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Abstract

This paper surveys various applications of artificial evolution in the field of modular robots. Evolutionary robotics aims

to design autonomous adaptive robots automatically that can evolve to accomplish a specific task while adapting to

environmental changes. A number of studies have demonstrated the feasibility of evolutionary algorithms for generating

robotic control and morphology. However, a huge challenge faced was how to manufacture these robots. Therefore, modular

robots were employed to simplify robotic evolution and their implementation in real hardware. Consequently, more research

work has emerged on using evolutionary computation to design modular robots rather than using traditional hand design

approaches in order to avoid cognition bias. These techniques have the potential of developing adaptive robots that can

achieve tasks not fully understood by human designers. Furthermore, evolutionary algorithms were studied to generate

global modular robotic behaviors including; self-assembly, self-reconfiguration, self-repair, and self-reproduction. These

characteristics allow modular robots to explore unstructured and hazardous environments. In order to accomplish the

aforementioned evolutionary modular robotic promises, this paper reviews current research on evolutionary robotics and

modular robots. The motivation behind this work is to identify the most promising methods that can lead to developing

autonomous adaptive robotic systems that require the minimum task related knowledge on the designer side.

Keywords Evolutionary robotics · Modular robots · Task-based design · Self-assembly · Self-reconfiguration ·

Self-repair · Self-reproduction

1 Introduction

Producing autonomous adaptive robots is a huge challenge.

In biology, autonomous and adaptive creatures are produced

using evolution. However in industry, mainstream robots

use machine learning to produce adaptive behavior to simu-

late biological aspects while neglecting the autonomous side

of it. Therefore, evolutionary algorithms are used to opti-

mize robotic autonomy and adaptation producing what is

known as evolutionary robots [1].

Evolutionary robotics evolves populations of robots by

applying evolutionary computational methods, and then

selects the fittest to survive. The evolutionary approach

continuously designs and builds different robots with

improved capabilities rather than practicing the hand
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design approach that can be extremely difficult when

designing autonomous adaptive robots. Thus far, applying

evolutionary algorithms lack the guarantees of finding an

optimal solution; however, the benefits of this method

outweigh the cost. The benefits of evolutionary algorithms

include the power to improve the parameters and the

structure of the robotic control and morphology [2, 3]. In

order to maximize that power, modularity could play a role

as the basic building block in the robotic system to simplify

the implementation and search space because of its discrete

nature.

An initial review of the literature was presented in [4],

but this paper presents a holistic review of the area, detailed

bibliography, and well referenced discussion of the state of

the art that can be used as a guideline to understand the

trends of this field. The previous work categorized modu-

lar robotic systems based on the dominant feature of each

robot. It focused on the modular robots while overlook-

ing the evolutionary aspect of these systems. Evolutionary

robotics was discussed as a potential technique that can

be applied to evolve the robots control systems. On the

other hand, this paper focuses mainly on the evolutionary
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modular robotic systems that applied evolutionary algo-

rithms to improve the resulting modular robotic structure

and behavior with an emphasis on applying evolutionary

computation to enhance the modular robotic task based

design. It also reviews more prototypes that used evolution-

ary algorithms to solve certain robotic challenges, such as

motion planning or changing the robot geometric structure.

This paper starts with reviewing some research work done

on evolving robotic control in a fixed morphology and co-

evolving robotic control and morphology. Then, modular

robotics are discussed as a method to design and implement

evolutionary robots in the physical world, as advanced tech-

nology and rapid prototyping techniques have made these

modular robots feasible. Moreover, evolutionary computa-

tion can empower modular robots by allowing them to self-

assemble, self-reconfigure, self-repair, and self-reproduce.

Thereafter, numerous modular robotic applications are ana-

lyzed along with their capabilities of performing various

evolutionary challenges. Finally, the current state of the art

and challenges are discussed.

2 Evolutionary Robotics

In nature, evolution produces heritable changes in the pheno-

types of organisms over multiple generations for better adap-

tation to the environment. In robotics, evolution has been

proposed as a nature inspired approach to avoid the bias

and limitations introduced by human designers and to pro-

duce better adapted robots to the environmental changes

[5]. Simply, evolutionary robotics is a method of creating

autonomous robots automatically without human interven-

tion [6].

The Darwinian theory of evolution inspired evolutionary

robotics. This theory states that all organisms develop

through mutation, crossover, and selection that increase the

new generation’s ability to compete, survive, and reproduce

[7]. Based on the principle of selective reproduction of the

fittest, robots are viewed as autonomous artificial organisms

that can develop their own skills by interacting with the

environment and without human intervention. The fittest

robots survive and reproduce until a robot that satisfies the

performance criteria is produced [8].

Each robot comprises two major parts: control (brain)

and morphology (body). Controls are represented in many

ways including neural networks that map sensory input

to actuator outputs. Morphology can be described as tree-

based representation, L-system consisting of set of rules

that can produce construction sequences or regulatory

networks. To allow for open-ended synthesis, both control

and morphology should co-evolve along with the fitness

functions and evaluation methods [9].

