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Evolutionary Multiobjective Optimization-Based

Multimodal Optimization: Fitness Landscape

Approximation and Peak Detection
Ran Cheng , Member, IEEE, Miqing Li , Ke Li , Member, IEEE, and Xin Yao, Fellow, IEEE

Abstract—Recently, by taking advantage of evolutionary mul-
tiobjective optimization techniques in diversity preservation, the
means of multiobjectivization has attracted increasing interest
in the studies of multimodal optimization (MMO). While most
existing work of multiobjectivization aims to find all optimal solu-
tions simultaneously, in this paper, we propose to approximate
multimodal fitness landscapes via multiobjectivization, thus pro-
viding an estimation of potential optimal areas. To begin with,
an MMO problem is transformed into a multiobjective optimiza-
tion problem (MOP) by adding an adaptive diversity indicator
as the second optimization objective, and an approximate fit-
ness landscape is obtained via optimization of the transformed
MOP using a multiobjective evolutionary algorithm. Then, on
the basis of the approximate fitness landscape, an adaptive peak
detection method is proposed to find peaks where optimal solu-
tions may exist. Finally, local search is performed inside the
detected peaks on the approximate fitness landscape. To assess the
performance of the proposed algorithm, extensive experiments
are conducted on 20 multimodal test functions, in comparison
with three state-of-the-art algorithms for MMO. Experimental
results demonstrate that the proposed algorithm not only shows
promising performance in benchmark comparisons, but also
has good potential in assisting preference-based decision-making
in MMO.

Index Terms—Decision-making, fitness landscape approx-
imation, multimodal optimization (MMO), multiobjective
optimization, multiobjectivization, niching, peak detection,
preference.
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I. INTRODUCTION

M
ULTIMODAL optimization (MMO), which refers

to single-objective optimization involving multiple

optimal (or near-optimal) solutions, has attracted increasing

interest recently [1]–[3]. MMO is widely seen in real-world

scenarios, where the decision-makings can be made on the

basis of multiple optimal solutions of a given optimization

problem [4]. For example, in truss-structure optimization [5],

where the optimization objective is the quality criterion (e.g.,

weight or reliability) of the truss structure and the decision

variables can be the density or length of the truss members, it

is likely that different values of the decision variables can lead

to the same (or very close) fitness of the objective function. In

such a scenario, the decision maker (DM) has to make deci-

sions according to personal preferences. There are also many

other real-world applications of MMO as reviewed in [4], such

as virtual camera composition [6], metabolic network mod-

eling [7], laser pulse shaping [8], job scheduling [9], [10],

data clustering [11], feature selection [12], and neutral network

ensembles [13].

In MMO, since there exist more than one optimal solution

to be found simultaneously, population-based metaheuristics

such as evolutionary algorithms (EAs) provide a suitable solu-

tion framework, which maintains a set of candidate solutions

during one single run. However, since most EAs have been

originally designed for conventional single-objective optimiza-

tion which involves only one optimal solution, they are not

directly applicable to MMO due to their poor capability

of population diversity preservation [14]. To address such

an issue, researchers have proposed a variety of solution

approaches that can be roughly categorized into the following

three groups.

The first group is known as the niching approaches [15],

where the basic idea is to adaptively preserve diverse sub-

populations converging toward different optimal solutions

for local exploitations. Some early work along this direc-

tion includes the clearing procedures [16], [17], the crowd-

ing techniques [18], [19], the sharing methods [20]–[22],

the clustering-based schemes [23], [24], the restricted tour-

nament selection strategies [25], [26], and the speciation

techniques [27], [28]. However, since most of early niching

approaches are designed on the basis of threshold param-

eters such as crowding size and niching radius, their per-

formance is often sensitive to parameter settings. Therefore,

most recent work has been focused on adaptive/parameterless
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niching approaches. For example, a recursive middling sam-

pling approach has been proposed to continuously sample the

fitness landscape until a predefined termination condition is

satisfied [29]; a topological species conservation strategy has

been proposed to avoid extinction of some niches by means

of a seed preservation method [30]. More recently, novel

clustering-based niching methods have also been proposed to

transform sensitive parameters (e.g., crowding size) to a less

sensitive parameter as cluster size [31], [32].

The second group aims to enhance population diversity by

adopting novel reproduction/update operators, where the moti-

vation is to modify conventional single-objective population-

based metaheuristics such as particle swarm optimization

(PSO) [33] and differential evolution (DE) [34] for MMO.

Among some representative work, Qu et al. [35] proposed

a locally informed PSO algorithm, where multiple local best

positions are used to guide search of each particle to con-

verge to different optimal subspaces. Fieldsend [36] proposed

a localized EA using Gaussian process-based local surro-

gate models, where training and sampling of the models

are performed inside the dynamically detected niche peaks.

Biswas et al. [37] proposed two different reproduction opera-

tors for two types of candidate solutions in a local informative

DE algorithm; and most recently, Yang et al. [38] proposed

a multimodal ant colony optimization algorithm based on a

novel adaptively local search operator.

Recently, some attempts have been made to transform an

MMO problem (MMOP) into a multiobjective optimization

problem (MOP) [39], a process known as the multiobjec-

tivization [40]. Usually, such a transformed MOP consists of

two objectives: the first objective is the given MMOP, and

the second objective is a diversity indicator constructed based

on either gradient information [29], [41] or distance informa-

tion of each candidate solution [42], [43]. In a more recent

study, Wang et al. [44] pointed out that the conflicts between

objectives of the transformed MOP play an important role in

a successful multiobjectivization approach. They proposed a

novel transformation method to reconstruct both objectives.

Compared to conventional niching or diversity enhance-

ment approaches, the multiobjectivization approaches have

two major advantages. First, once an MMOP is properly trans-

formed to an MOP, existing multiobjective EAs (MOEAs) [45]

can be applied to the transformed MOP with few additional

modifications, thus saving efforts in designing new algorithms.

Second, since the objectives of the transformed MOP are

designed to be in conflict with each other (i.e., convergence

versus diversity), an implicit niching effect can be achieved

without cumbersome tunings of problem-dependent parame-

ters. By taking these advantages of multiobjectivization, in

this paper, we propose a new evolutionary multiobjective

optimization-based MMO (EMO-MMO) algorithm. Unlike

most existing multiobjectivization approaches which aim to

locate all optimal solutions simultaneously, the proposed algo-

rithm first performs explorations to obtain an approximate

fitness landscape by archiving the candidate solutions obtained

during the EMO process. Then, with the approximate fit-

ness landscape, a peak detection method is designed to

locate peaks where optimal solutions may exist. And finally,

a local optimizer is used to perform exploitations inside

each located peak to obtain the final optimal solutions.

The main contributions of this paper can be summarized

as follows.

1) A general algorithm framework of EMO-MMO is pro-

posed, which consists of three components: a) fitness

landscape approximation; b) peak detection; and c) local

search. On one hand, the proposed EMO-MMO can be

used to perform general optimization to obtain multiple

optimal solutions, and on the other hand, it can be also

used to obtain approximate fitness landscapes to assist

preference-based decision-making.

