1)

=µtai

(
[K −wi j (t)]aj − Lwi j (t)

∑
f 6= j

wi f (t)af

)
,

(4)

µt = d + wµE aE, (5)

whereai , aj andaf are activations of the corresponding
R-nodes, respectively:wi j (t) is the interweight bet-
ween R-nodesj andi ,wi f (t) indicates an interweight
from a neighboring R-nodef (of j) to R-nodei , and
1wi j (t +1) is the change in weight fromj to i at time
t +1. Note thatL andK (K determines the maximum
value of an interweight) are positive constants,d is a
constant with a small value, andaE is the activation of
the E-node.

The first term within the large parentheses is al-
ways positive and represents increases in the weight.
The second term is responsible for all decreases in the
weight. An inactive connection (aj = 0) to an acti-
vated node (ai) will always decrease, because only the
second term will be nonzero. In our simulation we set
the parameters asK = L = 1.0, d = 0.005, and
wµE = 0.05, but the exact value of the parameters does
not seem to be very critical and indeed very large vari-
ations have been shown to produce similar qualitative
behavior of a module.

3.3. Gene Representation

Two kinds of information should be encoded in the
genotype representation: the structure of intermodule
connection and the number of nodes in each module.
The intermodule weights are determined by the Hebb
rule mentioned at the previous section. In order to re-
present the information appropriately, a tree-like struc-
ture has been adopted. An arc in a tree expresses an
intermodule connection, and each node represents a
specific module and the number of nodes therein.

An example of the genotype is shown in Fig. 4. Each
node has a number representing a specific module. In
this figure the information on the number of nodes is
omitted. The root of the tree is the input module that
replaces the start symbol. A child node has a module
number to be applied to the symbols which represent
the modules connected by its mother module. In the
course of decoding, the connections from a module to
itself and the ones to the input module are ignored.
This representation has some redundant connections
as well as some meaningless ones, which might define
some module that is not in the path from input to out-
put modules. This is not a critical problem and even
may be exploited to increase modeling power, because
the literature in biology indicate that there are a lot of
redundant and meaningless codes in the real genes.

By performing a number of genetic operators in the
gene pool, the interconnection between modules as
well as the size of them are changed. The range of

P1: SAD

Applied Intelligence KL638-01-Cho October 15, 1998 15:12

Evolutionary Learning of Modular Neural Networks 195

Figure 4. (a) A chromosome encoded by tree structure. (b) A
modular neural network architecture developed by the chromosome
of diagram (a).

the number of nodes in a module depends on the num-
ber of bits to represent it in chromosome, and in our
simulation it is set as 10. Designing the chromosome
to represent the interconnectivity makes it possible to
generate a variety of offsprings and to evolve them.

3.4. Genetic Operators

The following genetic operators are used in our ap-
proach.

• Selection: Rank-based selection [19] is used. In
this selection scheme, each individual survives to
the next generation in proportion to the rank of its
performance. Elite preserving strategy [16] is also
applied to the selection. Some of the best individuals
in the population are made to remain to the next

generation. This prevents all of the best individuals
from being eliminated by stochastic genetic drifts.
• Crossover: Crossover exchanges subtrees between

two individuals. It is similar to the operator used in
genetic programming [16]. By performing crossover,
many useful interconnection parts are gathered, and
the intermodular connectivity evolves. An example
of the crossover is shown in Fig. 5(a).
• Deletion: Deletion deletes a subtree from the indi-

vidual. This operator is expected to cause the dele-
tion of useless parts in the individual. As a result,
a more compact individual with the same functions
might be generated (see Fig. 5(b)).
• Mutation: Mutation changes each tree node to a new

node in proportion to the mutation rate. This opera-
tor plays the role of changing the number of nodes in
the module. An important role of the mutation is to
enforce local search and make slight modifications
to the connectivity parts obtained by crossover and
duplication. An example of mutation is shown in
Fig. 5(c).
• Insertion: Insertion is to insert subtrees or nodes

from another individual below the selected node (see
Fig. 5(d)).