Evolving robotic controls has received a lot of attention

on research because controls are more adaptable than

morphology. Floreano et al. described evolving a small-

wheeled robot control that is comprised of a neural network

using a simple Genetic Algorithm to navigate a looping

maze. Their experiment showed that the fitness function

evolved and the cruising speed of the robot evolved

as well, demonstrating that evolution can lead to better

adaptation [6]. Nolfi and Floreano presented a set of

navigational experiments in their book, ranging from the

simple to the very complex in order to address different

adaptation mechanisms. In some cases, the evolved solution

outperformed the hand-designed solution by capitalizing on

interactions between machine and environment that could

not be captured by a model-based approach. On the other

hand, more complex tasks exposed the limits of reactive

architectures [8].

In the previous work, robotic controls were evolved

for fixed morphological structures that were user-designed.

Other research studies indicate the need to co-evolve the

robotic control and morphology in order to produce fitter

robots, as is the case of nature. Paul and Bongard introduced

coupled evolution of robotic morphology and control on

a biped robot in simulation. The closed loop recurrent

neural network controller was optimized simultaneously

with the morphological parameters using a fixed length

Genetic Algorithm [10]. Zykov et al. applied the same

theory on a physical robot to evolve the dynamic gates in

hardware. The nine-legged robot’s open-loop controller was

evolved using a Genetic Algorithm to allow evolving speed

and locomotion pattern under the rhythmicity constraint

[11]. Lund et al. investigated the co-evolution of robotic

controller and morphology using LEGO parts to construct

the evolved morphology and downloaded the evolved

controller to LEGO MINDSTORM RCX. The search space

for morphology was limited, but the solution search space

was enlarged when co-evolving controller and morphology

[12, 13]. Sims created a system where virtual robotic control

and morphology co-evolve to allow the robots to compete

in a physically simulated 3D world to gain control over

common resources. The robots were made of 3D cubes and

oscillators [14].

The techniques presented for coupled evolution of

robotic control and morphology allowed the automation

of designing complex systems that would be difficult

to design using traditional methods. Lipson and Pollack

explored automatic design concepts by building robots

using lower-level building blocks with no sensors. The

control was composed of neurons and the morphology

was composed of bars and linear actuators. The resulting

solutions were remarkably elaborate and would have been

difficult to design using traditional methods [15]. However,
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an obvious constraint was the manufacturability of the

resulting solutions. Therefore, Faı́ña et al. proposed the use

of modular robots as the fundamental building blocks for

evolutionary processes because modularity allows building

a wide variety of robotic structures, simplifies the search

space, and ensures easy implementation in reality [5].

3Modular Robotics

Modular robots are composed of various units or modules,

hence the name. Each module involves actuators, sensors,

computational, and communicational capabilities. Usually,

these systems are homogeneous where all the modules are

identical; however, there could be heterogeneous systems

that contain different modules to maximize versatility [5].

Modular robotic systems have three promises: versatility,

robustness, and low cost. Versatility is the capability

of the modular robotic system to form a number of

different shapes, each with big numbers of degrees of

freedom (DOF). In other words, to allow the robot to

self-reconfigure in order to accomplish various tasks in

different environments. Versatility can be measured by the

number of isomorphic configurations the robotic system

can form and by the number of DOF in the system. The

number of configurations grows exponentially with the

number of modules and the number of DOF grows linearly

with the number of modules. Robustness comes from

redundancy and self-repair. When the robot is composed

of many identical modules and one fails, any other module

can replace it to keep the system running. Finally, low

cost promise is achieved through batch fabrication. As

the number of repeated modules increases, the economies

of scale come into play and the per-module cost goes

down [16]. Also, maintaining low cost can be achieved

through rapid prototyping equipment techniques; such as

3D printing, that can build any object by laying down

successive layers of material. In order to empower the

aforementioned characteristics in modular robotic systems,

evolutionary task-based design approaches are utilized to

replace traditional design methods.

In 1995, Chen and Burdick proposed a system to find

optimal modular robotic design to accomplish a specific

task. This system is formulated as a discrete optimization

function based on assembly incidence matrix to represent

the robotic configuration. These matrixes are encoded

into bit strings to best utilize Genetic Algorithm. Genetic

Algorithm is used for optimization because of the discrete

nature of the search space, even though the application

of Genetic Algorithm could be computationally expensive.

The robots consist of link and joint modules and were

implemented in simulation [17].

Chung et al. introduced in 1997 a task based design

method for modular robot manipulators. The robotic system

consists of manipulator base, link, and joint modules.

The robot configuration is determined using kinematic

relations. Then, Genetic Algorithm is used to find the

optimal link length for a specific task. Because of the

complexity of the problem, the computation effort required

for Genetic Algorithm is tremendous. This algorithm has

been implemented on physical robots. This work considers

only the first level of modular architecture; which is

kinematics synthesis [18].