2) In order to obtain approximate fitness landscapes, a mul-

tiobjective fitness landscape approximation (MOFLA)

method is proposed. In the proposed MOFLA, a given

MMOP is first transformed to an MOP by adding a

diversity indicator as the second optimization objec-

tive. Considering that the requirement of population

diversity may dynamically change during the optimiza-

tion process, the diversity indicator is designed to be

adaptively related to the number of generations. In

addition, to achieve a better balance between conver-

gence and diversity, a discrete grid coordinate system

is adopted instead of the original continuous coordinate

system in the proposed diversity indicator. An MOEA

is applied to the optimization of the transformed MOP,

and the candidate solutions obtained during the opti-

mization process are archived as the approximate fitness

landscape.

3) In order to perform decision-making using the approx-

imate multimodal fitness landscape, an adaptive peak

detection (APD) method is proposed to locate promis-

ing peaks where optimal solutions may exist. The

proposed method performs binary cuttings on the

approximate fitness landscape and tries to locate all

promising peaks on each cutting slice. Empirical

results demonstrate that the proposed peak detection

method, without cumbersome parameter tunings, per-

forms robustly on a variety of approximate fitness

landscapes.

The rest of this paper is organized as follows. Section II

presents some background knowledge of EMO-MMO,

together with some discussion on the relationship between the

two topics. Afterwards, based on the discussion, motivations

of this paper are further illustrated. Section III details the pro-

posed EMO-MMO, including the algorithm framework, the

MOFLA method and the peak detection method. Experimental

study is presented in Section IV. We first conduct some com-

parisons with three state-of-the-art algorithms for MMO. Then,

performance of the proposed MOFLA method and peak detec-

tion method is further assessed. Finally, Section VI draws the

conclusion.

II. BACKGROUND

A. Evolutionary Multiobjective Optimization

MOPs, which involve more than one conflicting objec-

tive to be optimized simultaneously, can be briefly
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formulated as follows:1

maximize f(x) = (f1(x), f2(x), . . . , fM(x))

s.t. x ∈ X, f ∈ Y (1)

where x = (x1, x2, . . . , xD) ∈ X denotes a decision vector in

decision space X ⊆ RD, f ∈ Y denotes a objective vector in

objective space Y ⊆ RM , and D and M denote the number of

decision variables and the number of objectives, respectively.

Given a set of box constraints, the decision space X can be

presented as

X =

D
∏

i=1

[Li, Ui] (2)

where Li and Ui denote the lower and upper boundaries for

each decision variable xi, respectively.

Since there exist conflicts between the optimization objec-

tives f1(x), f2(x), . . . , fM(x) in an MOP as formulated above,

it is impossible to find one single solution that optimizes all

objectives simultaneously. Instead, a set of optimal solutions,

known as Pareto optimal solutions, can be obtained to repre-

sent the tradeoffs between different objectives. To be specific,

given two candidate solutions x1 and x2, solution x1 is said to

dominate the other solution x2 iff
{

∀i ∈ 1, 2, . . . , M : fi(x1) ≥ fi(x2)

∃j ∈ 1, 2, . . . , M : fj(x1) > fj(x2).
(3)

If a solution x∗ cannot be dominated by any other solutions

in X, then x∗ is known as Pareto optimal, and the union of all

x∗ is known as the Pareto set (PS), while the image of PS in

the objective space, namely, the union of f(x∗), is known as

the Pareto front (PF). In order to approximate the PF (or PS),

a variety of MOEAs have been proposed during the past two

decades [45].

B. Multimodal Optimization

MMOPs, which involve multiple global optimal solutions

of a single objective to be obtained simultaneously, can be

formulated as follows:

maximize g(x)

s.t. x ∈ X (4)

where g(x) is the objective function, and x = (x1, . . . , xD) ∈ X

is the decision vector.

Given an MMOP as formulated in (4), there exist a set

of global optimal solutions X∗ that maximize the objective

function f (x) as

X∗ = {x ∈ X : {∄y ∈ X : f (y) > f (x) ∧ y 	= x}} (5)

where |X∗| > 1 holds. Specifically, this paper only considers

MMOPs having a finite number of discretely distributed global

optimal solutions, namely, where X∗ is a finite set. By contrast,

for MMOPs having an infinite set of continuously distributed

optimal solutions, some further related discussion are given in

Section V-C.

1Without loss of generality, this paper only considers maximization prob-
lems. Minimization problems can be equivalently transformed to maximization
problems by taking negative values of the objective function.

C. Transformation From MMOPs to MOPs

In order to apply EMO techniques to MMO, most exist-

ing approaches try to transform an MMOP into an MOP by

introducing a diversity indicator as an additional optimiza-

tion objective, while the optimization objective of the original

MMOP remains unchanged

maximize f(x) = (g(x), d(x))

s.t. x ∈ X, f ∈ Y (6)

where g(x) is the objective function of an MMOP as for-

mulated in (4), and d(x) is an indicator that measures the

diversity of decision vector x of a candidate solution. To con-

struct the diversity indicator d(x), most approaches make use

of gradient or distance related information, and some of the

representatives are as follows.

As an early representative work using gradient information,

Yao et al. [29] proposed to make use of the absolute value of

the gradient of g(x) to construct the diversity indicator

d1(x) =

∑D
i=1 |

∂g
∂xi

|

D
. (7)

In addition to the first-order gradient, Deb and Saha [41]

have also attempted to use the second-order gradient informa-

tion to avoid the scenario of weak Pareto optimality

d2(x) = |g′(x)| +
(

1 − sign
(

g′′(x)
))

(8)

where sign(·) returns +1 and −1 for positive and negative

operands, respectively.

Considering that gradient information may not always

be available in practice, some researchers proposed to use

distance-based information to construct the diversity indica-

tor. For example, Basak et al. [43] proposed to use the mean

distance from each candidate solution to the others

d3(x) =

∑N
j=1 ‖x − xj‖

N
(9)

where N is the number of candidate solutions in the popula-

tion. Similarly, Bandaru and Deb [42] proposed to use such

a distance-based diversity indicator as the second objective in

their niching NSGA-II algorithm.

Since the most elementary characteristic of an MOP is the

conflicting nature between different objectives, it is important

that d(x) is designed to be in conflict with the original objec-

tive g(x), such that MOEAs are able to work properly. To

address such an important issue, Wang et al. [44] proposed

to modify both objectives to guarantee the conflicts between

them.

D. Motivations

As presented above, since the target of both EMO and MMO

is to obtain a set of equally important optimal solutions, the

motivation in the design of EMO/MMO algorithms shares

substantial similarity: in EMO, a set of candidate solutions

are obtained as an approximation to the true PF, which will

require that the candidate solutions are not only evenly dis-

tributed but also as close to the true PF as possible; in MMO,

similarly, there also exist a set of optimal solutions to be found
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Algorithm 1 Main Framework of EMO-MMO

1: Input: the maximum number of generations tmax, the

MMOP to be optimized g(x);

2: Output: optimal solution set S;

3: /*Multiobjective Fitness Landscape Approximation*/

4: D = MOFLA(tmax, g(x));

5: /*Peak Detection*/

6: P = PeakDetection(D);

7: /*Local Search*/

8: S = LocalSearch(g(x),P);

simultaneously, which have the same (or very similar) fitness

value. Therefore, a successful EMO/MMO algorithm should

strike a good balance between convergence and diversity of

the population.

