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Abstract

Evolutionary multiobjective optimization has been a research area since the mid-1980s, and has experienced a very significant
activity in the last 20 years. However, and in spite of the maturity of this field, there are still several important challenges
lying ahead. This paper provides a short description of some of them, with a particular focus on open research areas, rather
than on specific research topics or problems. The main aim of this paper is to motivate researchers and students to develop
research in these areas, as this will contribute to maintaining this discipline active during the next few years.
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Introduction

In the real world, there exist many problems having two or
more (often conflicting) objectives that we aim to optimize
at the same time. They are called multiobjective optimiza-
tion problems (MOPs) and their solution has attracted the

On sabbatical leave from the Department of Computer Science,
CINVESTAV-IPN, Av. IPN No. 2508, Col. San Pedro Zacatenco,
México City, Mexico.

B Carlos A. Coello Coello
ccoello@cs.cinvestav.mx

Silvia González Brambila
sgb@azc.uam.mx

Josué Figueroa Gamboa
jfgo@azc.uam.mx

Ma Guadalupe Castillo Tapia
mgct@correo.azc.uam.mx

Raquel Hernández Gómez
rhernandez@computacion.cs.cinvestav.mx

1 Departamento de Sistemas, UAM Azcapotzalco, Av San
Pablo Xalpa 180 Col. Reynosa Tamaulipas, 02200 Mexico,
Mexico

2 Departamento de Administración, UAM Azcapotzalco, Av
San Pablo Xalpa 180 Col. Reynosa Tamaulipas, 02200
Mexico, Mexico

3 Department of Computer Science (Evolutionary Computation
Group), CINVESTAV-IPN, Av. IPN No. 2508 Col. San Pedro
Zacatenco, 07360 Mexico, Mexico

attention of researchers for many years. Because of the con-
flict among the objectives, solving an MOP produces a set of
solutions representing the best possible trade-offs among the
objectives (i.e., solutions in which one objective cannot be
improved without worsening another one). Such solutions
constitute the Pareto optimal set and the image of this set
(i.e., the corresponding objective function values) form the
so-called Pareto front.

In spite of the fact that a wide variety of mathematical pro-
gramming techniques have been developed to tackle MOPs
since the 1970s [115], such techniques present a number of
limitations, from which the most remarkable are that these
algorithms are normally quite susceptible to the shape and/or
continuity of the Pareto front and that they usually gener-
ate one element of the Pareto optimal set per algorithmic
execution. Additionally, some mathematical programming
techniques require that the objective functions and the con-
straints are provided in algebraic form and in many real-world
problems we can only obtain such values from a simula-
tor. These limitations have motivated the use of alternative
approaches, from which metaheuristics have been a very
popular choice, mainly because of their flexibility (i.e., they
require little domain specific information) and their ease of
use. From the many metaheuristics currently available [158],
evolutionary algorithms [57] have certainly been the most
popular in the last few years in this area, giving rise to a
field now known as evolutionary multiobjective optimization
(EMO) [29].
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The first Multi-Objective Evolutionary Algorithm (MOEA)
was called Vector Evaluated Genetic Algorithm (VEGA)
and was proposed by Schaffer in the mid-1980s [147–149].
Something interesting is that there was not much interest
in EMO research for almost a decade. However, in the mid-
1990s, this area started to attract a lot of attention from several
research groups around the world, and has maintained a high
research activity since then.1

The remainder of this paper is organized as follows. In
“Basic Concepts” we provide some basic mathematical con-
cepts related to multiobjective optimization, with the aim of
making of this a self-contained paper. “Open research areas”
provides a list of research areas that present challenges that
are particularly relevant from the authors’ perspective. In the
subsequent subsections, each of these areas are described,
providing in the process a summary of some of the most rel-
evant research that has been conducted in such areas so far.
The next section presents the main challenges associated to
each of the research areas previously discussed. Finally, our
conclusions are presented in the last section.

Basic concepts

In multiobjective optimization, the aim is to solve problems
of the type:2

minimize f(x) := [ f1(x), f2(x), . . . , fk(x)] (1)

subject to:

gi (x) ≤ 0 i = 1, 2, . . . , m, (2)

hi (x) = 0 i = 1, 2, . . . , p, (3)

where x = [x1, x2, . . . , xn]T is the vector of decision vari-
ables, fi : Rn → R, i = 1, . . . , k are the objective functions
and gi , h j : Rn → R, i = 1, . . . , m, j = 1, . . . , p are the
constraint functions of the problem.

A few additional definitions are required to introduce the
notion of optimality used in multiobjective optimization.

Definition 1 Given two vectors x, y ∈ Rk , we say that x ≤ y

if xi ≤ yi for i = 1, . . . , k, and that x dominates y (denoted
by x ≺ y) if x ≤ y and x �= y.

Definition 2 We say that a vector of decision variables x ∈

X ⊂ R
n is nondominated with respect to X , if there does

not exist another x′ ∈ X such that f(x′) ≺ f(x).

1 The first author maintains the EMOO repository [28] which currently
contains over 12,100 bibliographic references on evolutionary multiob-
jective optimization. The EMOO repository is located at: https://emoo.
cs.cinvestav.mx.
2 Without loss of generality, we will assume only minimization prob-
lems.