In the same year, Chocron and Bidaud presented an

adaptive multi-chromosome evolutionary algorithm for

optimizing task based kinematic design of modular robotic

systems. The robot consists of a mobile base and a set of

link and joint modules to assemble the manipulator arm.

The task is specified as 3D end-effector configurations.

The robots were implemented in simulation. This method

yielded better results compared to two-level GA and multi-

chromosome evolutionary algorithm; however, it still lacks

optimality. Additionally, the increase in the number of

design variables increases the search space exponentially

that results in making this algorithm insufficient [19].

According to Yang and Chen, with fewer DOF, the

modular robot can better perform the task in terms of

energy consumption and loading capacity. Therefore, they

proposed the minimized degree-of freedom concept for task

based modular robot design optimization in 2000. This

system uses assembly incidence matrix to represent the

robot configuration as in [17]. It also uses Evolutionary

Algorithm (EA) to search for optimal solutions. This

algorithm was implemented in simulation and produced

sub-optimal results [20].

Hornby et al. proposed in 2001 an automatic design

system for modular physical robots that can become

more complex. The goal of their work is to overcome

the limitations of using evolutionary design approach to

make it ready for practical engineering by reaching high

complexities and to simplify design changes by using

generative design and allowing reusability of modules.

The robots consist of bars and joints inspired by Tinker-

Toy™ components. The 2D robots are produced in

simulation using Lindenmayer system for design and

evolutionary algorithm for optimization. Then the actual

robot is hand-assembled from an evolved design. This work

described the co-evolution of the robotic control and bodies

for locomotion abilities and produced a real robot that was

tested and moved in the real world [21].

In 2013, Faı́ña et al. proposed an evolutionary designer

for heterogeneous modular robots. This system is capable

of designing complete robots including their control and

morphology. Each robot involves distributed control and
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heterogeneous modular architecture. Tree like representa-

tion is used for robotic morphology to smooth the search

space. A constructive evolutionary strategy is used to co-

evolve the robots control and morphology in simulation.

Then the resulting robots are implemented physically to

prove feasibility. The results were promising when applied

to solve a linear motion problem but needed improvements

in the case of static problems [5].

Moreover, evolutionary algorithms can be applied to

modular robots to allow self-assembly from constituent

modules, self-reconfiguration into different functional

forms, self-repair to detect errors and recover from failures,

and self-reproduce where one system can produce another

autonomous functional system.

3.1 Self-Assembly

One of the main benefits of modularity is the capability of

self-assembly, which is the natural construction of complex

multi-unit system using simple units governed by a set of

rules. The self-assembly process is ubiquitous in nature

as it generates much of the living cell functionality [22].

However, it is uncommon in the technical field because

it is considered as a new concept relatively in that arena,

although it could help in lowering costs and improving

versatility and robustness; which are the three promises

of modular robotics. The ability to form a larger stronger

robot using smaller modules allows self-assembled robots

to perform tasks in remote and hazardous environments.

In other words, self-assembly is the problem of designing

a collection of elements with edge binding properties

such that, when they mix randomly, they bind to form

desired assemblies. The elements may be homogenous or

heterogeneous; their binding properties may be fixed or

dynamic; and they may have a range of capabilities such

as ability to detect binding events or exchange information

with neighbors [23].

Various types of evolutionary algorithms have been uti-

lized in implementing self-assembly modular robotic sys-

tems. Bonabeau et al. studied employing Genetic Algorithm

to generate self-assembly rules for modular robotic systems

and explored the relationship between the space of pos-

sible rules and resulting biologically plausible structured

architectures. This work did not address the problem of

self-assembly according to pre-determined shapes [24].

Tolley et al. extended the stochastic self-assembly

modular robot proposed in [25] from 2D to 3D. They

used evolutionary approach to design robotic structures

according to an input function. These structures are evolved

in simulation using frequency-based representation. Then

the assembly algorithm takes place to plan the assembly

of the fittest evolved robot by sampling a graph of all

possible paths to the target structure and following those that

leave the most options open. The modules in this system

are unable to move on their own because they need to

circulate in turbulent fluid to accrete onto the structure. This

fluidic system could be scaled down to produce micro-scale

modules. This system lacks the possible feedback between

the design and assembly phases, which can have a large

impact on the evolving design if implemented to adapt to

assembly conditions [26].

3.2 Self-Reconfiguration

Recently, modular robotics has gotten attention from

researchers in the robotics field because of their abil-

ity to self-reconfigure [27]. Modular self-reconfigurable

robots involve various modules that can combine them-

selves autonomously into meta-modules that are capable of

performing various tasks under different circumstances [5].

The ability to self-reconfigure allows these robots of meta-

morphosis, which in turn makes them capable of performing

different sorts of kinematics. For instance, a robot may

reconfigure into a manipulator, a crawler, or a legged one

[27]. This sort of adaptability enables self-reconfigurable

robots to accomplish tasks in unstructured environments;

such as space exploration, deep sea applications, rescue

missions, or reconnaissance [28].

