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Abstract. Allocating resources to hospital units is a major managerial
issue as the relationship between resources, utilization and patient flow
of different patient groups is complex. Furthermore, the problem is dy-
namic as patient arrival and treatment processes are stochastic. In this
paper we present a strategy optimization approach where the param-
eters of different strategies are optimized using a multiobjective EDA.
The strategies were designed such that they enable dynamic resource
allocation with an offline EDA. Also, the solutions are understandable
to health care professionals. We show that these techniques can be ap-
plied to this real-world problem. The results are compared to allocation
strategies used in hospital practice.

1 Introduction

Today, many hospitals face great demands to reduce costs and improve quality
of service, e.g. by reducing patient waiting times. In several European countries
this is due to the introduction of a free market health care system, like in the
Netherlands. In order to decrease costs, the occupancy rates of resources need to
be increased. Increasing resource utilization, however, may lead to bottlenecks
that cause the blocking of patient flows and thus increase patient waiting times.
Therefore, the efficient allocation of resources is an important issue.

Hospital resource management is concerned with the efficient and effective
deployment of resources, i.e. operating rooms and beds, when and where they
are needed. In many hospitals, this is a major managerial issue, especially due to
the complex relationship between resources, utilization and patient throughput
for different patient groups[1]. Moreover, the problem is stochastic as resource
usage at a hospital unit behaves like a stochastic process. Emergency patients
arrive in urgent need for care, complications require patient transfers and the pa-
tients’ length of stays are stochastic. Different patient treatment processes need
to be considered that typically involve several hospital units. Often, resources
(e.g. at the Intensive Care unit) are shared by multiple treatment processes.
Thus, hospital resource management is a complex and highly dynamic problem.
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For the optimization of resource management three outcome measures are
of interest to the hospital: patient throughput, i.e. the number of patients dis-
charged from the hospital after treatment, resource costs and back-up capacity
usage. In order to accommodate patients at the appropriate care level, a hospital
unit may open an extra bed or transfer a patient temporarily to another unit
until a bed becomes available. A well-designed hospital resource allocation fea-
tures high patient throughput at low resource costs and back-up capacity usage.
Previous work [2] showed that a trade-off is needed between these conflicting
objectives.

Due to the stochastic patient processes and the actual patient flow being the
result of resource availability, an analytical evaluation of a resource allocation
is not feasible. Furthermore, changing the structure of the patient pathways or
the underlying probability distributions is non-trivial in an analytical model.
Therefore, the simulation tool described in [2] is important to be used for the
evaluation of a resource allocation. Moreover, the decision space comprises al-
locations for each unit in a hospital. Due to the need of a complex simulation
tool for evaluation, the huge decision space and multiple conflicting objectives,
evolutionary algorithms (EAs) were chosen as solution technique, as they have
been shown to be very powerful for multi-objective (MO) optimization [3,4,5].

For optimizing hospital resource management, we apply strategy (or policy)
optimization, as advocated in [6]. Policies are parameterized functions that re-
turn an allocation decision for any given situation. The strategies’ parameters
are optimized using the EA. The advantage of using policies to solve stochastic
dynamic optimization problems is that only one strategy has to be optimized
that can be applied to a set of scenarios in the simulation. In cooperation with
domain experts from the Catharina Hospital Eindhoven (CHE), the Netherlands,
we designed strategies that enable dynamic resource allocations. The strategies
can be easily understood by health care professionals which is important for the
implementation and understanding in practice.

Thus, hospital resource management is a complex and dynamic problem that
requires state-of-the-art techniques from dynamic MO research. Specifically, we
combine strategy optimization with the SDR-AVS-MIDEA algorithm [7], an
Estimation-of-Distribution (EDA) algorithm. The algorithm uses mixture distri-
butions to stimulate the search for a broad Pareto-front and additionally contains
techniques to prevent premature convergence (SDR-AVS). We demonstrate the
applicability of these techniques to a real-world problem and their effectiveness.