However, most existing MOEAs are not directly applica-

ble to the optimization of MMOPs due to the fact that MMO

has more strict requirement of population diversity than EMO.

In multiobjective optimization, since it can be deduced from

the Karush–Kuhn–Tucker optimality conditions that the PF (as

well as PS) is a piecewise continuous manifold [46], [47], there

often exists a strong regularity between the candidate solutions

close to the PF. In MMO, however, there is no such regularity

property that can be taken advantage of. By contrast, the mul-

tiple global optimal solutions can be sparsely distributed in

different locations of the fitness landscape with little correla-

tion. Therefore, as pointed out in [40], if the target is to obtain

a set of relative good solutions (instead of all accurate opti-

mal solutions), EMO techniques can be used to perform wide

explorations in the multimodal fitness landscapes, although the

accuracy of the optimal solutions cannot be guaranteed.

In this paper, we propose a new EMO-MMO algorithm,

where an MOFLA method is designed on the basis of an

MOEA. To transform an MMOP to an MOP for deploying

the proposed MOFLA method, a diversity indicator is designed

to be the second objective of the transformed MOP. In spite

of existing indicators as given in Section II-C, all of them

are constructed with a fixed formulation. In practice, how-

ever, the required balance between convergence and diversity

can dynamically change as optimization proceeds. To address

this issue, we propose an adaptive diversity indicator which is

related to the number of generations, thus striking an adap-

tive balance between convergence and diversity during the

optimization process.

To make use of the approximate fitness landscape, an APD

method is proposed to find promising peaks where optimal

solutions may exist. And finally, based on the approximate

fitness landscape together with the detected peaks, indepen-

dent local search can be further performed inside each peak

to exploit for the final optimal solutions.

III. PROPOSED ALGORITHM

A. Framework

The main framework of the proposed EMO-MMO is

summarized in Algorithm 1, from which we can see that

Fig. 1. Framework of the MOFLA component. g(x) and tmax are two
inputs of this framework, where g(x) is the MMOP to be optimized and
tmax is the maximum number of generations as the termination condition.
To deploy MOFLA, the given MMOP g(x) is first transformed to an MOP
f(x), and an existing MOEA is applied to the optimization of the transformed
MOP. By archiving the candidate solutions created during the multiobjective
optimization process, D stores the approximate fitness landscape.

EMO-MMO consists of three main components: 1) MOFLA;

2) peak detection; and 3) local search. In MOFLA, the given

MMOP is transformed to an MOP, and an MOEA is applied

on the transformed MOP to approximate the multimodal fit-

ness landscape; then, with the approximate fitness landscape,

a peak detection method is used to find out all potential peaks

where optimal solutions may exist; and finally, local search

is performed inside each detected peak. The following sec-

tions will detail the three main components in Algorithm 1

successively.

B. Multiobjective Fitness Landscape Approximation

As illustrated in Fig. 1, the MOFLA component further con-

sists of two subcomponents: a transformed MOP f(x) and an

MOEA. In addition, there are two inputs, one of which is the

MMOP to be optimized, denoted as g(x), and the other is

the maximum number of generations tmax as the termination

condition. As the approximate fitness landscape, the candi-

date solutions generated during the multiobjective optimization

process are stored in an external archive D.

At the first step of MOFLA, the given MMOP is first

transformed to an MOP as formulated in (6). To be spe-

cific, the given, MMOP g(xt,i), still remains unchanged as

the first objective function in the transformed MOP, where

xt,i = (xt,i,1, . . . , xt,i,D) denotes a decision vector in the popu-

lation Pt of generation t; while for the second objective d(xt,i),

we adopt a grid-based diversity indicator, which is inspired

from the grid-based techniques widely applied in the EMO

community for diversity management [48]–[53].

In the proposed grid-based diversity indicator, each deci-

sion variable value xt,i,j is normalized using a discrete grid

coordinate system as

x′
t,i,j =

⌊

(N − 1) ×

(

xt,i,j − xmin
t,j

xmax
t,j − xmin

t,j

)⌋

+ 1 (10)
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where x′
t,i,j denotes the new decision variable value inside the

grid coordinate system, xmax
t,j and xmin

t,j are the upper and lower

boundaries of the jth decision variable estimated using all

decision vectors in population Pt, and N = |Pt| is the pop-

ulation size. With such a grid-based normalization strategy,

each dimension of the decision space is divided into a num-

ber of N hyperboxes, and all decision variable values can be

consequently truncated into discrete values of {1, 2, . . . , N}.

As a consequence, given a number of N candidate solutions,

it is expected that there will be at most one candidate solution

inside each hyperbox in the extreme cases, thus maximiz-

ing the potential diversity measurement capability of the grid

coordinate system.

Once the decision variable values of xt,i are normalized

using the grid coordinate system into x′
t,i, the diversity quality

of xt,i can be measured on the basis of the Manhattan distances

(L1 norm) between x′
t,i and all the other decision vectors in

the niche (namely, neighborhood) it belongs to

dgrid

(

xt,i

)

=
1

δt

⎛

⎝

∑

k∈Kt,i

‖x′
t,i − x′

t,k‖1

⎞

⎠ − |Kt,i| (11)

where Kt,i contains the indices for the decision vectors in the

niche that x′
t,i belongs to, defined as

Kt,i =
{

j ∈ {1, . . . , N} : ‖x′
t,i − x′

t,j‖1 < δt

}

(12)

with δt being an adaptive niche radius

δt =

(

1 −
t − 1

tmax

)

× max
i

{

min
j 	=i

‖x′
t,i − x′

t,j‖1

}

. (13)

It can be seen that the grid-based diversity indicator

dgrid(xt,i) consists of two parts. The first part, which sums up

the normalized Manhattan distances from x′
t,i to all the others

inside the niche defined by the adaptive niche radius δt, is used

to measure the local distribution of the decision vectors. As a

consequence, inside each niche, the more sparsely the decision

vectors are distributed, the larger the summed up distance will

be. By contrast, the second part, |Kt,i|, which is the total num-

ber of decision vectors inside each niche (i.e., niche count), is

another important measurement to reflect the local density of

the decision vectors. Correspondingly, a smaller |Kt,i| indicates

better population diversity and vice versa.

As another important factor in the proposed MOFLA

method, the adaptive niche radius δt is designed out of the fol-

lowing considerations. First, due to the different requirements

of balance between convergence and diversity in different

phases of multiobjective optimization, it will be more ben-

eficial if the diversity indicator is related to the number of

generations t. Therefore, the coefficient (1 − [(t − 1)/tmax]) is

used to linearly reduce the niche radius, such that increasing

emphasis on convergence can be exerted in the late optimiza-

tion phase. It is worth noting that (1 − [(t − 1)/tmax]) can

be also generalized into (1 − [(t − 1)/tmax])α , such that set-

ting the values of α will generate different changing rates of

the coefficient. However, as indicated by our empirical results

summarized in Section V in the supplementary material, on

one hand, the indicator is not particularly sensitive to the

Fig. 2. Illustrative example of the proposed grid-based diversity indicator
in a 2-D decision space. Calculated by (10)–(13) (assuming δt = 5.0) in
Section III-B, the diversity indicator values dgrid of the decision vectors A–H

are −1.0,−2.6,−2.6,−2.2,−1.8,−1.2,−1.6, and −1.0, respectively.

changing rate of the coefficient as long as it is reduced mildly

with the increase of t; on the other hand, if the coefficient

becomes constant by setting α to 0, the performance of the

algorithm has a significant deterioration on the problems with

a large number of densely distributed optimal solutions (i.e.,

f8 and f9 as presented in Section V in the supplementary mate-

rial). Therefore, we directly adopt the linear changing rate in

this paper for simplicity.

