
ETH Library

Evolutionary multiobjective design
in automotive development

Journal Article

Author(s):
Laumanns, Marco; Laumanns, Nando

Publication date:
2005-07

Permanent link:
https://doi.org/10.3929/ethz-b-000032670

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Applied Intelligence 23(1), https://doi.org/10.1007/s10489-005-2372-6

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000032670
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s10489-005-2372-6
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Applied Intelligence 23, 55–70, 2005

c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Evolutionary Multiobjective Design in Automotive Development

MARCO LAUMANNS

ETH Zürich, Institute for Operations Research, CH-8092 Zürich, Switzerland

laumanns@ifor.math.ethz.ch

NANDO LAUMANNS

RWTH Aachen, Institut für Kraftfahrwesen, D-52074 Aachen, Germany

Abstract. This paper describes the use of evolutionary algorithms to solve multiobjective optimization problems

arising at different stages in the automotive design process. The problems considered are black box optimization

scenarios: definitions of the decision space and the design objectives are given, together with a procedure to eval-

uate any decision alternative with regard to the design objectives, e.g., a simulation model. However, no further

information about the objective function is available. In order to provide a practical introduction to the use of mul-

tiobjective evolutionary algorithms, this article explores the three following case studies: design space exploration

of road trains, parameter optimization of adaptive cruise controllers, and multiobjective system identification. In

addition, selected research topics in evolutionary multiobjective optimization will be illustrated along with each

case study, highlighting the practical relevance of the theoretical results through real-world application examples.

The algorithms used in these studies were implemented based on the PISA (Platform and Programming Language

Independent Interface for Search Algorithm) framework. Besides helping to structure the presentation of different

algorithms in a coherent way, PISA also reduces the implementation effort considerably.

Keywords: multiobjective optimization, evolutionary algorithms, engineering design, automotive development

1. Introduction

Like many areas of engineering design, vehicle devel-

opment has become an increasingly complex process

in recent years. Engineers must meet conflicting de-

mands concerning efficiency, performance, costs, etc.

Vehicle design problems are typically characterized by

the presence of multiple decision criteria or design ob-

jectives. Additional difficulties arise due to the increas-

ingly complex system models used in the design pro-

cess. Computer simulation is often used to model parts

of the system to be designed as well as its environment

since experiments with the real system are time con-

suming and expensive. The complexity of the model of-

ten makes it impossible for the designer to understand

its input-output mapping, thus it must be regarded as a

black box.

Approaches to cope with difficult design problems

have traditionally been categorized into experimental

and analytical methods. Experimental methods gener-

ally rely on the intuition and experience of the engineer

and often follow a trial-and-error strategy. Analytical

methods represent a more formal and systematic ap-

proach, but are normally limited to very simple mod-

els. With the availability of sufficient computing re-

sources, numerical optimization methods have gained

much popularity as a new option to deal with engi-

neering design problems. The focus of this study are

evolutionary algorithms (EAs), a special type of prob-

abilistic numerical optimization techniques [1].

The use of evolutionary algorithms in engineering

design is not new (see, e.g., [2–4] for overviews). EAs

possess several properties that make black box de-

sign problems one of their primary application areas:

56 Laumanns and Laumanns

(i) they are easy to describe and implement, (ii) they do

not make any assumptions about the properties of the

optimization problem (such as differentiability, conti-

nuity, unimodality) or type of design variables, and (iii)

they process sets of solutions in parallel and thus are

able to obtain several different design alternatives si-

multaneously. The third property is often regarded as

the key advantage of EAs over other numerical opti-

mization techniques for problems with multiple design

objectives. The recent monographs of [5] and [6] give

a detailed survey of multiobjective evolutionary algo-

rithms (MOEAs) including application examples.

The multitude of different MOEA versions intro-

duced in the literature makes it difficult for a user, who

is often not an EA expert, to choose a suitable algo-

rithm. Many algorithms are published in conjunction

with a certain application problem and hence contain

many problem-specific operators, which might be ir-

relevant and confusing for a different user. In addition,

state-of-the-art MOEAs are much more complex than

standard EAs, resulting in a tedious and error-prone

implementation effort.

The aim of this paper is to give a practical introduc-

tion to multiobjective black box optimization, used in

engineering design processes, through real-world ex-

amples from the field of automotive engineering. To

overcome the aforementioned difficulties, we employ

the PISA framework [7]. The concept of PISA is to

split the optimization into a problem-dependent and a

problem-independent part. The use of PISA serves two

purposes here. On the didactical side, the principle of

separation of concerns facilitates the users’ comprehen-

sion of the algorithms and hence their ability to choose

and implement. On the practical side, the standardized

interface specification of PISA allows to use existing

algorithms with minimum programming effort. It also

enables to easily combine the optimization algorithms

with the application problem at hand.1

This article is therefore intended to be both practical

and readily comprehensible such that an engineer with

little knowledge of evolutionary computation and the

mathematics of multiobjective optimization can bene-

fit from it. The focus is to clarify which algorithms can

be applied and how they might be implemented from a

practitioner’s perspective. On the other hand, interested

readers will find selected research issues in evolution-

ary multiobjective optimization, demonstrated through

practical examples, together with references for further

study. First, we introduce the necessary mathematical

and methodological background of multiobjective de-

sign with evolutionary algorithms and the PISA frame-

work. The remaining sections describe multiobjective

decision problems that arise at different stages in the

design process of automotive systems and demonstrate

the use of the proposed methodology. The first applica-

tion explores the design space of road trains. Since road

trains are a new concept in the European freight sector,

it is necessary to explore their potential concerning var-

ious economic and environmental criteria at a prelimi-

nary design stage. The algorithm applied is extremely

simple and suitable for self-implementation. We ad-

dress the question of how to obtain a well-distributed

and diverse set of design alternatives in problems with a

fairly large number of objectives. In addition to that we

introduce a simple technique of density-based selec-

tion. The second application area is a parameter opti-

mization of adaptive cruise control systems. Here, the

task is to develop a filter structure for optimal con-

troller behavior regarding driving performance, safety

and fuel consumption. On the algorithmic side, the fo-

cus is on the question of how to represent the design

alternatives in the MOEA, and how to define appro-

priate variation operators. In order to compare differ-

ent algorithms it is necessary to complete a perfor-

mance assessment of MOEAs, which will exemplar-

ily be discussed on this problem. Finally, a system

identification problem is addressed. The aim is to fit

a vehicle dynamics simulation model to data acquired

in real driving tests. A simple, but realistic, model is

needed for later integration into a vehicle dynamics

controller. For this application, convergence problems

are observed with standard MOEAs—a topic that has so

far only been discussed in theoretical studies. To solve

this problem, a recently developed selection operator is

applied.