4. Simulation Results

In order to confirm the possibility of the proposed
model, we have used the handwritten digit database
of Concordia University of Canada, which consists
of 6000 unconstrained digits originally collected from
dead letter envelopes by the U.S. Postal Services at dif-
ferent locations in the U.S. The digits of this database
were digitized in bilevel on a 64× 224 grid of 0.153
mm square elements, giving a resolution of approxi-
mately 166 PPI [20]. Among the data, 300 digits were
used for training, and another ten sets of 300 digits for
testing. Figure 6 shows some representative samples
taken from the database. We can see that many different
writing styles are apparent, as well as digits of different
sizes and stroke widths.

The size of a pattern was normalized by fitting a
coarse, 10× 10 grid over each digit. The proportion
of blackness in each square of the grid provided 100
continuous activation values for each pattern. Network
architectures generated by the evolutionary mecha-
nism were trained with 300 patterns in two rounds of
subsequent presentations. A single presentation lasted
for 60 cycles (i.e., iterative updates of all activations
and learning weights). A fitness value was assigned

P1: SAD

Applied Intelligence KL638-01-Cho October 15, 1998 15:12

196 Cho and Shimohara

Figure 5. Graphical explanation on the genetic operators used.

to a solution by testing the performance of a trained
network with the 300 training digits, and the general-
ization performance was tested on a set of untrained
300 digits.

Figure 6. Sample data.

Initial population consisted of 50 neural networks
having random connections. Each network contains
one input module of size 100, one output module of
size 10, and different number of hidden modules. The
size in a module means the number of the R-V pairs,
and every module can be connected to every other mod-
ule. The evolution parameters used in this experiment
are as follows: crossover is 0.5, mutation is 0.02, and
insertion and deletion are 0.001, respectively.

Table 2 shows the results of generalization perfor-
mance obtained by the networks at different genera-
tions, and Fig. 7 shows the corresponding networks
evolved. As can be seen, evolution led to increased
complexity, and new structures as well as new function-
ality emerged in the course of this method of training.
Generally, the early networks have simple structures.
In the early stages of the evolution some complicated
architectures emerged like (d) and (e), but they disap-
peared as the search for an optimal solution matured.
The earlier good solutions probably overfit the training
set leading to poor generalization.

The last network (g) is the final architecture produc-
ing the best result. This contains four hidden modules
of size 3, 3, 8 and 3, implementing different subsys-
tems that cooperatively process input at different reso-
lutions. The direct connection from the input module
to the output module forms the most fine-grained pro-
cessing stream. It is supplemented by a sophisticated
modular structure in which two modules are globally
connected with the input. A sort of hierarchical struc-
ture (IN→ 2→ 4→ OUT) with feedback connections
has emerged, and two coarser processing streams as
well as local feedback projections support the main
processing stream.

In the test of generalization capability, for the pat-
terns that are similar to the trained, the network pro-
duced the direct activation through a specific pathway:
one of the five basic pathways in Fig. 7(g) (IN → OUT,

P1: SAD

Applied Intelligence KL638-01-Cho October 15, 1998 15:12

Evolutionary Learning of Modular Neural Networks 197

Table 2. Generalization performance of the networks evolved with different complexity.

Network Generation Correct No. of module No. of node No. of connection

1 5 91.33% 2 17 7

2 21 93.67% 2 8 7

3 35 95.00% 4 16 13

4 65 95.00% 4 16 14

5 178 95.00% 4 16 15

6 179 96.33% 4 14 16

7 203 97.33% 4 17 15

IN → 2→ 3→ OUT, IN → 2→ 4→ OUT, IN →
5→ 4→ OUT, IN → 2→ 3→ 4→ OUT). On the
contrary, the network oscillated among several path-
ways to make a consensus for strange patterns. The
basic processing pathways in this case complemented
each other to result in an improved overall categoriza-
tion. Furthermore, the recurrent connections utilized
bottom-up and top-down information that interactively
influences categorization at both directions. The os-
cillation is stopped when the whole network stabilizes
as only one R-node at the output module remains to
activate.