Second, in practice, due to the various shapes of differ-

ent peaks, it is difficult to determine a fixed niche radius for

generic usage without priori knowledge about the MMOP to

be solved. Therefore, the niche radius is adaptively estimated

on the basis of the distances between the neighboring decision

vectors in each generation, where the maximum neighboring

distance is used as the largest possible threshold for the niche

radius, as formulated in (13).

As further illustrations to the proposed grid-based diver-

sity indicator, a schematic diagram is given in Fig. 2. To be

specific, we have the following observations. First, given a

decision vector, the maximum possible diversity value (−1.0)

means that there is no other neighbor in its niche, such as A

and H in this example. Second, since the diversity value of a

decision vector is determined by the number of its neighbors

and the distances between it and these neighbors, decision

vectors having more neighbors or closer distances to their

neighbors are likely to obtain smaller diversity values. For

example, E has a smaller diversity value than F because E

has one more neighbor than F; C has a smaller diversity value

than E because the distances of C to its neighbors are shorter

than those of E to its neighbors, even though C and E have the

same number of neighbors. Third, for decision vectors such as

B and C which are inside the same hyperbox, they have the

same diversity value. It means that if two decision vectors are

too close to each other (i.e., inside the same hyperbox), they

are considered to have the same contribution to the popula-

tion diversity, thus to be further distinguished by the objective
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Algorithm 2 NSGA-II-Based MOFLA

1: Input: the maximum number of fitness evaluations tmax,

population size N, the MMOP to be optimized g(x);

2: Output: the approximate fitness landscape D;

3: Initialization: create the initial population P0 = (X0, Y0)

with N randomized individuals, where X0 and Y0 contain

the decision vectors and objective vectors respectively, set

D = P0 and t = 0;

4: /*Main Loop*/

5: while t < tmax do

6: /*Reproduction*/

7: X̄t = recombination+mutation(Xt): perform simulated

binary crossover and polynomial mutation;

8: Ȳt = evaluation(X̄t ∪ Xt): evaluate the merged decision

vector set using the transformed MOP in (14);

9: Pt = (X̄t, Ȳt);

10: /*Selection*/

11: (Ft,1, Ft,2, ..., Ft,l) = non-dominated-sorting(Pt): per-

form non-dominated sorting on Pt to divide the

population into a number of non-dominated fronts

Ft,1, Ft,2, ..., and select candidate solutions successively

until front Fl is reached such that |Ft,1| + |Ft,2| + ... +

|Ft,l| ≥ N and |Ft,1| + |Ft,2| + ... + |Ft,l−1| < N;

12: St = crowding-distance-assignment(Ft,l): calculate the

crowding distance for each candidate solution in Ft,l,

and select a number of N−(|Ft,1|+|Ft,2|+...+|Ft,l−1|)

candidate solutions from Fl which have minimal crowd-

ing distances;

13: Pt+1 = {Ft,1, Ft,2, ..., Ft,l−1} ∪ St;

14: /*Archiving*/

15: D = D ∪ Pt+1;

16: t = t + 1;

17: end while

function g(x) of the original MMOP. In terms of the effective-

ness of the grid coordinate system, some empirical discussion

can be found in Section V-A.

With the grid-based diversity indicator as formulated

in (10)–(14), an MMOP can now be transformed into the

following MOP:

fgrid(x) =
(

g(x), dgrid(x)
)

(14)

where fgrid(x) denotes the transformed MOP, and g(x) and

dgrid(x) denote the original MMOP and the grid-based diver-

sity indicator, respectively. Once an MMOP is transformed into

fgrid(x) as above, an existing MOEA can be directly applied to

perform multiobjective optimization on it. Here, as an exam-

ple, we present how to apply one of the most classic MOEAs,

namely, the NSGA-II [54], to the optimization of the trans-

formed MOP fgrid(x). Other MOEAs can also be applied in a

similar way.

As presented in Algorithm 2, the NSGA-II-based MOFLA

has a very similar framework as original NSGA-II, except

that the population created in each generation has been stored

in an external archive D as an approximation to the fitness

landscape. As pointed out in a recent study [55], using large

archives to store historical candidate solutions is particularly

beneficial in capturing the topological structures of multimodal

fitness landscapes. Therefore, in the proposed MOFLA, we

also store all historical candidate solutions in D as an approx-

imation of the fitness landscape. Despite that archiving all

candidate solutions requires some additional memory space,

it provides useful information such as the positions of peaks

where optimal solutions could exist. As will be presented in the

following section, the proposed peak detection method works

properly on the basis of D without costing any additional fit-

ness evaluations (FEs). Moreover, once the peaks are detected,

the DM will be able to perform further exploitations merely

inside the regions of interest (ROIs). This is particularly

desirable when the FEs are computationally expensive.

One thing to be noted is that, at step 8, the offspring decision

vector set X̄t should be merged with the parent decision vector

set Xt before performing FEs. This is due to the fact that the

calculation of diversity indicator dgrid(x) should be conducted

on X̄t ∪ Xt (instead of X̄t or Xt alone), such that the diversity

indicator values are synchronized based on the topology of

the merged population. For the g(x) function (fitness) values

of Xt, which still remain unchanged, are directly copied to Ȳt

to save redundant FEs.

C. Peak Detection

Once the approximate fitness landscape D is generated by

Algorithm 2, we shall conduct further analyses to mine useful

information from it. Since D is an approximate fitness land-

scape, it does not directly indicate the exact positions of the

optimal solutions. Nevertheless, it is also beneficial to know

the potential subregions of the fitness landscape where opti-

mal solutions may exist, such that local search can be further

performed in each of them independently. In such an optimal

subregion, all the other solutions around the optimal solution

should have relatively inferior fitness values, thus naturally

forming a peak in the fitness landscape

ψ =
(

Xψ , Yψ

)

:

{

Xψ ⊆ X

Yψ =
{

f (x) : x ∈ Xψ

} (15)

satisfying

∃x∗
ψ ∈ Xψ :

{

∀x ∈ Xψ\
{

x∗
ψ

}

: f (x) < f
(

x∗
)

}

(16)

where X is the entire feasible decision space, Xψ denotes the

region in the decision space covered by the peak, Yψ contains

the fitness values (i.e., peak heights) in correspondence with

the decision vectors in Xψ , and x∗
ψ is the optimal solution

inside the peak region specified by ψ .