2. Multiobjective Design by Evolutionary
Algorithms

Many design problems involve several criteria or objec-

tives according to which the alternatives are evaluated.

Objectives can be incommensurable, meaning they are

not comparable with respect to magnitude and value.

They can also be non-cooperative, meaning there is no

single alternative that is better than all other alternatives

in each objective. If set of alternatives is explicitely

given, small, and finite, methods from the area of mul-

tiattribute decision analysis [8–10] can be used to aid

the choice process under multiple criteria.

Evolutionary Multiobjective Design in Automotive Development 57

In engineering design problems, though, the set of

different alternatives is usually not given explicitly, but

rather implicitly via design variables and system con-

straints. The multiobjective decision problem then be-

comes a search or optimization problem and can be

represented in its general form as

minimize f(x) = (f1(x), . . . , fm(x)) (1)

subject to x ∈ X, (2)

where X denotes the set of feasible design alternatives

(design space) and f the vector of the m ∈ N objective

functions. As there is rarely a single solution that min-

imizes all components of f simultaneously, the goal is

to find elements of the so-called Pareto-optimal set.

Definition 1 (Pareto optimality). Let f : X → F ,

where X is called decision space and F ⊆ R
m ob-

jective space. A decision alternative x∗ ∈ X is Pareto

optimal if there is no other x ∈ X that dominates x∗.

x dominates x∗, denoted as x ≺ x∗ if fi (x) ≤ fi (x
∗)

for all i = 1, . . . , m and fi (x) < fi (x
∗) for at least one

index i . The set of all Pareto-optimal decision alterna-

tives X∗ is called Pareto set. F∗ = f(X∗) is the set

of all Pareto-optimal objective vectors and denoted as

Pareto front.

The Pareto set represents the collection of all rea-

sonable alternatives, independent of the relative im-

portance of the different objectives for the decision-

maker. The knowledge of the Pareto set is useful for

the decision-maker because it reveals much about the

design problem at hand and about the trade-offs be-

tween the different objectives. It is obvious that any

final solution should be Pareto optimal, but the deci-

sion as to which alternative to choose is subjective and

depends on the decision-makers’ preferences.

Most numerical methods to deal with multiobjective

optimization problems are restricted to a certain type

of problem (see, e.g., [11] for linear objectives, [12]

for nonlinear objectives with continuous variables, or

[13] for combinatorial problems). Engineering design

problems, however, do not necessarily fit into those

categories. For the purpose of this article, we do not

want to restrict the type of problem and we assume

the designer can provide (i) a definition of the decision

space, (ii) a definition of the design objectives, and

(iii) a system model that constitutes the mapping from

decision alternatives to objective values. This is the

scenario of black box optimization and the reason we

apply evolutionary algorithms.

Evolutionary algorithms are probabilistic search

techniques inspired by models of natural evolution.

EAs work by representing different decision alterna-

tives as individuals, which undergo cycles of variation

and selection. The variation operator usually consists of

recombination (the exchange of information between

individuals) and mutation (the random alteration of

individuals). The selection operator is used to grade

the decision alternatives represented by the individuals

based on their objective function values. The best indi-

viduals are kept for the production of offspring, while

the worse alternatives are discarded.

A prevalent obstacle for the application of evolu-

tionary algorithms is the practical integration of the

optimization algorithm with the system model. Both

the system model and the optimization algorithm are

typically available as independent computer programs;

however, neither are necessarily implemented in the

same programming language or on the same operating

system. Partial re-implementation of the optimizer or

the system model is time consuming and error prone,

thus it is desirable to keep both parts as separate and

freely combinable components, as indicated in Fig. 1.

For the interaction of these two components we make

use of PISA, a platform-independent and programming

language-independent interface for search algorithms,

which has been developed to facilitate and standardize

the integration of application problems and iterative

optimization algorithms [7]. The purpose of PISA is

to split the optimization component into two logically

independent elements, ‘variator’ and ‘selector’, which

operate with sets of decision alternatives denoted as

‘populations’.2

The variator is responsible for the production of

solutions. It can either create new solutions from

scratch (‘initial population’) or modify existing solu-

tions (‘offspring population’). The variation of solu-

tions takes place in the decision space X and is therefore

application-specific. The variator is also responsible for

calculating the objective values. This can be achieved

either by integrating the system model into the variator

or by invoking a separate simulation program.

The selector is responsible for deciding which solu-

tions to discard and which to keep for further explo-

ration during the search process. The selection is based

on the objective values (which are provided by the vari-

ator as described above) and is thereby application-

independent. The selector maintains an archive of all

58 Laumanns and Laumanns

Figure 1. Illustration of the concept underlying PISA. The application problems on the left hand side and the multiobjective selection schemes

can be combined arbitrarily.

solutions to be kept (‘archive population’), from which

it samples promising individuals for further modifica-

tion by the variator (‘parent population’).

PISA requires that variator and selector are imple-

mented as independent processes that exchange infor-

mation via text files. The only common parameters to

be specified are the size of the initial population α, the

size of the parent population λ, the size of the offspring

population µ and the number of objectives dim. For

further details on the PISA protocol refer to [7].

3. Design Space Exploration of Road Trains

The first example of a development task solved by the

described approach is the adaptation of a normal truck’s

power train to suit a road train [14]. Increasing the max-

imum payload is one possible approach to overcome

traffic problems on crowded European highways. We

focus on a concept for European freight traffic featuring

two semi-trailers connected by a one-axle dolly [15].

The optimization of a new vehicle concept with re-

spect to fuel consumption and driving dynamics is a

very complex subject. The lack of existing data and

knowledge leaves a void in experiments concerning

the power train and the overall weight of the road train.

Furthermore, it is impossible to acquire knowledge in

driving tests as prototypes are too expensive to build.

Therefore, the vehicle concept is modeled by a vehicle

simulation.