Definition 3 We say that a vector of decision variables x∗ ∈

F ⊂ R
n (F is the feasible region) is Pareto-optimal if it is

nondominated with respect to F .

Definition 4 The Pareto optimal set P∗ is defined by:

P
∗ = {x ∈ F |x is Pareto-optimal}.

Definition 5 The Pareto front PF∗ is defined by:

PF
∗ = {f(x) ∈ Rk |x ∈ P

∗}.

Therefore, our aim is to obtain the Pareto optimal set from
the set F of all the decision variable vectors that satisfy (2)
and (3). Note however, that in practice, not all the Pareto
optimal set is normally desirable or achievable, and decision-
makers tend to prefer certain types of solutions or regions of
the Pareto front [16].

Open research areas

In spite of the intense research activity of the last 25 years
in this area, there are still some open research areas that are
worth exploring in the next few years. The following is a
non-comprehensive list of them:

1. Algorithmic design
2. Scalability
3. Dealing with expensive objective functions
4. Hyper-heuristics.

Next, we briefly discuss some of the most representative
research that has been conducted on these topics.

Algorithmic design

In their origins, MOEAs were very simple and naive. A good
example of this is the Vector Evaluated Genetic Algorithm
(VEGA) [148] in which the population of a simple genetic
algorithm was subdivided into as many subpopulations as the
number of objectives of the MOP to be solved (only problems
with two objectives were normally considered at that time).
Then, solutions in each subpopulation were selected based
on their performance on a single objective (e.g., individuals
in the first subpopulation were selected based on the perfor-
mance on the first objective). Then, the individuals of all the
subpopulations were shuffled with the aim of recombining
solutions that were the best in the first objective with those
that were the best in the second objective. When combined
with proportional selection (e.g., the roulette-wheel method),
VEGA produced solutions similar to those obtained with the
use of a linear aggregating function that combines all the
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objective functions into a single scalar value [31]. In spite of
the limitations of VEGA, some researchers eventually found
applications in which this sort of scheme could be useful (see
for example [27]).

Linear aggregating functions were among the most popu-
lar approaches adopted in the early days of MOEAs [67], but
their incapability of dealing with non-convex Pareto fronts
was soon pointed out by some researchers (see for example
[36]). Nevertheless, linear aggregating functions and other
naive approaches, such as lexicographic ordering have sur-
vived in the EMO literature for many years [29].

Goldberg proposed in his seminal book on genetic algo-
rithms [57] a mechanism called Pareto ranking for the
selection scheme of a MOEA. The core idea of Pareto ranking
is to rank the population of an evolutionary algorithm based
on Pareto optimality, such that the nondominated solutions
obtain the highest (best) possible rank and are sampled at
the same rate (i.e., all nondominated solutions have the same
probability of survival). Since Goldberg did not provide a
specific algorithm for Pareto ranking, several implementa-
tions were developed based on his proposal. From them, the
two main ones were those provided in the Multi-Objective
Genetic Algorithm (MOGA) of Fonseca and Fleming [53]
and the Nondominated Sorting Genetic Algorithm (NSGA)
of Srinivas and Deb [153]. In the first, the ranking was done
in a single pass (by comparing each individual with respect
to everybody else, in terms of Pareto optimality), whereas the
second required the creation of several layers of solutions,
which involved re-ranking the population several times (i.e.,
NSGA was more computationally expensive than MOGA).

Goldberg [57] realized that in MOEAs, diversity would
be a key issue if we aimed to generate as many elements
of the Pareto optimal set as possible in a single algorithmic
execution. This gave rise to the use of a mechanism that was
eventually called density estimator, whose task is to main-
tain different (nondominated) solutions in the population,
thus avoiding convergence to a single one (something that
eventually happens with any evolutionary algorithm because
of stochastic noise [57]). MOGA [53] and NSGA [153] used
fitness sharing [58] as their density estimator, but a wide
variety of other approaches have been proposed since then:
clustering [184], adaptive grids [85], crowding [40], entropy
[129] and parallel coordinates [74], among others.

In the late 1990s, another mechanism was incorporated
in MOEAs: elitism. The idea of elitism is to retain the best
solutions obtained by a MOEA so that they are not destroyed
by the evolutionary operators (e.g., crossover and mutation).
However, since all nondominated solutions are considered
equally good (unless we have some preference information),
this leads to the generation of a large number of solutions.
Zitzler realized this when developing the Strength Pareto
Evolutionary Algorithm (SPEA) [184] and also observed
that retaining such a large number of solutions diluted the

selection pressure. Thus, he proposed not only to use an
external archive to store the nondominated solutions gen-
erated by his MOEA, but also proposed to prune such an
archive once a certain (user-defined) limit was reached. For
this sake, he adopted clustering. Elitism is important not only
for practical reasons (it is easier to compare the performance
of two MOEAs that produce the same number of nondomi-
nated solutions), but also for theoretical reasons, since it has
been proved that such a mechanism is required in a MOEA
to guarantee convergence [141].