Since there is only one optimal solution in each peak as

defined by (15) and (16), once the peaks are located, local

search can be performed in a parallel manner inside each peak

to exploit the corresponding optimal solution, which will sub-

stantially increase the concurrency of the optimization process.

In addition, since a DM may only be interested in part (but not

all) of the peaks, it will also save a lot of FEs by exploiting

specific peaks according to the DM’s preferences.

Despite the fact that peaks provide very useful information

of a multimodal landscape, it is difficult to obtain their spe-

cific locations in practice. For example, as shown in Fig. 3(a),
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Illustration to show that cutting different ratios on the same fitness landscape will result in different observations of peaks. F4 and F10 are two
multimodal functions taken from the IEEE CEC 2013 benchmark test suite for MMO [56], which have a number of 4 and 12 optimal solutions (i.e., peaks
of the same maximum height), respectively. (a) Entire fitness landscape of F4. Peaks of F4 obtained by cutting top (b) 10% of the fitness landscape and
(c) 0.1% of the fitness landscape. (d) Entire fitness landscape of F10. Peaks of F10 obtained by cutting top (e) 10% of the fitness landscape and (f) 0.1% of
the fitness landscape.

Algorithm 3 Binary Cutting-Based APD

1: Input: approximate fitness landscape D = (X, Y), param-

eter η to determine the initial cutting ratio;

2: Output: detected peak set P;

3: /*Initial Cutting*/

4: [ymin, ymax] ← extreme fitness values in Y;

5: Dc = {∀(xi, yi) ∈ D : yi > (ymax − η(ymax − ymin))};

6: /*Binary Cuttings*/

7: while Dc 	= ∅ do

8: P = P ∪ APD(Dc); // Algorithm 4

9: /*Cutting Top 50% of Dc*/

10: ymin ← minimal fitness value in Yp;

11: Dc = {∀(xi, yi) ∈ Dc : yi >
ymin+ymax

2
};

12: end while

although there exist four peaks in this fitness landscape, due to

the mild gradients around the optimal solutions, the peaks are

almost invisible. By contrast, for the fitness landscape shown

in Fig. 3(d), the 12 peaks can be clearly observed due to the

sharp gradients. Therefore, in order to automatically locate the

peaks for any given MMOP, we propose a binary cutting-based

APD method.

The motivation of the proposed peak detection method

is based on the observation that by cutting the top of a

multimodal fitness landscape, peaks will become disconnected

Algorithm 4 APD

1: Input: cutting slice of approximate fitness landscape Dc =

(Xc, Yc), where Xc = (xc,1, xc,2, ...);

2: Output: detected peak set Pc;

3: k = 0;

4: while Dc 	= ∅ do

5: k = k + 1;

6: /*Detecting the k-th Peak in Dc*/

7: σ = max
i

{min
j 	=i

‖xc,i − xc,j‖1}; // adaptive threshold to

determine whether two data points are connected

8: ψk = {(xσ , yσ )}; // initializing peak set ψk with the

data point having the neighboring distance equal to σ

9: for i = 1 to |ψk| do

10: Dc = Dc\{(xi, yi)};

11: Icon = {∀j ∈ {1, ..., |Dc|} : ‖xi − xj‖1 ≤ σ }; // data

points connected to xi in the decision space

12: ψk = ψk ∪ Dc(Icon); // adding all connected data

points to peak set ψk

13: end for

14: Pc = Pc ∪ {ψk};

15: end while

to each other due to the gaps thus generated between them, as

illustrated in Fig. 3(c) and (f). In this way, the peak detection

problem is equivalently transformed to a graph connectivity
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Algorithm 5 Local Search

1: Input: detected peak set P = {ψ1, ψ2, ..., ψ|P |}, the

MMOP to be optimized g(x) ;

2: Output: optimal solution set S;

3: for k = 1 to |P| do

4: /*Extracting Seed Solution*/

5: (x0, y0) ← solution with the best fitness in peak ψk;

6: /*Performing Local Search*/

7: (x∗
k , y∗

k) ← LocalOptimizer((x0, y0), g(x));

8: S = S ∪ {(x∗
k , y∗

k)};

9: end for

detection problem, and each peak can be seen as a maxi-

mal connected subgraph, where decision vectors are connected

inside the same peak but disconnected to those in any other

peaks. Such cutting-based techniques performed on archived

approximate fitness landscapes are commonly seen in the field

of traditional global optimization [57]–[59]. Moreover, con-

sidering that the same cutting ratio applied to different fitness

landscapes can generate completely different peaks, where as

an example, the peaks in Fig. 3(e) are isolated but those in

Fig. 3(b) are still fully connected, we propose a binary cutting

strategy which is performed on the top of an approximate fit-

ness landscape, such that peaks inside different cutting slices

can be iteratively detected.

As summarized in Algorithm 3, the proposed binary cutting-

based APD method begins with an initial cutting performed

on top of the approximate fitness landscape D, thus generating

the initial cutting slice Dp, where the cutting ratio is speci-

fied by a parameter η ∈ (0, 1). Afterwards, binary cuttings

are iteratively performed on the basis of Dp, where in each

iteration, the peaks inside the cutting slice Dp are detected suc-

cessively using the APD as presented in Algorithm 4. In the

detection of each peak, a threshold σ is adaptively calculated

(step 7) to determine whether neighboring data points belong

to the same peak, without introducing any additional param-

eters. The above procedure, as presented from lines 4 to 16,

is iteratively operated until all data points in the cutting slice

Dp are allocated to a corresponding peak, thus Dp becoming

empty.

It is worth noting that the binary cutting-based APD method

bases the assumption that there are only a finite number of

optimal solutions such that the peaks are isolated in different

subregions of the fitness landscape. However, it is interesting

to see that the method is still able to detect a number of peaks

even if an MMOP has an infinite number of continuously dis-

tributed optimal solutions, where the detailed discussion can

be found in Section V-C.

D. Local Search

Once the peak set P is obtained using Algorithms 3 and 4,

independent local search can be performed inside each peak

using an existing single-objective optimizer. In the case that a

DM is only interested in part of the peaks, he/she can choose

to perform local search on specific peaks according to personal

preferences; while if there are no specific DM’s preferences

available, general optimization can be performed on each peak

successively, as presented in Algorithm 5.

To begin with, the data point with the best fitness value

is first extracted as a seed solution. Afterwards, local search

can be performed by merging the seed solution into the initial

population. It should be noted that, since the local search is

merely performed inside a decision space region specified by

a given peak, we suggest that the search space should be con-

strained to a small hyperbox around the seed solution, where

each dimension is set as 5% of feasible range as defined by (2).

Besides, since there is no specific requirement for the local

optimizer, in practice, any single-objective optimizer that has

reliable exploitation capability is applicable.

IV. EXPERIMENTAL STUDY

In order to assess the performance of the proposed EMO-

MMO,2 a series of experiments are conducted on the IEEE

CEC 2013 benchmark test suite for MMO3 (CEC 2013 test

suite for short hereafter) [56]. The CEC 2013 test suite consists

of 20 functions in total, as summarized in Section I in the

supplementary material, where F1–F10 are widely adopted

test functions in the MMO community, and F11–F20 are some

composition functions.

