
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Evolutionary Multi-Objective Workflow
Scheduling in Cloud

Zhaomeng Zhu, Gongxuan Zhang, Senior Member, IEEE, Miqing Li, Xiaohui Liu

Abstract—Cloud computing provides promising platforms for executing large applications with enormous computational resources

to offer on demand. In a Cloud model, users are charged based on their usage of resources and the required Quality of Service

(QoS) specifications. Although there are many existing workflow scheduling algorithms in traditional distributed or heterogeneous

computing environments, they have difficulties in being directly applied to the Cloud environments since Cloud differs from traditional

heterogeneous environments by its service-based resource managing method and pay-per-use pricing strategies. In this paper, we

highlight such difficulties, and model the workflow scheduling problem which optimizes both makespan and cost as a Multi-objective

Optimization Problem (MOP) for the Cloud environments. We propose an Evolutionary Multi-objective Optimization (EMO)-based

algorithm to solve this workflow scheduling problem on an Infrastructure as a Service (IaaS) platform. Novel schemes for problem-

specific encoding and population initialization, fitness evaluation and genetic operators are proposed in this algorithm. Extensive

experiments on real world workflows and randomly generated workflows show that the schedules produced by our evolutionary

algorithm present more stability on most of the workflows with the instance-based IaaS computing and pricing models. The results also

show that our algorithm can achieve significantly better solutions than existing state-of-the-art QoS optimization scheduling algorithms

in most cases. The conducted experiments are based on the on-demand instance types of Amazon EC2; however, the proposed

algorithm are easy to be extended to the resources and pricing models of other IaaS services.

Index Terms—Cloud computing, Infrastructure as a Service, multi-objective optimization, evolutionary algorithm, workflow scheduling.

✦

1 INTRODUCTION

In recent years, Cloud computing has become pop-
ular and reached maturity capable of providing the
promising platforms for hosting large-scale programs.
In a Cloud model, on-demand computational resources,
e.g., networks, storage and servers, can be allocated
from a shared resource pool with minimal management
or interaction [1]. Infrastructure as a Service (IaaS) is
one of the most common Cloud service models, which
provides customers with the abilities to provision or
release pre-configured Virtual Machines (VMs) from a
Cloud infrastructure. Using the VMs, which are called
instances in IaaS, customers can access to almost unlim-
ited number of computational resources while remark-
ably lowering the Total Cost of Ownership (TCO) for
computing tasks [2]. Usually, these services are provided
under a Services Level Agreement (SLA) which defines
the Quality of Services (QoS). Hereafter, the IaaS service

• Z. Zhu are with the School of Computer and Engineering, Nanjing
University of Science and Technology, 210094, China, and with the
Department of Computer Science, Brunel University London, UB8 2EG,
U.K. Email: zhaomeng.zhu@gmail.com

• G. Zhang are with the School of Computer and Engineering,
Nanjing University of Science and Technology, 210094, China. Email:
gongxuan@njust.edu.cn

• M. Li and X. Liu are with the Department of Computer Science,
Brunel University London, UB8 2EG, U.K. Email: miqing.li, xiao-
hui.liu@brunel.ac.uk

This work is supported by the National Science Foundation of China under
Grand no. 61272420 and the Provincial Science Foundation of Jiangsu Grand
no. BK2011022.

provider can charge customers by their required QoS
and the duration of use.

Workflow is a common model to describe scientific
applications, formed by a number of tasks and the
control or data dependencies between the tasks. There
has been consensuses on benefits of using Cloud to run
workflows. Some Grid workflow management systems,
like Pegasus [3] and ASKALON [4], are starting to
support executing workflows on Cloud platforms. Juve
et al. [5] found that Cloud is much easier to set up and
use, more predictable, capable of giving more uniform
performance and incurring less failure than Grid.

Workflow scheduling problem, which is known to be
NP-complete, is to find proper schemes of assigning
tasks to processors or services in a multi-processor en-
vironment. There has been much work on the work-
flow scheduling problem in heterogeneous computing
environments [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22]. Hetero-
geneous Earliest-Finish-Time (HEFT) and Critical-Path-
on-a-Processor (CPOP) [23] are two best-known list-
based heuristics addressing the performance-effective
workflow scheduling problem, which are widely used
in popular workflow management tools. The list-based
heuristics schedule tasks to the known-best processors in
the order of priority queues. Although the classical algo-
rithms aim to minimize only finish time, recent studies
begin to consider both total monetary cost and execution
makespan since it is common to rent computational
resources from commercial infrastructures such as Grid
and Cloud nowadays.



TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

The multi-objective scheduling algorithms are clas-
sified into QoS constrained algorithms and QoS opti-
mization algorithms [19]. In practice, most algorithms
require QoS constraints to convert this problem into
a simpler single-objective optimization problem. LOSS
and GAIN [24] are two budget-constrained algorithms,
which start from existing schedules and keep trying
reassigning each task to another processor until the
cost matches or exceeds the budget. Budget-constrained
Heterogeneous Earliest Finish Time (BHEFT) [16] is an
extended variant of HEFT, which considers the best
budget reservations in each assignment. Recent studies
include Heterogeneous Budget Constrained Scheduling
(HBCS) [19], which also starts from existing schedules
and defines a Cost Coefficient to adjust the ratio between
available budget and the cheapest possibility.

There are also algorithms which try to optimize mul-
tiple objectives simultaneously. In POSH [15], makespan
and cost are combined into one parameter, with a user-
defined factor to represent the preference of these two
objectives. NSPSO [11] and ε-Fuzzy PSO [21] use Particle
Swarm Optimization (PSO) algorithm to generate Pareto
optimal trade-offs between makespan and cost. NSGAII*
and SPEA2* which improve the evolutionary algorithms
NSGA-II and SPEA2 for the workflow scheduling prob-
lem are discussed in [6]. Also, a workflow execution
planning approach using Multi-Objective Differential
Evolution (MODE) is proposed in [9], to generate trade-
off schedules according to two QoS requirements time
and cost. Recent studies include Multi-Objective Hetero-
geneous Earliest Finish Time (MOHEFT) [22], a Pareto-
based list heuristic that extends HEFT for scheduling
workflows in Amazon EC2.

However, there are big challenges by directly applying
these algorithms to Cloud environments, because most
of them are still based on the traditional heterogeneous
environments such as Grid. As a new form of computing
service, Cloud, e.g., the IaaS platform, significantly dif-
fers from these environments in all the computing, data
and pricing models [25]. In this paper, we investigate
these differences and propose an Evolutionary Multi-
objective Optimization (EMO)-based algorithm to ad-
dress the Cloud workflow scheduling problem. The evo-
lutionary algorithm generates a series of schedules with
different trade-offs between cost and time, so that users
can choose acceptable schedules with their preferences.
The main contributions of our work are twofold.

First, we highlight the challenges for existing schedul-
ing algorithms to be directly applied to Cloud, and
formulate the Cloud workflow scheduling problem with
real-world Cloud characteristics. These challenges arise
from the differences between Cloud and the traditional
heterogeneous environments such as Grid, and the fact
that most of the existing algorithms still assume that the
heterogeneous environments are Grid-like. Furthermore,
we design our algorithm with the goal of being able to
be directly used in the IaaS environments. To the best
of our knowledge, the proposed algorithm is the first

multi-objective workflow scheduling algorithm which
considers the real-world pay-per-use pricing strategies
and at the same time has been designed directly based
on the instance-based IaaS model.

Second, we present the EMO algorithm for the mod-
eled workflow scheduling problem. Due to the specific
properties of the problem, the existing genetic opera-
tions, such as binary encoding, real-valued encoding and
the corresponding variation operators based on them
in the EMO area, are hard to be adopted as solutions.
Thus, we design basic genetic operations of an evolu-
tionary algorithm, including the encoding, evaluation
function, population initialization etc. In particular, two
novel crossover and mutation operators are introduced,
which can effectively explore the whole search space
and simultaneously exploit the regions which have been
explored previously.

The remainder of the paper is organized as follows.
In Section 2 the challenges when applying the existing
common scheduling algorithms on IaaS platforms are
highlighted. This is followed in Section 3 by the descrip-
tion of the scheduling problem definitions, including the
representation, the objectives, as well as the resource
management and pricing model of the real-world IaaS
platforms. Section 4 provides details of the designs for
using the EMO-based algorithm to address the multi-
objective scheduling problem in Cloud. The experimen-
tal results are then discussed in Section 5, and the paper
is concluded in Section 6.

2 CHALLENGES FOR SCHEDULING WORK-
FLOWS IN CLOUD

When scheduling workflows, the characteristics that
make Cloud differ from Grid or other traditional het-
erogeneous environments include 1) the complex pricing
schemes and 2) the large-size resource pools.

