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  1. Introduction

  knowledge should be educated to the 

next generation otherwise it is scien-

tifi cally meaningless. In this sense, 

many researchers have been trying 

to fi nd more effective education method. It 

was reported that a hardware experiment 

course using microcomputer system and its 

associated software was much more effec-

tive in education  [1] . The positive effect 

on education was also reported when using 

specifi c experiment tools and products  [2, 

3] . Advanced programs have been provided 

for students to learn the methodology of 

problem-solving in optimization, learn-

ing and design on real-world problems  [4,

5] . Robot soccer system is well known as 
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one of educational platform for the experiment educational 

program, which is useful in educating computational intel-

ligence and integration technology of control algorithm, 

wireless communication, computer vision, software system, 

navigation, etc  [6, 7] . 

  Among various topics, this paper deals with the navigation 

in robot soccer based on fuzzy inference system and multi-

objective evolutionary optimization. Traditional navigation 

method calculates simple shortest paths by considering the 

composition of rotation, circular and straight motions in path 

planning  [8] . As a recent approach, fuzzy path planner based on 

fuzzy inference system has become an important technique in 

navigation  [9] . It reduces the time of system design, simplifies 

the implementation complexity and improves the performance. 

However, deriving the fuzzy rule is a challenging problem 

because it is time consuming, difficult and dependent on an 

expert’s knowledge. In order to overcome this problem, evolu-

tionary fuzzy path planners were presented using unit-vector 

field  [10–12] . There are lot of related research on navigation by 

using fuzzy logic and evolutionary computation  [13–17] . Most 

of these evolutionary schemes are optimized for a better fitness, 

represented as a single objective optimization problem. 

  In real-world problems, however, several objectives are 

inherently involved at the same time, which are known as 

multi-objective optimization (MOP) problems. Navigation 

problem also has multiple objectives such as shortest path and 

time, minimum energy, etc. To satisfy these objectives simulta-

neously, multi-objective evolutionary algorithm (MOEA) is 

needed, which uses a population to search for Pareto optimal 

solution set. 

  The growing interest in highly complex search space has 

spurred the growth of MOEA  [18, 19] . The nondominated 

sorting genetic algorithm (NSGA) was presented  [20]  and 

improved as NSGA-II, which is a strong elitist method with a 

mechanism to maintain diversity efficiently using nondomi-

nated sorting and crowding distance assignment  [21] . Also, 

population-based incremental learning (PBIL) for MOP was 

presented with updating schemes of probability vectors  [22] , 

which shows better performance than the existing representa-

tive MOEAs on multi-objective numerical test functions such 

as ZDT and DTLZ functions  [23, 24] . However, the PBIL is 

difficult to maintain nondominated solutions in MOP because 

it selects only one best solution to update the probability vec-

tors and thus solutions may cluster over one point and fall into 

local optimum. 

  In order to solve the problem of the 

PBIL for MOP, this paper proposes a 

multi-objective population-based incre-

mental learning (MOPBIL) algorithm, 

which provides a wider search space by 

randomly selecting nondominated solu-

tions in archive when each element in 

probability vector gets updated. Due to 

good balance between exploration and 

exploitation, probabilistic representation 

guarantees the faster convergence. In addition, calculation of 

nearest neighbor distance is employed as a method for main-

taining diversity to reduce the size of memory and to simply 

measure the distribution of solutions. The performance of 

MOPBIL algorithm is verified through both  simulations and 

experiments, where MOPBIL is applied to optimize a fuzzy 

path planner with three minimization objectives such as elapsed 

time, heading direction error and posture angle error from test-

ing initial positions to the ball in a robot soccer system. 

  This paper is organized as follows. Section II presents a brief 

overview of robot soccer system. Section III describes the fuzzy 

path planner and proposes the MOPBIL. In Section IV, both 

simulation and experiment results demonstrate the effectiveness 

of MOPBIL. Finally, concluding remarks follow in Section V. 