Only few papers have addressed dynamic MO optimization, especially in
stochastic environments. The approach presented in [5] is developed for seldom
random changes of the environment and requires optimization from scratch if a
change in the environment is detected. Our approach uses strategy optimization
and therefore does not need to be re-optimized for each situation. Moreover, it
can handle also frequent changes of the environment because the strategies de-
scribe what to do in any situation. In [4] the performance of the Non-dominated
Sorting Genetic Algorithm version 2 (NSGA2) is evaluated for artificial objective
functions. In our work, we use objective functions for a real-world application.
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Work on hospital resource management can be found in the Operations Re-
search and Operations Management literature. The models mainly focus on ag-
gregated resource allocation policies, e.g. [1,8], or allocation policies for single
units, e.g. [9,10]. Our approach allows for an in-depth analysis of allocation
strategies also on the level of different hospital units. Furthermore, their work
solely addresses static allocations whereas we consider also the optimization of
dynamic resource allocation. The work in [11] provides theoretical results for hos-
pital bed utilization. Our approach is more flexible and can easily be adopted
to other settings. Moreover, earlier work considered hospital resource manage-
ment as a single-objective optimization problem. In [12], the MO optimization
problem is addressed. The model, however, is restricted to deterministic patient
treatment processes. In our approach, we incorporate stochastic treatment pro-
cesses that can be flexibly adjusted to other settings.

The remainder is organized as follows. First, we provide a model of the hospital
domain and a description of the resource allocation problem in Section 2. Next,
the allocation strategies and the algorithm used in our approach are presented in
sections 3 and 4. The experiments are reported in Section 5. Finally, in Section 6
we provide our conclusions and an outlook on future work.

2 Simulation Model and Optimization Problem

2.1 Simulation Model

The simulation tool for hospital resource allocation is based on a case study at
the CHE. The following features are included: patient characteristics influencing
the patients’ priority and pathway in the hospital and uncertainty related to the
pathways. The model is described below. For a more detailed description, the
reader is referred to [2].

Hospital care units. In general, a hospital can be divided into several, medi-
cally specialized, care units [13]. The units like nursing wards provide treatment
and monitoring and are typically dedicated to a medical specialty such as cardio-
thoracic surgery (CTS). The operating room (OR) is typically shared by different
specialties which are assigned time slots for performing surgical procedures (in-
dicated by a prefix). The intensive care unit (ICU) is often divided into several
subunits providing patient care and monitoring with different intensity. We dis-
tinguish between intensive care (IC), high care (HC) and medium care (MC).
The post anesthesia care unit (PACU) is dedicated to patients recovering from
anesthesia. The set of care units relevant for the simulation model is denoted by
U with U={CTS-OR, IC, IC-HC, MC, CTS-HC, CTS-PACU, CTS ward, o}. o
denotes the possible destinations of a patient’s discharge from the hospital which
are home or other care facilities, but also mortality.

Patient pathways and scheduling. We distinguish between scheduled pa-
tients (i.e. elective surgical patients from the waiting lists) and non-scheduled
patients (i.e. emergency patients in urgent need for surgical and/or intensive
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Fig. 1. Interference of CTS, other surgical and emergency patient pathways1

care). The set of patient groups is denoted by Θ. The Poisson arrival rate of pa-
tients is given as λg, g ∈ Θ. We define a patient pathway of group g ∈ Θ as the
sequence of actually required treatment operations and the respective length of
stay (LoS). The patient process represents all possible pathways of patient type
g ∈ Θ and is modeled by a probabilistic graph [14], Gg = (V g, Ag, P g), where
the set of nodes, V g ⊂ U , represents the involved hospital units and the set of
arcs, Ag, represents the possible adjacent treatment operations. The length of
stay of a patient of group g ∈ Θ at hospital unit u ∈ V g is modeled as a random
variable, LoSg

u, that follows a probability distribution PLoSg
u. P g is the set of

conditional probability distributions defined on Ag with

P g = {Pr(v|u, g, t)|u ∈ V g, (u, v) ∈ Ag, t ≥ 0} for g ∈ Θ. (1)

Pr(v|u, g, t) represents the probability that care provided at unit v is required
given that a patient of group g has been admitted to unit u for t time units.