3.1. Optimization Problem

Several considerations must be taken into account when

developing a new vehicle concept. On one hand, an op-

timal combination of vehicle weight and engine power

has to be found to ensure efficient driving. On the other

hand, the correct choice of gear box type and gear ratio

influence driving comfort and performance. The de-

sign variables and their ranges are displayed in Fig. 2.

The first four variables are scale factors of different

engine and gear box parameters. The last variable, x5,

represents the choice of the gear box type, specifically,

whether the 15th or the 16th gear is chosen to be the

direct gear. The direct gear is most efficient because the

power is not transmitted through toothed wheels, but

directly through the transmission shaft (gear ratio = 1).

If the 15th gear is chosen as the direct gear, the 16th

has a ratio below 1, which is less efficient. However,

the low ratio causes higher engine rates and thus lower

torque, which increases the gear box durability.

An increase in weight leads to an increase of road and

climbing resistance. This changes the engine operating

Evolutionary Multiobjective Design in Automotive Development 59

Figure 2. Schematic view of the road train and its design variables.

Figure 3. Engine characteristic graph.

point as well as its efficiency and fuel consumption.

Every driving condition defines a point in the engine

characteristic graph (see Fig. 3). The number of rev-

olutions is determined by the velocity of the vehicle

and the total gear ratio (consisting of rear-axle ratio

and transmission ratio). The required torque is a result

of power output (influenced by velocity, efficiency of

the gear box, acceleration, and road gradient) and rev-

olutions. A lower total gear ratio reduces the engine

speed. Assuming constant running resistance (due to

constant velocity and road gradient) the required power

remains unchanged. The line of constant power indi-

cates this relationship in Fig. 3. Long-distance trans-

port vehicles usually drive statically, operating at their

maximum authorized speed. This leads to the assump-

tion that the gear ratio should be low enough to create

an engine operating point in the area of lowest spe-

cific fuel consumption. This area is close to the line

of maximum torque. Small increases in the running

resistance, resulting from headwind or road gradient,

cannot be compensated for by requesting more torque

from the engine. Instead, they force the driver to shift

gears or to go at a lower speed. Since the drivability of

the vehicle requires a large distance between the most

frequent engine operating point and the line of max-

imum torque (resulting in powerful engines and high

gear ratios), it counteracts the attempt to reduce fuel

consumption.

The goal of the optimization is to find a combination

of overall weight, gear box, engine and driving strat-

egy that minimizes fuel consumption and optimizes

driving performance and driving convenience. Ten ob-

jective functions are defined to give a complete char-

acterization of the vehicle performance with respect to

fuel consumption and drivability. The resulting prob-

lem can be stated as follows:

Minimize f(x) = (f1(x), . . . , f10(x)),

f1(x) = ta1(x) [time for acceleration

0–40 km/h]

f2(x) = ta2(x) [time for acceleration

40–90 km/h]

f3(x) = (−1) · vmax(x) [maximum velocity]

f4(x) = (−1) · v14(x) [maximum velocity,

1.5 gradient, 14th gear]

f5(x) = (−1) · v16(x) [maximum velocity,

1.0 gradient, 16th gear]

f6(x) = c100(x) [average fuel consumption

per ton load, 100 km/h]

60 Laumanns and Laumanns

f7(x) = c80(x) [average fuel consumption

per ton load, 80 km/h]

f8(x) = (−1) · vave(x) [average speed on a highway

(including road gradient)]

f9(x) = ch(x) [average fuel consumption

per ton load on a highway]

f10(x) = gtot(x) [number of gear shifts on

a highway]

subject to x = (x1, . . . , x5) ∈ X = [0, 1]5.

The characteristic values ta1, ta2, vmax, v14, v16, c100,

c80, vave, ch , gtot are derived by simulation and there-

fore cannot be given in closed form. Six simulation sce-

narios are used, a full-load acceleration scenario, two

constant-velocity scenarios (80 km/h and 100 km/h),

two scenarios with constant gradient and the engine

operating at full load and a highway scenario. The high-

way scenario consists of an 18 km drive over an empty

highway, with road gradient varying from −4.5% to

+3.9%.

3.2. Algorithms

This application is an example of design space ex-

ploration at an early stage. Here, simplicity is a main

criterion to select a suitable optimization algorithm if

the designer needs quick results and has to implement

the algorithm himself. A further, technical requirement

for this specific problem is that the archive population

must be able to store a large number of individuals be-

cause the number of non-dominated solutions usually

increases with the number of objectives. In this case,

the archive size does not have to be bounded at all be-

cause the long duration of the simulation (about 30 sec-

onds) already limits the total number of alternatives that

can be evaluated in a reasonable amount of computing

time. Our simple replacement strategy merely keeps all

non-dominated solutions. To avoid genetic drift and an

oversampling of already sufficiently explored regions,

density-based selection [16, 17] is used to determine the

parent population. In each iteration, the local density

of each element of the archive population is estimated

using a simple histogram-based method: a hyper-grid

is defined in the objective space, and each individual

is assigned the total number of individuals occupying

its grid cell. The individual for the parent population is

then drawn (with replacement) from the archive popu-

lation with a probability reciprocal to this value.

The variation operator for this study only uses muta-

tion. Each individual represents a decision alternative

Table 1. PISA specification of the EA for the road train problem.

PISA Parameters: α = 20 µ = 1 λ = 1 dim = 10

Variator Selector

Initial population: Archive population:

Draw each decision vector Keep all non-dominated individuals,

uniformly from X . discard dominated ones.

Offspring population: Parent population:

Mutate each parent decision Draw parent individual inversely

variable by adding proportional to its local

a normal random density in objective space.

variable with zero

mean and standard

deviation 0.02.

by a vector of design variables x = (x1, . . . , x5) ∈ X .

For each component of the decision vector, a random

number is drawn from a standard normal distribution

and multiplied with a scaling factor σ . This product is

then added to the old component xi to form the new

component x ′
i :

x ′
i := xi + σ · ri , ri ∼ N (0, 1) (3)

A constant mutation step size of σ = 0.02 is used

for simplicity, i.e., two percent of the range of each

design variable. Recombination is not used here since

the interdependence of the design variables in every

part of the objective space seems to be very high. The

variation and selection operators are summarized in

Table 1.