  2. Robot Soccer System for Education

  There are two types of robot soccer system for FIRA 

RoboWorld Cup: global-vision based one for MiroSot and 

local-vision based one for HuroCup and RoboSot  [25] . In 

the former system, a host computer decides current situation 

and sends locomotion command to each robot wirelessly by 

checking the field image from a camera located on the top 

of field and calculating a strategy. In other words, multi-

robot cooperation strategy is provided by the external host 

computer. In contrast, the latter system requires camera, 

controller and embedded computer for each robot to calcu-

late its own location by using landmarks located on the field 

and to cooperate with each other. If the robot is developed 

as a stand-alone system in which all functionalities are 

installed, it takes longer time to process images and identify 

the game situation. 

  In general, the global-vision based robot soccer system, also 

known as micro-robot soccer system, is suitable for education 

because it is easy to install and test control algorithm, computer 

vision, communication and so on, as shown  Figure 1(a) . The 

main advantage of this system is that a user can control the 

overall system from one host computer. Since the system covers 

all fields in robotics, various educational effects can be expected 

 [6] . The system consists of robots, a host computer, an overhead 

vision camera and a wireless communication system. It is used 

as a test bed for multi-agent systems and multi-robot 

 cooperation systems. Its complexity comes from the coopera-

tion of home team robots, the competition against opponent 

team robots, and the fast and precise control of each robot 

while tracking the ball ( Figure 1(b) ). 

 Robot soccer system is well known as one of educational 

platform for the experiment educational program, which 

is useful in educating computational intelligence and 

integration technology of control algorithm, wireless 

communication, computer vision, software system, 

navigation, etc. 
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  In the early stage, the research was mainly focused on vision 

process, motor control and wireless communication. In order to 

develop it into an efficient educational platform, the first chal-

lenge was to develop a reliable vision processing system. Vision 

processing algorithms were immensely advanced through 

FIRA RoboWorld Cup  [25] . At the same time, the functions 

of hardware including camera and frame-grabber were enor-

mously improved. As the stability of vision processing enhanced, 

education and research issues in the micro-robot soccer system 

were naturally extended to navigation, cooperation, strategies 

and so on. 

  Recently, the micro-robot soccer system has been devel-

oped as ubiquitous robot system viewpoint where strategy 

module, vision camera and soccer robot possess the role of 

software robot, embedded robot and mobile robot, respec-

tively  [26] . Since it activates research motivations though 

competition against other teams, higher educational effect 

can be expected. It covers wide education and research top-

ics, and it can be used as an education and research platform 

in both university and research institutes. In addition, the 

value of the system as an educational platform for young stu-

dents has been verified through Robot Olympiad, which is 

organized by International Robot Olympiad Committee 

(IROC)  [27] . 

   Figure 2  shows micro-robot and its internal modular 

structure. Micro-robot has two driving wheels and its size is 

7.5 cm 3 7.5 cm 3 7.5 cm. The overall modular structure is 

mainly divided into micro-controller module, motor driver 

module, communication module and power module. Once 

the velocity command for two wheels is received from the 

communication module through a radio frequency transmit-

ter, this information is sent to the micro-controller module 

(a)  (b) 
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  FIGURE 2  (a) Micro-robot and (b) its internal modular structure. 
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  FIGURE 1  (a) Micro-robot soccer system and (b) robot soccer  competition. 
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to control the velocity of two wheels. The motor driver 

module then drives two DC motors where the power mod-

ule generates operating voltage from battery using voltage 

regulator  [28] . 

  Vision camera estimates the posture information using 

color patch located on the top of robot and transmits it to the 

host computer  [29] . Depending on the size of field, one or 

more cameras can be used to capture a whole field image. 

Once the host computer receives the vision images, it runs a 

strategy routine to calculate the velocity of each robot. The 

strategy routine is to select a proper action for each robot 

considering the game situation. Note that the processing rate 

of controller camera limits the sampling 

time of controller because the localiza-

tion of robot is made only by the vision 

camera. As an example, if camera captures 

an image with the rate of 110 frames/sec, 

the  sampling time is set to be 9.1 ms. In 

addition, the system must consider mea-

surement errors, which are accumulated 

from the time delay of vision camera or inaccuracy of its pro-

cessed images. 

  The screenshot of micro-robot soccer GUI is shown in 

 Figure 3 . In the field image located on the left side, the results 

of vision process including the position and direction of robots, 

position of ball, information related to opponent team robots 

are displayed in real-time. This image can be transformed to 

simulation mode to verify strategies. On the right side, there is 

a user interface to change the role and task of robots according 

to game situation. It indicates the information related to the 

location and task of selected robot, where the control parameter 

settings can be modified as well. The 

graphs, which monitor the processing time 

of vision, strategy and the system, are 

located at the bottom. 

