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Evolutionary Optimization as Applied to InverseSattering ProblemsP. Roa, M. Benedetti, M. Donelli, D. Franeshini, and A.MassaDepartment of Information Engineering and Computer Siene, ELEDIA ResearhGroup, University of Trento, Via Sommarive 14, 38050 Trento - Italy, Tel. +39 0461882057, Fax. +39 0461 882093E-mail: andrea.massa�ing.unitn.itAbstrat. This paper is aimed at presenting an overview of Evolutionary Algorithms(EAs) as applied to the solution of inverse sattering problems. The fous ofthis work is on the use of di�erent population-based optimization algorithms forthe reonstrution of unknown objets embedded in an inaessible region whenilluminated by a set of mirowaves. Starting from a general desription of thestruture of EAs, the lassial stohasti operators responsible for the evolutionproess are desribed. The extension to hybrid implementations when integratedwith loal searh tehniques and the exploitation of the �domain knowledge�, eithera-priori obtained or olleted during the optimization proess, are also presented.Some theoretial disussions onerned with the onvergene issues and a sensitivityanalysis on the parameters in�uening the stohasti proess are reported, as well.Suessively, a review on how various researhers have applied or ustomized di�erentevolutionary approahes to inverse sattering problems is arried out ranging from theshape reonstrution of perfetly onduting objets to the detetion of the dieletriproperties of unknown satterers up to appliations to sub-surfae or biomedialimaging. Finally, open problems and envisaged developments are disussed.Key Words - Evolutionary algorithms, Inverse sattering.Classi�ation Numbers (MSC) - 45Q05, 78A46, 78M50, 78M991. IntrodutionOptimization tehniques are generally lassi�ed into deterministi and stohastimethods. For example, the greedy, the steepest desent, and the tree searh algorithms



2 A. Massa et al.[111℄[119℄ belong to the former lass. Although e�etive in terms of onvergene speed,these methods generally require a �domain knowledge� sine in ase of non-linear andmulti-mimina funtionals the initial trial solution must lie in the so-alled �attrationbasin� of the global solution to avoid the onvergene solution being trapped into loalminima of the funtional (i.e., wrong solutions of the problem at hand). On the ontrary,stohasti algorithms [59℄[144℄[136℄ are global searh approahes potentially able to �ndthe global optimum of the funtional whatever the initial point/s of the searh.The goal of optimization is the knowledge of the global solution. The solution isfully desribed when its desriptors (i.e., its desriptive features), whih quantify theinformation ontent of the solution itself, are de�ned. This an be mathematially doneby determining the problem unknowns (i.e., the oded representation of the solutiondesriptors) through the optimization of a suitable ost funtion. It should be observedthat, the number of unknowns is di�erent in eah problem and proportional to theinformation ontent of the solution.Sine on one hand the desriptors are di�erent (e.g., disrete/ontinuous variables)as well as the number of unknowns to be determined an vary among the optimizationproblems, the hoie of a proper optimization algorithm is a key issue and a generalrule for this hoie does not exist. From a pratial point of view, the main featuresneessary to an optimization algorithm are the ability to deal with omplex funtionalsor ost funtions, the �simpliity of use�, a limited number of ontrol parameters, goodonvergene properties, and the exploitation of the parallelism o�ered by modern PClusters. In this sense, Evolutionary Algorithms (EAs) seem to be good andidates.They have been applied to a huge variety of problems in di�erent and very heterogeneous�elds ranging from engineering to eonomis, up to business and natural siene.For example, in biomedial and natural siene, several researhes are onernedwith the use of evolutionary algorithms for the predition of protein strutures [84℄and the design of drugs [91℄. In the framework of engineering, they have beenapplied to the design of airrafts [19℄, the synthesis of eletromagneti systems [161℄and mirowave devies [160℄. As far as ombinatorial optimization is onerned,routing [135℄, assignment [45℄, and sheduling [102℄ problems have been dealt with,as well. Although the number of works published in eonomy and business is limited,evolutionary algorithms have demonstrated to work e�etively as shown in [74℄ and [70℄.This work is aimed at disussing the use of evolutionary algorithms on a lassof problems in eletromagneti engineering, namely the inverse sattering problems.