Resources are required to perform treatment operations at a hospital unit.
Here, relevant resources are ORs and hospital beds. Often, hospital units operate
autonomously which means that schedules and resources are managed locally
by the units each applying their own (medical) priorities and preferences. The
simulation model reflects the distributed decision making by representing each
relevant unit by an agent. The policies for scheduling patient admissions and
transfers implemented in the agent-based simulation tool were derived from the
CHE case study. A detailed description is given in [2].

For the simulation we use four types of patient pathways (type I to IV) that
were identified in the CHE case study for the CTS. Type I and II patients are
CTS patients, for whom the immediate postoperative care is a priori indicated
as CTS-HC and CTS-PACU, respectively. The type III pathway corresponds to
the treatment process of emergency patients who arrive unexpectedly. The type
IV patient path represents the inflow of other surgical patients in the system.
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Figure 1 shows the four types of patient pathways1. The routing probabilities are
indicated on the arrows where differing from 100%. Type III and IV pathways
are restricted to their possible interference with type I and II patients at IC,
IC-HC, CTS-HC and MC. The preceding and successive treatment steps are not
considered because other dedicated resources are used.

2.2 Optimization Problem

In the following we consider a time horizon T with discrete time units t and
n equidistant decision moments denoted by ti ∈ T ′ ⊂ T with ti−1 < ti for
i = 1, . . . , n− 1. Typically, t would be in steps of hours and ti would be in steps
of days.

Decision variables & parameters. In the simulation model described above,
we consider the number of allocated resources as free decision variables (i.e.
control variables that impact the performance of the system). Formally, an allo-
cation policy, π(ti) = (πu(ti), u ∈ U), determines the number of resources, ru(t),
allocated to hospital unit u at time t ∈ T . Thus, we have that

ru(t) = πu(ti) ∀u ∈ U, ∀t ∈ T : t ∈ [ti, ti+1), ti ∈ T ′. (2)

The model parameters (i.e. the variables whose values characterize the problem
instance) are listed below:

P g: the conditional routing probability distribution of patient group g ∈ Θ
PLoSg

u: the length of stay probability distribution for type g ∈ Θ at unit u ∈ U
λg: the (daily) arrival rate of patients of type g ∈ Θ
rmin
u , rmax

u : the lower and upper bound for the resource capacity allocated to
unit u ∈ U ; the values are imposed by the layout of a hospital unit, the
available equipment, staff and funds

cu: the cost2 for a resource at hospital unit u ∈ U ; specifically, costs for the
OR are only accounted for if allocated OR capacity remains unused due to
cancelations of surgeries resulting from unavailable postoperative care beds3.

Performance evaluation of resource allocations. In order to optimize re-
source allocation in hospitals a trade-off is needed between conflicting objectives,
i.e. high patient throughput at low resource costs and back-up capacity usage.
The outcome resulting from running the simulation applying allocation policy π
is denoted by F = F (π) = (F0(π), F1(π), F2(π)) with
1 The actual patient routing may deviate from the medical indication depending on the

available beds at the respective hospital care units. Patients may only be transferred
to a higher care level than indicated. This gives more routing possibilities and thus
makes the patient flows in Figure 1 more complex. The procedure is described in
detail in [2].

2 Costs for hospital resources relate to the daily costs for staff and materials and are
expressed relative to the costs of a nursing ward bed.

3 We assume that all fixed and variable costs for an operating room are covered by
the surgical procedure that is to be performed. Therefore, only unused OR capacity
is accounted for in the resource costs for the OR.
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F0(π): the mean total throughput of patients under allocation π, defined as the
number of patients discharged from the hospital after treatment.

F1(π): the mean total resource costs given by

F1(π) =
∑

u∈U\{CTS−OR}

∑

ti∈T ′
cu · πu(ti) + cCTS−OR · ucCTS−OR(π),

where ucCTS−OR(π) denotes the unused CTS-OR capacity due to canceled
surgeries resulting from unavailable postoperative care beds given π.

F2(π): the mean total weighted back-up capacity usage under allocation π. The
weighting factors correspond to the cost weights cu, u ∈ U .

For optimizing resource management, F0(π) has to be maximized, while F1(π)
and F2(π) have to be minimized. In the following we use as objective function

F ′(π) = (−F0(π), F1(π), F2(π)).