  Students can learn related technolo-

gies by programming the game strate-

gies and verifying the performance of 

robots by themselves  [6]  . However, 

young students have limitations in 

high-level programming for developing 

game strategies.  Considering this prob-

lem, an educational program was devel-

oped for  them, which  prov ide s 

graphical user interfaces to set global-

vision camera, to test communication 

with each robot, and to select both 

position and movement of robot  [30] . 

They can easily create their own strate-

gy in simulation and then  physically 

test it using real robots. 

  3. Evolutionary Multi-Objective 

Optimization in Robot Soccer System

  As one of educational topics in mobile 

robotics using a robot soccer system, computational intel-

ligence-based navigation is considered, which ensures 

proper trajectories and navigation time to the ball. To 

reduce the time of system design, to simplify the imple-

mentation complexity and to improve the performance, 

fuzzy inference system is employed for the path planner. 

However, derivation of fuzzy rule is a challenging prob-

lem because it is time consuming, difficult and dependent 

on an expert’s knowledge. Moreover, in the navigation 

problem of robot soccer several objectives such as elapsed 

time, heading angle error and posture angle error and so 

on, should be considered at the same time. To solve these 

  FIGURE 3  Screenshot of micro-robot soccer GUI. 

 In addition, the value of the system as an educational 

platform for young students has been verified through 

Robot Olympiad, which is organized by International 

Robot Olympiad Committee (IROC). 

  TABLE 1  Example of fuzzy inference rules for heading angle.  

 r  VN  AN  SN  MD  SF  AF  VF 

 f 

 VS   179   3   206   112   306   31   102 
 LS   56   210   110   228   251   168   94  
 SS   57   240   224   228   319   292   273  
 MD   253   143   242   240   295   164   155  
 SL   28   217   213   349   332   265   277  
 AL   43   270   326   280   261   5   249  
 VL   228   10   357   56   271   163   124  

 (VN: Very Near, AN: Average Near, SN: Somewhat Near, MD: Medium, SF: Somewhat 
Far, AF: Average Far, VF: Very Far, VS: Very Small, AS: Average Small, SS: Somewhat 
Small, MD: Medium, SL: Somewhat Large, AL: Average Large, VL: Very Large). 
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problems, multi-objective population-based incremental 

learning (MOPBIL) algorithm is  proposed to obtain the 

fuzzy path planner for an optimal path to the ball, mini-

mizing those objectives. 

  3.1. Evolutionary Approach for Fuzzy Path Planning

  Fuzzy navigation system is composed of two modules: 

fuzzy path planner and fuzzy path following controller 

 [31] . The main role of fuzzy path planner is to generate a 

desired path from the current posture to the ball position. 

The optimality of paths are measured by various criteria 

along with  constraints. By assuming the fuzzy path fol-

lowing controller adequately tracks the desired heading 

angle, the main focus becomes the design of the fuzzy 

path  planner. 

  The fuzzy path planner 

is designed first by fuzzify-

ing the information describ-

ing a relative position of 

soccer robot with respect to 

the ball. The fuzzified infor-

mation becomes the input 

of fuzzy rule set in  Table 1 , 

where the consequent parts 

are  represented by real num-

bers in between 0 and 360. 

The fuzzy inputs are used to 

discretize the map of the 

environment as shown in 

 Figure 4 . In the figure, the 

 origin is the location of the 

bal l , r  i s  the di s tance 

between robot and ball, w is 

the angle from x-axis to the 

location of robot, v is the 

velocity of robot, tl is the elapsed time, u is the heading 

angle and ue is the heading angle error at the moment of 

 kicking the ball or at the last moment of time limit. Note 

that (r, w) represents the posture of robot. By the fuzzy rule 

set, an appropriate heading angle (0° , 360°) is determined 

corresponding to each input in a univector field  [32, 10] . 

Inputs are constrained to 0 cm # r # 60 cm and 

0° # w # 180° (due to geometrical symmetry). As mem-

bership functions, standard triangular ones are employed 

and seven set fuzzy input windows for distance (r) and 

angle (w), respectively, are used to obtain the membership 

values of the distance and angle to the fuzzy set (VN ,VF 

and VS ,VL). 