To begin with, some general comparisons are made between

the proposed EMO-MMO and three state-of-the-art algorithms

for MMO, namely, MOMMOP [44], NMMSO [60], and

NEA2 [61], where MOMMOP is a recently proposed mul-

timodal algorithm based on EMO techniques, and NMMSO

and NEA2 are the winning entries of the IEEE CEC 2015

and IEEE CEC 2013 competitions for MMO, respectively.

Moreover, performance of the proposed MOFLA method and

the peak detection method is further assessed using some illus-

trative case studies. Finally, the sensitivity analysis of the

allocation of FEs is conducted.

A. Benchmark Comparisons

1) Experimental Settings: For fair comparisons, all exper-

imental settings are as recommended in [56]. Each algorithm

is run for 50 independent times, and the termination condi-

tion for each test function is the maximum number of FEs

as summarized in Section I in the supplementary material.

For the three compared algorithms, namely, MOMMOP [44],

NMMSO [60], and NEA2 [61], we adopt the parameter set-

tings as suggested in their respective original publications.

Given D as the number of decision variables, the specific

settings of each algorithm are summarized as follows: for

MOMMOP, the population size settings are listed in Section I

in the supplementary material, and the parameter scaling fac-

tor is set to η = 40D(t/tmax), where t and tmax are the

current number and maximum number of FEs, respectively;

for NMMSO, the single swarm size is set to N = 10D,

and the maximum number of swarms to increment is set to

2Source code of EMO-MMO can be downloaded from:
https://github.com/ranchengcn/EMO-MMO.

3Source code of the CEC 2013 test suite can be downloaded from:
https://github.com/mikeagn/CEC2013.
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TABLE I
PARAMETER SETTINGS FOR EACH COMPONENT OF EMO-MMO.

FOR THE LOCAL SEARCH COMPONENT, IN ADDITION TO

THE SWARM SIZE m = 20, THE OTHER PARAMETER ϕ

IS SET TO 0 AS SUGGESTED IN [62]

max _inc = 100; and for NEA2, the population size is set to

40D.

In contrast to the problem-dependent population sizing of

the three compared algorithms, the proposed EMO-MMO

adopts a consistent population size of 500. Besides, the ini-

tial cutting ratio in Algorithm 3, as a control parameter to be

specified in EMO-MMO, is set to η = 0.1 for all test func-

tions, and some further discussion on the settings of η are

given in Section IV-C. To quickly setup the local search as

presented in Algorithm 5, we directly apply the recently pro-

posed competitive swarm optimizer (CSO) [62] as the local

optimizer without any modification. As the final solution set,

the candidate solutions obtained by Algorithm 5 are merged

into the final population obtained by Algorithm 2. To be clear,

the parameter settings for each component of EMO-MMO are

summarized in Table I.

It is worth noting that, since both MOFLA component

(Algorithm 2) and local search component (Algorithm 5)

require a certain number of FEs to work properly, we allocate

50% of the maximum FEs to each component, respectively,

without any bias. Further discussion on the allocation of FEs

can be found in Section IV-D.

2) Performance Measurements: To evaluate the results

obtained by each algorithm,4 the two measurements as recom-

mended in [56] are used as performance indicators, namely,

the peak ratio (PR)

PR =

∑NR
run=1 NPFi

NKP × NR
(17)

and the success rate (SR)

SR =
NSR

NR
(18)

where NR denotes the total number of runs, NPFi denotes the

number of global optima found in the ith run, and NKP and

NSR are the number of known global optima and the number

of successful runs, respectively. As the threshold for the calcu-

lation of SR and NR, the accuracy level ε, which indicates the

tolerable difference of function values between the true global

optimal solutions and the candidate solutions, should be spec-

ified. Correspondingly, three accuracy levels of ε = 10−1,

ε = 10−3, and ε = 10−5 are used in the experiments.

3) Experimental Results: In general, EMO-MMO shows

most competitive performance in comparison with MOMMOP,

NMMSO, and NEA2, having achieved 100% SR on 12 out of

20 functions at all accuracy levels. To be specific, we have the

following observations.

4Source code of the performance measurements can be downloaded from:
https://github.com/mikeagn/CEC2013.

(a) (b)

(c) (d)

Fig. 4. Boxplots of the results obtained by each algorithm in 50 runs at

accuracy level ε = 10−1. (a) F8. (b) F12. (c) F14. (d) F18.

All of the four algorithms have shown promising perfor-

mance at all accuracy levels on F1–F5, which have a relatively

small number of global optima. The only exception is that

NEA2 has failed to find all the global optimal at accuracy

level of ε = 10−5 on F4, which has a very smooth fitness

landscape as shown in Fig. 3(a). By contrast, the proposed

EMO-MMO, which is based on an APD method, has man-

aged to locate all of the four global optima at all accuracy

levels. For F6–F9, which have 18, 36, 81, and 216 global

optima, respectively, both EMO-MMO and MOMMOP have

also achieved high PR values. This observation indicates that

the proposed EMO-MMO is capable of handling MMOPs with

a large number of global optima. By contrast, NEA2 is signif-

icantly outperformed by the other three algorithms, especially

on F8 and F9, where NEA2 has only achieved around 20%

and 60% PR, respectively.

While the fitness landscapes of F1–F10 are relatively sim-

pler, the remaining ten functions, F11–F20, are composition

functions which have more complex fitness landscapes. As a

consequence, EMO-MMO is the only algorithm that is still

able to achieve 100% SR at all accuracy levels on part of

them. By contrast, the other three algorithms have all failed

to achieve 100% SR on all these function, especially on

F15–F20, where the SR is 0% at all accuracy levels. In

fact, obtaining all global optimal solutions (i.e., achieving a

successful run) on high-dimensional test functions such as

F15–F20 can be challenging for any existing MMO algo-

rithms [4]. Since the candidate solutions are very sparsely

distributed in the high-dimensional decision space, it is very

likely that some of the global optimal solutions are undetected

(or lost), thus leading to 0% SR. Another interesting observa-

tion is that NEA2 has significantly outperformed all the other

three algorithms on F16–F20, showing promising scalability

to the number of decision variables. This is mainly due to the



CHENG et al.: EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION-BASED MULTIMODAL OPTIMIZATION 701

(a) (b)

(c) (d)

Fig. 5. Boxplots of the results obtained by each algorithm in 50 runs at

accuracy level ε = 10−5. (a) F8. (b) F12. (c) F14. (d) F18.

effectiveness of the nearest-better clustering method adopted

in NEA2 [3], which is designed to enhance the performance of

the algorithm on both low-dimensional and high-dimensional

problems. As will be presented in Section V-B, the scalability

of the proposed EMO-MMO can be also potentially improved

by adopting a specially tailored reproduction operator.

For further observations, boxplots of the results obtained

by each algorithm on each test function in 50 runs are given

in Section III in the supplementary material. Representatively,

Figs. 4 and 5 show the boxplots of F8, F12, F14, and F18,

where F8 has a large number of 81 global optimal solu-

tions, F12 and F14 are low-dimensional composite functions

which have complicated fitness landscapes, and F18 is the

high-dimensional (10-D) instance of F14. One one hand,

EMO-MMO shows generally robust performance at the low

accuracy level of ε = 10−1. On the other hand, at the higher

accuracy level of ε = 10−5, EMO-MMO still shows stable

performance on F8 and F12, but its performance suffers from

significant deterioration on F18. Besides, it is interesting to

see that although NEA2 tends to occasionally lose some opti-

mal solutions, its performance is quite stable regardless of the

accuracy levels.