Pareto-based MOEAs were very popular in the mid-1990s,
but few of the many approaches that were proposed at that
time have been actually used by other researchers. With no
doubt, the most popular of the Pareto-based MOEAs has been
the Nondominated Sorting Genetic Algorithm-II (NSGA-II)
[40] which uses a more efficient ranking scheme (called non-

dominated sorting) than its predecessor (NSGA), and adopts
a clever mechanism called crowded comparison operator
(which does not require any parameters), as its density esti-
mator. NSGA-II is still used today by many researchers, in
spite of the well-known limitations of its crowded compar-
ison operator when dealing with MOPs having more than
three objectives3 (the so-called many-objective optimization

problems [29]).
For over 10 years, Pareto-based MOEAs were, by far,

the most popular approaches in the specialized literature.
In 2004, a different type of algorithmic design was pro-
posed, although it remained underdeveloped for several
years: indicator-based selection. The core idea of this sort
of MOEA was introduced in the Indicator-Based Evolution-
ary Algorithm (IBEA) [183] which consists of an algorithmic
framework that allows the incorporation of any performance
indicator into the selection mechanism of a MOEA. IBEA
was originally tested with the hypervolume [182] and the
binary ǫ indicator [183].

Indicator-based MOEAs were initially seen as a curios-
ity in the field, since it was not clear what were their
advantages other than providing an alternative mechanism
for selecting solutions. However, when the limitations of
Pareto-based selection for dealing with many-objective prob-
lems became clear, researchers started to get interested in
indicator-based MOEAs, which did not seem to have scal-
ability limitations. Much of the interest in this area was
produced by the introduction of the S Metric Selection
Evolutionary Multiobjective Algorithm (SMS-EMOA) [46].
SMS-EMOA randomly generates an initial population and
then produces a single solution per iteration (i.e., it uses
steady-state selection) using the crossover and mutation oper-
ators from NSGA-II. Then, it applies nondominated sorting

3 In fact, there is empirical evidence indicating that the crowded com-
parison operator has difficulties even in MOPs with only 3 objectives
(see for example [88]).
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(as in NSGA-II). When the last nondominated front has more
than one solution, SMS-EMOA uses hypervolume [182] to
decide which solution should be removed. Beume et al. [13]
proposed a new version of SMS-EMOA in which the hyper-
volume contribution is not used when, in the nondominated
sorting process, we obtain more than one front (i.e., the hyper-
volume is used as a density estimator). In this case, they use
the number of solutions that dominate to a certain individual
(i.e., the solution that is dominated by the largest number of
solutions is removed). This makes SMS-EMOA a bit more
efficient. However, since this MOEA relies on the use of exact
hypervolume contributions, it becomes too computationally
expensive as we increase the number of objectives [12].

SMS-EMOA started a trend for designing indicator-based
MOEAs (several of which rely on the hypervolume indica-
tor) although it is worth indicating that in such approaches,
the performance indicator has been mostly used as a den-
sity estimator (see for example [77]). The use of “pure”
indicator-based selection mechanisms has been very rare in
the specialized literature (see for example [114]).

At this point, an obvious question is: why is that the
hypervolume is such an attractive choice for indicator-based
selection? The hypervolume (which is also known as the
S metric or the Lebesgue measure) of a set of solutions
measures the size of the portion of objective space that is
dominated by those solutions collectively. One of its main
advantages are its mathematical properties, since it has been
proved that the maximization of this performance measure is
equivalent to finding the Pareto optimal set [52]. Addition-
ally, empirical studies have shown that (for a certain number
of points previously determined) maximizing the hypervol-
ume indeed produces subsets of the true Pareto front [46,85].
Also, the hypervolume assesses both convergence and, to a
certain extent, also the spread of solutions along the Pareto
front (although without necessarily enforcing a uniform dis-
tribution of solutions). However, there are several issues
regarding the use of the hypervolume. First, the computation
of this performance indicator depends of a reference point,
which can influence the results in a significant manner. Some
people have proposed to use the worst objective function val-
ues in the current population, but this requires scaling of the
objectives. Nevertheless, the most serious limitation of the
hypervolume is its high computational cost. The best algo-
rithms known to compute hypervolume have a polynomial
complexity on the number of points used, but such complex-
ity grows exponentially on the number of objectives [12].
This has triggered a significant amount of research regarding
algorithms that can reduce the computational cost of com-
puting the hypervolume and the hypervolume contributions,

which is what we need for a hypervolume-based MOEA4

(see for example [33,62,81,93,142]).
An obvious alternative to deal with this issue is to approx-

imate the actual hypervolume contributions. This is the
approach adopted by the Hypervolume Estimation Algorithm
for Multi-Objective Optimization (HyPE) [6] in which Monte
Carlo simulations were used to approximate exact hypervol-
ume values. In spite of the fact that HyPE can efficiently
solve MOPs having a very large number of objectives, the
results are not as competitive as when using exact hypervol-
ume contributions.

Another possibility is to use a different performance indi-
cator whose computation is relatively inexpensive. Unfortu-
nately, the hypervolume is the only unary indicator which
is known to be Pareto compliant [185], which makes less
attractive the use of other performance indicators. Never-
theless, there are some other performance indicators which
are weakly Pareto compliant, such as R2 [17] and the
Inverted Generational Distance plus (IGD+) [79]. Although
several efficient and effective indicator-based MOEAs have
been proposed around these performance indicators (see for
example [18,72,97,105,106,160]), their use has remained rel-
atively rare in the specialized literature.