  The key objectives of path planning in robot soccer 

are that robot should approach to the ball as soon as pos-

sible and kick the ball accurately. Elapsed time during the 

 movement should be minimized to meet the former 

objective, whereas drift errors such as heading angle error 

and posture angle error should be minimized for the 

 latter objective. 

  In the case of single-objective evolutionary algorithm, 

the fitness of solution is evaluated by summing up each of 

fitness values for those objectives. However, multi- 

objective evolutionary algorithm is more suitable for satis-

fying those objectives simultaneously because they conflict 

with each other. For example, there exists no solution, 

which satisfies both fastest movement and highest  accuracy 

simultaneously. Fitness  functions in a multi-objective opti-

mization problem of path planning are defined as follows: 

   f1 5 Kt
# tl (1)

   f2 5 Ku
# |ue| (2)

   f3 5 Kw
# |p 2 w|, (3)

  where f1 , f2 and f3 correspond to the fitness function of 

elapsed time, heading angle error and posture angle error, 

respectively. Kt , Ku and Kw are constants and |p 2 w| is the 

posture angle error at the moment of kicking the ball or at 

the last moment of time limit. Note that once the value of 

posture angle error ( f3) gets decreased, the robot has more 

  FIGURE 4  Localization variables in robot soccer system. 

–60 –40 –20 0 20 40 60

0

10

20

30

40

50

60

y

x

φ

ρ

θν

Goal

tl

Robot

Ball
θe

Procedure MOPBIL

Begin

t ← 0

i) initialize probability vectors (PVs)

 while (not termination condition) do

 begin

t ← t + 1

ii) generate binary solutions by the probability of PVs

iii) decode to real number and evaluate

iv) select nondominated solutions in the union set of the population and old archive set

v) fill the archive from the selected nondominated solutions

vi) update PVs referring to the solutions in the archive

 end

end

  FIGURE 5  Overall procedure of MOPBIL. 
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  FIGURE 7  Proposed MOPBIL for fuzzy path planning in robot soccer system. 

chance to traverse the pitch through the left-side from the 

ball and the possibility of kicking the ball accurately towards 

the goal gets increased. 

  Multi-objective evolutionary algorithm is needed to 

evaluate the fitness of individual solution of fuzzy path 

planner using robot soccer system, where two-dimensional 

rule base, as shown in  Table 1 , for fuzzy inference is encod-

ed as a chromosome. As one of state of the art MOEAs, 

NSGA-II is selected for comparison with the proposed one 

in the next section. NSGA-II was developed with the main 

schemes of fast nondominated sorting and crowding dis-

tance calculation  [21] . The fast nondominated sorting pro-

cedure for the elitism is as follows: nondominated front is 

found and temporarily saved to search 

for the next nondominated front. This 

procedure is repeated until all individu-

als are ranked. For the diversity mainte-

nance, the normalized crowding distance 

calculation estimates the density of each 

individual. This density information is 

utilized to select individuals in the pop-

ulation for the next generation. The 

crowding distance of an individual refers 

to the average side length of the cuboid 

that has the vertices of the nearest 

neighbors. 

  3.2. Multi-Objective Population-Based 

Incremental Learning (MOPBIL) 

Algorithm

  Multi-objective population-based incremental learning 

(MOPBIL) algorithm is proposed. The procedure and over-

all structure of MOPBIL are shown in  Figures 5  and  6 , 

 respectively. Each step of the procedure is described in 

the following. 

    i)  The elements of probability vectors (PVs) are initialized 

to ‘0.5’. 

   ii)  Binary solutions are generated according to the 

probabilities in PVs. In other words, one binary solu-

tion is formed by selecting either ‘0’ or ‘1’ for each 

bit using the corresponding probability of PV. PV in 

 Figure 6  represents the probability that 1 is to be 

generated. 
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  FIGURE 6  Overall structure of MOPBIL. 
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  iii)  In the case of real number application, 

generated solutions are decoded to 

real number and evaluated by fitness 

measure. 

  iv)  The nondominated solutions are 

selected from the union set of cur-

rent population and old archive set. 

They form the current archive set. 

If the number of nondominated solutions exceeds 

the maximum archive size, some solutions having 

smaller ‘nearest neighbor distance’ are truncated. 