Much existing work on the workflow scheduling prob-
lem assumes that the monetary cost for a computation
is based on the amount of actually used resources. For
example, POSH assumes that the cost for executing a
task is linearly or exponentially correlated to the total
number of used CPU cycles. With this assumption, two
critical corollaries are 1) the total cost of a workflow is
the sum of the costs of all sub-tasks, and 2) the cost of a
task is fixed when running on certain service. However,
in Cloud pricing schemes, the cost is determined by the
running time of the underlying hosting instances. Also,
the runtime is usually measured by counting fixed-size
time intervals, with the partially used intervals rounded
up. Such schemes make the cost caused by a task hard to
be precisely predicted before scheduling. For example, a
task that shares the same time interval with the previous
task hosted in the same instance might not produce extra
cost. On the other hand, for a task which starts a new
time interval but does not use it entirely, the cost might
be more than the estimated.



TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

Even so, most scheduling heuristics still require a fixed
cost for each task to do the priority sorting and/or
processor selection. For example, POSH and HBCS use
both the execution time and the cost of a task to decide
on its best placement, and BHEFT needs to compute
an average reservation cost when running on different
instances for each task. Also, when rescheduling a task,
LOSS/GAIN uses the cost of this task when running
on different processors to estimate a “gain” or “loss”
value for each possible reassignment. As a compromise,
the newly produced cost after executing a task, can be
considered as the approximate cost of that task. Or a
user can still use the assumed pricing scheme when
applying such an algorithm to Cloud. However, both of
the compromises could obviously affect the performance
of these algorithms in a real-world Cloud environment.

Another problem for existing algorithms to be used
in Cloud is that, in a traditional heterogeneous environ-
ment, the size of the resource pool is usually limited.
It is common for list-based heuristics such as MOHEFT
to perform a traversal of all available processors in the
processor selection phase of every task, in order to find
the best suitable assignment for that task. Because Cloud
is known for its enormous (often seen as the infinite)
resources, it is likely impossible to do such traversals.
The enormous available services may also impact on
the existing discrete Particle Swarm Optimization-based
algorithms. For example, NSPSO and ε-Fuzzy PSO de-
fine particle positions and velocities as m × n matrices,
where n is the number of tasks and m is the number of
available resources. However, m might be too large for
the Cloud platforms. Also, for the existing genetic ap-
proaches like NSGAII*/SPEA2* and MODE, the typical
encoding scheme usually consists of a string to represent
the mapping for tasks to available services, which might
not be suitable for the Cloud environments since in
Cloud the available VM instances are not permanent and
can be dynamically allocated and released at any time.

One may argue that this should not be a major obstacle
for using existing algorithms in Cloud. A Cloud-aware
extension to make list-based heuristics can be used in
Cloud is proposed in [22]. This extension constructs a
limited-size instance pool with the ability to host all
possible schedules from Cloud in advance. In order
to schedule a 10-task workflow, a set containing 10
instances for each instance type is prepared. However,
this set can still become too large. For example, Amazon
EC2 currently has more than 35 instance types, 3 major
pricing schemes and 8 regions, which can easily make
the size of such a set to be more than 800 times over
the number of tasks, when considering different regions
and pricing schemes. The discussions in Section 5.2.1 and
the evaluation results presented in Section 5.2.2 and 5.2.3
show that the solution of this kind might still result in
unnecessary high time or space complexity.

In this paper, we address these challenges as fol-
lows. First, when modeling the Cloud workflow schedul-
ing problem, we formulate pricing options using the

instance-based IaaS-style schemes, except that, none of
the particular pricing rule is specified. Then, by using
evolutionary frameworks that are all generic and require
the pricing scheme only in the fitness evaluation pro-
cedures, our algorithm does not relay on any detailed
pricing scheme. Second, by designing our encoding
scheme and genetic operators directly based on the IaaS
model, instead of simulating the Cloud into a traditional
heterogeneous service pool, we could reduce the search
space, improve the search capacity, and accelerate the
search speed at the same time.

3 WORKFLOW SCHEDULING PROBLEM

3.1 Workflow Definition

A common method to represent workflow is to use
Direct Acyclic Graph (DAG). A workflow is a DAG
W = (T,D), where T = {T0, T1, . . . , Tn} is the set of
tasks and D = {(Ti, Tj)|Ti, Tj ∈ T} is the set of data
or control dependencies. The weights assigned to the
tasks represent their reference execution time, which is
the time of running the task on a processor of a specific
type, and the weights attached to the edges represent the
size of the data transferred between tasks. The reference
execution time of Ti is denoted as refertime(Ti) and the
data transfer size from Ti to Tj is denoted as data(Ti, Tj).

In addition, we define all predecessors of task Ti as

pred(Ti) = {Tj | (Tj , Ti) ∈ D}. (1)

For a given W, Tentry denotes an entry task satisfying

pred(Tentry) = ∅, (2)

and Texit denotes an exit task satisfying

∄Ti ∈ T : Texit ∈ pred(Ti). (3)

Most scheduling algorithms require a DAG with a
single Tentry and a single Texit. This can be easily assured
by adding a pseudo Tentry and/or a pseudo Texit with
zero weight to the DAG. In this paper, we also assume
that the given workflow has single Tentry and Texit.

3.2 Cloud Resource Management

An Infrastructure as a Service (IaaS) platform provides
computational resources via the virtual machines. A run-
ning virtual machine is called an instance. It is common
for an IaaS platform to provide a broad range of instance
types comprising varying combinations of CPU, memory
and network bandwidth. In this paper, CPU capacities,
which determine the actual execution time of tasks, and
bandwidths, which affect the data transformation time,
are considered for each instance type.

A commercial IaaS platform is commonly considered
possessing a very large number of instances, although
its actual size is usually unknown to the public. In 2013,
Cycle Computing was able to build a cluster with 156,314
cores on Amazon EC2 [26]. Some research estimates
that there might already have been up to 2.7 million



TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

active instances available in Amazon EC2 by the end of
2013 [27], and it is believed that the actual size of EC2
still keeps growing during these two years [28]. Based
on these observations, we assume that the maximum
number of the instances that a customer can provision is
infinite. We thus define an infinite set I = {I0, I1, . . .} to
describe all available instances in an IaaS platform, and
a set P = {P0, P1, . . . , Pm} to represent all instance types
where m is the number of the types. Because a task can
only run on one instance, I can practically be seen as a
set with the same size of T .

Compute Unit (CU) or similar concepts are currently
used by IaaS providers to describe the CPU capacities
of different instance types. We use cu(Pi) to represent
the Compute Unit of instance type Pi. In this paper, all
tasks are assumed to be parallelizable so that the multi-
core CPUs can be fully used. It is expected that, if CU of
an instance is doubled, the execution time of the tasks
running on it would be halved. We also assume that the
reference execution time of a task is the time of executing
this task on an instance whose cu equals 1. With these
assumptions, the actual running time of task Ti, running
on an instance of type Pj , is

Timecomp(Ti) =
refertime(Ti)

cu(Pj)
. (4)

The communication bandwidths are usually different
for different instance types, and the fact that types with
higher cu have higher bandwidths is intuitive. Here we
use bw(Pi) to represent the bandwidth of instance type
Pi. The communication time between task Ti and Tj ,
when ignoring setup delays, can be computed by

Timecomm(Ti, Tj) =

{

data(Ti,Tj)
min{bw(Pp),bw(Pq)}

, p 6= q,

0, p = q,
(5)

where Pp and Pq are the types of the instances to which
Ti and Tj are scheduled, respectively.

For all existing IaaS platforms, the basic pricing rule
is the same—charging according to per-instance usage.
However, the detailed pricing strategies are different. For
example, currently Amazon EC2 customers need to pay
for used instance-hours and all partial hours consumed
are billed as full hours [29]. At the same time, the pay-
as-you-go plan of Microsoft Azure charges customers by
counting minutes [30]. So, it is better for an algorithm to
arrange schedules considering full use of each instance-
hour when being used on EC2, but not necessary to
worry about not filling all unused time slots when being
used on Azure since the cost of one minute is negligi-
ble. Unlike Amazon and Microsoft, Google charges its
Compute Engine by a minimum of 10 minutes, and after
that, the instances are charged in 1-minute increments,
rounded up to the nearest minutes [31].

Because of the variety of pricing models, a generic
scheduling algorithm designed for IaaS platforms should
not be based on any existing pricing model. Here we use
M = {M0,M1, . . . ,Mk} to represent the set of pricing

options that an IaaS platform provides, and we define
a function charge(Mh, Pj , Ii) to calculate the running
expense of instance Ii with type Pj using pricing model
Mh. Beside this, we do not assume any more detail of
pricing options, so that the model could be generic for
most IaaS platforms.

With the definitions of the instance pool, instance
types and purchase options, we can now represent an
IaaS platform as a service S = (I, P,M).

3.3 Workflow Scheduling Problem

Given a workflow W = (T,D) and an IaaS platform
S = (I, P,M), a scheduling problem is to produce one
or more solutions R = (Ins,Type,Order) where Ins and
Type are mappings indicating which instance each task
is put on and the type of that instance, as

Ins :T 7→ I, Ins(Ti) = Ij , (6)

Type :I 7→ P,Type(Is) = Pt, (7)

and Order is a vector containing the scheduling order of
tasks. An Order must satisfy the dependency restrictions
between tasks, that is, a task cannot be scheduled unless
all its predecessors have been scheduled.