In 2007, a different sort of approach was proposed, quickly
attracting a lot of interest: the Multi-Objective Evolutionary
Algorithm based on Decomposition (MOEA/D) [178]. The
idea of using decomposition (or scalarization) methods was
originally proposed in mathematical programming more than
20 years ago [35] and it consists in transforming an MOP
into several single-objective optimization problems which
are then solved to generate the nondominated solutions of
the original problem. Unlike linear aggregating functions,
the use of scalarization (or decomposition) methods allows
the generation of non-convex portions of the Pareto front
and works even in disconnected Pareto fronts. MOEA/D
presents an important advantage with respect to methods pro-
posed in the mathematical programming literature [such as
Normal Boundary Intersection (NBI) [35]]: it uses neighbor-
hood search to solve simultaneously all the single-objective
optimization problems generated from the transformation.
Additionally, MOEA/D is not only effective and efficient,
but can also be used for solving problems with more than
three objectives although in such cases it will require higher
population sizes.

Decomposition-based MOEAs became fashionable at
around 2010 and have remained as an active research
area since then [144]. In fact, this sort of approach influ-
enced the development of the Nondominated Sorting Genetic

4 See also:
http://ls11-www.cs.uni-dortmund.de/rudolph/hypervolume/start,
http://people.mpi-inf.mpg.de/~tfried/HYP/, http://iridia.ulb.ac.be/
~manuel/hypervolume.
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Algorithm-III (NSGA-III) [38] which adopts both decompo-
sition and reference points to deal with many-objective prob-
lems. However, it was recently found that decomposition-
based MOEAs do not work properly with certain Pareto front
geometries [80]. This will certainly trigger a lot of research
in the next few years, given the popularity of decomposition-
based MOEAs.

Scalability

As has been pointed out, in the early days of MOEAs, their
use was frequently limited to solving problems having only
two or three objectives. However, over the years, the need
for tackling many-objective problems became more evident.
It was soon identified that scalability in objective function
space is a serious limitation of Pareto-based MOEAs [75].

However, it is interesting to notice that when Schütze et al.
[150] studied the actual source of difficulty in many-objective
problems, they concluded that adding more objectives to an
MOP does not necessarily makes it harder. According to this
study, the difficulty is really associated to the intersection
of the descent cones of the objectives (these descent cones
are obtained with the combination of the gradients of each
objective). This was somehow corroborated by an empirical
study conducted by Ishibuchi et al. [78] in which it was shown
that NSGA-II could properly solve many-objective knapsack
problems in which the objectives were highly correlated. So,
the question arises: why is that many-objective problems turn
out to be difficult to solve in practice when using Pareto-based
MOEAs? A series of experimental [131,165] and analytical
studies [32,78,86] have identified the following limitations
of Pareto-based MOEAs in many-objective problems:

1. Deterioration of the search ability The proportion of non-
dominated solutions in a population increases rapidly
with the number of objectives [49]. According to Bent-
ley et al. [9], the number of nondominated k-dimensional
vectors on a set of size n is O(lnk−1 n). This implies
that in problems with a large number objectives, the
selection of solutions is carried out almost at random
or guided by the density estimator. In fact, Mostaghim
and Schmeck [119] experimentally showed that a ran-
dom search optimizer could achieve better results than
NSGA- II [40] in a problem with ten objectives. This
problem is the reason why most indicator-based MOEAs
are able to tackle many-objective problems simply by
using a more powerful density estimator that guides the
search.

2. Dimensionality of the Pareto front Due to the ‘curse of
dimensionality’ the number of points required to rep-
resent accurately a Pareto front increases exponentially
with the number of objectives. The number of points
necessary to represent a k-dimensional Pareto front with

resolution r is given by O(kr k−1) (e.g., see [151]). This
poses a challenge both to the data structures to efficiently
manage that number of points in the population as well
as in the external archive and to the density estimators
to achieve an even distribution of the solutions along the
Pareto front. In fact, this is a challenge even for perfor-
mance indicators [78]. In practice, most MOEAs tend
to use relatively small population sizes (less than 300
individuals) even when tackling MOPs with more than
six objectives in spite of the fact that such population
sizes are clearly inappropriate for sampling such high-
dimensional Pareto fronts.

3. Visualization of the Pareto front Clearly, with more than
three objectives is not possible to plot the Pareto front as
usual. This is a serious problem since visualization plays
a key role for a proper decision-making process. In recent
years, a number of visualization techniques have been
proposed for many-objective problems (see for example
[161]), and this is still an active research area (see for
example [14,70,156]).

In order to properly deal with many-objective optimiza-
tion problems, three main approaches have been normally
adopted [8,96,163]:

1. As mentioned before, the use of indicator-based MOEAs
has been an important research trend to deal with
many-objective optimization problems, in spite of the
limitations of some performance indicators such as the
hypervolume (see for example [82]).

2. One interesting possibility that was adopted in the early
days of many-objective optimization was the use of
an optimality relation that yields a solution ordering
finer than that produced by Pareto optimality. These
are normally called relaxed forms of Pareto dominance.
Some examples are: k-optimality [50], preference order
ranking [42], the favour relation [155], and a method
that controls the dominance area [145], among others.
Besides providing a richer ordering of the solutions, these
relations obtain an optimal set that it is usually a subset
of the Pareto optimal set.