Smaller value of nearest neighbor distance represents 

that the  solutions are clustered in a particular region. 

The nearest  neighbor distance, Dn , of i th solution is 

defined as follows: 

   Dn 5 min
1# j#N

aa
M

k51

"1 f i
k 2 f j

k 2 2b, (4) 

  where N  is the population size, M  is the number of objec-

tives, f i
k is the fitness value of k th objective of i th solution 

and f j
k is the fitness value of k th objective of j th solution. If a 

certain solution has several same values of Dn , any value 

among several values of Dn is chosen. The conventional 

method, which uses an adaptive grid method to measure the 

distribution of solutions, requires extra memory space to 

store these grid information. However, when the nearest 

neighbor distance method is used, this extra memory space 

is unnecessary. 

  vi)  PVs are updated by referring to the solutions in the 

archive. Update law is given as follows  [33] 

   P i
new 5 P i

old # 11 2 LR 2 1 b i
# LR, (5) 

  TABLE 2  Parameter setting of NSGA-II and MOPBIL.  

 ALGORITHMS   PARAMETERS   VALUES  

 POPULATION SIZE (N )   20  
 NSGA-II  NUMBER OF GENERATIONS   2,000  

 MUTATION PROBABILITY ( pm)   0.1  

 POPULATION SIZE (N )   20  
 NUMBER OF GENERATIONS   2,000  
 NUMBER OF PROBABILITY VECTORS   49  

 MOPBIL  MAX. ARCHIVE SIZE   20  
 LEARNING RATE (LR)   0.1  
 AMOUNT OF SHIFT MUTATION (ms)   0.2  
 MUTATION PROBABILITY ( pm)   0.06  

 Kt, Ku, Kf  1  
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  FIGURE 8  143 training points in simulation. 
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  FIGURE 9  (a) Simulation results of nondominated solutions using 
NSGA-II and (b) Nondominated solutions using MOPBIL in a 
 three-objective space. 

As one of educational topics in mobile robotics using 

a robot soccer system, computational intelligence-

based navigation is considered, which ensures proper 

trajectories and navigation time to the ball.
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  FIGURE 10   Simulation results of nondominated solutions of NSGA-II 

and MOPBIL in (a) f1 – f2, (b) f2 – f3, and (c) f1 – f3 objective spaces. 

   P i
new 5 P i

old # 11 2 ms 2 1 random 10 or 1 2 # ms, (6) 

  where ms is the amount of mutation shift. 

  Conventional PBIL for MOP selects b i using the mean 

of random solution in the archive or the random weight-

ed sum. During the update of each probability vector, 

only one best individual b i is referred to a reference solu-

tion. In the proposed MOPBIL, updating scheme of each 

individual is changed to refer randomly selected one 

among nondominated solutions in the archive as the best 

solution for enhanced performance. In other words, one 

of randomly selected nondominated solutions in the 

archive is referred when every update of each element of 

PV is carried out. 

  The overall architecture of MOPBIL for fuzzy path 

planner is depicted in  Figure 7 . MOPBIL algorithm runs 

around the loop until the termination condition. When 

the solutions are evaluated, the chromosome of each solu-

tion representing a fuzzy rule set is implanted to fuzzy 

navigation system. Vision system provides the fuzzy infer-

ence system with the relative posture information of robot 

to the ball. The fuzzy inference system calculates the 

desired heading angle, ud, of robot. Then, fuzzy path fol-

lower  controls the robot to follow ud by calculating left 

and right wheel velocities, VL and VR. MOPBIL  algorithm 

calculates the objective function values at the moment of 

kicking the ball or at the last moment of time limit, and 

evaluates the performance of the fuzzy path planner 

through this  process. 

  4. Experiments

  The performance of proposed MOPBIL was compared to 

that of NSGA-II for the optimization of fuzzy path plan-

ner by measuring performance  metrics such as size of the 

dominated space (S), coverage of two nondominated sets 

(C)  [34]  and diversity metric (D)  [35] . Since NSGA-II is 

the most representative algor ithm among the multi- 

objective evolutionary algorithms, it was chosen to com-

pare with  MOPBIL.