Evolutionary Optimization as Applied to Inverse Sattering Problems 3The �rst population based algorithm applied to this topi was the Geneti Algorithm(GA) [39℄. Several versions of GAs have been implemented and e�etively used ineletromagneti inversion [100℄[24℄[174℄[79℄. In order to ope with the drawbaks of
GAs, di�erent kinds of evolutionary algorithms has been suessively developed. Amongthem, let us reall the di�erential evolution (DE) algorithm [130℄[97℄ and the partileswarm optimizer (PSO) [49℄[81℄. More reently, the ant olony optimizer (ACO) hasbeen also applied [118℄. Besides �bare� tehniques, a non-negligible number of hybridapproahes has been implemented to improve the onvergene rate of global optimizers.The paper is organized as follows. In Setion 2, an introdution on the genesis ofnature-inspired optimization algorithms and some motivations on their use and e�ienywhen dealing with real world problems are given. A general desription of the strutureof EAs is presented in Set. 3, while di�erent implementations are detailed in Set. 4.Setion 5 is devoted to some theoretial disussions on the onvergene properties aswell as on EAs sensitivity to the values of the ontrol parameters. The inverse satteringproblems is brie�y formulated in Set. 6 and an overview on the appliation of EAs isprovided. Some onlusions on the role of EAs in inverse sattering are drawn in Set.7, whereas open problems and possible future developments are disussed in Set. 8.2. The Origin of EAs - Adaptation in Arti�ial SystemsIn early 1970s [75℄, Holland showed that nature-inspired evolutionary algorithms anbe adopted as suitable learning or searhing proedures for the solution of arti�ialproblems. The �rst example of an algorithmmodelling natural systems was the so-alledGeneti Algorithm. The algorithm was based on the onepts of natural seletion andgeneti pressure. Its implementation was inspired by the studies of Darwin and Mendelon the higher possibility for an individual or �agent� that better �t the surroundingenvironment to generate o�spring and preserve its geneti features throughout suessivegenerations. The suess obtained by this optimization approah was immediate and itreeived a wide and rapid di�usion. Di�erent versions of the original binary GA weredeveloped for the optimization of funtionals [47℄ and they have been applied to real-world appliations. The �rst text book on GAs and related appliations was publishedby Goldberg [69℄ in 1989.As ompared to previous optimization algorithms, the GA showed many interestingfeatures. More spei�ally, (a) the GA does not require neither the analytial knowledge



4 A. Massa et al.nor the di�erentiation of the funtions to be optimized, but only the values of the �tnessare enough to pursue the evolutionary proess, (b) the algorithm tends to move towardsthe most attrative region of the solution spae by means of an �almost� blind searhtehnique sine the operators are applied in a probabilisti way instead of onsideringde�nite rules, () sampling the searh spae not in a single point but in several loationsat eah iteration and the way the operators reombine the information oded in thepopulation of solutions foster the global searh apability of the optimization.Besides the expliit parallelism guaranteed by its multiple-agent nature as for otherpopulation-based stohasti algorithms suessively developed, the GAs is also relatedto the onept of shemata (i.e., the building bloks oding eah trial solution) and the�impliit parallelism�. In [75℄ and [69℄, it has been shown that the e�etive numberof shemata [69℄ proessed by the GA at eah iteration of the evolutionary proess isgreater than the number of individuals P of the population. Suh a property guaranteesthat, also in a serial implementation, multiple harateristis (i.e., the orrespondingshemata) of the solution are proessed in parallel. A well-known result is the Holland'sinequality stating a lower bound on the order of P 3/ǫ
√
l to the number of shemataproessed in a population of P = ξ2l strings, ξ and l being a small integer [17℄ and thestring length of binary digits, respetively. This result has been generalized in [11℄ for apopulation of P = 2βl individuals by proving that the shemata bound is a monotoniallydereasing funtion of β and that when β > 4/3, the expeted number of proessedshemata is a onstant and its lower bound is proportional to P (2log23)/β/