It is difficult to fully analyze the neural behaviors
because they concern with the oscillatory activation
dynamics. To make the analysis simpler, we have pre-
sented a sample of the class 1 to the final network and
obtained a series of snapshots of the internal activa-
tions. This system has turned out to produce the correct
result with respect to the input as shown in Table 3. In
this network, the coupled oscillatory circuit between
Module 4 andOUT module resolves the competition
and induces the correct classification.

Table 3. A series of snapshots of the internal activations. The
numbers in each column represent the activated nodes and∗means
that there is no node activated in the module.

Step OUT Module 2 Module 3 Module 4 Module 5

1 0123456789 012 ∗ ∗ ∗
2 0123456789 012 012 01234567 012

3 0123456789 012 012 0234567 012

4 0123456789 0 012 023456 012

5 0123456789 0 012 03456 012

6 012345789 0 012 3456 012

7 12345789 0 012 456 012

8 178 0 012 5 012

9 1 0 012 5 012

In order to illustrate the effectiveness of the model
proposed, a comparison with modular neural network
without evolutionary algorithm and traditional neural
network has been conducted. Basically, the structure
of the modular neural networks cannot be determined
without evolutionary algorithm, but for a comparison
we manually design several structures among which
the best one is as shown in Fig. 8. On the other hand,
multilayer perceptron has been selected as a traditional
neural network, because it is well known as a power-
ful pattern recognizer. The network is constructed as
100× 20× 10, where the number of hidden nodes, 20,
has been determined after several trial-and-errors. The
error backpropagation algorithm is used for training
and the iterative estimation process is stopped when an
average squared error of 0.9 over the training set is ob-
tained, or when the number of iteration reaches 1000,
which is adopted mainly for preventing networks from
overtraining. The parameter values used for training
are: learning rate is 0.4 and momentum parameter is
0.6.

Table 4 reports the recognition rates of the three dif-
ferent methods over ten different sets of the data. As
can be seen, the overall recognition rates for the pro-
posed method are higher than those for the modular
neural network without evolutionary algorithm and the
multilayer perceptron. The following test, the paired
t-test, can further support to determine whether the
proposed method is superior to the other methods or
not.

For a given test problem, letf a
i denote the solution

at convergence for methoda using test datai . To test
whether methodsa andb have the same mean solution
value, we compute the following statistic:

t =
√

nx̄√
1

n−1

∑n
i=1(xi − x̄)2

(6)

P1: SAD

Applied Intelligence KL638-01-Cho October 15, 1998 15:12

198 Cho and Shimohara

Figure 7. Some of the modular neural networks evolved: (a) 5th generation; (b) 21st generation; (c) 35th generation; (d) 65th generation; (e)
178th generation; (f) 179th generation; and (g) 203rd generation (final network).

P1: SAD

Applied Intelligence KL638-01-Cho October 15, 1998 15:12

Evolutionary Learning of Modular Neural Networks 199

Table 4. Comparison of the proposed method
with the modular neural network without evolu-
tionary algorithm (MNN without EA) and a tra-
ditional neural network (Traditional NN).

Data set Proposed MNN without Traditional
method EA NN

1 97.67 90.33 95.67

2 97.67 89.67 96.33

3 97.33 87.67 94.67

4 98.00 89.33 96.67

5 96.33 88.33 93.67

6 97.00 89.00 94.67

7 98.00 89.33 96.00

8 97.00 87.67 95.67

9 96.67 89.00 94.67

10 97.67 89.67 95.33

Mean 97.33 89.00 95.33

S.D. 0.57 0.87 0.92

Figure 8. A modular neural network designed by hand for a com-
parison with the evolved network.

wheren = 10, xi = f a
i − f b

i , and x̄ = 1
n

∑n
i=1 xi .

(In this case the methodb is of the proposed method.)
From this value we can reject the null hypothesis that
H0 : x̄ ≤ 0 in favor of the alternative that̄x > 0 with
significance levelα, whereα = 8(t) and8(t) can
be obtained from the table of percentage points of the
t-distribution.

Since it follows t-distribution, anα point can be
computed as the thresholdtα, whereα could be 95,
97.5, 99 or 99.5%. Then, if

|t | > tα (7)

the null hypothesis is rejected at a 100%− α level of
significance, i.e., the proposed method is superior to
the alternative method. Otherwise, the null hypothesis

is accepted, i.e., we cannot say the proposed method
improves the performance significantly.