  4.1. Simulation and Experiment Environment

  Mandani’s min-max inference for fuzzy reasoning  [32]  

and weighted average method for defuzzification were 

employed in the fuzzy path planner. Simulation program 

was used for parameter optimization and algor ithm 

 verification. The simulated robot was assumed that it did 

not slip and had a limit in acceleration speed. Real num-

ber was encoded and Gaussian mutation was used as 

mutation operator for NSGA-II. Parameters used in sim-

ulations are given in  Table 2 , where the learning rate (LR) 

is to adjust convergence speed and ms is the amount of 

shift used in the mutation. 143 training points in total 

were used as shown in  Figure 8 . Heading angle at the 

training points and the initial rule set were  randomly 

generated. Fitness value of each chromosome was the 

  where Pi is the i th element of probability vector, 0 # i # m. m 

is the binary string length, LR is the learning rate, 0 # LR # 1, 

and b i is the i th bit of the best binary solution. Mutation opera-

tor to the PV is as follows: 
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average value of  evaluations at all training points. The 

comparison results were averaged over 10 runs. All the 

 simulations was  executed on a 2.8-GHz Pentium-IV PC 

with 2-GB RAM. 

  In experiments, the micro-robot soccer system was 

employed as a test bed, where a Pentium 4 IBM PC was used 

as a host computer, Uniqvision UC-685 10-bit color digital 

CCD camera was used as the vision camera and soccer robot 

had a DSP TMS320F2811 PBK as the micro-controller and 

two DC motors. 

  4.2. Simulation Results

   Figure 9  compares the nondominated solutions in a three-

objective space found by using the MOPBIL and NSGA-II. 

  Figure 10  compares the nondominated solutions in three 

two-objective spaces, found by using the MOPBIL and 

NSGA-II for better display.  Figures 10(a)  and  10(c)  show the 

similar performances in f1– f2 and f1– f3 objective spaces, 

respectively. However,  Figure 10(b)  shows that the nondomi-

nated solutions of MOPBIL were more minimized with 

respect to f2 and f3. 

  TABLE 3  Comparing the coverage of two sets, the size of dominated space, diversity, and the simulation time. 

 ALGORITHMS  

 COVERAGE OF 

TWO SETS (C)  

 SIZE OF DOMINATED 

SPACE (S)   DIVERSITY  

 SIMULATION 

TIME  

 NSGA-II(A)  C(A, B)= 0.181818   5.142433897 ? 107   0.2534  17 min 50 s  

 MOPBIL(B)  C(B, A)= 0.410714  5.150735638 ? 107  0.0422  22 min 52 s  
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  FIGURE 11  Simulation results of nondominated solutions obtained from MOPBIL for f1 – f2 objective space. (a) Various solutions of MOPBIL. (b) 
Simulation results when Solution 1 was used. (c) Simulation results when Solution 2 was used. (d) Simulation results when Solution 3 was used. 



40    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | FEBRUARY 2009
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  FIGURE 12  Experiment results of nondominated solutions obtained 
from MOPBIL for f1 – f2 objective space. (a) Using Solution 1 from the 
second inital testing position. (b) Using Solution 2 from the second 
initial testing position. (c) Using Solution 3 from the third initial test-
ing position.  

  TABLE 4  Extreme solutions according to each objective. 

 EXTREME VALUES   SYMPTOMS   VIOLATED CONDITIONS  

 MAXIMUM f1   ROBOT DOES NOT APPROACH THE BALL 
(NO KICK).  

 ROBOT SHOULD KICK THE BALL.  

 MAXIMUM f2   ROBOT KICKS THE BALL TO THE OPPOSITE 
SIDE (OWN GOAL).  

 ROBOT SHOULD KICK THE BALL TO THE RIGHT.  

 MAXIMUM f3   ROBOT DOES NOT KICK OR KICKS TOWARDS 
OWN GOAL.  

 BOTH. 

between exploration and exploitation and the capability to 

select nondominated solutions when PVs get updated. 

Reference point that calculates the size of the dominated 

space was set to (400, 400, 400). The size of the dominated 

space of MOPBIL was larger than that of NSGA-II 

because the obtained solutions of MOPBIL dominated 

more in search space than those of NSGA-II. The results of 

diversity measure showed that NSGA-II performed better 

than MOPBIL on the distr ibution of solutions. Since 

NSGA-II was  encoded by real  number, the simulation time 

of NSGA-II was faster than that of MOPBIL encoded by 

binary  representation. 