To judge the quality of the design alternatives ob-

tained by the evolutionary algorithm, a road train ver-

sion is designed in a traditional way, based on simple

rules for optimizing a truck’s power train [18]. In addi-

tion, two grid searches over the whole design space are

performed, each with a total number of 2160 elements.

One of them is restricted to a maximum authorized

speed of 80 km/h, the other to 100 km/h.

3.3. Results

A hierarchical approach is used for the design space

exploration with the evolutionary algorithm. The first

run of the evolutionary algorithm is performed to nar-

row the design variable intervals. An analysis of the

trade-offs between the different objectives leads to the

conclusion that a focus on reducing fuel consumption

does not necessarily worsen the other objective values

in an unacceptable way. Furthermore, this goal is the

Evolutionary Multiobjective Design in Automotive Development 61

Figure 4. Design variable and specific fuel consumption for the 100 km/h road train (top) and the 80 km/h road train (bottom).

main factor for the profitability of a vehicle concept and

deserves special attention. Therefore, we choose aver-

age fuel consumption on the highway, f9, as the objec-

tive value that defines a ranking of the solutions; f4 and

f5 can be used to represent the second important part

of driving performance, the required climbing ability.

Here, reduction of maximum velocity must not exceed

5 km/h. Solutions that do not meet this criterion are

removed from the ranking. With the help of these pre-

liminary solutions, shown in Fig. 4, the design variable

intervals are narrowed down to x1 ∈ [0.4, 0.6], x2 =

1, x3 ∈ [0.3, 0.4], x4 ∈ [0, 0.5], x5 = 0 for the

100 km/h version and x1 ∈ [0.0, 0, 4], x2 = 1, x3 ∈

[0.55, 0.85], x4 ∈ [0, 0.5], x5 = 0 for the 80 km/h

version. Limited to those intervals, a second run of the

same evolutionary algorithm performs a more exact ap-

proximation of the Pareto set in the region of interest.

Of course, there are other ways to cope with the large

number of incomparable alternatives in the presence

of many objectives. These typically rely on preference

information, for instance aggregating (or dropping) ob-

jectives, lexicographic ordering or the transformation

of objectives into constraints. In many cases, however,

it is very difficult to derive an exact numerical repre-

sentation of the preferences. Moreover, since we have

different decision-makers with different preferences in

mind, the aim is first to explore the Pareto set as broadly

as possible with a minimum number of simulations be-

fore exploiting interesting regions through restricting

the decision variable space as described above.

Final results show the impressive advantage of road

trains over normal trucks with respect to fuel consump-

tion: decreases of 23% (80 km/h-version) and 26% (100

km/h-version) are achieved on highways in spite of

the rather tough gradients. In steady-state operation,

fuel consumption advantages of up to 35% are accom-

plished. When acceleration is at a sensible level, the

road trains have no disadvantages in climbing ability

and required gear shifts. The comparison of the differ-

ent road train versions (see Fig. 5) indicates that the

62 Laumanns and Laumanns

Figure 5. Specific fuel consumption on a highway for the 100 km/h road train (left) and the 80 km/h road train (right).

evolutionary algorithm is able to generate better so-

lutions than the other approaches. Showing the same

climbing ability and acceleration as both the tradition-

ally developed versions and the ones obtained by a grid-

scan over the whole parameter area, the EA-solution

needs about 1% less fuel on the highway. The 100 km/h

version is even better than the best version found by a

grid-scan of 1000 elements distributed over the nar-

rowed intervals.

Figure 6 shows the relation between the objective

function f4 (maximum velocity in 14th gear with 1.5%

road gradient) and f9 (specific fuel consumption on

highway) for elements of the archive population at the

end of the run. This relationship provides information

about the trade-off between driveability and fuel econ-

Figure 6. Trade-off between velocity (1.5% road gradient) and specific fuel consumption on a highway for the 100 km/h road train (left) and

the 80 km/h road train (right).

omy. The creation of 1300 individuals already pro-

duces a rather large number of solutions, which must

be considered better than any solution that was found

without the evolutionary algorithm. This advantage in

efficiency becomes even more important when more

sophisticated driving scenarios—and thus more time

consuming simulations—are used, which is subject to

further research.

4. Parameter Optimization of Adaptive Cruise
Control Systems

Crowded motorways and a higher average vehicle

speed create increasing difficulties for drivers. The

Evolutionary Multiobjective Design in Automotive Development 63

automobile industry tries to compensate for these addi-

tional demands by inventing driver assistance systems

such as antilock braking systems (ABS), cruise control

(CC) and electronic stability control (ESC). In contrast

to the systems mentioned above, adaptive cruise con-

trol (ACC) has not been thoroughly established yet.

The ACC-system is an enhanced cruise control sys-

tem, not only designed to keep the vehicle’s speed con-

stant, but also to analyze the traffic situation in front of

the vehicle and regulate its longitudinal dynamics ac-

cordingly. Thus, it especially suits the demands of truck

drivers, who frequently have to follow a leading vehi-

cle. Used effectively, ACC-systems can increase driv-

ing safety, make driving more comfortable and reduce

fuel consumption. However, it is difficult to develop

a controller that meets the drivers’ requirements con-

cerning its speed-regulating behavior as well as safety

criteria and fuel efficiency.

Since experimental testing of each modified con-

troller variant would enormously raise development

costs and time, the ACC-system’s behavior is evaluated

and analyzed by simulation. This offers the possibility

to improve the development process further by apply-

ing numerical optimization techniques such as evolu-

tionary algorithms to optimize the ACC-controller [19].

4.1. Optimization Problem

The structure of the ACC-system is depicted in Fig. 7.

The longitudinal controller translates incoming data

about the traffic situation in front of the vehicle and

its own driving condition into the desired accelera-

tion. The data produced by the sensor contain some

deviation. As such, it requires four different filters in

Figure 7. Structure of the ACC-system.

order to create a smooth acceleration signal. The in-

fluence of these filters can be regulated by four in-

teger parameters, represented by the design variables

x1, . . . , x4. Strong filters result in very smooth sig-

nals. However, they delay the vehicle’s reaction to in-

coming data, which weakens its driving performance.