Yim et al. in 2002 classified reconfigurable robots into

three classes of architecture: lattice, chain, and mobile

based on how they reconfigure [28]. Then they added

deterministic and stochastic reconfigurations in 2007 [29].

Lattice architectures have modules that are arranged in

a 2D or 3D grid that can be used as a guide for modules

to determine their positions and form the new shape

accordingly. All modules remain attached to the main body

to simplify planning and control [29]. Moreover, lattice

architectures are capable of offering simpler reconfiguration

compared to other classes because control and motion

can be executed in parallel [27]. Lattice-type systems

exploit lattice regularity when aligning connectors during

self-reconfiguration in order to allow faster and easier

self-reconfiguration. However, assuming that all modules

conform to the lattice can be problematic for systems with a

big number of modules [30]. One example of a lattice-based

self-reconfigurable robot is M-TRAN [31, 32].

Chain/Tree architectures have modules that are con-

nected together in a string or tree topology. The serial

underlying architecture implies that each chain is always

attached to the rest of the modules at one or more points,

and the modules reconfigure by attaching and detaching to

and from themselves. The chains may be used as robotic

arms, legs, or tentacles [29]. Chain architectures are more

versatile compared to other architectures due to their capa-
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bility of reaching any point in space through articulation, but

they are more difficult to control and more expensive com-

putationally to represent and analyze [27]. An example of a

chain-based self-reconfigurable robot is PolyBot [33–35].

It is important to mention that lattice architecture and

chain architecture do not contradict, and numerous systems

can be of both types at the same time, such as SuperBot

[36] and UBot [37]. These systems tend to have Hybrid

architectures [28].

Mobile architectures have modules detach from the main

body and maneuver independently using the environment;

e.g. liquid or outer space, to link up at new locations

in order to form new shapes, complex chains or lattices,

or form a number of smaller robots. Mobile architecture

is less explored compared to other structures because

the reconfiguration difficulty outweighs the functionality

gain [28, 29]. A mobile-based self-reconfigurable example

system is CEBOT [38–40].

Deterministic Architectures have modules move directly

to their target locations during the self-reconfiguration

process. Each unit’s location can be known at all times or

calculated at run time, such that reconfiguration times are

guaranteed. Feedback control is necessary to ensure precise

movement. Usually, macro-scale systems are considered

deterministic [29].

Stochastic Architectures have modules move in a 2D or

3D environment using statistical processes; e.g. Brownian

motion, which are used to guarantee reconfiguration times.

The exact location of each unit is known only when it is

connected to the main structure, but the paths taken by

those units to move between locations might be unknown.

Stochastic architectures are more ideal at micro-scale

systems. The environment provides most of the needed

energy for moving units around [29].

Evolutionary algorithms were used to evolve modular

self-reconfigurable robotic controls in order to support self-

reconfiguration and also to implement different modular

robotic behaviors. Østergaard and Lund explored evolving

controllers of M-TRAN [41] and ATRON [30] self-

reconfigurable modular robotic systems in simulation.

Employing Genetic Algorithm for implementing M-TRAN

walking behavior is very complicated because evolving each

controller locally to generate a global behavior is affected

by the conditions of neighboring modules. Therefore,

when attempting to evolve ATRON controllers individually

to allow the modular collection of moving in the right

direction, two modules were evaluated as a couple instead

of evaluating single modules using competitive co-evolution

and symbiotic co-evolution. This work did not address the

constraints of physical systems [30].

ACMoD is a modular self-reconfigurable robot that

uses Genetic Algorithm to produce proper configuration

patterns and for optimizing the path of modules through

a static grid of different terrain blocks. This work did not

address dynamic environment or found optimal solutions.

The system was implemented in simulation [42].

3.3 Self-Repair

Self-repair is a special type of self-reconfiguration that

allows a robot to replace damaged modules with functional

ones in order to continue with the task at hand [27]. A

self-repair system must have two qualities: the ability to

self-modify, and the availability of new parts or resources

to fix broken ones. Therefore, modular self-repair robots

usually consist of redundant modules. Self-repair involves

two phases: detecting the failure module, and then ejecting

the deficient module and replacing it with an efficient extra

module. Such robots are well suited for working in unknown

and remote environments.

ATRON modular robot uses evolutionary algorithms to

implement self-repair functionality [30]. This system is

discussed in detail in the Applications section in this article.

3.4 Self-Reproduction

The ultimate form of self-repair is self-reproduction; which

allows robots to reproduce themselves from an infinite

supply of parts using simple rules. If the resulting system

is an exact replica of the original, the system is called a

self-replicator [43]. The effort in self-reproducing is focused

on the design and construction of a small seed system that

grows exponentially to form a larger system through tens

of generations. The resulting self-reproducible robots are

capable of accomplishing very large-scale tasks, such as

collection of solar energy, direct removal of greenhouse

gases from the Earth’s atmosphere, and water purification

for irrigation. Self-reproduction differs from self-assembly

because the resulting systems do not need to make copies of

themselves in the latter cases. Since any replication process

requires an external material supply, some lattice positions

may act as dispensers, where new modules reappear when

removed from that location. Self-replication is classified to

the following types [41].