3. Another interesting approach which is now rarely used
is dimensionality reduction in which we reduce the num-
ber of objectives of the MOP either during the search
process or in an a posteriori manner, during the decision-
making process [19,100,146]. The main aim of reduction
techniques is to identify redundant objectives (or at least
partially redundant) in order to discard them. A redundant
objective is one that can be removed without changing the
dominance relation induced by the original objective set.
Evidently, if each objective is conflicting with respect to
every other objective, no reduction is possible. However,
this is rarely the case in practice.
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Many other approaches are possible for tackling many-
objective problems, including, for example, the use of
alternative ranking schemes (different from nondominated
sorting) (see for example [54]), the use of machine learning
techniques (as in MONEDA [108]), or approaches such as the
two-archive MOEA, which uses one archive for convergence
and another for diversity [131].

Dealing with expensive objective functions

In spite of the several advantages that MOEAs can offer for
solving complex MOPs (e.g., ease of use and generality),
their most important limitation is that they normally require
a relatively high number of objective function evaluations
to produce a reasonably good approximation of the Pareto
front. The reason for this is that MOEAs need to sample
the search space in order to identify an appropriate search
direction, since they are stochastic search techniques. This
is, indeed, a serious limitation and, in some cases, it can
make MOEAs inappropriate for solving certain real-world
MOPs in which their computational cost becomes prohibitive
(e.g., applications in aeronautical and aerospace engineering
[122]).

In general, MOEAs can become computationally unaf-
fordable for an application when:

– The evaluation of the fitness functions is computationally
expensive (i.e., it takes from minutes to hours, depend-
ing on the quality or granularity of the model and the
available computational resources).

– The fitness functions cannot be defined in an algebraic
form (e.g., when the fitness functions are generated by a
computational simulation of the physics of the real sys-
tem).

– The total number of evaluations of the fitness functions
is limited by some financial constraints (i.e., there is a
financial cost involved in computing the fitness functions
and we cannot exceed a certain pre-defined budget).

As we get access to more computational power each year
at more affordable prices, the interest in pursuing research
in the development of MOEAs for solving computationally
expensive MOPs has significantly increased in the last few
years. The main approaches that have been developed in this
area can be roughly divided into three main groups [143]:

1. Parallelism The use of parallel processing is perhaps the
most obvious choice for solving computationally expen-
sive MOPs, particularly with the decrease in the cost
of high-speed multi-core processors (see for example
[37,83,110,124,139]). Something interesting, however,
is that in spite of the existence of an important num-
ber of papers on parallel MOEAs [159], basic research

in this area has remained scarce since the origins of
MOEAs [29]. Most papers on parallel MOEAs focus
on applications [173] or relatively straightforward par-
allel extensions of well-established MOEAs such as
NSGA-II [130] or SMS-EMOA [71]. For many years,
the emphasis was placed on developing synchronous par-
allel MOEAs, but in recent years, the development of
asynchronous implementations (which are more appro-
priate for the heterogeneous computer architectures that
are more common nowadays) has become more common
[41,68,171,174].

2. Surrogates When using this approach, an empirical
model that approximates the real problem is built through
the use of information gathered from actual objective
function evaluations [43,121,157]. Then, the empirical
model (on which evaluating the fitness function is compu-
tationally inexpensive) is used to predict promising new
solutions [157]. Current functional approximation mod-
els include Polynomials (response surface methodologies
[47,172]), artificial neural networks (e.g., multi-layer
perceptrons (MLPs) [5], radial-basis function (RBF) net-
works [2,177], Gaussian processes [15,179], support
vector machines [3,4,176] and Kriging [111,126] models.
Although frequently used in engineering applications,
surrogate methods can normally be adopted only in
problems of low dimensionality, which is an important
limitation when dealing with real-world MOPs. Addi-
tionally, surrogate models tend to lack robustness which
is also an important issue in optimization problems. Nev-
ertheless, there has been recent research oriented towards
overcoming the scalability and robustness limitations of
surrogate methods (see for example [102,125,134,175]).

3. Fitness inheritance This approach was originally pro-
posed by Smith et al. [152] with the aim of reducing the
total number of fitness function evaluations performed by
a (single-objective) evolutionary algorithm. This mech-
anism works as follows: when assigning fitness to an
individual, in some cases we evaluate the objective func-
tion as usual, but the rest of the time, we assign as the
fitness value of an individual the average of the fitness of
its parents. This allows saving one fitness function eval-
uation. This idea is based on the assumption of similarity
of an offspring to its parents. Evidently, fitness inheri-
tance must not be always applied, since the algorithm
needs to use the true fitness function value from time to
time, in order to obtain enough information to guide the
search. The percentage of time in which fitness inheri-
tance is applied is called inheritance proportion. If this
inheritance proportion is one (i.e., 100%), the algorithm
is most likely to prematurely converge [24]. Extending fit-
ness inheritance to multiobjective optimization involves
several issues, mainly related to its apparent limitation
for dealing with non-convex Pareto fronts [45]. However,
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some researchers have managed to successfully adapt fit-
ness inheritance to MOEAs [55,128,135,169], reporting
important savings on the total number of objective func-
tion evaluations performed.