In summary, compared with MOMMOP, NMMSO, and

NEA2, the proposed EMO-MMO has shown best performance

on most test functions in the CEC 2013 test suite, with respect

to both PR and SR. Since the performance of EMO-MMO is

largely dependent on the proposed MOFLA method and the

peak detection method, in the following sections, we present

some empirical results to further demonstrate the advantages

of both methods, especially when applied to preference-based

decision-making.

B. Fitness Landscape Approximation

While most existing algorithms for MMO merely aim to

find all optimal solutions, in practice, the DM may only be

(a) (b)

(c) (d)

Fig. 6. Approximate fitness landscapes of F6 obtained by EMO-MMO,
MOMMOP, and NMMSO using 40 000 FEs. (a) True fitness landscape.
Approximate fitness landscape obtained by (b) MOFLA, (c) MOMMOP, and
(d) NMMSO.

interested in some specific solutions of his/her preferences.

In this scenario, achieving all optimal solutions can be quite

inefficient, especially for problems with expensive FEs. To

address such an issue, we demonstrate that, by consuming a

certain number of FEs, the proposed EMO-MMO can be used

to assist the decision-making process by obtaining an approxi-

mate fitness landscape together with adaptively detected peaks

marked on it.

As an illustrative example, we have run the proposed

MOFLA (Algorithm 2), MOMMOP and NMMSO for 40 000

FEs (only 20% of the maximum FEs as used in bench-

mark comparisons) on F6, and a large archive is used to

record all the candidate solutions obtained by each algorithm

as an approximation to the fitness landscape. As presented

in Fig. 6, the approximate fitness landscapes obtained by

MOFLA, MOMMOP and NMMSO show significantly differ-

ent qualities. To be specific, MOFLA has obtained the best

approximation to the fitness landscape, where the shapes of

the sharp peaks are clearly visible; by contrast, for MOMMOP

and NMMSO, most points are merely located on the top of

the peaks.

As the most important subcomponent in MOFLA, the pro-

posed grid-based diversity indicator dgrid(x) is crucial to the

performance of the whole algorithm. To assess the effec-

tiveness of dgrid(x), we have performed further empirical

comparisons between it and the classic Euclidean distance

diversity indicator d3(x) as given in (9). To be specific, we use

F10, which a relatively simple fitness landscape [as shown in

Fig. 3(d)], to conduct the experiments. As evidenced in Fig. 7,

MOFLA has completely failed the approximation to the fitness

landscape of F10 once dgrid(x) is replaced with d3(x), which

confirms the effectiveness of the proposed grid-based diversity

indicator dgrid(x).
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(a) (b)

Fig. 7. Approximate fitness landscapes of F10 obtained by MOFLA with
grid distance-based diversity ind dgrid(x) and classic Euclidean distance-
based d3(x) using 40 000 FEs. Approximate fitness landscape obtained by
(a) MOFLA with dgrid(x) and (b) MOFLA with d3(x).

(a) (b)

(c) (d)

Fig. 8. Approximate fitness landscape marked with the detected peaks of F11
obtained by EMO-MMO. (a) True fitness landscape. (b) Approximate fitness
landscape with detected peaks marked using solid dots. (c) Decision space
of the approximate fitness landscape with detected peaks marked using solid
dots. (d) Decision space of initial cutting slice with detected peaks marked
using solid dots.

C. Peak Detection

On the basis of the approximate fitness landscapes obtained

by Algorithm 2, we are able to further apply Algorithm 3

to the detection of peaks where optimal solutions may exist.

For example, as shown in Fig. 8(a), although the six global

optimal solutions of F12 have the same fitness, they are

located on the peaks of significantly different landscapes.

Considering the robustness in engineering designs, the DM

may prefer to perform further local search inside the smooth

peaks (e.g., peak 6), where the optimal solutions are less sensi-

tive to the decision variable tunings than those on sharp peaks

(e.g., peaks 3 or 4). Therefore, performing peak detection can

be particularly meaningful in practical engineering designs.

As presented in Fig. 8(b), despite that some of the peaks

are quite sharp while the others are more smooth, all of the

six peaks in the approximate fitness landscape of F11 has

been successfully detected, which indicates the robustness of

the proposed adaptive strategy. In addition, as evidenced in

(a) (b)

(c) (d)

Fig. 9. Cuttings slices marked with detected peaks on F12 obtained by
EMO-MMO using different settings of initial cutting ratio η. (a) True fitness
landscape. Decision space of initial cutting slice with a number of (b) 16
detected peaks marked using solid dots (η = 0.05), (c) 40 detected peaks
marked using solid dots (η = 0.1), and (d) 73 detected peaks marked using
solid dots (η = 0.3).

Fig. 8(c), data points around the peaks show significantly

higher density than those in other regions of the decision

space, which indicates that the MOFLA method is able to

adaptively adjust the distribution of the candidate solutions

according to the specific locations of the peaks, thus avoid-

ing useless explorations in the barren regions. Moreover, as

presented in Fig. 8(d), cutting the fitness landscape to a cer-

tain slice will remove the sparsely distributed points which

have poor fitness. Consequently, the DM is able to determine

the ROIs (e.g., the region of peak 6) to perform further local

search.

In addition to the sparsely distributed global optimal solu-

tions such as in F11, for some other problems, there can also

exist a large number of local optimal solutions. In this case, the

number of peaks to be detected can be somehow controlled

by the settings of the initial cutting ratio η. To further ver-

ify the robustness of the proposed peak detection method in

terms of different settings of η, we conduct additional exper-

iments using F12, which has a large number of local optimal

solutions. As shown in Fig. 9, the proposed peak detection

method has obtained different numbers of peaks with differ-

ent settings of η, where the smaller η is set, the fewer peaks

(with higher fitness) will be left in the cutting slice, and vice

versa. Therefore, setting η to a too large value can lead to some

potential issues. First, if the problem has a large number of

local optimal solutions, a large initial cutting slice can cause

a large number of local peaks to be detected, thus costing

more FEs to exploit each of them in the local search pro-

cedure. Second, a large initial cutting slice may contain too

many sample points, thus increasing the computational cost of

the peak detection procedure. To avoid such issues, we suggest
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(a) (b)

(c) (d)

Fig. 10. Mean PR values obtained by EMO-MMO at accuracy level of ε =

10−5 using different percentages of maximum FEs allocated to the MOFLA
component. (a) f1–f5. (b) f6–f10. (c) f11–f16. (d) f17–f20.

that a small value η should always be considered, e.g., η = 0.1

as adopted in this paper.

D. Allocation of Fitness Evaluations

In the proposed EMO-MMO, both of the MOFLA com-

ponent (Algorithm 2) and the local search component

(Algorithm 5) require a certain number of FEs. In our bench-

mark studies, without any priori knowledge available, the two

components are considered equally important to the black-

box benchmark test functions, and thus 50% of the maximum

FEs are allocated to each component, respectively. As further

investigation, we have performed some sensitivity analysis on

the allocation of FEs.