• Direct reproduction: A robot picks modules from a

dispenser and places them in a new location to gradually

build a copy from the ground up.
• Multi-parent reproduction: Multiple robots produce a

single copy such that one machine places modules,

while the other assembles these modules.
• Self-assisted reproduction: The robot being built self-

reconfigures to assist its own building during the

building process.
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Fig. 1 Chronogram of selected modular robotic prototypes

• Multi-stage reproduction: Temporary scaffold is needed

in order to build the target robot. Then this temporary

scaffold is either discarded as waste or re-used to

produce additional robots.

Self-replicators can use evolutionary algorithms to

evolve into the goal structure. The evolution occurs in

two stages: morphology evolution and control evolution.

Zykov et al. used Genetic Algorithm to evolve Molecubes

in 2D simulation using two distinct fitness functions: one

for evaluating the fitness of morphology and the other to

evaluate the fitness of control. The robotic structure was

Table 1 Modular robotic systems classification based on holistic
system characteristics

Self- Self- Self- Self-

assembly reconfiguration repair replicate

PolyBot
√

I-Cubes
√

Crystalline
√ √

Telecubes
√

CONRO
√

M-TRAN
√

Uni-Drive

ATRON
√ √

Programmable Parts
√

YaMoR
√

Y1

SuperBot
√

Molecubes
√ √

RoomBot
√ √

Sambot
√ √

Cubelets

M-Blocks
√ √

CoSMO
√

expressed using a variable-length genome and the control

was described using command sequence. Only few results

were successful yielding separate identical copy and a

matching control. The successful results were implemented

on physical robots. This work faces a computational

challenge in the planning of self-replication algorithms [43].

4 Applications

There is a growing number of modular robotic prototypes

that has been studied in the literature, so this section reviews

Table 2 Modular robotic systems classification based on modularity
state of matter

Homogeneous Heterogeneous

PolyBot
√

I-Cubes
√

Crystalline
√

Telecubes
√

CONRO
√

M-TRAN
√

Uni-Drive

ATRON
√

Programmable Parts
√

YaMor
√

Y1
√

SuperBot
√

Molecubes
√

RoomBot
√

Sambot
√

Cubelets
√

M-Blocks
√

CoSMO
√
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Table 3 Modular robotic systems classification based on implementa-
tion method

Simulation Physical implementation

CEBOT
√

Polypod
√

Metamorphosing Robot
√

Fracta
√

Chen & Burdick Robot
√

Molecules
√

PolyBot
√

I-Cubes
√

Crystalline
√

Telecubes
√

CONRO
√

M-TRAN
√

Uni-Drive
√

ATRON
√

Programmable

Parts
√

YaMor
√

Y1
√

SuperBot
√

Molecubes
√

RoomBot
√

Sambot
√

Cubelets
√

M-Blocks
√

CoSMo
√

a number of emphasized prototypes that participated in the

growth of evolutionary modular robotics research.

The timeline covered in this paper ranges from 1990 until

this year. Figure 1 illustrates a chronogram of some of the

surveyed systems along with other systems that were not

covered in detail in this paper. Tables 1, 2 and 3 compare

some of those systems based on different parameters.

Figure 2 demonstrates some of the physical systems.

The subsections below are chronologically ordered by publica-

tion date.

4.1 PolyBot – 2000

PolyBot is a modular self-reconfigurable robot that was

implemented to explore how realistic it is to make robots

using several homogeneous hardware modules. Three

generations of PolyBot modules were prototyped, such

that each generation addresses a number of shortcomings

discovered in the previous one. The first generation (G1)

is constructed using two modular types: node and segment.

The segment modules are nominally rectangular prisms

with 1 rotational DOF separating two connection ports. The

node modules are fixed passive cubes with 6 connection

ports. Unlike its G1 predecessor, the second generation

(G2) connection ports have electromechanical latches under

software control. These latch onto the pins protruding from

the opposite face. The third generation (G3) modules are

smaller and lack the DC motor extending past the side of

each module. The new module has instead a DC pancake

motor with a harmonic gear that is completely internal.

The connectors are larger and have higher contact force for

higher current loads to enhance performance.

The first two generations of PolyBot prove versatility by

executing locomotion over different terrains. However, as

the number of modules increases, cost increases, and robust-

ness decreases because of software scalability and hardware

dependency problems. Currently the maximum number of

modules utilized in one connected PolyBot system is 32

with each module having 1 DOF. The third generation deals

with 200 modules to show a variety of capabilities, includ-

ing moving like a snake, lizard, or centipede as well as

humanoid walking and rolling in a loop [33–36].