Optimization problem. The MO problem can thus be formulated as

min F ′(π) (3)

where
∀u ∈ U ∀t ∈ T : ru(t) ∈ N ∩ [rmin

u , rmax
u ]. (4)

3 Strategies for Hospital Resource Management

As described in Section 2, hospital resource management is a highly stochastic
and dynamic problem. In our approach, we use strategy optimization as advo-
cated in [6]. Strategies are parameterized functions that return an allocation
decision given the current situation. We thus have to optimize only one strategy
that can be applied to a set of scenarios in the simulation because it describes
what to do in any given situation. The strategies described below were devel-
oped in cooperation with domain experts from CHE. Therefore, the strategies
can be easily understood by health care professionals which is important for the
implementation and understanding under practical conditions.

In the following, the allocation strategies used in this study are described.
Moreover, a mechanism for exchanging resources among units is described that
enables the implementation of dynamic resource allocation in practice.

3.1 Static Resource Allocation Policies

Static allocation policies allocate a fixed number of resources to the differ-
ent hospital units. We consider day-constant allocation policies, denoted by
πu(ti), u ∈ U , given by πu(ti) ≡ ru ∈ N for ti ∈ T ′. Day-constant policies
are typically employed by hospitals and are also current practice at the CHE.
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3.2 Dynamic Resource Allocation Strategy

A static allocation can do well in a relatively stable environment. This condition,
however, does not hold in hospitals due to the stochastic patient treatment
processes. Therefore, we consider dynamic strategies that return an allocation
for the units in the network, given the current state of the units. This allows the
resources (i.e. decision variables) to switch and track changes in the environment
(i.e. the optimization problem) dynamically. Below, the state representation, the
policy and its usage for dynamic resource allocation are described.

State description. The state at unit u at decision moment ti, su(ti), is deter-
mined by the resource utilization rate at u, i.e. the ratio between the utilized
capacity4 at the start of day ti and the resource capacity, ru(t−i ), just before the
adjustment at ti, denoted by t−i . Formally, we have su : T ′ → R

+
0 , u ∈ U, with

su(ti) =
utilized capacity at unit u at start of day ti

ru(t−i )
. (5)

At the postoperative care units (CTS-PACU and CTS-HC) resources are avail-
able only for a couple of hours during the day. For these units the state at the
start of day ti defined in (5) may not be representative for the resource occu-
pancy during the remainder of ti, i.e. due to empty beds at the start of the day
and canceled surgeries during the day. For these units, the expected resource uti-
lization rate is used to determine su(ti). The expected utilized capacity for day
ti is calculated as the utilized capacity at time ti minus the expected patient
outflow plus the expected inflow (determined by the surgery scheme in the OR)
for day ti.

State-dependent allocation policy. A state-dependent allocation policy, de-
noted by (πu(ti, su), ti ∈ T ′, u ∈ U), is determined by five parameters: a base
resource allocation, rbase

u , two adjustments, rdecr
u and rincr

u , and two utilization
thresholds, UT decr

u ,UT incr
u with UT decr

u ≤ UT incr
u . We use an iterative step-

function π : T ′ × R
+
0 → N

|U| given as

πu(ti, su) =

⎧
⎨

⎩

max{rmin
u , ru(t−i ) − rdecr

u } , if su(ti) < UT decr
u

ru(t−i ) , if su(ti) ∈ [UT decr
u ,UT incr

u ]
min{rmax

u , ru(t−i ) + rincr
u } , otherwise

(6)

for t1, . . . , tn−1 and
πu(t0, su) = rbase

u , (7)

with πu(ti, su) ∈ [rmin
u , rmax

u ] ∀ti ∈ T ′, u ∈ U . In (6) the current resources
allocation, ru(t−i ), is decreased by rdecr

u if the resource utilization rate is below
the threshold UT decr

u . If the utilization rate is above UT incr
u , ru(t−i ) is increased

4 Note that due to the usage of back-up capacity the utilized capacity may exceed the
allocated resources, thus su may be greater than 1.
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by rincr
u . Otherwise, the current allocation remains unchanged. Note that the

policy specifies the allocation at the different units independently.
In the simulation the policy is applied at the start of every day after a

warming-up period. Warming-up is necessary to avoid early convergence to min-
imal allocations due to the empty hospital in the start of a simulation run.