√
log2P .After the di�usion of GA-based algorithms, the development of arti�ial systemsbased on the onepts of swarm intelligene has been more reently onsidered [16℄ andnew implementations of innovative metaheuristis exploiting the ooperation paradigm,instead of the ompetitive one of the GAs, have been proposed. In this framework,the Partile Swarm Optimizer [87℄ and the Ant Colony Optimizer [54℄ have beensuessfully applied to an inreasing number of problems and appliations. Thesealgorithms arti�ially model the soial interation and ooperation of swarm of beesor olony of ants. Aordingly, the ativity of eah agent is guided not only by thework in progress (namely, its �tness to the environment) but also taking into aountthe information oming from the interations with other agents or present in the loalenvironment (i.e., the stigmergy ‡ ).

‡ The onept of stigmergy, whose meaning and impliations will be better spei�ed in the following,is widespread and quite important in arti�ial intelligene. As a matter of fat, it is related to the self-



Evolutionary Optimization as Applied to Inverse Sattering Problems 53. Evolutionary Algorithms - General Framework
EAs are iterative proedures, where a pool of P solutions, F =

{
f (p); p = 1, ..., P

},evolves to �nd the solution of the problem at hand through the optimization of a suitablefuntion Φ
(
f (p)
) or funtions Φt

(
f (p)
), t = 1, ..., T , (multi-objetive optimization [43℄)aimed at measuring the �goodness� of the trial solution under given onstraints. Theost funtion is the unique link between the optimization problem and the physial oneand great attention should be paid to the de�ne Φ in order to obtain representativeand reliable solutions at the end of the optimization proess. Moreover, the omplexityof the ost funtion as well as the omputational burden of its minimization stronglyin�uene the use of a lass of optimization algorithms rather than others.As far as the the design of an EA-based optimization tehnique is onerned, thekey points to be addressed are:

• the representation of the solution, f = {fn; n = 1, ..., N}, oding a set of Nparameters fn, n = 1, ..., N , to be optimized;
• the design of the evolutionary operators, L, for generating the suession (ideallyin�nite) of trial solutions, f

k
, k = 0, ...,∞, k being the iteration index;

• the evolution proedure, namely the riteria and guidelines to generate newsolutions by means of the evolutionary operators.At the initialization of the iterative proess, the initial set of solutions F0 ={
f (p)

0
; p = 1, ..., P

} is usually randomly-generated within the searh spae
fn = rfmaxn + (1 − r) fminn (1)starting from the knowledge of the upper fmaxn and lower fminn bounds of the parameter

fn that limit the admissible searh spae Ω (i.e., f ∈ Ω with fn ∈ [fminn , fmaxn ]).Moreover, r ∈ [0, 1] is a uniformly-distributed random variable. Otherwise, the initialpopulation an be de�ned on the basis of some a-priori information on the problem athand and its solutions. In suh a ase, the solutions are statistially-generated arounda referene trial solution f̂ =
{
f̂n; n = 1, ..., N

} by onsidering either a uniform
fn = f̂n

(
2r − 1

2

) (2)organization proess [16℄. In the framework of optimization, it means that the surrounding arhiteture(i.e., the environment/solution spae) provides a su�ient amount of information and onstraints toontrol the low level ations (i.e., those of the single agents) suh that the general ativity of the entireswarm/olony seems being governed by a global plan. The notion has been �rst introdued by Grasséin 1959 about the termites' behavior [71℄ and an interesting review on the subjet an be found in [155℄.