In this paper, we consider the problem that uses only
one pricing option in a single schedule. The pricing
option is chosen by users, denoted as M0. Combining
several pricing options in a single scheduling procedure
might be studied in our future work. The goals of the
scheduling problem (W,S) are given as follows.

minimize F = (makespan, cost)T ,
makespan = FT(Texit),

cost =
∑

Ii∈I∗

charge(M0,Type(Ii), Ii),

(8)
where

I∗ = {Ii | ∃Tk ∈ T : Ins(Tk) = Ii}, (9)

and FT(Ti) is the finish time of task Ti.

4 EVOLUTIONARY MULTI-OBJECTIVE OPTI-
MIZATION

A Multi-objective Optimization Problem is a problem
that has several conflicting objectives which need to be
optimized simultaneously:

minimize F (x) = (f1(x), . . . , f2(x), fk(x))
T , (10)

where x ∈ X and X is the decision space. The workflow
scheduling problem can be seen as an MOP, whose
objectives have been given in Eqs. (8) and (9). Since the
objectives in an MOP usually conflict with each other,
Pareto dominance is commonly used to compare solutions.
For u, v ∈ X , u is said to dominate v if and only if,

∀i : fi(u) <= fi(v) ∧ ∃j : fj(u) < fj(v) (11)

A solution x∗ is Pareto optimal if it is not dominated by
any other solution. The set of all Pareto optimal solutions



TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

in the objective space is called Pareto front. For the Cloud
workflow scheduling problem, schedule I∗ dominates
schedule I if neither the cost nor the makespan of I∗

is larger than that of I , and at least one of them is less.
In recent years, Evolutionary Algorithms (EAs) which

simulate natural evolution processes have been found
increasing successful for addressing MOPs with various
characteristics [32], [33], [34], [35]. One significant ad-
vantage of EAs in the context of MOPs (called EMO
algorithms) is that they can achieve an approximation
of the Pareto front, in which each solution represents a
unique trade-off amongst the objectives. For workflow
scheduling, EMO algorithms generate a set of schedules
with different makespan and cost, and then the user can
choose from it according to his/her preference.

Due to the properties of the Cloud workflow schedul-
ing problem, it is hard (or even impossible) to adopt
the existing genetic operations in the EMO areas, such
as binary encoding, real-valued encoding, and the corre-
sponding variation operators based on them. By taking
full advantage of the problem’s properties, We thus
present a whole set of the exploration operations, includ-
ing encoding, population initialization, crossover, and
mutation. These operations can work with any exploita-
tion operation (e.g., fitness assignment, selection) in the
EMO area, as we have already applied them to several
classical EMO algorithms such as NSGA-II, SPEA2 and
MOEA/D.

4.1 Fitness Function

In the workflow scheduling problem, the fitness of a
solution is related to a trade-off between two objectives
which are makespan and cost.

As given in Eqs. (8) and (9), calculating the makespan
of a solution is to compute the finish time of Texit.
Here we define two functions ST and FT, which are
respectively the start time and finish time of Ti in a given
schedule. The start time of a task depends on the finish
time of all its predecessors, the communication time
between its predecessors and itself, and the finish time
of the previous task that has been executed on the same
instance. The recurrence relations are,

ST(Tentry) = 0, (12)

ST(Ti) = max{ avail(Ins(Ti)),

max
Tj∈pred(Ti)

(FT(Tj) + Timecomm(Tj , Ti))},

(13)

FT(Ti) = ST(Ti) + Timecomp(Ti), (14)

where avail(Ii) is the available time of instance Ii, which
changes dynamically during scheduling. After Ti is de-
cided to be scheduled to the instance Ij , avail(Ij) will be
updated to FT(Ti).

After the finish time of Texit is calculated, the final
available time of an instance will be used as its shutdown
time, and the start time of the first task being assigned to

Fig. 1: An example of workflow DAG.

the instance will be used as its launch time. The separate
costs of all the instances being used are then calculated
by the platform-specific charge function and summed up
as the total cost.

4.2 Encoding

Here, the first step of encoding is to make a topological
sort and then assign an integer index to each task
according to the sorting results. The index starts from
0, and Ti is referred to a task whose index is i.

As discussed in Section 3.3, a solution is a 3-tuple
containing a sequence Order and two mappings Ins
and Type. We split a chromosome into three strings
to represent them respectively. The string order is a
vector containing a permutation of all task indexes. If
i occurs before j in order, the hosting instance of task
Ti will be determined before that of Tj . However, it does
not mean that the execution of Ti must start before Tj .
The start time of a task is determined by the hosting
instance and its predecessors (see Eqs. (13)). The second
string task2ins is a n-length vector representing the
mapping Ins, in which an index represents a task and
its value represents the instance where this task will be
executed. As mentioned in Section 3.2, the instance set
I could be reduced to a n-size set, so that it is possible
to index all instances using integers from 0 to n − 1.
For example, task2ins[i]=j makes Ti be assigned to
the instance with index j (represented as Ij). Similarly,
the third string ins2type is a mapping from instance
indexes to their types, representing the mapping Type.
The instance types are also indexed previously using
integers from 0 to m−1, and ins2type[j]=k indicates
that the type of instance Ij is Pk.

Fig. 1 shows an example DAG, in which the tasks have
been indexed using the results of a topological sort. Fig. 2
gives the encoding of a possible schedule for this work-
flow. In this schedule, the fitness function, discussed in
Section 4.1, follows the sequence [T0, T1, T3, T5, T2, T4, T6]
to compute the finish time of T6, which is used as
the makespan of the workflow. Fig. 2 also gives the
mappings from the tasks to the instances and from the
instances to their types; for example, task T0 will be
scheduled to instance I1 whose type is P4.



TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

Fig. 2: Encoding and scheduling scheme of a valid
schedule for the DAG example in Fig. 1.

4.3 Genetic Operators

4.3.1 Crossover

A valid scheduling order must follow the dependencies
which exists between tasks. For example, if a task T ∗

is a successor of T , T ∗ must occur after T in string
order. The crossover operation should not violate these
restrictions. We design the crossover operator for the
order strings as given in Fig. 3. First, the operator
randomly chooses a cut-off position, which splits each
parent string into two substrings (Step 3). After that, the
two first substrings are swapped to be the offspring, and
the second substrings are discarded (Steps 4–5). Then,
each parent order string is scanned from the beginning,
with any task that has not occurred in the first substring
being appended to the end of this offspring (Steps 6–
10, 11–15). This operator will not cause any dependency
conflict since the order of any two tasks should have
already existed in at least one parent. An example of this
operation is given in Fig. 4, in which the position 3 is
randomly chosen as the cut-off position. The first three
items in both strings are swapped. Then, the missing
tasks for each offspring are appended to its end, in their
original orders.

On the other hand, we crossover the strings ins2type
and task2ins together. Analogously, the operator first
randomly selects a cut-off point, and then, the first parts
of two parent task2ins strings are swapped. Here, it
is noteworthy that the type of the instance on which
a task is running could also be important information
for this task, and it is better to keep this relationship.
So we make the type of a task follow that task. That
is, when task T , running on an instance I of type Pi,
is rescheduled to instance I∗ with type Pj , the type of
I∗ should be changed to Pi at the same time. However,
such an operation could potentially break the correspon-
dence between other tasks and the types of their hosting
instances. For example, a task Tj , which is also scheduled

1: procedure CROSSOVERORDER(A,B)
2: n← number of tasks

3: p← RandInt(0, n− 1)
4: ordera ← SubString(B, 0, p)
5: orderb ← SubString(A, 0, p)
6: for all T in A.order do
7: if T not in ordera then
8: append T to the end of ordera
9: end if

10: end for
11: for all T in B.order do
12: if T not in orderb then
13: append T to the end of orderb
14: end if
15: end for
16: end procedure

Fig. 3: Crossover operator for string order. This opera-
tor in place modifies the order strings of individuals A
and B to produce two offspring.

Fig. 4: An example of order crossover.

to I∗ and not reassigned, might still prefer an instance of
Pj . In this case, the type of I∗ will be randomly chosen
between Pi and Pj . Otherwise, if there is no such conflict,
a small chance of mutation will be introduced to increase
the search ability of the algorithm.

The pseudocode of this operation is given in Fig. 5.
Step 3 selects the cut-off point. Before swapping tasks in
the first parts (Step 7), an ancillary procedure is invoked.
This ancillary procedure, called DecideType, decides
on the type of the new hosting instance of task T in
individual B, when moving from the instance specified
in individual A. For this decision, the types of the new
instance (I ′), in both individuals, are taken out (Pa and
Pb in Steps 2–3). Then Step 3 decides whether the type
of I ′ in B should be changed to Pa or not. If there
is no any task whose index is greater than or equal
to the cut-off position p is scheduled to I ′ (Step 4),
the type of I ′ will be changed to Pa (Step 10), with a
mutation performed (Steps 11). Otherwise, the type will
be randomly chosen between Pa and Pb (Steps 5–8).