For the dynamic resource allocation problem (4) is changed to

∀u ∈ U : rbase
u ∈ N ∩ [rmin

u , rmax
u ], (8)

∀u ∈ U ∀ti ∈ T ′ : su(ti) ∈ R
+
0 , (9)

∀u ∈ U : rdecr
u , rincr

u ∈ [0, 5] (10)
∀u ∈ U : UT decr

u ∈ [0, 1], UT incr
u ∈ [UT decr

u ,UT decr
u + 1]. (11)

As large adjustments are not desirable for hospital management, a maximal
adjustment of 5 beds was chosen. Based on preliminary runs, a theoretical upper
bound of 2 for UT incr

u appeared to be more than sufficient.

3.3 Bed Exchange Mechanism for Dynamic Resource Allocation

In the state-dependent strategy described in Section 3.2, a large supply and stock
of beds is assumed which enables the concurrent in- and decrease in resource
capacity at the different units. In reality, however, bed availability is restricted
by the available staff, in particular the number of personnel needed to per bed
at a specific unit. Staff schedules need to be fixed at least several weeks in
advance. The use of stand-by personnel is not common in the hospital domain.
Therefore, a direct implementation of the policy described in Section 3.2 is often
not practically feasible. To enable dynamic resource allocation in hospitals, we
propose an exchange mechanism that is based on fixed personnel resources. The
resources are exchanged among the hospital units to meet the current local need.

Here, πu(ti, su) denotes the number of resources required by unit u at time ti,
determined by (6). The fixed personnel resources are determined by rbase

u , u ∈ U .
The actual resource allocation, ru(t), is set by the mechanism below and not by
(2).

We classify hospital units into three care levels, level 1 to level 3, based on
the intensity of care and monitoring and the skill level of the personnel. Here,
level 1 is the intensive care (IC), level 2 comprises the IC-HC, MC, CTS-HC and
the CTS-PACU unit. Level 3 is the CTS ward, or shortly referred to as ward.
From the application domain three rules arise for feasible bed exchanges:

R1: Due to staff training and physical requirements (i.e. access availability to
the isolated electric power system in the hospital), beds can only be ex-
changed within the same or between adjacent care levels.

R2: Due to the staff assigned to a bed, shifting one bed from level l to level
l + 1 yields two beds at l + 1 for l = 1, 2.

R3: Due to the personnel required to operate a bed, only an even number of
beds can be shifted from level l to level l − 1 for l = 2, 3 (i.e. the reverse of
R2).
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For the sake of reproducibility the mechanism and the method shiftBeds are de-
scribed in detail in Algorithm 1. The number of resources available for exchange,
El, in care level l at time ti is determined by

El =
∑

u∈ level l

max{0, ru(t−i ) − πu(ti, su)}, l = 1, 2, 3. (12)

First, beds are shifted from level 1 to level 2. Then, level 2 beds are shifted to
level 1 if necessary. Subsequently, beds of level 2 are exchanged within level 2.
Finally, beds are exchanged between level 2 and 3. All exchanges are performed
only if additional resources are required. The order of the care levels is based on
the resource costs associated with the different units (given in Section 5.2). In
future work, also other orderings of care levels will be considered. The order of
units within a care level is determined randomly.

Through the mechanism, the implementation of (6) is extended with the above
adjustments at time ti ∈ T ′, depending on the interaction with other units. This
complex interaction mechanism answers to reality, however, it further compli-
cates the optimization of resource management. Therefore, a state-of-the-art
technique is needed for this optimization, which is described in Section 4.

4 EDA for Multi-objective Optimization

For the optimization of the dynamic and complex multi-objective resource allo-
cation problem, we apply the SDR-AVS-MIDEA algorithm [7]. The algorithm
was shown to be an efficient optimization technique for MO problems [7]. A brief
outline of SDR-AVS-MIDEA is given in Section 4.1.

We use a strategy optimization approach with the policies defined in Section 3.
The parameters of the strategies, specified in Section 5.1, are optimized using
SDR-AVS-MIDEA. The fitness is determined using the simulation tool described
in Section 2.1.