   Figure 11  compares the trajectory of nondominated 

solutions obtained by MOPBIL.  Figure 11(a)  shows the 

obtained solutions when the proposed MOPBIL was 

applied and the rest of figures respectively depict the 

three initial testing positions and their corresponding tra-

jectory by each of obtained solutions. When more opti-

mized solution to f1 (Solution 1) was applied to the 

robot, it showed faster approach to the ball  ( Figure 

11(b) ). On the other hand, when more optimized solu-

tion to f2 (Solution 2) was applied, it kicked the ball 

more accurately ( Figure 11(c) ).  Table 4  shows three 

extreme solutions, which could not  satisfy these two nec-

essary conditions. For instance, the robot using ‘Solution 

3’ from the first initial testing position could not approach 

the ball ( Figure 11(d) ). Even though solutions from simu-

lation were theoretically meaningful for MOP, they were 

not practically useful as a real path planner. It means the 

studies on decision making for a solution among the non-

dominated solutions could be a further research issue in 

real-world problems. 

  4.3. Experimental Results

  Physical experiment was configured similarly as in simula-

tion environment, where the ball was fixed at the center of 

playground and the starting points of robot were the same as 

the three initial testing points in  Figure 11(b) .  Figure 12 

 shows the experimental results of nondominated solutions 

obtained from MOPBIL.  Figures 12(a)  and  (b)  compare the 

trajectories of the two obtained solutions from MOPBIL, 

when robot started from the second initial testing position. 

The robot in  Figure 12(a)  approached the ball more quickly, 

but it was not able to kick the ball exactly towards the goal. 

On the other hand, the robot in  Figure 12(b)  spent more 

   Table 3  shows the coverage of two sets, the size of the 

dominated space (hypervolume), diversity and the simula-

tion time of MOPBIL and NSGA-II. The larger coverage 

value of MOPBIL represents that most of solutions of 

NSGA-II in each objective were dominated by those of 

MOPBIL. It means that MOPBIL could find higher quali-

ty solutions compared to NSGA-II. The rule set of MOP-

BIL could make the robot approach the ball faster and kick 

it more accurately. It was due to the probabilistic charac-

teristics of MOPBIL, which resulted from a good balance 
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time to approach the ball, but it kicked the 

ball correctly. The robot in  Figure 12(c)  

started from the third initial  testing posi-

tion and it was not able to approach the 

ball as in the simulation result. 

  Consequently, it should be noted that 

user has to select an appropriate path 

planner for soccer robot according to 

the game situation or robot’s role. For 

 example, defender robot should possess a 

fast path planner (Solution 1) for active defending, 

whereas offensive robot should have an accurate path 

planner (Solution 2) for precise shooting. In any case, 

user should not select solutions like ‘Solution 3’ for the 

path planner because the elapsed time ( f1) is too long and 

moreover the robot cannot kick the ball within time 

constraint. Thus, user must decide the solution that lies 

within the boundary of time and accuracy constraints. 

  5. Conclusions

In this paper, robot soccer system was shown to be an effec-

tive and efficient educational platform for the education of 

computational intelligence-based navigation. As a navigation 

method for soccer robot an evolutionary fuzzy path planner 

was designed from the viewpoint of multi-objective optimi-

zation. To find out a desirable fuzzy rule set of the fuzzy 

path planner satisfying multiple objectives, multi-objective 

population-based  incremental learning (MOPBIL) algo-

rithm was proposed. It was demonstrated that solutions from 

MOPBIL were closer to Pareto optimal front than those 

from NSGA-II. In real experiments, the proposed MOPBIL 

algorithm efficiently provided better solutions with respect 

to the multi-objectives of the path planner. By applying var-

ious nondominated solutions from the MOPBIL to the soc-

cer robot and evaluating the generated trajectory by each of 

them, the concept and mechanism of the computational 

intelligence-based navigation can be educated along with 

multi-objective optimization. Through the education, more 

innovative strategies in robot soccer can be created and bet-

ter understanding of intelligent system is expected. 
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the MOPBIL to the soccer robot and evaluating the 

generated trajectory by each of them, the concept and 

mechanism of the computational intelligence-based 

navigation can be educated along with multi-objective 
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