An example to demonstrate this operator is given
in Fig. 6. For illustration, the strings task2ins and
ins2type are presented as the tasks with their hosting
instances and the corresponding instance types. After the



TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

1: procedure CROSSOVERINS(A,B)
2: n← number of tasks

3: p← RandInt(0, n− 1)
4: for i← 0, . . . , p− 1 do
5: DecideType(Ti, A,B, p)
6: DecideType(Ti, B,A, p)
7: Swap(A.task2ins[Ti], B.task2ins[Ti])
8: end for
9: end procedure

1: procedure DECIDETYPE(Ti, A,B, p)
2: I ′ ← A.task2ins[Ti]
3: Pa, Pb ← A.ins2type[I ′], B.ins2type[I ′]
4: if ∃j : j ≥ p ∧B.task2ins[Tj ] = I ′ then
5: if Pa 6= Pb then
6: P ← RandChoice({Pa, Pb})
7: B.ins2type[I ′]← P
8: end if
9: else

10: B.ins2type[I ′]← Pa

11: mutate Pa with a small probability

12: end if
13: end procedure

Fig. 5: Crossover operator for strings Task2Ins and
Ins2type and ancillary procedure DecideType. The
CrossoverIns procedure in place modifies task2ins
strings of individual A and B to produce offspring.

cut-off position 3 being randomly chosen, the instance
choices and the correspondence instance types of the first
three tasks are swapped. For the first individual, the type
of I1 which hosts both T2 and T6, is randomly chosen
from 2 and 4. Similarly, the final type of instance I1 in the
second individual is 4. For this type, the random choice
is performed twice, in the DecideType invocations on
tasks T0 and T2, since both T0 and T2 are hosted by
I1. Additionally, in the first offspring, a mutation is
preformed on the type of instance I3 since this instance
is never used after hosting T1. The final task2ins and
ins2type strings are given in the bottom of the figure.

4.3.2 Mutation

Like the crossover operators, the mutation operator of
string order should not break the task dependencies
either. First, we define all successors of task Ti as

succ(Ti) = {Tj | (Ti, Tj) ∈ D}. (15)

Fig. 7 gives the pseudocode of order mutation. Starting
from task T , the operator searches for a substring in
which each task is neither a predecessor nor a successor
of T (Steps 4–10). Then, T is moved to a randomly
chosen new position inside this substring (Steps 11–
12). On each direction, the search procedure starts from
the position of T , and stops once the current task is
either in pred(T ) or in succ(T ). Fig. 8 demonstrates an
example where task 2 is randomly chosen to be the
mutation point. A search is then performed to find the

Fig. 6: An example of task2ins and ins2type

crossover.

1: procedure MUTATEORDER(X, pos)
2: n← number of tasks

3: T ← X.order[pos]
4: start, end← pos
5: while start ≥ 0 ∧X.order[start] /∈ pred(T ) do
6: start← start− 1
7: end while
8: while end < n ∧X.order[end] /∈ succ(T ) do
9: end← end+ 1

10: end while
11: pos′ ← RandInt(start+ 1, end− 1)
12: Move T to pos′ in X.order
13: end procedure

Fig. 7: Mutation operator for order strings. Given a
position pos, this operator randomly moves the posth

task in X.order to another valid position.

Fig. 8: An example of order mutation.

substring meeting the conditions, between task 1 and
task 4. Finally, task 2 is randomly moved to a new
position inside this substring.

Here, the mutation for the strings task2ins and



TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

ins2type is performed by a classical operator, that is,
randomly generating a new valid value for each position,
with a small probability.

4.4 Initial Population

In the workflow scheduling problem, the search space
of solutions is typically huge, especially when a large
workflow is involved, which could cause evolutionary
algorithms very slow to converge. In our algorithm, to
accelerate the search procedure, the initial population
consists of the individuals generated by different initial-
ization methods. Assuming the size of population is n,
these individuals include

• a schedule computed by HEFT, which is treated as
the fastest schedule,

• a “cheapest” schedule produced at the same time
when executing HEFT, as an estimate of the cheap-
est schedule,

• n − 2 random schedules initialized by a procedure
named RandTypeOrIns.

First, HEFT is slightly extended for guessing an indi-
vidual that can approach the cheapest cost, along with
the standard procedure of finding the fastest schedule.
This cheapest schedule is produced by assigning the
task to the instance which can minimize the currently-
generated cost in the processor selection phase of each
task. This individual might not be the actual cheapest
one; in spite of that, it could still be seen as a rough
approximation of one endpoint of the Pareto front. At
the same time, the fastest individual produced by the
original HEFT could be used as another approximate
endpoint.

Besides these two heuristic-generated schedules, we
initialize other individuals randomly. For each individ-
ual, the procedure is presented in Fig. 9. First, the string
order is simply constructed as an increasing sequence
[0, 1, ...n − 1] (line 4). Then, a specific instance type is
randomly chosen, and all instances will share this type,
by setting all bits of the ins2type string to the index
of this type (line 5). Finally, the string task2ins is
initialized by a random choice of two methods, with
equal probability (line 6). The first method is to put all
tasks in a single instance, by setting all bits of task2ins
to 0 (line 7). Another method is to put tasks in different
instances at random, by randomly choosing an integer
from [0, n− 1] for each bit of task2ins (lines 9-10).

4.5 Complexity Analysis

The time complexity for both CrossoverOrder and
MutateOrder is O(n), where n is the number of tasks.
The time complexity of the procedure CrossoverIns is
O(n2), because for each swapped instance in the string
task2ins, an O(n) scan is needed to find whether it
also hosts another task according to the opposite individ-
ual. The evaluation procedure for each individual has an
O(e) time complexity. For a given DAG, the number of

1: procedure RANDTYPEORINS

2: n← number of tasks

3: m← number of instance types

4: order← [0, 1, ..., n− 1]
5: ins2type← replicate(m,RandInt(0,m−1))
6: if Rand(0, 1) < 0.5 then
7: task2ins← replicate(n, 0)
8: else
9: for all i ∈ [0, n− 1] do

10: task2ins[i]← RandInt(0, n− 1)
11: end for
12: end if
13: sched← {order,task2ins,ins2type}
14: end procedure

Fig. 9: The RandTypeOrIns procedure.

edges could be at most n2, so the time complexity of each
evaluation is on the order of O(n2). Thus, the overall
complexity of the evolution is on the order of O(kgn2),
with k individuals in population and g generations.

Besides the evolution procedure, when initializing the
first population, HEFT is performed once. The HEFT
algorithm has O(sn2) complexity where s is the number
of available services [23]. By using the Cloud-aware ex-
tension proposed in [22], a heterogeneous environment
can be constructed by m × n instances in Cloud, where
m is the number of instance types. Thus, HEFT has the
time complexity of O(mn3) in our initialization scheme.

Above all, the overall computational complexity of our
proposed algorithm is on the order of O(mn3 + kgmn2).
However, we would like to point out that, when exe-
cuting HEFT in the population initialization procedure,
because a) most instances in the simulated service pool
are not used at all, and b) several unused instances are
actually identical if they also share a same type, a large
number of redundant calculations could be eliminated
or optimized if using proper data structures. Also, in
practice, m×n is usually much less then k×g. For these
reasons, we observed that the most time-consuming
parts in SPEA2* and our proposed EMS-C are still the
evolution procedures, with the complexity of O(kgn2).

5 EXPERIMENTS

5.1 Experiments Parameters

5.1.1 IaaS Model

The experiments are based on the instance specifications
and pricing scheme of Amazon EC2. The General

Purpose instance group in US East region with the
purchasing option of On-Demand Instance is used.
Table 1 gives the used parameters.

5.1.2 Workflows

Pegasus project has published the workflow of a num-
ber of real-world applications including Montage, Cy-
berShake, Epigenomics, LIGO Inspiral Analysis and



TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

TABLE 1: IaaS parameters used in experiments.

Instance Type Compute Unit Bandwidth (bytes/sec) Price ($)

m1.small 1.7 39,321,600 0.06
m1.medium 3.75 85,196,800 0.12
m3.medium 3.75 85,196,800 0.113

m1.large 7.5 85,196,800 0.24
m3.large 7.5 85,196,800 0.225

m1.xlarge 15 131,072,000 0.48
m3.xlarge 15 131,072,000 0.45

m3.2xlarge 30 131,072,000 0.9

TABLE 2: Characteristics of the real-world DAGs.

DAG
Number
of Nodes

Number
of Edges

Average
Data Size

Average Task
Runtime (cu=1)

Montage 25 25 95 3.43MB 8.44s
Montage 50 50 206 3.36MB 9.78s

Montage 100 100 433 3.23MB 10.58s
Montage 1000 1000 4485 3.21MB 11.36s

Epigenomics 24 24 75 116.20MB 681.54s
Epigenomics 46 46 148 104.81MB 844.93s
Epigenomics 100 100 322 395.10MB 3954.90s
Epigenomics 997 997 3228 388.59MB 3858.67s

CyberShake 30 30 112 747.48MB 23.77s
CyberShake 50 50 188 864.74MB 29.32s

CyberShake 100 100 380 849.60MB 31.53s
CyberShake 1000 1000 3988 102.29MB 22.71s

Sipht 30 30 91 7.73MB 178.92s
Sipht 60 60 198 6.95MB 194.48s

Sipht 100 100 335 6.27MB 175.55s
Sipht 1000 1000 3528 5.91MB 179.05s

Inspiral 30 30 95 9.00MB 206.78s
Inspiral 50 50 160 9.16MB 226.19s
Inspiral 100 100 319 8.93MB 206.12s

Inspiral 1000 1000 3246 8.90MB 227.25s

* When calculating the number of edges, average data size and average
task runtime, the pseudo entry/exit node and the related edges are
included.