Two further design variables, x5, x6, are used to de-

fine the longitudinal controller’s reaction to the vehi-

cle’s distance from the leading vehicle and their relative

velocity.

Four objectives are defined to give a sufficient char-

acterization of the ACC-system’s longitudinal control-

ling behavior with respect to driving comfort, fuel

efficiency and safety. These objective functions are

computed within the simulation. Thus, the resulting

multiobjective optimization problem can be stated as

follows (where for a given design alternative, its char-

acteristic values cave, tacc, dvel, and dacc are calculated

by the simulator):

Minimize f(x) = (f1(x), . . . , f4(x)),

f1(x) = cave(x) [average fuel consumption]

f2(x) = tacc(x) [time for acceleration]

f3(x) = dvel(x) [velocity deviation]

f4(x) = dacc(x) [acceleration deviation]

subject to x = (x1, . . . , x6) ∈ X = {1, 2, . . . , 99}×

{1, 2, . . . , 16} × {1, 2, . . . , 8}3,

g(x) ≥ dmin [minimum follow-up distance]

4.2. Algorithms

In order to approximate the Pareto set for the con-

strained multiobjective integer programming problem

64 Laumanns and Laumanns

Table 2. PISA specification of the EA for the ACC controller

optimization.

PISA Parameters: α = 20 µ = 10 λ = 10 dim = 4

Variator Selector

Initial population: Archive population:

Draw each decision vector Environmental selection of

uniformly from X . SPEA2 [20]

Offspring population: Parent population:

Read-coded version: SBX Mating selection of

operator [5] SPEA2 [20]

Integer version: Geometric

Distribution with

self-adaptation [21]

above, a grid search and two evolutionary algorithms

are applied and compared. The computation time of

the simulator makes an exhaustive search or complete

enumeration of all alternatives impractical. Thus, a grid

search with 215 representative solutions (regularly dis-

tributed in the decision variable space) is performed.

In comparing all these alternatives to each other, the

dominated ones are eliminated and the remaining rep-

resent a first approximation of the non-dominated set

as a baseline for comparison.

Here, two algorithms based on SPEA2 ([20], an im-

proved version of the Strength Pareto Evolutionary Al-

gorithm, [22]) are applied. The PISA specification is

given in Table 2. Also in SPEA2, selection is performed

in two steps: environmental selection (to determine the

new archive population) and mating selection (to de-

termine the new parent population). The best α indi-

viduals out of the old archive population and the λ new

offspring survive. First, all non-dominated individuals

are selected. If there are more than α such solutions,

a truncation procedure is invoked which iteratively re-

moves the individual closest to the others. If less than α

individuals are non-dominated, the space is filled with

the dominated individuals in ascending order of their

fitness values. In the mating selection step, the µ-sized

parent population is created by binary tournament se-

lection (with replacement) based on the fitness values.

One purpose of this study is to compare different

representations for the individuals, a real-valued relax-

ation of integer design variables and a direct integer

coding. Accordingly, two different variation schemes

are used:

Real-valued individuals. Many standard search opera-

tors are based on a floating-point representation of

(real-valued) decision variables. Therefore, a con-

tinuous relaxation of the search space to [0, 99]2 ×

[0, 16]×[0, 8]3 is used, and the variables are rounded

to their integer part (plus 1) before each run of the

simulation tool. For the recombination, we use the

SBX-operator [5] with distribution index η = 5.

The offspring individuals are then mutated by adding

normally distributed random numbers according to

Eq. 3, where the standard deviation σ is set to 5 per

cent of the interval length.

Integer-valued individuals. As the relaxation produces

an artificially magnified search space, a direct repre-

sentation of the decision variables as integer numbers

seems more appropriate. It also eliminates the poten-

tial problem of mapping several different individuals

to the same decision alternative by the rounding pro-

cedure. Search operators working directly on integer

variables are not as common in evolutionary compu-

tation. We adopt the techniques from Rudolph [21],

who developed an EA for integer programming with

maximum entropy mutation distributions, enabling

self-adaptive mutation control similar to real-valued

evolution strategies. A successful application to a

mixed integer design problem for chemical plants is

reported in [23]. Here, the initial mutation step size

was set to s = 2 for all variables.

Both versions of SPEA2 were terminated after 3000

objective function evaluations. During the run, an

archive of all non-dominated solutions was maintained.

At the end of the run the archive represented an approx-

imation of the Pareto set.

4.3. Results

To evaluate the performance of the evolutionary algo-

rithm, a grid search over the whole parameter range is

performed, along with a manual optimization of the

ACC-controller. The grid search contains 16384 el-

ements, requiring a computation time of almost 137

hours.3 Both instances of the evolutionary algorithm

only used 3000 function evaluations each. Since their

internal operations and data processing can be ne-

glected compared to the simulation, they have a clear

advantage in terms of computation time.

As a first interesting observation from the output of

the different algorithms, no trade-off is visible for the

second objective f2 (acceleration/deceleration time).

All algorithms have found the optimal value of 66.6

for almost all non-dominated alternatives. This is the

Evolutionary Multiobjective Design in Automotive Development 65

Figure 8. Scatter plot of the non-dominated solutions produced by

the grid search and the evolutionary algorithm with continuous relax-

ation (r-SPEA2) and direct integer coding (i-SPEA) for the objective

function values f1, f3, f4.

optimal value attainable by immediate full accelera-

tion, without any delays caused by the ACC system.

Hence, it cannot be improved further. The remaining

objective values of the different non-dominated sets

are displayed in Fig. 8. The trade-off characteristic is

visible from the three-dimensional scatter plot.

A further goal of this case study is to conduct a sys-

tematic performance assessment and comparison of the

different techniques to exemplify the aforementioned

theoretical results reported in [24]. We start with the

hypervolume indicator [22] as an example of an ab-

solute quality indicator with strong inferential power.

The hypervolume indicator calculates the normalized

volume of the dominated space to evaluate a single non-

dominated set alone. As it requires a bounded objective

space, a reference cuboid is defined between the ideal

point f∗ and the nadir point, given by the maximum ob-

jective function values of the maximum elements of the

output of all three algorithms. The value IH(A) gives

the fraction of this reference volume that is dominated

by A. It is intuitively clear that, the more space an algo-

rithm can dominate, the better the algorithm. However,

as it was proven in [24], a comparison based on such

scalar indicator values does not allow us to conclude

that one solution set is entirely better than the other in

the sense that each element of the latter is dominated

by at least one element of the former set. The results

given in the last column of Table 3 show:

IH(Ai−SPEA2) > IH(Ar−SPEA2) > IH(Agridsearch)

which allows to conclude

Agridsearch
≺ Ar−SPEA2
≺ Ai−SPEA2.