The optimization of the strategies is performed in an offline fashion. As the
strategies are used online in the simulation, the anticipation of time-dependency
effects [6], i.e. the impact of decisions taken now on the future, is implicitly in-
cluded in the optimization of the strategies’ parameters. Thus, MO techniques
can be applied in a straightforward fashion to solve this dynamic problem. Since
designing online MO appears to be rather hard, this approach yields an addi-
tional advantage. The policies proposed can be easily understood by health care
professionals, so this approach is also practically implementable.

4.1 Outline of SDR-AVS-MIDEA

In this section, a brief outline of the evolutionary algorithm is given. For a
detailed description the reader is referred to [7].

The algorithm divides the generated solutions into clusters of equal size that
are kept separated in the objective space throughout a run. The use of clus-
ters stimulates the search for a broad Pareto-front. New solutions are generated
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Algorithm 1. Pseudo-code description of the bed exchange mechanism
Input: Set of hospital units, U , πu(ti, su) ∀u ∈ U , determined by (6), and

El, l = 1, 2, 3, determined by (12)
Result: ru(ti)∀u ∈ U

for l = 1 to 3 do EXl ← El;
/*exchange from level 1 to level 2 applying rules R1 and R2; if the

exchange results in more beds at unit u than required, a bed is

shifted to another unit of level 2 in need of additional resource

capacity */

while EX1 > 0 and ∃u ∈ level 2 with πu(ti, su) > ru(t−i ) do
if (πu(ti, su)− ru(t−i )) is an even number then

shiftBeds(1,2,IC,u,min{EX1, (πu(ti, su)− ru(t−i ))/2})
else

shiftBeds(1,2,IC,u,min{EX1, �(πu(ti, su)− ru(t−i ))/2�});
Find a v ∈ level 2, v �= u (if any) with πv(ti, sv) > rv(t−i ) and
shiftBeds(2,2,u,v,1);

/*exchange from level 2 to level 1 applying rules R1 and R3; if an

exchange from one unit is not feasible (R3), the exchange is

performed together with another unit of level 2 (if possible) */

while EX2 ≥ 2 and πIC(ti, sIC) > rIC(t−i ) do
Find v1 ∈ U with πv1(ti, svj ) < rv1(t

−
i );

if |πu(ti, su)− ru(t−i )| is an even number then
shiftBeds(2,1,v1,IC,min{|πv1(ti, sv1)− rv1(t−i )|/2, πIC(ti, sIC)−
rIC(t−i )});

else
Find v2 ∈ U, v2 �= v1, with πv2(ti, sv2) < rv2(t

−
i ) and

shiftBeds(2,2,v2,v1,1) and shiftBeds(2,1,v1,IC,min{�|πv1(ti, sv1)−
rv1(t−i )|/2�, πIC(ti, sIC)− rIC(t−i )});
if there is no such v2 then

shiftBeds(2,1,v1,IC,min{
|πv1 (ti, sv1)− rv1(t
−
i )|/2�, πIC(ti, sIC)−

rIC(t−i )});
/*exchange within level 2 applying rule R1 */

while EX2 > 0 and ∃u ∈ level 2 with πu(ti, su) > ru(t−i ) do
Find a v ∈ level 2, v �= u, with πv(ti, sv) < rv(t−i ) and
shiftBeds(2,2,v,u,min{|πv(ti, sv)− rv(t−i )|, πu(ti, su)− ru(t−i )});

/*exchange from level 2 to level 3 applying rules R1 and R2 */

if EX2 > 0 and πward(ti, sward) > rward(t−i ) then
Find a v ∈ level 2, with πv(ti, sv) < rv(t−i ) and
shiftBeds(2,3,v,CTS ward,min{|πv(ti, sv)− rv(t−i )|, 
(πward(ti, sward)−
rward(t−i ))/2�});

/*exchange from level 3 to level 2 applying rules R1 and R3 */

while EX3 ≥ 2 and ∃u ∈ level 2 with πu(ti, su) > ru(t−i ) do
shiftBeds(3,2,CTS ward,u,min{
|πward(ti, sward)−
rward(t−i )|/2�, πu(ti, su)− ru(t−i )});