In the comparison, the degree of freedom is(n− 1)
= 9, and the thresholdtα ’s with α = 95, 97.25, 99 and
99.5% are 1.833, 2.262, 2.821 and 3.250, respectively.
This test indicates that the values oft are greater thantα
with all theα values (t = −36.059 for MNN without
EA andt = −12.154 for Traditional NN). Therefore,
for all the cases “no-improvement” hypothesis is re-
jected at a 0.5% level of significance. This is a strong
evidence that the proposed method is superior to the
alternative methods.

However, the proposed model requires a large
amount of time to evolve, which hinders from increas-
ing more patterns for training, and this is not meant to
be a practical pattern recognizer. We can just appreciate
the effectiveness of evolution to design complex struc-
tures with some sophisticated network architectures
automatically. Moreover, the proposed evolutionary
neural networks can be learned incrementally, which
demonstrates the relative superiority compared with the
conventional neural networks such as backpropagation
neural network.

5. Concluding Remarks

We have presented the modular neural networks de-
veloped by genetic programming, having potential of
flexibility and adaptability to environmental changes.
It has a modular structure with intramodular compe-
tition, and intermodular excitatory connections. This
sort of network will also take an important part in sev-
eral engineering tasks exhibiting adaptive behaviors.
We are in the process of applying this method to de-
sign the control system for behavior-based robots, es-
pecially Khepera. Furthermore, we are exploring the
dynamics of the modular neural networks once training
is complete, and attempting to make the evolutionary
mechanism sophisticated by incorporating the concept
of coevolution and some developmental process like
L-system into the evolutionary process.

Acknowledgments

The author would like to thank Dr. Y. Tohkura at
ATR HIP laboratories for continuous encouragement.
This work was supported in part by a grant no. 961-
0901-009-2 from the Korea Science and Engineering
Foundation (KOSEF) and a grant no. SC-13 from the
Ministry of Science and Technology in Korea.

P1: SAD

Applied Intelligence KL638-01-Cho October 15, 1998 15:12

200 Cho and Shimohara

References

1. S.A. Harp, “Towards the genetic synthesis of neural networks,”
in Proc. 3rd Int. Conf. Genetic Algorithms and Their Applica-
tions, Morgan Kaufmann: San Mateo, CA, 1989, pp. 360–369.

2. D. Whitley and T. Hanson, “Optimizing neural networks using
faster, more accurate genetic search,” inProc. 3rd Int. Conf.
Genetic Algorithms and Their Applications, Morgan Kaufmann:
San Mateo, CA, 1989, pp. 391–396.

3. H. Kitano, “Designing neural networks using genetic algorithms
with graph generation system,”Complex Systems, vol. 4, no. 4,
pp. 461–476, 1990.

4. D.T. Cliff, I. Harvey, and P. Husbands, “Incremental evolution
of neural network architectures for adaptive behavior,” Technical
Report CSRP 256, University of Sussex School of Cognitive
and Computing Science, 1992.

5. X. Yao, “Evolutionary artificial neural networks,”Int. Journal
of Neural Systems, vol. 4, no. 3, pp. 203–222, 1993.

6. S. Nolfi, O. Miglino, and D. Parisi, “Phenotypic plasticity in
evolving neural networks: Evolving the control system for an
autonomous agent,” Technical Report PCIA-94-04, Institute of
Psychology, C.N.R., Rome, 1994.

7. S.-B. Cho and K. Shimohara, “Toward evolvable model of modu-
larized neural networks,” inProc. the 5th Annual Conf. Japanese
Neural Network Society, Tsukuba, November 1994, pp. 117–
118.

8. G.F. Miller, P.M. Todd, and S.U. Hedge, “Designing neural net-
works using genetic algorithms,” inProc. 3rd Int. Conf. Genetic
Algorithms and Their Applications, Morgan Kaufmann: San
Mateo, CA, 1989, pp. 379–384.

9. S.-B. Cho and J.H. Kim, “Combining multiple neural networks
by fuzzy integral for robust classification,”IEEE Trans. Systems,
Man, and Cybernetics, vol. 25, no. 2, pp. 380–384, 1995.