Hyper-heuristics

A hyper-heuristic is a search method or learning mechanism
for selecting or generating heuristics to solve computa-
tional search problems [20]. Hyper-heuristics are high-level
approaches that operate on a search space of heuristics or
on a pool of heuristics instead of the search space of the
problem at hand. Hyper-heuristics have been promoted with
the aim to provide more general search methodologies. Typ-
ically, simple heuristics tend to work well on a particular
type of problem. However, when facing a new problem or
even slightly modified instances of the same problem, such
heuristics tend to perform poorly. Additionally, identifying
which heuristic works efficiently on a certain problem is a
very tedious and time-consuming task whose computational
cost may become prohibitive in some applications.

Burke et al. [21] proposed a taxonomy of hyper-heuristics
considering two dimensions:

1. The nature of the heuristics’ search space, and
2. The different sources of feedback information.

Regarding the nature of the search space, there are two
options:

1. Heuristic selection, which are methodologies for choos-
ing existing heuristics,

2. Heuristic generation, which are methodologies for gen-
erating new heuristics from the components of existing
ones.

Regarding the source of feedback information obtained
during the search process, there are three options:

1. No-learning, in which there is no learning mechanism
and the heuristic selection is based on either a random or
an exhaustive process,

2. Offline learning, in which knowledge is gathered in the
form of rules from a set of training instances, that will
hopefully generalize to solve unseen instances, and

3. Online learning, in which the learning takes place while
the algorithm is solving an instance of a problem.

The use of collaborative approaches which work as
hyper-heuristics can be found across Operations Research,
Computer Science and Artificial Intelligence. Although the
ideas behind hyper-heuristics can be traced back to the
early 1960s in single-objective optimization, until relatively

recently, their potential had not been explored in multiob-
jective optimization. Early attempts in this field date back
to 2005, when hyper-heuristics started to be used to solve
multiobjective combinatorial optimization problems, such as
space allocation and timetabling [22], decision-tree induction
algorithms [7], bin packing and cutting stock problems [59],
integration and test order problems [63,64,107], spanning
trees [89], job shop scheduling [162], knapsack problems
[90] and software module clustering [91,92], among others.

Multiobjective hyper-heuristics for continuous search
spaces are still rare in the specialized literature. For example
Vrugt et al. [164], proposed the Multi-ALgorithm Geneti-
cally Adaptive Method (AMALGAM), which is an online
selection hyper-heuristic that operates similarly to NSGA-
II [40]. However, in this case, the offspring are also created
using the variation operators of other stochastic search meth-
ods, such as differential evolution [154], particle swarm opti-
mization [84] and adaptive metropolis search [65]. Although
all these methods participate during the optimization process,
those showing the highest reproductive success are favored.
Additionally, the initialization of the population adopts Latin
hypercubes sampling.

León et al. [95] proposed the Metaheuristics-based Exten-
sible Tool for Cooperative Optimization (METCO) which
is based on the island model and the cooperation of a set
of MOEAs, which grants more computational resources to
those algorithms that show a more promising behavior. A
coordinator node is in charge of maintaining the global solu-
tion and selecting the configurations that are executed on the
islands. A configuration consists of a MOEA plus the vari-
ation operators and the set of parameters which define them
(population size, mutation and crossover rates, etc.). These
parameters are defined by the user. The global solution set
is obtained by merging local results achieved by each of the
islands and its size is limited using the crowding distance
operator. Besides the global stopping criterion, a local stop-
ping criterion is defined for the execution of the MOEAs on
the islands. When the local stopping criterion is reached, the
configuration is scored using a performance indicator. Then,
the coordinator applies the hyper-heuristic, selecting the con-
figuration that will continue executing on the idle island. If
the configuration has changed, the subpopulation is replaced
by a random subset of the currently global solution.

Wang and Li [170] proposed the Multi-Strategy Ensemble
Dynamic Multi-Objective Evolutionary Algorithm (MS-
MOEA), which is an offline selection hyper-heuristic that
adopts the fundamental principle of AMALGAM of com-
bining different variation operators. This approach works as
ǫ-MOEA [39] with an external archive that is pruned to a
limit size using the hypervolume indicator. The heuristics for
generating new individuals consists of two re-initialization
techniques, which are based on random sampling and Gaus-
sian distribution with mean around the previous optimal
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solutions; the genetic operators SBX (Simulated Binary
Crossover) and polynomial-based mutation; the Differential
Evolution strategies DE/rand/1 and DE/current to best/1; as
well as Gaussian mutation. This approach was designed to
solve dynamic multiobjective optimization problems (i.e.,
problems in which either the Pareto optimal set or the Pareto
optimal front change over time). If there is an environmental
change, then one re-initialization technique is applied under
certain probability. Genetic operators are used at early stages
of the evolutionary process. Once convergence is detected,
Differential Evolution is adopted to enhance diversity. Under
this scheme, each strategy creates an offspring. After a
fixed number of solutions is created, Gaussian mutation is
launched for escaping from local optima. It is worth noticing
that convergence is detected when the external archive has
been full during a certain number of generations.