SIPHT [36], [37]. For each workflow, the published de-
tails include the DAG, the sizes of data transferring and
the reference execution time based on Xeon@2.33GHz
CPUs (cu ≈ 8). These workflows have been widely used
for measuring the performance of scheduling algorithms,
and we thus include these workflows in our exper-
iments. The DAG characteristics of these workflows,
including the numbers of nodes and edges, average data
size and average task runtime, are given in Table. 2, and
the sample structures of different applications are given
in Fig. 10.

Besides these real-world workflows, we also test our
algorithm on random workflows. The random work-
flows are generated by a tool which was also used
by [19], using the parameters width, regularity,
density, jumps and the number of tasks n. We
first generate 100 DAGs using random n ∈ [10, 100],
jump ∈ {1, 2, 3}, regularity ∈ {0.2, 0.4, 0.6}, width ∈
{0.2, 0.4, 0.6} and density ∈ {0.2, 0.4, 0.8}. In this tool,
the execution time of tasks are given as CPU cycles. We
notice that, for most generated tasks, the execution time
is less than one hour when running on a 2GHz CPU.
However, the pricing scheme we used has a minimum
charging time of one hour. To improve the coverage of

(a) Montage (b) Epigenomics (c) Inspiral

(d) CyberShake (e) Sipht

Fig. 10: Structures of the real-world workflows.

our experiments, we enlarge the execution time of every
task by 60 times to produce another 100 workflows, and
repeat the experiments on both workflow sets. These two
random workflow sets are respectively called as ‘random
(quick)’ and ‘random (slow)’ in following discussions.

5.1.3 EMO Frameworks

We have applied our proposed genetic operations
and encoding scheme above to several popular EMO
fromeworks including NSGA-II [32], MOEA/D [38]
and SPEA2 [39]. Under different frameworks, the non-
dominated fronts obtained by our designs are similar.
Due to the space limit, we only present the experimental
results under NSGA-II here.

As a classic Pareto-based EMO framework, NSGA-II
introduces two effective selection criteria, Pareto non-
dominated sorting and crowding distance, to guide
the search towards the optimal front. The Pareto non-
dominated sorting is used to divide the individuals into
several ranked non-dominated fronts according to their
dominance relations. The crowding distance is used to
estimate the density of the individuals in a population.
NSGA-II prefers two kinds of individuals: 1) the indi-
viduals with lower rank or 2) the individuals with larger
crowding distance if their rank is the same.

For convenience, our proposed approach, under the
NSGA-II framework, is denoted as ‘Evolutionary Multi-
objective Scheduling for Cloud (EMS-C)’ algorithm in
discussions below. Like most existing EMO algorithms,
EMS-C will terminate if the function evaluations reach
a preset number. The outcome of the algorithm is the
final population with the results in both decision and
objective spaces.

5.1.4 Compared Algorithms

We compare EMS-C with several QoS optimization
scheduling algorithms, including MOHEFT, NSPSO, ε-
Fuzzy PSO, SPEA2* and MODE. Except for MOHEFT,
all these algorithms assume the Grid-like environments
rather than Cloud platforms. Along with MOHEFT,



TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

a cloud-aware extension has been proposed to make
existing list-based algorithms can be used with the
IaaS model [22]. In this extension, the IaaS platform is
simulated as a common heterogeneous environment by
constructing an instance pool from Cloud in advance.
For a DAG with n tasks and an IaaS platform with m
instance types, n × m instances are prepared, with n
instances for each type. We apply this extension to all
the algorithms except our EMS-C in the experiments.

In addition, the following setups are used:

• For MOHEFT, the number of trade-off solutions is
50 (k = 50).

• For all NSPSO, ε-Fuzzy PSO, MODE, SPEA2* and
our algorithm, the size of population is 50 and the
number of generations is 1000.

• For both SPEA2* and EMS-C, the probabilities of
crossover and mutation are 1 and 1/n, respectively.

• For ε-Fuzzy PSO, the corresponding parameters are
c1 = 2.5 → 0.5, c2 = 0.5 → 2.5, ε = 0.1 and the
inertia weight w = 0.9→ 0.1, as used in [21].

• For NSPSO, the corresponding parameters are w =
1.0→ 0.4, c1 = 2 and c2 = 2, as used in [40].

• On each workflow, the scheduling is repeated for 10
times for all algorithms except MOHEFT.

5.1.5 Performance Metric

Hypervolume (HV) [41] is one of the most popular
performance metrics in the EMO area. Calculating the
volume of the objective space between the obtained
solution set and the reference point, HV can provide a
combined information about convergence and diversity
of the set. A larger HV value is preferable, which indi-
cates that the solution set is close to the Pareto front and
also has a good distribution.

To compare the schedules of totally different work-
flows, we normalize the produced solutions on each
workflow as follows. First, the solutions produced by
all the tested algorithms under all the executions are
mixed and non-dominated solutions are selected from
this mixed set. These non-dominated solutions are used
as an approximation of the actual Pareto front and all
results dominated by this approximating Pareto front
are discarded. Then, the makespans and the costs are
separately normalized by dividing their upper bounds of
the approximation. After all the results are normalized,
a reference point (1.1, 1.1) is used in the calculations of
HV, according to the recommendation in [34].

The HV results of a solution set could be zero if there
is no solution in or close enough to the Pareto front
approximation [42]. Numeric comparing other HV with
such a zero value is meaningless [43]. Thus, we consider
this case as a failure for the corresponding algorithm,
since its performance is significantly worse than those in
this case. The number of the failures is also considered
as one metric in the comparative experiments.

TABLE 3: Time complexity of EMS-C and the compared
algorithms when applied in Cloud.

Algorithm EMS-C SPEA2* MODE

T (n) O((mn3 + kgn2) O(mn3 + kgn2) O(kgn2)

Algorithm NSPSO ε-Fuzzy PSO MOHEFT

T (n) O(kgmn2) O(kgmn2) O(k2m2n3)

5.2 Results and Discussions

5.2.1 Cloud Scheduling Algorithm Complexity

Before presenting the experimental results, we first an-
alyze the time complexity of the compared algorithms.
The complexity of some compared algorithms has been
given in their original literatures [6], [9], [11], [21], [22].
However, due to the different resource management
models, the time and/or space complexity of these al-
gorithms might be changed when being applied in IaaS.
We assume that n is the number of tasks in a given
DAG, m is the number of instance types, g is the number
of iterations for GA and PSO, and k is the population
size for GA and PSO as well as the size of the trade-
off set in MOHEFT. Additionally, the simulated Grid-
like available service set, as discussed in Section 5.1.4, is
constructed in advance with the size s = m× n.

Since SPEA2* is also EMO-based and uses O(sn2)
GD/TD heuristic in the population initialization as well,
its time complexity should be also O(mn3 + kgn2). In
practice, because that the genetic operators used by
SPEA2* (O(n)) are simpler than those in EMS-C (O(n2)),
the actual execution time of SPEA2* might be slightly
less than ours in some cases. Similarly, the most time-
consuming part of MODE is also the individual evalua-
tions which have the complexity of O(n2). Therefore, the
overall time complexity for MODE is O(kgn2).

For ε-Fuzzy PSO and NSPSO, the complexity of eval-
uating all particle positions is also O(kgn2). However,
in these algorithms, s × n size matrices are used to
represent both the particle positions and the velocities.
According to the literatures [11], [21], these matrices
need to be updated in every iteration, and all these oper-
ations are (O(sn) = O(mn2)). For this reason, the actual
overall time complexity of ε-Fuzzy PSO and NSPSO is
O(kgmn2) in Cloud. Additionally, we observe in practice
that, due to the large amount of memory acquired for
storing these matrices, and the frequent operations on
the memory, the executions of these PSO algorithms
might be slower, especially when the algorithms are
implemented in a high-level programming language.

MOHEFT is extended on the basis of HEFT, which
maintains k trade-offs during its processor selection
phase. Since HEFT is (O(sn2) = O(mn3)) [23], MOHEFT
would be at least O(kmn3). On the other hand, the
procedure of the non-dominated sorting and crowding
distance sorting is with the complexity of O(q2) [32],
where q is the number of all newly extended interme-
diate schedules. However, by using the Cloud aware



TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

TABLE 4: HV differences between EMS-C and the
peer algorithms on the real-world workflows (i.e.,
HV (EMS-C)/HV (peer algorithm)× 100%− 1).