10. R.A. Jacobs, M.I. Jordan, S.J. Nowlan, and G.E. Hinton, “Adap-
tive mixtures of local experts,”Neural Computation, vol. 3,
pp. 79–87, 1991.

11. J.B. Hampshire II and A. Waibel, “The meta-pi network: Build-
ing distributed knowledge representations for robust multisource
pattern recognition,”IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 14, no. 7, pp. 751–769, 1992.

12. F. Gruau and D. Whitley, “The cellular development of neural
networks: The interaction of learning and evolution,” Research
Report 93-04, Laboratoire de l’Informatique du Parallelisme,
Ecole Normale Superieure de Lyon, 1993.

13. S. Nolfi and D. Parisi, “Growing neural networks,” Report PCIA-
91-15, Institute of Psychology, C.N.R., Rome, 1991.

14. E. Mjolsness, D.H. Sharp, and J. Reinitz, “A connectionist model
of development,”Journal of Theoretical Biology, vol. 152,
pp. 429–453, 1991.

15. K. Fleischer and A.H. Barr, “A simulation testbed for the study
of multicellular development: The multiple mechanisms of
morphogenesis,” inArtificial Life III , edited by C.G. Langton,
Addison-Wesley: Reading, MA, pp. 389–416, 1994.

16. J.R. Koza,Genetic Programming on the Programming of Com-
puters by Means of Natural Selection, The MIT Press, 1992.

17. D. Whitley, “The GENITOR algorithm and selective pressure:
Why rank-based allocation of reproductive trials is best,” in
Proc. 3rd Int. Conf. Genetic Algorithms and Their Applications,
Morgan Kaufmann: San Mateo, CA, 1989, pp. 116–121,

18. J.M.J. Murre, R.H. Phaf, and G. Wolters, “CALM: Categorizing
and learning module,”Neural Networks, vol. 5, pp. 55–82, 1992.

19. D.E. Goldberg,Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley, 1989.

20. C.Y. Suen, C. Nadal, T. Mai, R. Legault, and L. Lam, “Recogni-
tion of handwritten numerals based on the concept of multiple
experts,” inProc. 1st Int. Workshop Frontiers in Handwriting
Recognition, Montreal, Canada, 1990, pp. 131–144.

Sung-Bae Choreceived the B.S. degree in computer science from
Yonsei University, Seoul, Korea, in 1988 and the M.S. and Ph.D.
degrees in computer science from KAIST (Korea Advanced Institute
of Science and Technology), Taejeon, Korea, in 1990 and 1993,
respectively.

He worked as a Member of the Research Staff at the Center for Ar-
tificial Intelligence Research at KAIST from 1991 to 1993. He was
an Invited Researcher of Human Information Processing Research
Laboratories at ATR (Advanced Telecommunications Research) In-
stitute, Kyoto, Japan from 1993 to 1995. Since 1995, he has been an
Assistant Professor in the Department of Computer Science, Yonsei
University. His research interests include neural networks, pattern
recognition, intelligent man-machine interfaces, evolutionary com-
putation, and artificial life.

Dr. Cho was awarded outstanding paper prizes from the IEEE
Korea Section in 1989 and 1992, and another one from the Korea In-
formation Science Society in 1990. He was also the recipient of the
Richard E. Merwin prize from the IEEE Computer Society in 1993.
He was listed in Who’s Who in Pattern Recognition from the Inter-
national Association for Pattern Recognition in 1994, and received
a best paper award at International Conference on Soft Computing
in 1996. He is a Member of the Korea Information Science Society,
INNS, the IEEE Computer Society, and the IEEE Systems, Man, and
Cybernetics Society.

Katsunori Shimohara received the B.E. degree in 1976 and the
M.E. degree in 1978 in information engineering from Kyushu
University, Fukuoka, Japan. Currently he is Head of Evolution-
ary Systems Departments both at ATR Human Information Pro-
cessing Research Laboratories and at NTT Communication Science
Laboratories in Kyoto, and Guest Professor, Graduate School of
Informatics, Kyoto University, Kyoto, Japan.