As indicated by the results summarized in Fig. 10, the

performance of EMO-MMO is not particulary sensitive to

the allocation of FEs on most test functions, except f9 and

f12, which have a large number of global and local opti-

mal solutions, respectively. Intuitively, this is due to the

fact a larger number of detected peaks (i.e., potential opti-

mal solutions) will require more FEs for the local search

to be performed on each peak successively. In this case,

allocating too many FEs to the MOFLA component will

consequently result in insufficient FEs for local search, thus

leading to poor performance of the algorithm. Therefore,

in practice, the DM may allocate the FEs on the basis

of approximate fitness landscape and according to personal

preferences.

V. DISCUSSION

A. Effectiveness of Grid Coordinate System

In the following, we elaborate some further discussion to

demonstrate the advantages of the grid coordinate system over

the real coordinate system in terms of diversity measurement

for the proposed EMO-MMO. To begin with, we replace the

grid-based normalization method in (10) with the following

real-valued normalization method:

x′
t,i,j =

(

xt,i,j − xmin
t,j

xmax
t,j − xmin

t,j

)

(19)

where x′
t,i,j falls into range [0, 1], such that the diversity indi-

cator as formulated in (11)–(14) is calculated in the real coor-

dinate space. With this real-valued normalization method, we

conduct some experimental comparisons between the modified

EMO-MMO (denoted as EMO-MMO-R for short hereafter)

and the original EMO-MMO on the CEC 2013 benchmark

test suite, where all the experimental settings remain the same

as those adopted in Section IV.

As summarized by the results in Section IV in the supple-

mentary material, EMO-MMO-R shows the same performance

to EMO-MMO on simple test functions such as F1–F6, but

is significantly outperformed by EMO-MMO on difficult test

functions such as F7–F9 or F11–F20, which either have a

large number of global optimal solutions or have a complicated

composite fitness landscape. This is due to the fact that the real

coordinate system fails to well balance between convergence

and diversity in the decision space, thus causing the loss of

part of the solution sets. Such empirical observations indicate

that the proposed grid coordinate system is crucial to the per-

formance of EMO-MMO in terms of diversity measurement,

especially on those hard problems.

B. Reproduction Operator in MOFLA

For simplicity, the MOFLA method in this paper has been

designed on the basis of the original NSGA-II, where the

reproduction operator is the classic simulated binary crossover

(SBX) operator plus the polynomial mutation operator (step 7

in Algorithm 2). As one of the most important components in

an MOEA, the reproduction operator could substantially deter-

mine the search behaviors of the algorithm, thus influencing

the performance of the proposed MOFLA. To this end, we

conduct some further investigations by proposing a localized

DE operator (refer to Section VI in the supplementary mate-

rial) to replace the SBX operator in Algorithm 2, and rerun the

modified EMO-MMO (denoted as EMO-MMO-DE for short

hereafter) on the CEC 2013 test suite using the same settings

as introduced in Section I.

As summarized in Section IV in the supplementary material,

EMO-MMO-DE and original EMO-MMO have achieved the

same (or very close) performance on simple low-dimensional

test functions such as F1–F6 or F10–F16, while their per-

formance is substantially different on difficult test functions

such as F7–F9 or F17–F20. To be specific, the original

EMO-MMO significantly outperforms EMO-MMO-DE on test

functions F7–F9 which have a large number of global opti-

mal solutions; by contrast, EMO-MMO-DE shows promising

scalability on the high-dimensional test functions F17–F20,

significantly outperforming the original EMO-MMO. Such

observations indicate that the reproduction operator is cru-

cial to the performance of the MOFLA method, hence, it is

very likely that a specially tailored reproduction operator can
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(a) (b)

Fig. 11. Cuttings slices marked with detected peaks on the roof problem
obtained by EMO-MMO. (a) True fitness landscape. (b) Decision space of
initial cutting slice with detected peaks marked using solid dots.

improve the performance of EMO-MMO on specific problems

of different types (e.g., high-dimensional problems).

C. Applicability to Infinite Optimal Set

As demonstrated by the experimental study in Section IV,

the proposed EMO-MMO shows generally robust performance

on a variety of test functions which have different numbers of

optimal solutions. Although the number of optimal solutions

varies from 1 to 216, all of the optimal solutions are still

discretely distributed in the fitness landscapes. In practice,

however, there may exist some problems where the optimal

solutions are continuously distributed, thus leading to an infi-

nite optimal set. To further investigate the performance of

EMO-MMO on such kind of problems, we have specially

designed a new test function, called a roof problem

f (x1, x2) =

{

x1 if x1 ≤ 0.5

1 − x1 0.5 < x1 ≤ 1
(20)

where 0 ≤ x1, x2 ≤ 1. As shown in Fig. 11(a), this problem

has an infinite global optimal set along the roof ridge defined

by x1 = 0.5.

In order to approximate the fitness landscape of the roof

problem and detect the peaks where optimal solutions could

exist, we run EMO-MMO for 50 000 FEs. As shown in

Fig. 11(b), consequently, EMO-MMO has obtained a cer-

tain number of well distributed peaks along the “roof ridge,”

which implies the potential applicability of EMO-MMO to the

problems having infinite optimal sets. Nevertheless, there are

still some open issues worthy of further investigations. For

example, compared to the dense distribution of the sampled

candidate solutions in the optimal region, the distribution of

the detected peaks is relatively sparse, and the exact number

of detected peaks is not controllable. Besides, since EMO-

MMO performs stochastic search behaviors, it also does not

guarantee which exact peaks to be detected in each indepen-

dent run. In this case, the DM may have to specify some

ROIs in order to obtain solutions according to personal pref-

erences, thus calling for the development of specially tailored

preference integration/articulation methods.

VI. CONCLUSION

By taking advantage of EMO techniques in population

diversity preservation, we have proposed an EMO-MMO

algorithm. The proposed EMO-MMO first obtains an approxi-

mate fitness landscape marked with adaptively detected peaks,

and then, local search is performed inside each peak inde-

pendently. Our experimental results have demonstrated that

the proposed EMO-MMO not only shows promising perfor-

mance in the benchmark comparisons with some state-of-

the-art algorithms, but also has good potential in assisting

preference-based decision-makings in MMO.

While most existing MMO algorithms try to find all opti-

mal solutions during one single run, the proposed EMO-MMO

has adopted a two-stage framework: 1) to approximate the fit-

ness landscape and 2) to exploit the ROIs. Technically, the

framework has been designed to be flexible. For example, in

the MOFLA component, both diversity indicator and repro-

duction operator are replaceable. Besides, the local search

operator could also be any single-objective optimizer. Even

the peak detection method could also be replaced as long

as it is able to detect the ROIs (e.g., the peaks) on the

basis of the approximate fitness landscape. In the future, we

would like to investigate how to design new methods or

operators to tackle more challenging (e.g., high-dimensional)

MMOPs using such a framework. In addition, the visualiza-

tion of high-dimensional multimodal landscapes is also worth

investigating [63].
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