Table 3. Results of the binary hypervolume indicator IH2

applied to all pairs of algorithms and the absolute hypervolume

indicator IH (last column).

IH2(A, B) i-SPEA2 r-SPEA2 grid search IH(A)

i-SPEA2 0.0038 0.223 0.949

r-SPEA2 0.002 0.188 0.913

grid search 0.0003 0.0018 0.726

where the symbol ≺ denotes the extension of the dom-

inance relation to sets of decision alternatives. These

statements are quite weak, and we have to apply rela-

tive quality indicators to arrive at stronger statements.

We consider two relative quality indicators proposed by

[22], the coverage indicator IC and the binary hyper-

volume indicator IH2. Both indicators are among those

with the strongest inferential power [24].

The coverage indicator provides information about

how much of one algorithm’s output has also been

reached by the other algorithm. Specifically, IC(A, B)

calculates the relative number of points of set B that

are dominated by at least one point in set A. Table 4

shows the results. It can be seen that none of the points

found by the grid search is better than any point in

the non-dominated sets of the evolutionary algorithms.

The SPEA2, working with the floating point represen-

tation, does not cover many (less than 10%) of the so-

lutions produced by the integer version, which in turn

is able to dominate nearly half of the solutions of its

competitor. However, as far as the dominance relations

of solution sets are concerned, the results only lead

to the conclusion that the output of all algorithms is

mutually incomparable because all values of the cov-

erage indicator are strictly smaller than one. The same

conclusion can of course be drawn from the binary hy-

pervolume indicators, whose results are also listed in

Table 3. The binary hypervolume IH2(A, B) evaluates

to the volume dominated by set A, but not dominated by

set B.

This situation of mutually incomparable approxima-

tion sets is very typical for a comparative study because

Table 4. Results of the coverage quality indicator IC

applied to the output of all pairs of algorithms.

IC(A, B) i-SPEA2 r-SPEA2 Grid search

i-SPEA2 0.423567 0.991597

r-SPEA2 0.070588 0.991597

grid search 0 0

66 Laumanns and Laumanns

the performance differences are seldom so strong that

one set entirely dominates another. Nevertheless, the in-

dicator values provide insight into differences between

the outputs of the algoritms. In our case, the order of the

indicator values is always the same, showing that both

evolutionary algorithms largely dominate the output of

the grid search, with the integer-valued version hav-

ing a slight advantage over the real-valued one. Such

conclusions can of course be drawn, although one has

to be careful with the interpretation of results to avoid

general statements such as “algorithm A is better than

algorithm B” when this is formally incorrect.

We conclude this performance assessment by inves-

tigating further performance aspects in more detail.

These aspects correspond to the different preferences of

the designer, i.e., which regions of the objective space

one is most interested in. Such an assessment is of

course a subjective one. All of the following indicators

can be seen as special cases of the distance-indicator

ID [24].

One possibility is to define a utility function based on

a weighted distance to an ideal point f∗, which is given

by the minimum objective values in each dimension.

The difference between each objective value and the

optimum value in the corresponding category is multi-

plied with a factor that represents the importance of the

category. Thus, the interpretation of the results reflects

an adaptation to the decision maker’s preferences. In

this case, the objectives f1 and f3 are considered most

important, while f2 is least important. Representing

the distance to the optimal solution, the sum of those

Figure 9. Ranking of solutions according to the scalar utility function (4).

values gives the overall quality of the individual

D(x) = 150(f1(x) − f ∗
1) + (f2(x) − f ∗

2)

+ 6(f3(x) − f ∗
3) + 4(f4(x) − f ∗

4) (4)

with f∗ = (37.8339, 66.6, 2.06935, 3.03196). Accord-

ingly, a ranking of the individuals developed by the

different optimization strategies can be produced. The

best 100 solutions are displayed in Fig. 9. The two evo-

lutionary algorithms create the best solutions, while

the integer-version holds a slight advantage in terms of

density close to the optimum solution. Out of the top

100 solutions, 46 were created by this integer-version,

40 by the real-coded version, and only 14 by the

grid-search.

5. Model-Fitting for a Vehicle Dynamics
Simulation

A crucial element of the application process of simu-

lation and optimization techniques in vehicle develop-

ment is model-fitting. Here, a MATLAB simulation is

to be fitted to data acquired in real driving tests.

The two most important elements of modeling are

simplification and exactness. In this case, an extended

bicycle model is used for vehicle driving dynamics re-

search. The original bicycle model is a rather simple

representation of real cars, because the four tire con-

tact points are centralized in the longitudinal axle of

the car. Time-delays for the lateral tire force generation

Evolutionary Multiobjective Design in Automotive Development 67

enable a sufficiently exact reproduction of real vehicle

measurements. However, it is necessary to fit a number

of vehicle parameters in order to achieve a satisfying

performance of the vehicle model.

5.1. Optimization Problem

The two transfer functions for yaw rate and lateral ac-

celeration with the input steering angle are the most

important criteria when analyzing the quality of lat-

eral vehicle dynamics simulation. Both phase lag and

gain must represent the original vehicle behavior with

maximum precision.

The main task is to develop a model structure that

enables sufficient exactness while remaining as sim-

ple as possible. To achieve that, the original bicycle

model is extended. Tire phase lags create a delayed

reaction to steering angle changes. In addition, the ve-

hicle’s rolling behavior is modeled in a simple way in

order to represent the body movement in relation to

the tires. The following eight real-valued design vari-

ables enable a sufficient adjustment to different ve-

hicles: x1 (yaw inertia), x2 (tire stiffness, front), x3

(tire stiffness, rear), x4 (phase lag front tire), x5 (phase

lag rear tire), x6 (roll stiffness), x7 (roll damping),

x8 (roll inertia). These parameters mainly represent

tire characteristics and vehicle mass distribution. The

data for other parameters like vehicle mass and length

can simply be measured. Therefore it is not neces-

sary to include those values in the design parameter

set.