PolyBot is capable of self-reconfiguration by changing

its geometry and locomotion mode depending on the terrain

type – rolling over flat terrain, earthworm to move around

obstacles, and a spider to step over hilly terrain. Planning

the self-collision-free motions can be challenging because

the size of this space is exponential in the number of

modules, but proportional to the number of DOF. For many

applications, a fixed set of configurations is sufficient. In

this case, reconfigurations can be pre-planned off-line and

stored in a table for ease of reconfiguration [16].

4.2 Telecubes – 2002

Telecubes are compact cubic modules that were introduced

by Suh et al. as an extension to the Crystalline system [44].

Each cube has 6 prismatic DOF and 4 sides capable of

expanding more than twice its original length. These cubes

can form a modular self-reconfigurable robot by attaching

and detaching magnetically to other cubes [45].

When it comes to reconfiguration, it is assumed the

initial and final configurations overlap by at least one meta-

module. A module is selected based on the Minimum

Manhattan Distance to begin moving. Then, a route is

planned for that selected module using a technique similar

to the PacMan Algorithm. Once the path is generated, it

can be converted into a sequence of motion commands that

can be executed. During execution, the meta-modules are

divided into active and passive groups. The active modules

initiate the planning sequence. The passive modules

follow the orders given by active modules to move. This

reconfiguration algorithm lacked local decision making and

parallel execution [46].
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Fig. 2 a PolyBot G2 [34] b

M-TRAN III [47] c ATRON
[30] d Programmable Parts [49]
e Molecubes [53]

(c) 

)e()d(

)b()a(

4.3 M-TRAN – 2002

M-TRAN (Modular Transformer) is a distributed lattice-

based self-reconfigurable robotic system that can metamor-

phose into various configurations, such as a legged machine

generating walking motion. The actual system was built

using 10 modules and successfully demonstrated the basic

operations of self-reconfiguration and motion generation. In

order to drive M-TRAN hardware, a series of software pro-

grams has been developed including a kinematics simulator,

a user interface for designing configurations and motion

sequences, and an automatic motion planner [31].

M-TRAN II is the second prototype where many

improvements took place to allow versatile whole body

motions and complicated reconfigurations. Those improve-

ments contain a reliable attachment/detachment mechanism,

high-speed inter-module communication, on-board multi-

computers, accurate motor control, and low energy con-

sumption. The software has been improved as well to

verify motions in dynamics simulation and to design self-

reconfiguration processes [32].

The third prototype, M-TRAN III, has been developed

with an improved connection mechanism. Various control

modes including single-master, globally synchronous con-

trol and parallel asynchronous control are made possible by

using distributed control. Self-reconfiguration experiments

using up to 24 units were performed by centralized and

decentralized control. System scalability and homogeneity

were maintained in all experiments [47].

4.4 ATRON – 2004

Another modular self-reconfigurable robot is ATRON, a

lattice-based system consisting of approximately spherical

modules, where each sphere is constructed as two hemi-

spheres joined by an infinite revolute joint. Actuation is

realized as rotation around an axis diagonally through

the sphere, where each module can rotate 360◦ around
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the equator. This design allows for a very stable construc-

tion around the actuated joint since a relatively large area

is available for mechanics. However, the spherical basic

module design makes it hard to have large flat surfaces con-

necting to each other. With spherical modules, connectors

need to establish essential point-to-point contacts between

modules, which are not desirable because of the high colli-

sion probability. The limited mobility of ATRON along with

other motion restrictions leads to the use of ATRON meta-

module to reduce motion constraints. The meta-module

is composed of 3 modules: a body in the center that is

connected to two legs.

Modular ATRON control comprises three Artificial

Neural Networks; one to decide when to emerge, the second

to decide when to stop, and the third to calculate the fitness

value of every state in the self-reconfiguration and self-

repair processes. Genetic Algorithm is used to optimize

the weights of the ANNs. Even though ATRON modules

are minimalistic because they have only one actuated DOF,

a group of modules was capable of self-reconfiguring in

3D simulation. Similarly, ATRON modules demonstrated

self-repair successfully in simulation [30, 48].

4.5 Programmable Parts– 2005

In 2005, Bishop et al. built triangular programmable parts

that can be assorted on an air table by overhead oscillating

fans to self-assemble into various shapes according to

the mathematics of graph grammars. The modules can

communicate and selectively bond using mechanically

driven magnets, without global knowledge of the full shape.

Despite planning to build approximately 100 parts, only 6

parts were built for design simplicity reasons. Those six

parts were used in an experiment that showed how these

parts react similarly to chemical systems [49]. In addition,

Napp et al. provided kinetic rate data measurements to the

previous work of graph grammar in order to yield a Markov

Process Model [50].