/*if no exchange is possible, the resource allocation remains

unchanged */

forall u ∈ U that were not yet considered do ru(ti)← ru(t−i );
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Function. shiftBeds(int lfrom, int lto, unit ufrom, unit uto, int n)

k = 1;
if lfrom < lto then k = 2;
else if lfrom > lto then k = 0.5;
ruto(ti)← ruto(ti)+k ·n, rufrom(ti)← rufrom(ti)−n, EXlfrom ← EXlfrom −n;

according to the EDA principle. In each separate cluster a single normal distribu-
tion is used. The algorithm uses adaptive variance scaling (AVS) in combination
with standard-deviation ratio (SDR) triggers to prevent premature convergence.
This means that if the best fitness in a cluster is improved in one generation and
the average improvement is more than one standard deviation away from the es-
timated mean of the distribution, then the variance of the estimated distribution
is scaled up to increase the area of exploration. If, however, the improvements
are obtained near the mean of the predicted distribution, then the variance is
scaled down to allow for a faster convergence.

5 Experiments

5.1 Settings of SDR-AVS-MIDEA

The settings of the parameters in SDR-AVS-MIDEA are based on the guidelines
reported in [7,15] with the percentile for truncation selection set to 0.3, k = 4
clusters. The guideline in [15] is used and results in a population size per cluster
of 49 and 130 for the day-constant and the dynamic policies, respectively. The
variance multiplier decreaser of AVS equals 0.9 and the SDR threshold is set to
1.0. As in [7], an elitist archive is maintained. To this end, the objective space is
discretized in each objective with a discretization length of 10−3. This provides
sufficient granularity for the final Pareto-front approximations. We allowed 1600
generations for the different allocation policies.

In the EDA representation, the genes correspond to allocation policy pa-
rameters. For the day-constant policies described in Section 3.1, the genotype
comprises the values for ru, u ∈ U , with ru ∈ N ∩ [rmin

u , rmax
u ]. For the dynamic

policies described in Section 3.2 and Section 3.3, a genotype is composed of val-
ues rbase

u ∈ [rmin
u , rmax

u ], rdecr
u , rincr

u ∈ [0, 5], UT decr
u ∈ [0, 1], and Tu ∈ [0, 1] for

u ∈ U . The parameter Tu is used to determine UT incr
u by UT incr

u = UT decr
u +Tu.

The bounds, rmin
u and rmax

u , for the resource allocations were obtained from do-
main experts from CHE. These values are given in Table 1.

5.2 Settings of the Simulation Tool

Applying SDR-AVS-MIDEA to a real-world problem is associated with a large
number of potential solutions using a complex simulation model. We run 10
simulation runs of 20 weeks including 8 weeks of warming-up to evaluate the
allocation strategies. The warming-up period is not measured in the simulation
outcomes. This setting results in a runtime of about 6 seconds per evaluation.
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Table 1. Resource bounds, unit resource costs and benchmark day-constant policies
obtained from CHE case study

CTS-OR CTS-HC CTS-PACU IC IC-HC MC CTS ward

rmin
u 0 0 0 5 2 2 20

rmax
u 6 6 6 20 6 10 50

cu 0.09 2 2 4 2 2 1

πCHE
u 4 4 4 11 4 4 35

Table 2. Input parameters of patient pathways with LoS in hours (mean±stdev)

Type Unit LoS Pg Type Unit LoS Pg

I CTS-HC 15± 0 - II CTS-PACU 6± 0 -
IC 48.48 ± 54 0.15 IC 42± 57.12 0.05
MC 24.48 ± 38.52 0.15 MC 10.32±22.08 0.15
CTS ward 120± 22.08 0.7 CTS ward 120± 22.08 0.8

III IC 89.48±200.82 - IV IC-HC 34.94±68.51 -

In a sensitivity analysis, the mean and variance of the relevant outcome values
appear to be linear for increasing simulation run durations.