McClymont et al. [112] proposed the Markov Chain
hyper-heuristic (MCHH), which is a selection heuristic with
online learning working as a (μ+λ)-evolution strategy with
an unbounded external archive. The pool of heuristics is
composed of four variation operators: mutation, replication,
transposition, and cloning. All of them operate on the deci-
sion variables of a given solution. The heuristic selection
mechanism uses a Markov chain, which can be seen as a
directed graph where every vertex is connected to each other
vertex and to itself. A vertex represents a state (heuristic), and
the weight of an edge out represents the probability of mov-
ing from the current state to the destination state. All edges
out of a state must sum one. The Markov chain stochasti-
cally selects the next heuristic biased by these probabilities.
The selected heuristic is employed during a certain num-
ber of generations. Then, its performance is measured by
counting the number of parents that were dominated by each
offspring produced by such heuristic. This performance is
used to update the corresponding probability in the Markov
chain using reinforcement learning.

Maashi [104] proposed an online learning selection choice
function based hyper-heuristic framework for multiobjective
optimization. Her proposed approach controls and com-
bines the strengths of three well-known MOEAs (NSGA-II,
SPEA2, and MOGA), which are adopted as her low-level
heuristics.

Gonçalves et al. [60] proposed the MOEA/D Hyper-
Heuristic (MOEA/D-HH), which is an online selection
hyper-heuristic that is coupled to a MOEA/D variant [178].
In this approach, an adaptive choice function is used to deter-
mine the Differential Evolution (DE) strategy that should be
applied to generate individuals at each iteration.

Walker and Keedwell [166] proposed the indicator-based
multiobjective sequence-based hyper-heuristic (MOSSHH)
algorithm. This seems to be the first attempt to use a hyper-
heuristic in many-objective problems. This online selection
hyper-heuristic is based on a hidden Markov model to deter-

mine the mutation strategy to be applied for generating a
single child from the current parent. Thus, this approach
works as a (1 + 1)-evolution strategy complemented with
an external archive, which keeps all the nondominated solu-
tions discovered so far. The pool of seven mutation heuristics
consists primarily of (1) adding noise to the current solution
using three different continuous probability distributions, and
(2) replacing the parent (or only a variable) with another one,
whether randomly created or taken from the archive. At each
iteration, the child replaces the parent if the former dominates
the second. However, in a further paper [167], this compari-
son rule was changed by strategies based on the hypervolume
indicator [182], the favour relation [44] and the average rank
[10]. Moreover, the hidden Markov model is updated if the
child is added to the archive and if it was better than the
parent.

More recently, Hernández Gómez and Coello [73] pro-
posed a hyper-heuristic which combines the strengths and
compensates for the weaknesses of different scalarizing func-
tions. The selection is conducted through an indicator called
s-energy [69], which measures the even distribution of a set
of points in k-dimensional manifolds.

Challenges

After reviewing some of the most relevant research done on
the topics selected in “Open research areas”, we provide here
some of the challenges that lie ahead in each of them.

– Algorithmic design Although there has been some debate
regarding the paradigm that will become more common
in the next few years, it seems quite obvious at this point
that decomposition-based MOEAs are the clear winner
so far. For indicator-based MOEAs to become more pop-
ular, other performance indicators need to be proposed.
Although there has been some research activity in this
regard (see for example [113,140]) none of these other
performance indicators has become as popular as the
hypervolume. Another interesting idea is the combina-
tion of performance indicators in order to take advantage
of their strengths and compensate for their limitations
(see for example [48]).
Nevertheless, a more relevant question in this area is
the following: can we design MOEAs in a different
way? This is a very important question, since algorith-
mic development has been at the heart of research on
EMO and it is quite important that new algorithmic
proposals are made in the next few years in order to
keep this research area alive. Evidently, it is not trivial
to produce a selection mechanism that is not Pareto-
based, decomposition-based or indicator-based, but this
is indeed possible. For example, Molinet Berenguer and
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Coello [11,118], proposed an approach that transforms
an MOP into a linear assignment problem using a set
of weight vectors uniformly scattered. Uniform design
is adopted to obtain the set of weights, and the Kuhn–
Munkres (Hungarian) algorithm [87] is used to solve the
resulting assignment problem. This approach was found
to perform quite well (and at a low computational cost)
even in many-objective optimization problems. As such,
this approach does not belong to any of the three algo-
rithmic families previously discussed and it constitutes
an intriguing new family of MOEAs.
So, it should be clear that a challenge is to develop selec-
tion mechanisms for MOEAs that are different from those
that have been developed so far. Additionally, populariz-
ing the use of such MOEAs is certainly another (perhaps
more difficult) challenge.
Another challenge in this area is to gain a deeper
understanding of the limitations of current MOEAs. For
example, knowing that some scalarizing functions offer
advantages over others is very useful to design good
decomposition-based and even indicator-based MOEAs
(see for example [127]).
Another interesting idea is to combine components of
MOEAs under a single framework that allows to exploit
their advantages. This is the basic idea of Borg [66],
which adopts ǫ-dominance, a measure of convergence
speed called ǫ progress, an adaptive population size, mul-
tiple recombination operators and a steady-state selection
mechanism.
A relevant question in this regard is if this sort of scheme
could lead us to the automated design of MOEAs as has
been suggested by researchers from automated parameter
tuning for single-objective evolutionary algorithms [76].