4.6 Y1 – 2006

Gonzalez-Gomez et al. developed three minimal configura-

tions using only two and three Y1 modules. Each of these

modules is 72 × 52 × 52 mm having 1 DOF and they

are capable of attaching and detaching. Y1 module design

is inspired by Polybot G1 modules. Then, eight Y1 mod-

ules were used to build a modular worm-like robot that is

capable of moving in a straight line using a wave propa-

gation gait. The optimal parameters of these designs that

include amplitude and phase are calculated using Genetic

Algorithm; given velocity, stability, and power consumption

restrictions [51].

4.7 Molecubes – 2007

Molecubes system is an open hardware and software

platform for modular robotics that was developed to remove

entry barriers to the field and to accelerate progress. The

system is composed of modules with 1 rotational DOF.

Different types of active modules, such as gripper, actuated

joint, controller, camera, and wheel along with a number

of passive modules were presented. Each module is a cube

shaped with round corners that comprises approximately

two triangular pyramidal halves connected with their bases

so that their main axes are coincident. Each of the 6

faces of the module is equipped with an electromechanical

connector that can be used to join two modules together.

Symmetric connector design allows four possible relative

orientations of two connected module interfaces, each

resulting in different robot kinematics [52].

Genetic Algorithm is used to evolve the modular neural

network control of the robots in simulation to generate a

certain behavior or motion [53]. In order to achieve self-

replication, path planning is done with a gene pool that has

been built using evolutionary algorithm [54].

4.8 iMobot – 2010

Ryland and Cheng designed an intelligent self-

reconfigurable modular robot with each module having 4

DOF and 6 connection faces. In this robotic system, the

individual modules have full mobility unlike all the other

systems discussed in this paper where the modules must be

connected in a cluster to perform all types of locomotion.

For example, M-TRAN module can crawl but it needs a

second module to turn. In addition, the iMobot robotic sys-

tem can perform unique locomotion modes such as driving

and lifting into a camera platform [55]. iMobot uses a

distributed agent based Genetic Algorithm to search for

the optimal genotype that can generate a certain robotic

gait [56].

4.9 UBot – 2011

UBot is a modular self-reconfigurable robotic system that is

capable of multimode locomotion. The locomotion modes

include cross, loop, quadruped and other gaits. UBot is a

hybrid system combining the advantages of lattice and chain

self-reconfigurable robots. Each module is cube shaped

based on one universal joint and has two rotational joints in

order to achieve 2 DOF [37, 57].

In 2013, a 3D dynamic simulator was developed

to simulate rigid body dynamics and evolve robotic

locomotion. Evolutionary Robotics was used to find a gait

planner for different robotic structures [58].
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4.10 SMORES – 2012

Self-assembling MOdular Robot for Extreme Shape-

shifting (SMORES) was designed to become a universal

modular robot that improves the versatility of self-

reconfigurable robots by allowing the robots to reconfigure

in three reconfiguration classes; lattice, chain, and mobile.

Each module has four active rotational DOF and two wheels

to allow mobile movement [59].

A design framework was developed in 2018 to facili-

tate configuration design of SMORES robots. The proposed

system verifies robotic design validity by detecting conflict-

ing commands and loss of stability. Moreover, this system

allows existing robotic structures reusability to create com-

plex robotic designs and behaviors [60].

5 Current State of the Art

More recently, new efforts have been pursued in the field

of evolutionary modular robotics. Many tasks have been

shown to be achievable, especially with the high number

of physically implemented robotic systems. However,

the majority of modular robotic behaviors; such as

self-reconfiguration and self-repair were implemented in

simulation despite the existence of a physical prototype;

which can be considered as a reality gap. The reason

behind this is the high cost of performing evolution inside

physical hardware because of power, communication, and

other limitations [61]. Researchers have paid attention to

bridge the reality gap using rapid prototyping techniques, as

this fabrication method becoming more accessible [4].

Lipson and Pollack tried to bridge the reality gap by

proposing an approach based on the use of only elementary

building blocks and elementary operators in the design

and fabrication process. Elementary building blocks are

used to minimize inductive bias and maximize architectural

flexibility. Also, these blocks allow the fabrication process

to be more systematic and versatile. The pre-assembled

machine was fabricated as a whole single unit, with plastic

supports to connect the moving parts. These supports

broke at first motion. Then, standard stepper motors were

snapped in, and the evolved neural network was executed

on a microcontroller to activate the motors. Three physical

machines; shown in Fig. 3, successfully reproduce the

behavior of their virtual ancestors in reality [15].

Auerbach et al. tried to bridge the reality gap by

proposing RoboGen, an open-source software and hardware

platform that 3D prints evolved modular robots. The

software component of RoboGen contains an evolutionary

Fig. 3 The resulting robots.
Real robots (left); simulated
robots (right). a Tetrahedron b

Arrow c Pusher [15]
(a) 

(b) 

(c) 
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engine to produce modular robots and a simulator to

evaluate the fitness of the evolved robots. The robot

morphologies are represented as genetic programming

trees and the controls are represented as artificial neural

networks. Then, the evolved robots can be manufactured

using desktop 3Dprinters; as illustrated in Fig. 4 [62].