Workflow MOHEFT NSPSO SPEA2*
ε-Fuzzy

PSO
MODE

Montage 25 -0.09% 1.12% 2.52% 64.97% 24.56%
Montage 50 -0.03% 1.57% 2.49% 67.41% 27.86%
Montage 100 -0.46% 3.67% 5.11% 981.44% 29.62%
Montage 1000 —— 1.10% 6.58% 9.76% 54.55%

Epigenomics 24 7.22% 3.71% 5.12% 74.51% 121.84%
Epigenomics 46 1.20% 4.16% 8.25% 20.40% 170.75%
Epigenomics 100 -1.37% 21.02% 5.55% failure 174.88%
Epigenomics 997 —— 5.90% 2.47% 27.38% failure

CyberShake 30 1.95% 1.36% 5.15% 64.17% 21.10%
CyberShake 50 3.14% 2.75% 16.56% 961.78% 69.89%
CyberShake 100 0.76% 10.69% 21.84% 55.07% 181.95%
CyberShake 1000 —— 2.11% 2.13% 77.93% 56.38%

Sipht 30 -0.05% 1.16% 12.06% 14.62% 230.40%
Sipht 60 -0.08% 2.53% 3.96% 10.36% 211.97%
Sipht 100 -0.16% 7.06% 1.10% 73.25% 22.78%
Sipht 1000 —— 4.91% -0.04% 26.25% 45.93%

Inspiral 30 5.86% 10.46% 18.05% 44.13% 75.88%
Inspiral 50 1.30% 2.14% 6.94% 8.77% 91.17%
Inspiral 100 6.66% 6.48% 16.94% 72.24% 137.42%
Inspiral 1000 —— 3.05% 2.49% 11.74% 1460.64%

extension in [22], q would be equal to k×m×n. Therefore,
the SortCrowdDist procedure in MOHEFT has time
complexity of O(k2m2n2), leading to the overall algo-
rithm with the time complexity as high as O(k2m2n3).

The time complexity of all the peer algorithms and
EMS-C are listed in Table 3.

5.2.2 The Real-World Workflows

The HV improvements for EMS-C against the peer algo-
rithms are presented in Table. 4. As can be seen from the
table, EMS-C performs significantly better than NSPSO,
SPEA2*, ε-Fuzzy PSO and MODE for all the real-world
cases, except for Sipht 1000 on which SPEA2* can achieve
slightly better HV. Also, EMS-C performs better than
MOHEFT on all the CyberShake and Inspiral workflows,
as well as the small-size Epigenomics workflows, with
the improvements range from 0.76% to 7.22 %. In Epige-
nomics 100 cases, MOHEFT achieves noticeable better
HV than EMS-C, for which the difference is 1.37%. Be-
sides that, MOHEFT also slightly outperforms EMS-C on
the small/medium-size Sipht and Montage workflows;
however, the differences are much smaller, most of which
are less than 0.1%. Due to the high time complexity in
Cloud, MOHEFT is not able to finish in acceptable time
on all the large-size workflows.

We plot the produced makespan-cost trade-offs for
different algorithms on the Inspiral, Epigenomics and
Montage workflows in Fig. 11. Noted that the x-axes
are all logarithmic. These plots indicate that, even in the
cases where MOHEFT performs the best, the trade-off
fronts obtained by EMS-C are still significantly superior
to those obtained by the rest of the peer algorithms.

The runtime comparisons for different algorithms to
schedule the real-world workflows are presented in
Table 5. Here we compute and compare the runtime

TABLE 5: Runtime ratios of the peer algorithms against
the proposed EMS-C on the real-world workflows (i.e.,
runtime(peer algorithm)/runtime(EMS-C)).

Workflow SPEA2* MODE NSPSO
ε-Fuzzy

PSO
MOHEFT

Montage 25 1.91 1.35 22.32 13.37 3.76
Montage 50 1.43 1.40 30.15 25.99 35.97
Montage 100 1.13 1.35 46.42 45.43 131.84

Montage 1000 0.29 1.01 66.06 61.52 ——

Epigenomics 24 1.79 1.19 24.97 13.43 0.19
Epigenomics 46 1.26 1.36 30.09 25.27 1.01

Epigenomics 100 0.91 1.16 47.53 44.46 34.52
Epigenomics 997 0.23 1.05 83.59 82.96 ——

CyberShake 30 1.62 1.18 21.25 15.04 10.39
CyberShake 50 1.28 1.37 30.17 26.81 38.16
CyberShake 100 0.92 1.31 44.75 42.22 110.42

CyberShake 1000 0.32 0.97 70.72 69.56 ——

Sipht 30 1.54 1.08 22.46 15.03 0.27
Sipht 60 1.07 1.19 29.64 27.41 1.69
Sipht 100 0.83 1.16 41.00 41.10 14.23

Sipht 1000 0.28 1.06 74.25 71.02 ——

Inspiral 30 1.68 1.28 23.88 16.03 0.79
Inspiral 50 1.27 1.12 29.04 26.01 2.49

Inspiral 100 0.90 1.52 45.73 47.06 25.18
Inspiral 1000 0.24 1.04 71.91 73.01 ——

ratios between the peer algorithms and EMS-C, that
is, if the ratio is larger than 1, EMS-C is shown to be
faster than the competitor. Due to its simplest genetic
operators, SPEA2* runs faster than EMS-C in many cases.
Nevertheless, the overall time complexity of SPEA2*
and EMS-C is the same (O(kgn2)). On the other hand,
MODE has the similar execution time to EMS-C, which
is because the time complexity of calculating the Ulam
distances is O(n2) as well. Compared with the genetic
algorithms, PSO algorithms perform much slowly, due
to their higher time complexity and frequent memory
operations, especially when the number of tasks is large.
Finally, it is worth pointing out that the execution time
of MOHEFT increases rapidly with the number of tasks,
and it fails to finish in acceptable time on all the large-
size real-world workflows.

5.2.3 The Random Workflows

Since the random workflow sets consist of totally dif-
ferent workflows, the results are hard to be compared
directly. Thus, we also compare the HV ratios between
the compared algorithm and EMS-C on each tested
workflow. That is, if the ratio is less than 1, EMS-C is
shown to perform better than the competitor.

Fig. 12a gives the box plots for the HV ratios on the
quick random workflows. The figure shows that EMS-
C clearly outperforms ε-Fuzzy PSO, MODE, NSPSO
and SPEA2* in all these quick random cases. MOHEFT
performs remarkably better than all the other compared
algorithms. However, EMS-C can still defeat MOHEFT
in most cases, although the differences are small.

In contrast, the slow random workflows are much
harder to schedule for all the tested algorithms. The
HV ratio statistic for the slow workflows is presented
in Fig. 12b. The plot indicates that EMS-C can still



TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

10
2

10
3

10
4

10
5

Time(s)

0

2

4

6

8

10

12
C

o
st

($
)

ε-Fuzzy PSO

MODE

MOHEFT

NSPSO

SPEA2*

EMS-C

(a) Inspiral 30

10
3

10
4

10
5

Time(s)

1

2

3

4

5

6

C
o
st

($
)

ε-Fuzzy PSO

MODE

MOHEFT

NSPSO

SPEA2*

EMS-C

(b) Epigenomics 24

10
1

10
2

10
3

10
4

Time(s)

0

1

2

3

4

5

6

7

8

9

C
o
st

($
)

ε-Fuzzy PSO

MODE

MOHEFT

NSPSO

SPEA2*

EMS-C

(c) Montage 25

10
2

10
3

10
4

10
5

Time(s)

0

2

4

6

8

10

12

14

16

C
o
st

($
)

ε-Fuzzy PSO

MODE

MOHEFT

NSPSO

SPEA2*

EMS-C

(d) Inspiral 50

10
3

10
4

10
5

Time(s)

2

4

6

8

10

12

14

16

18

C
o
st

($
)

ε-Fuzzy PSO

MODE

MOHEFT

NSPSO

SPEA2*

EMS-C

(e) Epigenomics 46

10
1

10
2

10
3

10
4

Time(s)

0

5

10

15

20

25

30

C
o
st

($
)

ε-Fuzzy PSO

MODE

MOHEFT

NSPSO

SPEA2*

EMS-C

(f) Montage 50

10
2

10
3

10
4

10
5

Time(s)

0

5

10

15

20

25

30

C
o
st

($
)

ε-Fuzzy PSO

MODE

MOHEFT

NSPSO

SPEA2*

EMS-C

(g) Inspiral 100

10
3

10
4

10
5

10
6

Time(s)

26

28

30

32

34

36

38

40

C
o
st

($
)

ε-Fuzzy PSO

MODE

MOHEFT

NSPSO

SPEA2*

EMS-C

(h) Epigenomics 100

10
1

10
2

10
3

10
4

Time(s)

0

10

20

30

40

50

60

C
o
st

($
)

ε-Fuzzy PSO

MODE

MOHEFT

NSPSO

SPEA2*

EMS-C

(i) Montage 100

10
2

10
3

10
4

10
5

10
6

Time(s)

0

50

100

150

200

250

300

350

C
o
st

($
)

ε-Fuzzy PSO

MODE

NSPSO

SPEA2*

EMS-C

(j) Inspiral 1000

10
3

10
4

10
5

10
6

10
7

Time(s)

250

300

350

400

450

500

550

600

C
o
st

($
)

ε-Fuzzy PSO

MODE

NSPSO

SPEA2*

EMS-C

(k) Epigenomics 997

10
1

10
2

10
3

10
4

10
5

Time(s)

0

100

200

300

400

500

600

C
o
st

($
)

ε-Fuzzy PSO

MODE

NSPSO

SPEA2*

EMS-C

(l) Montage 1000

Fig. 11: Makespan-time trade-offs for some real-world workflows.

significantly outperform ε-Fuzzy PSO and MODE in
all cases, and can obtain better trade-offs than NSPSO
amd SPEA2* in most cases. In addition, compared with
MOHEFT, EMS-C has shown a clearer advantage than
on the quick workflows.