The settings for the patient pathways are based on the statistical data anal-
ysis conducted in the case study at the CHE. The relevant parameters of the
different patient pathways introduced in Section 2.1 are given in Table 2. We
use a Lognormal distribution for sampling patients’ LoS. Arrivals of type III
patients are Poisson with daily arrival rate λIII = 2. Patients of type IV arrive
daily in bulks between 2 and 4 patients. Costs for the different types of hospital
resources related to the daily costs for staff and materials and are expressed in
terms of relative costs of a nursing ward bed. The costs are given in Table 1. The
OR costs account for the unused OR capacity due to cancelations of surgeries
that result from unavailable postoperative care beds.

5.3 Results

One run of the EA takes approximately 10 hours for static strategy optimization
and 30 hours for dynamic strategy optimization on a high-performance com-
puter cluster. Specifically, we used 40 nodes running at speeds between 1.4Ghz
and 2.2Ghz. We have run the EA for each strategy three times, yielding very
comparable and stable results (within a strategy type).

In Figure 2 the results for the day-constant, the state-dependent strategies
and the exchange mechanism are presented. In the application domain, the exact
values for back-up capacity usage are of minor importance and a categorization
of minimal (corresponding to F2 ∈ [0, 50)), small (F2 ∈ [50, 100)), medium, etc. is
therefore sufficient for the representation of the optimization results. The results
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Fig. 2. Pareto-fronts for static and dynamic allocation policies including benchmarks
from CHE

are confined to F2-values below 500 as higher back-up capacity usage is not
desirable for many hospitals. We depict the Pareto-fronts with respect to F1 and
F0 for F2-values in the predefined intervals. This in addition allows us better
visibility of the results as opposed to 3D plots. To assess the performance of
the policies the currently used day-constant resource allocation at the CHE and
linearly scaled allocations are included as a benchmark for the relevant intervals.
The currently employed policy of the CHE is denoted by πCHE given in Table 1.
Also, benchmarks determined by linearly scaled allocations are considered that
are denoted by πCHE+i with πCHE+i = (
πCHE

u · (1 + i) + 0.5�, u ∈ U, i =
±10%,±20%,±30%).

The results in Figure 2 show that the benchmarks obtained from hospital prac-
tice are dominated by all policies proposed in this paper. Moreover, the dynamic
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resource allocation policies show higher performance compared to the static al-
location policies. For F2-values of above 300 and F1-values higher than 120, the
static and dynamic policies show similar performance. This can be explained by
the small extent and frequency of allocation adjustments of the dynamic policies
obtained for these F1 and F2 values. Since additional demand for care can be
met by using back-up capacity, less allocation adjustments are necessary in these
cases. The bed exchange policies show slightly lower performance compared to
the state-dependent policies. The difference can be attributed to the interaction
between the hospital units due to which required allocation adjustments cannot
always be fully undertaken.

6 Conclusions

In this paper, multiobjective optimization for dynamic hospital resource man-
agement using evolutionary algorithms was addressed. We use a strategy opti-
mization approach for which we designed policies that allow for the dynamic
allocation of resources in hospital practice. Due to the complexity of the alloca-
tion strategies and the dynamic application domain, we used a state-of-the-art
evolutionary MO technique, SDR-AVS-MIDEA. The fitness of the solutions was
determined using a simulation tool developed for this application domain. Our
results show that the benchmark allocations obtained from a case study could be
considerably improved using the optimized strategies. Furthermore, we showed
that policies that incorporate more dynamic resource allocations result in further
improvements. These improvements are made possible by the design of the policy.
SDR-AVS-MIDEA then is powerful enough to detect and exploit the additional
possibilities. We demonstrated that proper design in combination with state-of-
the-art EAs can make an important contribution and achieve an improvement
for complex real-world dynamic MO problems as in hospital logistics.

By using our strategy types, we can circumvent the online MO optimization
and use offline MO techniques to optimize the parameters of the strategies.
Furthermore, our approach is feasible for stochastic fitness functions obtained
from a simulation model.

In future work, we will develop allocation strategies that use more advanced
anticipation models of the time-dependency effects. Furthermore, we will con-
sider alternative orderings of care levels in the bed exchange mechanism. Also,
we will further explore the settings of SDR-AVS-MIDEA in relation to the above
extensions.
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