Additive manufacturing was used by Samuelsen and

Glette to build an autonomous robotic system that

automatically designs and generates modular robots in

simulation using evolutionary algorithms. Then, the system

uses an automatic cluster to select the robots with highest

fitness values to be manufactured using off-the-shelf motors

and 3D printed structural components. The same evaluation

procedure was used to compare the performance of the

simulated robots and the performance of the physical robots.

Five robots were manufactured and three out of five robots

have significantly lower performance in reality [63].

Finally, Cellucci et al. demonstrated a 1D printing system

inspired by the ribosome to automatically design and

fabricate various robots using the same source material.

Although the resulting robots have modest functionality,

this research points towards expandable robotics that rapidly

fabricate customized robots on demand and allow robots

recycling to produce new robotic designs that can perform

new tasks [64].

The research advances in the field of evolutionary

modular robotics could be of interest for the evolutionary

mobile robotics community due to the similarities of

the challenges facing both fields. Evolutionary mobile

robotics applies Evolutionary algorithms to autonomously

generate complex robotic behaviors; such as navigation,

plant inspection, and rescue operations. Mobile robotic

navigation involves path planning as a strategy to find

the optimal path from an initial point towards a target

point in static and dynamic environments [65]. Evolutionary

algorithms have outperformed the classic approaches used

to solve the path planning problem because of the NP-

hardness of that problem [66]. Among the various meta-

heuristic methods belonging to the Evolutionary Algorithms

class, Genetic Algorithm has been heavily applied in path

planning research.

Qu et al. presented a Co-evolutionary Improved Genetic

Algorithm (CIGA) for global path planning of multiple

mobile robots that finds a collision-free path for each robot

while avoiding collisions between them. The Improved

Genetic Algorithm (IGA) is applied to solve the global

path planning problem for a single mobile robot, then

the co-evolution based on the IGA is used to solve the

path planning problem for multiple mobile robots. The

IGA involves a modified fitness function, customized

selection operator and a new modification operator.

The fitness function considers three variables for better

accuracy: path length, path feasibility, and path infeasibility.

Roulette wheel selection and elitist selection are employed

consecutively to ensure high survival probability of the

fittest solutions. The modification genetic operator modifies

the paths to avoid collision with obstacles and to accelerate

the evolutionary process. The system was implemented in

simulation and tested in 2D static environment with three

mobile robots and a number of static obstacles. The results

were near-optimal collision-free paths. This method needs

to be improved to include a larger number of mobile robots

and involve path planning in dynamic environments [67].

Contreras-Cruz et al. introduced an evolutionary

approach to solve the mobile robotic path planning problem.

The proposed methodology combines two evolutionary

techniques, artificial bee colony and evolutionary program-

ming, to solve the problem in two sequential steps. First, the

artificial bee colony algorithm is applied as a local search

procedure in order to generate a feasible path. Second,

the resulting path is refined by applying the evolutionary

programming algorithm to produce short, smooth, and

collision-free paths. The proposed method over-performed

the classical probabilistic roadmap method in problems

with distributed obstacles. However, this method needs to

improve the local explorations process. It also needs to

consider the multi-robot path planning problem [68].

Lamini et al. developed a new Genetic Algorithm to

solve the mobile robotic path planning problem in 2D

environments. The proposed method has an improved

crossover operator and a new fitness function. The Improved

Same Adjacency (ISA) crossover operator takes into

Fig. 4 Evolved robot:
simulation (left) and reality
(right) [62]
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consideration variable length chromosomes to allow rapid

convergence and avoid premature convergence. The new

fitness function is defined based on the path length, safety,

and mobile robotic energy consumption. The system was

implemented in simulation and the resulting paths were

optimal in terms of the number of turns and iterations [69].

6 Conclusion

This paper has surveyed different applications of evolu-

tionary algorithms in evolving robotic control systems,

co-evolving robotic control and morphology, and evolution-

ary task-based design of modular robots. It was found that

evolutionary based solutions exceeded hand designed ones

by showcasing novel characteristics and capabilities. The

use of evolutionary algorithms in the modular robotic field

allowed self-assembly, self-reconfiguration, self-repair, and

self- reproduction. These systems were discussed to express

how evolutionary robotics can be used to generate rules for

planning and controlling general robotic behaviors. Then

numerous modular robotic prototypes were analyzed to

demonstrate the feasibility of evolutionary modular robotic

systems that are capable of accomplishing various tasks in

dynamic environments. All of the surveyed systems have

physical prototypes; however, the majority of their com-

plex behaviors were implemented in simulation. This leads

to a big impediment to advancement in evolutionary mod-

ular robotics, which is known as the reality gap. One

major solution was reviewed in this paper that has proposed

using automatic fabrication to bridge the reality gap. The

challenge of building adaptive autonomous robots remains

valid, despite the advancements in the field of evolutionary

robotics to evolve robotic characteristics and to design mod-

ular robots that are capable of performing certain tasks in

unstructured environments.
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