– Scalability This area presents several challenges. For
example, what sort of performance indicator should we
use to assess diversity in many-objective problems? In
low-dimensional Pareto fronts, the aim is normally to
achieve a uniform distribution of solutions along the
Pareto front. However, what would be a desirable dis-
tribution in an MOP having, for example, ten objectives,
if we are using only 300 solutions to sample it? In recent
years, the use of some performance indicators such as the
Riesz s-energy [69] have shown promise in this regard,
but more research in this area is required.
In contrast with the significant interest that researchers
have had on many-objective optimization in recent years,
scalability in decision variable space (i.e., the solution of
the so-called large-scale problems) has been only recently
studied in the context of multiobjective optimization
(see for example [103,116,181]). This is remarkable if
we consider that large-scale multiobjective optimization
problems (i.e., problems having more than 100 decision
variables) are not rare in real-world applications (see for

example [101]). In this area, the use of cooperative coevo-
lutionary approaches (which have been very successful
in single-objective large-scale optimization) is the most
common research trend. However, new test suites are
required for large-scale multiobjective optimization and
some work has already been done in this direction (see
for example [25]).
Another challenge in this area is the solution of large-
scale many-objective problems which is a very recent
research topic in which some work has been recently
published (see for example [23,180]).

– Dealing with expensive objective functions Other approaches
for dealing with expensive objective functions are also
possible. For example, some researchers have adopted
cultural algorithms [30,34,133,136], which gather knowl-
edge during the evolutionary process and use it to perform
a more efficient search at the expense of a significantly
larger memory usage. Cultural algorithms were proposed
by Reynolds [137,138], as an approach that tries to add
domain knowledge to an evolutionary algorithm during
the search process, avoiding the need to add it a priori.
This approach uses, in addition to the population space
commonly adopted in evolutionary algorithms, a belief
space, which encodes the knowledge obtained from the
search points and their evaluation, in order to influence
the evolutionary operators that guide the search. How-
ever, the belief space is commonly designed based on the
group of problems that is to be solved. At each generation,
the cultural algorithm selects some exemplar individuals
from the population, in order to extract information from
them that can be useful during the search. Such an infor-
mation is used to update the belief space. The belief space
will then influence the operators of the evolutionary algo-
rithm, to transform them into informed operators that can
enhance the search process. Cultural algorithms can be
an effective means of saving objective function evalua-
tions, but since a map of decision variable space must be
kept at all times, their cost will soon become prohibitive
even for problems of moderate dimensionality (in deci-
sion variable space).

– Hyper-heuristics We certainly need theoretical studies on
the use of hyper-heuristics in multiobjective optimiza-
tion and some work in that direction has been already
done. Qian et al. [132] provided a theoretical study
on the effectiveness of selection hyper-heuristics for
multiobjective optimization. This paper concluded that
applying selection hyper-heuristics to any of the three
major components of a MOEA (selection, mutation and
acceptance), can exponentially speed up the optimization
process.
Another interesting idea is to combine different perfor-
mance indicators within an indicator-based MOEA as
proposed by Falcón-Cardona and Coello [48]. In this
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case, IGD+, ǫ+, Δp and R2 are adopted as possible den-
sity estimators (i.e., the low-level heuristics).
One more interesting area of research would be the use of
genetic programming to generate components of MOEAs
(e.g., evolutionary operators or even scalarizing func-
tions) that can improve their performance when adopted
within a multiobjective hyper-heuristic.

Conclusions

As we have seen in this paper, EMO still has plenty of topics
to be explored. However, it is important to emphasize that
some of them require us to move outside the main stream
of research currently being conducted in this area. Besides
the topics previously indicated, there are several more that
have been already explored, but are worth re-visiting. For
example, we need new performance indicators, particularly
for many-objective optimization. For instance, we have very
few performance indicators for assessing diversity in many-
objective optimization (see for example [99,168]), but there
are other interesting choices that are also worth exploring
(see for example, the s-energy indicator [69]).

It is also important to design new mechanisms (e.g., opera-
tors, encodings, etc.) for MOEAs based on specific features of
real-world problems (e.g., variable length encodings, expen-
sive objective functions, uncertainty, etc.). See for example
[98]. The way in which coevolutionary approaches can help
us to solve complex multiobjective optimization problems is
another interesting venue for future research. Besides large-
scale problems, coevolution can help us in other domains
(e.g., dynamic multiobjective optimization problems [56]),
but its potential has been scarcely studied in this area (see
[117]).

However, it is important to keep in mind that a great source
of diversity regarding research ideas is the knowledge com-
ing from other disciplines. For example, EMO has adopted
advanced data structures (e.g., red–black trees [51]), concepts
from computational geometry (e.g., convex hulls [26,109],
quadtrees [120] and Voronoi maps [123]), and from eco-
nomics (e.g., game theory [61]) to design novel MOEAs and
operators.

We also need to explore more ways of bridging the gap
between Operations Research and EMO. An example is the
development of hybrid approaches that combine a MOEA
with a mathematical programming technique (see for exam-
ple [94]). Another one is the use of the Karush–Kuhn–Tucker
optimality conditions to estimate proximity of a solution to
the Pareto optimal set (see [1]).

Summarizing, we claim that EMO is still a very promising
research area which should remain active for several more
years. However, we need to increase diversity in our research

topics and to be more disruptive. If we only do work by
analogy, we will suffer stagnation!
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