The runtime ratios on the random workflows are
plotted in Fig. 13. The plot indicates that, although in
some cases the qualities of their obtained results are
similar to or even better than EMS-C, MOHEFT, NSPSO
and ε-Fuzzy PSO usually incur much more time. This
observation conforms the analysis in Section 5.2.1.

We present the trade-off plots for some selected ran-
dom workflows in Fig. 14. No. 96 in the quick set
and No. 47 in the slow set are the cases where EMS-
C performs remarkably better than all the competitors;
NO. 44 in the quick set and No. 24 in the slow set
are the cases where both MOHEFT and EMS-C perform
equally well; No. 2 in the quick set and No. 13 in the
slow set are the cases where MOHEFT performs the best.
The figures show that, EMS-C can obtain trade-off fronts
with clear advantage over the competitors in the cases
where it performs the best. At the same time, in the cases
where MOHEFT performs slightly better, EMS-C can
still generate acceptable solutions that are pretty close
to the optimal ones. In addition, it is worth noting that,
in Fig. 14f, although MOHEFT can find some solutions
Pareto-dominating our obtained schedules, EMS-C can
also produce faster schedules that MOHEFT cannot find.

Table 6 gives the failure numbers experienced by each
algorithm on the random workflows. Only MODE has
failures on the quicker set (17). On the slower workflows,

0.0 0.2 0.4 0.6 0.8 1.0 1.2

ε-Fuzzy PSO

MODE

MOHEFT

NSPSO

SPEA2*

H
y
p

e
rv

o
lu

m
e

ra
ti
o

(a) On the random (quick) workflows

0.0 0.5 1.0 1.5 2.0

ε-Fuzzy PSO

MODE

MOHEFT

NSPSO

SPEA2*

H
y
p

e
rv

o
lu

m
e

ra
ti
o

(b) On the random (slow) workflows

Fig. 12: Box plots for the HV ratios of the peer algorithm
against the proposed EMS-C on the random workflows
(i.e., HV (peer algorithm)/HV (EMS-C)).

TABLE 6: Number of failures experienced by the peer
algorithms and EMS-C on the random workflows.

EMS-C
(both)

SPEA2* MOHEFT NSPSO
ε-Fuzzy

PSO
MODE

Quick 0 0 0 0 0 17
Slow 0 0 1 2 16 12

MOHEFT fails once and NSPSO fails twice. In addition
to that, both ε-Fuzzy PSO and MODE fail in more than 10
cases (16 and 12, respectively). In contrast, EMS-C expe-



TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

10
−2

10
−1

10
0

10
1

10
2

ε-Fuzzy PSO

MODE

MOHEFT

NSPSO

SPEA2*

R
u

n
ti
m

e
ra

ti
o

Fig. 13: Box plots for the runtime ratios of the peer algo-
rithm against the proposed EMS-C on the random work-
flows (i.e., runtime(peer algorithm)/runtime(EMS-C)).

10
2

10
3

10
4

10
5

Time(s)

0

2

4

6

8

10

12

14

16

18

C
o
st

($
)

ε-Fuzzy PSO

MODE

MOHEFT

NSPSO

SPEA2*

EMS-C

(a) No. 96 (quick)

10
4

10
5

10
6

Time(s)

8

9

10

11

12

13

14

C
o
st

($
)

ε-Fuzzy PSO

MODE

MOHEFT

NSPSO

SPEA2*

EMS-C

(b) No. 47 (slow)

10
2

10
3

10
4

10
5

Time(s)

0

2

4

6

8

10

12

C
o
st

($
)

ε-Fuzzy PSO

MODE

MOHEFT

NSPSO

SPEA2*

EMS-C

(c) No. 44 (quick)

10
4

10
5

10
6

Time(s)

20

25

30

35

40

45

50

55

60

C
o
st

($
)

ε-Fuzzy PSO

MODE

MOHEFT

NSPSO

SPEA2*

EMS-C

(d) No. 24 (slow)

10
3

10
4

10
5

Time(s)

0

1

2

3

4

5

6

7

8

9

C
o
st

($
)

ε-Fuzzy PSO

MOHEFT

NSPSO

SPEA2*

EMS-C

(e) No. 2 (quick)

10
4

10
5

10
6

Time(s)

40

50

60

70

80

90

100

C
o
st

($
)

ε-Fuzzy PSO

MODE

MOHEFT

NSPSO

SPEA2*

EMS-C

(f) No. 13 (slow)

Fig. 14: Trade-offs for selected random workflows.

riences no failure on any set under any framework. The
results have strengthened the previous findings that for
the Cloud workflow scheduling problem, our proposed
evolutionary algorithm is more stable and appears to be
much more likely to produce acceptable schedules.

6 CONCLUSION

Although there are many existing workflow scheduling
algorithms for the multi-processor architectures or het-
erogeneous computing environments, they have difficul-
ties in being directly applied to the Cloud environments.
In this paper, we try to address this by modeling the
workflow scheduling problem in Cloud as a multi-
objective optimization problem where we have consid-
ered the real-world Cloud computing models.

To solve the multi-objective Cloud scheduling prob-
lem which minimizes both makespan and cost simul-
taneously, we propose a novel encoding scheme which
represents all the scheduling orders, task-instance as-
signments and instance specification choices. Based on

this scheme, we also introduce a set of new genetic
operators, the evaluation function and the population
initialization scheme for this problem. We apply our de-
signs to several popular EMO frameworks, and test the
proposed algorithm on both the real-world workflows
and two sets of randomly generated workflows. The ex-
tensive experiments are based on the actual pricing and
resource parameters of Amazon EC2, and results have
demonstrated that this algorithm is highly promising
with potentially wide applicability.

As parts of our future work, we will consider using
more than one pricing schemes, instance type groups or
even multi-Clouds in a single schedule. Furthermore, the
monetary costs and time overheads of both communica-
tion and storage will be included in the considerations.

REFERENCES

[1] P. Mell and T. Grance, “The nist definition of cloud computing,”
National Institute of Standards and Technology, Tech. Rep. 6, 2009.

[2] B. Martens, M. Walterbusch, and F. Teuteberg, “Costing of cloud
computing services: A total cost of ownership approach,” in 45th
Hawaii Int. Conf. Syst. Sci. IEEE, 2012, pp. 1563–1572.

[3] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good et al., “Pegasus:
A framework for mapping complex scientific workflows onto
distributed systems,” Sci. Programming, vol. 13, no. 3, pp. 219–
237, 2005.

[4] T. Fahringer, R. Prodan, R. Duan, F. Nerieri, S. Podlipnig, J. Qin,
M. Siddiqui, H.-L. Truong, A. Villazon, and M. Wieczorek,
“Askalon: A grid application development and computing envi-
ronment,” in 6th IEEE/ACM Int. Workshop on Grid Comput. IEEE
Computer Society, 2005, pp. 122–131.

[5] G. Juve, M. Rynge, E. Deelman, J.-S. Vockler, and G. B. Berriman,
“Comparing futuregrid, amazon ec2, and open science grid for
scientific workflows,” Computing in Sci. & Eng., vol. 15, no. 4, pp.
20–29, 2013.

[6] J. Yu, M. Kirley, and R. Buyya, “Multi-objective planning for
workflow execution on grids,” in 8th IEEE/ACM Int. Conf. on Grid
Comput. IEEE Computer Society, 2007, pp. 10–17.

[7] M. Wieczorek, A. Hoheisel, and R. Prodan, “Towards a general
model of the multi-criteria workflow scheduling on the grid,”
Future Generation Comput. Syst., vol. 25, no. 3, pp. 237–256, 2009.

[8] W.-N. Chen and J. Zhang, “An ant colony optimization approach
to a grid workflow scheduling problem with various QoS require-
ments,” IEEE Trans. Syst. Man Cybern. A., Syst. Humans, vol. 39,
no. 1, pp. 29–43, 2009.

[9] A. Talukder, M. Kirley, and R. Buyya, “Multiobjective differential
evolution for scheduling workflow applications on global grids,”
Concurrency and Computation: Practice and Experience, vol. 21,
no. 13, pp. 1742–1756, 2009.

[10] F. Zhang, J. Cao, K. Hwang, and C. Wu, “Ordinal optimized
scheduling of scientific workflows in elastic compute clouds,” in
3rd IEEE Int. Conf. Cloud Comput. Technol. and Sci. IEEE, 2011,
pp. 9–17.