Typical manoeuvres for vehicle parameter identifi-

cation are steering angle sweeps with a constant lateral

acceleration of about 4 m/s2. Both transfer functions

mentioned above can be derived from those manoeu-

vres. A comparison of the simulation to driving tests re-

sults in the following four-objective optimization prob-

lem:

Minimize f(x) = (f1(x), . . . , f4(x)),

f1(x) = aa(x) [gain deviation, lateral

acceleration]

f2(x) = ta(x) [phase lag, lateral acceleration]

f3(x) = ay(x) [gain deviation, yaw rate]

f4(x) = ty(x) [phase lag, yaw rate]

subject to x = (x1, . . . , x8) ∈ X = [0, 1]8.

5.2. Algorithms

The problem to be solved is a multiobjective optimiza-

tion problem with eight real-valued, normalized de-

cision variables and an objective function with four

components. As we are not primarily concerned with

a comparison of different algorithms, we start directly

with the SPEA2 described in the previous section.

The variation operators used for this problem again

apply recombination and mutation. A simple discrete

recombination is chosen, which creates one offspring

solution x′ from two parents x(a) and x(b). For each de-

cision variable xi , one parent is determined randomly

and its decision variable copied to the child. The re-

sulting child is then mutated using normal-distributed

random variables, again according to Equation 3. The

mutation step sizes σ are chosen in each iteration adap-

tively and determined by half the absolute difference

of the parent variables:

σi :=
1

2

∣

∣x
(a)
i − x

(b)
i

∣

∣.

The first run of this SPEA2 version, however, soon

reaches a situation where the population stagnates and

no further progress is visible. Instead, the population

oscillates around a certain area in objective space. The

problem arises as a result of deterioration, which is dis-

cussed in [25]. To overcome this convergence problem,

the selection operator of SPEA2 must be replaced by

the selection operator maintaining the ǫ-Pareto set pro-

posed in [25]. Such convergence problems, which have

been verified for many multiobjective EAs, indicate

that the algorithm is operating close to the Pareto set.

To achieve further progress, special care must be taken

regarding the selection and deletion of solutions from

the archive population. Using this particular selection

algorithm guarantees that the set of archived solutions

never deteriorates and thus monotonously converges to

the Pareto set. The PISA specification for this algorithm

is given in Table 5.

5.3. Results

The evolutionary algorithm is able to find solutions

of a sufficient quality rather quickly. Regarding the fi-

nal approach to the Pareto set, the ǫ-archive selection

algorithm performs considerably better than SPEA2.

In the first part of the optimization process, the user

can derive interesting information about the model

68 Laumanns and Laumanns

Figure 10. Selected trade-offs between the four objective functions.

behavior by analyzing the trade-offs between the ob-

jective functions, since the archive is still rather widely

spread as visualized in Fig. 10.

In the course of the optimization, the focus of the

designer shifts from diversity to examining the area

of favoured solutions in detail. To achieve this goal,

further constraints on the objective values are defined

while the ǫ value is scaled down. This adaptation, how-

ever, is not automated, but user driven. The develop-

ment of the solutions, especially the focus on favoured

regions, is also visible in Fig. 10 for different stages

defined by different ǫ values. The left diagram shows

that in the third stage, more emphasis was put on im-

proving the phase lag deviation of the yaw rate, so

Table 5. PISA specification of the EA for the model-fitting

problem.

PISA Parameters: α = 300 µ = 10 λ = 10 dim = 4

Variator Selector

Initial population: Archive population:

Draw each decision vector Select archive population

uniformly from X . using the ǫ-archive selection

algorithm [25].

Offspring population: Parent population:

For each pair of parents: Select parent population by

swap each decision variable sampling µ times uniformly

with probability 0.5, from the archive population

then mutate by adding (with replacement).

a normal randomvariable

with zero mean and standard

deviation given by the

absolute difference of the

parent variables, divided by 2.

Figure 11. Comparison of simulated and real vehicle behavior. The

solid line is an interpolation of the measured data from the real vehi-

cle, the dashed line represents the simulation data obtained from the

vehicle model.

all solutions above a certain threshold were prohibited

by an additional constraint. This measure subsequently

led to a considerably better approximation of the lower

part of the trade-off surface, keeping the gain devia-

tion of the lateral acceleration in the interval between

[0.002, 0.01].

The discovered solutions create a simulation envi-

ronment, in which lateral vehicle dynamics can be

Evolutionary Multiobjective Design in Automotive Development 69

simulated with a rather simple model and sufficient

exactness. The exactness is depicted in Fig. 11, where

the simulated time series is plotted against data of a

real vehicle obtained in driving tests. The simplicity

of the model results in low computation time, thereby

enabling the model to be used when controlling vehi-

cle dynamics online. This is true not only for a general

purpose processor, but also in a vehicle-specific archi-

tecture, where it is impossible to run a full scale vehicle

simulation.

6. Conclusion

We discussed three application case studies from the

field of automotive engineering, where multiobjective

evolutionary algorithms proved to be powerful opti-

mization tools. The advantage of EAs, when applied to

black box optimization problems of complex systems

(along with the approximation of the Pareto-optimal set

of design alternatives) are that they provide the devel-

opment engineer with detailed information about the

trade-offs between different objective functions. They

also help clarify the problem at hand.

The road train example showed that even a sim-

ple approach is suitable for a design space exploration

task at an early design stage. In addition to a detailed

overview of the trade-offs between the ten objectives,

the evolutionary algorithm was able to present a so-

lution that dominates the one found by the engineer

on a trial-and-error basis. The problem related to the

design of an adaptive cruise control system was a pa-

rameter optimization of filters used in a controller. The

goal was a comparison of the effectiveness of different

variation operators. The comparative study was carried

out based on previous results concerning quality indi-

cators and performance assessments. The third case

study was a model-fitting problem. Preliminary trials

with a standard multiobjective EA revealed conver-

gence problems. Therefore, a recently developed selec-

tion operator had to be applied to maintain an ǫ-Pareto

set. Through a manual adjustment of the ǫ values, the

approximation quality steadily increased in the area of

interest to the designer.