[11] R. Garg and A. K. Singh, “Multi-objective workflow grid schedul-
ing based on discrete particle swarm optimization,” in Swarm,
Evolutionary, and Memetic Comput. Springer, 2011, pp. 183–190.

[12] M. Zhu, Q. Wu, and Y. Zhao, “A cost-effective scheduling al-
gorithm for scientific workflows in clouds,” in 31th IEEE Int.
Performance Comput. and Commun. Conf. IEEE, 2012, pp. 256–265.

[13] O. Udomkasemsub, L. Xiaorong, and T. Achalakul, “A multiple-
objective workflow scheduling framework for cloud data analyt-
ics,” in 24th IEEE Int. Joint Conf. Comput. Sci. and Softw. Eng. IEEE,
2012, pp. 391–398.

[14] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Cost-
and deadline-constrained provisioning for scientific workflow
ensembles in iaas clouds,” in Int. Conf. High Performance Comput.,
Networking, Storage and Analysis. IEEE Computer Society Press,
2012, p. 22.



TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 14

[15] S. Su, J. Li, Q. Huang, X. Huang, K. Shuang, and J. Wang,
“Cost-efficient task scheduling for executing large programs in
the cloud,” Parallel Comput., vol. 39, no. 4, pp. 177–188, 2013.

[16] W. Zheng and R. Sakellariou, “Budget-deadline constrained work-
flow planning for admission control,” J. of Grid Comput., vol. 11,
no. 4, pp. 633–651, 2013.

[17] N. D. Man and E.-N. Huh, “Cost and efficiency-based scheduling
on a general framework combining between cloud computing and
local thick clients,” in Int. Conf. Comput., Manage. and Telecommun.
IEEE, 2013, pp. 258–263.

[18] S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-
constrained workflow scheduling algorithms for infrastructure as
a service clouds,” Future Generation Comput. Syst., vol. 29, no. 1,
pp. 158–169, 2013.

[19] H. Arabnejad and J. G. Barbosa, “A budget constrained schedul-
ing algorithm for workflow applications,” J. of Grid Comput., pp.
1–15, 2014.

[20] H. M. Fard, R. Prodan, and T. Fahringer, “Multi-objective list
scheduling of workflow applications in distributed computing
infrastructures,” J. of Parallel and Distrib. Comput., vol. 74, no. 3,
pp. 2152–2165, 2014.

[21] R. Garg and A. K. Singh, “Multi-objective workflow grid schedul-
ing using ε-fuzzy dominance sort based discrete particle swarm
optimization,” J. of Supercomputing, vol. 68, no. 2, pp. 709–732,
2014.

[22] J. J. Durillo and R. Prodan, “Multi-objective workflow scheduling
in amazon ec2,” Cluster Comput., vol. 17, no. 2, pp. 169–189, 2014.

[23] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,”
IEEE Trans. Parallel Distrib. Syst, vol. 13, no. 3, pp. 260–274, 2002.

[24] R. Sakellariou, H. Zhao, E. Tsiakkouri, and M. D. Dikaiakos,
“Scheduling workflows with budget constraints,” in Integrated
Research in GRID Comput. Springer, 2007, pp. 189–202.

[25] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid
computing 360-degree compared,” in Grid Comput. Environments
Workshop. IEEE, 2008, pp. 1–10.

[26] C. Computing. (2013, Nov.) Back to the future: 1.21
petaflops(rpeak), 156,000-core cyclecloud HPC runs 264 years of
materials science. [Online]. Available: http://goo.gl/59ItjU

[27] H. Liu. (2014, Feb.) Amazon ec2 grows 62% in 2 years. [Online].
Available: http://goo.gl/FgkxoR

[28] M. Rosoff. (2015, Apr.) Amazon’s true brilliance shone this week
in a tale of three clouds. Business Insider. [Online]. Available:
http://goo.gl/D6GhW1

[29] I. Amazon Web Services. (2014) Amazon ec2 pricing. [Online].
Available: http://goo.gl/yKb41s

[30] Microsoft. (2014) Virtual machines pricing details. [Online].
Available: http://goo.gl/UrDkvF

[31] Google. (2014) Google compute engine pricing. [Online].
Available: http://goo.gl/fKQwzb

[32] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: Nsga-ii,” IEEE Trans. Evol.
Comput., vol. 6, no. 2, pp. 182–197, 2002.

[33] H. Li and Q. Zhang, “Multiobjective optimization problems with
complicated pareto sets, moea/d and nsga-ii,” IEEE Trans. Evol.
Comput., vol. 13, no. 2, pp. 284–302, 2009.

[34] H. Ishibuchi, Y. Hitotsuyanagi, N. Tsukamoto, and Y. Nojima,
“Many-objective test problems to visually examine the behavior
of multiobjective evolution in a decision space,” in Parallel Problem
Solving from Nature. Springer, 2010, pp. 91–100.

[35] M. Li, S. Yang, and X. Liu, “Shift-based density estimation for
pareto-based algorithms in many-objective optimization,” IEEE
Trans. Evol. Comput., vol. 18, no. 3, pp. 348–365, 2014.

[36] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su,
and K. Vahi, “Characterization of scientific workflows,” in 3rd
Workshop on Workflows in Support of Large-Scale Sci. IEEE, 2008,
pp. 1–10.

[37] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and
K. Vahi, “Characterizing and profiling scientific workflows,” Fu-
ture Generation Comput. Syst., vol. 29, no. 3, pp. 682–692, 2013.

[38] Q. Zhang and H. Li, “Moea/d: A multiobjective evolutionary
algorithm based on decomposition,” IEEE Trans. Evol. Comput.,
vol. 11, no. 6, pp. 712–731, 2007.

[39] E. Zitzler, M. Laumanns, L. Thiele, E. Zitzler, E. Zitzler, L. Thiele,
and L. Thiele, “Spea2: Improving the strength pareto evolutionary
algorithm,” Eidgenössische Technische Hochschule Zürich (ETH),

Institut für Technische Informatik und Kommunikationsnetze
(TIK), Tech. Rep., 2001.

[40] X. Li, “A non-dominated sorting particle swarm optimizer
for multiobjective optimization,” in Genetic and Evol. Comput.
Springer, 2003, pp. 37–48.

[41] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms:
a comparative case study and the strength pareto approach,” IEEE
Trans. Evol. Comput., vol. 3, no. 4, pp. 257–271, 1999.

[42] M. Li, S. Yang, J. Zheng, and X. Liu, “Etea: A Euclidean minimum
spanning tree-based evolutionary algorithm for multiobjective
optimization,” Evol. Comput., vol. 22, no. 2, pp. 189–230, 2014.

[43] M. Li, S. Yang, K. Li, and X. Liu, “Evolutionary algorithms with
segment-based search for multiobjective optimization problems,”
IEEE Trans. Cybern., vol. 44, no. 8, pp. 1295–1313, 2014.

Zhaomeng Zhu received his B.Eng. degree in
computer science and technology in 2010 from
Nanjing University of Science and Technology,
Jiangsu, China, where he is currently working
toward the Ph.D. degree in the School of Com-
puter Science and Engineering. Also, he was a
visiting student in the Department of Computer
Science, Brunel University London, U.K. during
2014.

Gongxuan Zhang received his B.Eng. degree
in computing from Tianjin University and his
M.Eng. and Ph.D. degrees in computer ap-
plication from Nanjing University of Science
and Technology. Also, he was a senior visiting
scholar in Royal Melbourne Institute of Tech-
nology from 2001.9 to 2002.3. Since 1991, he
has been with Nanjing University of Science and
Technology, where he is currently a Professor in
the School of Computer Science and Engineer-
ing.

Miqing Li received the B.Sc. degree in computer
science from the School of Computer and Com-
munication, Hunan University, and the M.Sc.
degree in computer science from the College
of Information Engineering, Xiangtan University.
He is currently pursuing the Ph.D. degree in the
School of Information Systems, Computing, and
Mathematics, Brunel University.

XiaoHui Liu received a B.Eng. degree in Com-
puting (Hohai University) and a Ph.D. degree
in Computer Science (Heriot-Watt University).
After taking up research and academic posts in
Durham University and Birkbeck College, Uni-
versity of London, he joined Brunel University as
a full Professor in 2000.

http://goo.gl/59ItjU
http://goo.gl/FgkxoR
http://goo.gl/D6GhW1
http://goo.gl/yKb41s
http://goo.gl/UrDkvF
http://goo.gl/fKQwzb

	Introduction
	Challenges for scheduling workflows in Cloud
	Workflow Scheduling Problem
	Workflow Definition
	Cloud Resource Management
	Workflow Scheduling Problem

	Evolutionary Multi-Objective Optimization
	Fitness Function
	Encoding
	Genetic Operators
	Crossover
	Mutation

	Initial Population
	Complexity Analysis

	Experiments
	Experiments Parameters
	IaaS Model
	Workflows
	EMO Frameworks
	Compared Algorithms
	Performance Metric

	Results and Discussions
	Cloud Scheduling Algorithm Complexity
	The Real-World Workflows
	The Random Workflows


	Conclusion
	References
	Biographies
	Zhaomeng Zhu
	Gongxuan Zhang
	Miqing Li
	XiaoHui Liu