The specification of the algorithms via the PISA

framework helped us to present the basic components

and essential features of a multiobjective evolutionary

algorithm in a coherent and structured way. In addition,

the PISA protocol made it possible to easily re-use and

exchange the different components of the algorithm and

therefore save a considerable amount of programming

effort. This potential of PISA is still to be explored in

further application areas.

Acknowledgments

The first author acknowledges funding from the Swiss

National Science Foundation (SNF) under the ArOMA

project 2100-057156.99/1.

Notes

1. Different MOEAs as well as different test and application prob-

lems are available both as source code and ready-to-use exe-

cutables for different operating systems from the PISA website:

www.tik.ee.ethz.ch/pisa.

2. Though the terminology of PISA is mainly borrowed from evo-

lutionary algorithms, it can also be used with other iterative opti-

mization methods.

3. This estimate is based on the average running time of the simula-

tion on a PC with an AMD ATHLON 1800 processor.

References

1. T. Bäck, D.B. Fogel, and Z. Michalewicz (eds), Handbook of

Evolutionary Computation, IOP Publishing and Oxford Univer-

tity Press: Bristol, UK, 1997.

2. K. Deb, Optimization For Engineering Design: Algorithms and

Examples, Prentice Hall of India, 1995.

3. P. Bentley (ed.), Evolutionary Design by Computers, Morgan-

Kaufmann: San Francisco, 1999.

4. D. Dasgupta and Z. Michalewicz, Evolutionary algorithms in

engineering applications, 1997.

5. K. Deb, Multi-Objective Optimization Using Evolutionary Al-

gorithms, Wiley: Chichester, UK, 2001.

6. C.A. Coello Coello, D.A. Van Veldhuizen, and G.B. Lamont.

Evolutionary Algorithms for Solving Multi-Objective Problems,

Kluwer: New York, 2002.

7. S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler, PISA—A

platform and programming language independent interface for

search algorithms,” in Evolutionary Multi-Criterion Optimiza-

tion (EMO 2003), Lecture Notes in Computer Science, Springer:

Berlin, 2003.

8. R.L. Keeney and H. Raiffa, Decisions with Multiple Objectives:

Preferences and Value Tradeoffs, Wiley: New York, 1976.

9. D.E. Bell, R.L. Keeney, and H. Raiffa, Conflicting objectives in

decision. International Series on Applied Systems Analysis 1,

Wiley: Chichester, 1977.

10. G. Fandel and J. Spronk, Multiple Criteria Decision Methods

and Applications, Springer: Berlin, 1985.

11. R.E. Steuer, Multiple Criteria Optimization: Theory, Computa-

tion, and Application, Wiley: New York, 1986.

12. K. Miettinen, Nonlinear Multiobjective Optimization, Kluwer:

Boston, 1999.

13. M. Ehrgott, Multicriteria Optimization. Springer: Berlin, 2000.

14. N. Laumanns, M. Laumanns, and D. Neunzig, “Multi-objective

design space exploration of road trains with evolutionary

70 Laumanns and Laumanns

algorithms,” in Evolutionary Multi-Criterion Optimization

(EMO 2001), edited by E. Zitzler et al., Lecture Notes in Com-

puter Science Vol. 1993, Springer, 2001, pp. 612–623.

15. J. Ludmann, D. Neunzig, M. Weilkes, and H. Wallentowitz,

“The effectivity of new traffic-technologies and transportation-

systems in suburban areas and on motorways,” International

Transactions in Operational Research, vol. 6, no. 4, pp. 423–

439, 1999.

16. M. Laumanns, E. Zitzler, and L. Thiele, “On the effects of archiv-

ing, elitism, and density based selection in evolutionary multi-

objective optimization,” in Evolutionary Multi-Criterion Opti-

mization (EMO 2001), edited by E. Zitzler et al., Lecture Notes

in Computer Science Vol. 1993, Springer, 2001, pp. 181–196.

17. R.C. Purshouse and P.J. Fleming, “Why use elitism and sharing

in A multi-objective genetic algorithm?” in Genetic and Evo-

lutionary Computation Conference (GECCO 2002), edited by

W.B. Langdon et al., Morgan Kaufmann Publishers, New York,

July 2002, pp. 520–527.

18. H. Wallentowitz, Longitudinal Dynamics of Motor Vehicles,

Forschungsgesellschaft Kraftfahrwesen mbH, Aachen, 2000.

19. N. Laumanns, M. Laumanns, and H. Kitterer, “Evolutionary

multi-objective integer programming for the design of adaptive

cruise control systems,” in Developments in Applied Artificial

Intelligence (IEA/AIE 2002), Lecture Notes in Artificial Intelli-

gence Vol. 2358. Springer, 2002.

20. E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving

the strength pareto evolutionary algorithm for multiobjective

optimization,” in Evolutionary Methods for Design, Optimisa-

tion and Control with Application to Industrial Problems (EU-

ROGEN 2001), edited by K. Giannakoglou et al., International

Center for Numerical Methods in Engineering (CIMNE), 2002,

pp. 95–100.

21. G. Rudolph, “An evolutionary algorithm for integer program-

ming,” in Parallel Problem Solving from Nature (PPSN III),

edited by Y. Davidor, H.-P. Schwefel, and R. Männer, Springer,

1994, pp. 139–148.

22. E. Zitzler and L. Thiele, “Multiobjective evolutionary algo-

rithms: A comparative case study and the strength pareto

approach,” IEEE Transactions on Evolutionary Computation,

vol. 3, no. 4, pp. 257–271, 1999.

23. M. Emmerich, M. Grötzner, B. Gross, and M. Schütz, “Mixed-

integer evolution strategy for chemical plant optimization with

simulators,” in Evolutionary Design and Manufacutre—Selected

papers from ACDM’00, edited by I.C. Parmee, Springer, 2000,

pp. 55–67.

24. E. Zitzler, L. Thiele, M. Laumanns, C.M. Foneseca, and

V.G. da Fonseca, “Performance assessment of multiobjec-

tive optimizers: An analysis and review,” IEEE Transactions

on Evolutionary Computation, vol. 7, no. 2, pp. 117–132,

2003.

25. M. Laumanns, L. Thiele, K. Deb, and E. Zitzler, “Combining

convergence and diversity in evolutionary multiobjective opti-

mization,” Evolutionary Computation, vol. 10, no. 3, pp. 263–

282, 2002.