6 A. Massa et al.or a normal distribution
G (fn) =

1√
2πςn

exp−
(
fn − f̂n√

2ςn

)2 (3)
ςn being a real index ontrolling the statistial distribution of the parameter values.Suessively (k ≥ 1), a sequene of trial solutions is generated by applying theoperators L in a stohasti fashion and aording to the adopted evolutionary proedure.The pool of solutions at the (k + 1)-th iteration, Fk+1, is given by

f (p)

k+1
= f (p)

k
+ s

(p)
k+1 , p = 1, ..., P (4)where s(p)

k+1 is de�ned on the basis of the solutions Fk at the previous iteration throughthe appliation of the evolutionary operators
s
(p)
k+1 = L{Fk} . (5)Aordingly, a trial solution at iteration k + 1 turns out to be expressed
f (p)

k+1
= f (p)

0
+

k∑

j=0

L{Fj} (6)where
L{Fk} = L

{
f (p)

k
; p = 1, ..., P

}

= L
{
f (p)

k−1
+ s

(p)
k ; p = 1, ..., P

}

= L
{
f (p)

k−1
+ L{Fk−1} ; p = 1, ..., P

}
. (7)The struture of the EAs is then fully desribed by detailing the followingarhiteture levels, namely the �Basi level� and the �Control level�.3.1. Basi LevelThe basi level is responsible for the generation of the suession of trial solutions andit is onerned with the oding of the solutions and the design of the evolutionaryoperators.The oding of the problem unknowns, fn, n = 1, ..., N , through a set of symbolsbelonging to an alphabet A is a key point of the EAs sine it fores the hoie of theevolutionary operators as well as the granularity of the optimization and the aurayof the �nal solution. The most popular oding strategies, widely used in several pratie



Evolutionary Optimization as Applied to Inverse Sattering Problems 7appliations, are the binary oding, A = {0, 1}, and the real oding, A ≡ {R}. Theeasy implementation of the former in personal omputers and the fat that manyproblems deal with ontinuous real-valued variables have ontributed to the proliferationof EAs with these oding strategies as well as the design of ustomized real/binaryevolutionary operators. On the other hand, the use of a disrete alphabet of S symbols,
A = {a1, ..., aS}, is ommon in ombinatorial optimization.Generally speaking and whatever the alphabet, a oding law Γ (·) is used to mapthe set of parameters, f = {f1, ..., fN}, from the input spae (alled phenotype spae)to its oded representation, c = {c1, ..., cM}, in the work spae (alled genotype spae):
c = Γ

(
f
), M ≥ N . Although the terms phenotype and genotype ome from genetisand were �rst introdued by Holland [75℄ in dealing with arti�ial adaptive systems,their meaning is more general and it is not limited to the framework of geneti-basedoptimization algorithms. As regards to the oding funtion, it an be de�ned betweenequal-dimensional spaes (i.e., M = N) or to a higher dimensionality (i.e., M > N).One a new set of oded solutions is determined in the genotype spae by using theevolutionary operators, a deoding law is applied to map the updated oded parametersinto a new trial solution within the phenotype spae: f = Γ−1 (c).Conerning the evolutionary operators, they are usually inspired by naturalparadigms. Representative examples are those modeled on the onepts of naturalseletion (GAs and DE), ooperation and stigmergy taken from the intelligene ofswarms (e.g., PSO and ACO), and distribution of knowledge [e.g., Memeti Algorithm(MA)℄.3.2. Control LevelThe ontrol level is the arhitetural struture devoted to exploit the building bloksof the basi level in sampling the solution spae to �nd the global optimum. Atthis level, the issues related to the setup of the ontrol parameters, the de�nitionof the termination onditions, and the introdution of the problem onstraints [e.g.,

hi

(
f (p)

k

)
= 0, i = 1, ..., I, or gj (f (p)

k

)
≤ 0, j = 1, ..., J ℄ or boundary onditions (e.g.,

fn ∈ [fminn , fmaxn ] suh that f ∈ Ω) on the solutions are properly addressed. Morespei�ally, the ontrol parameters de�ne the number of agents or dimension of thepopulation/swarm of trial solutions, Pk, used at eah iteration and the probabilities ofapplying the evolutionary operators L. As regards to the onvergene riteria, simplertermination onditions are based on heuristi assumptions and user-de�ned thresholds



8 A. Massa et al.on the value of the funtion to optimize or on a maximum amount of iterations, K[69℄[151℄[87℄[54℄. More sophistiated hoies take into aount the stationariness ofthe optimal ost funtion value, Φopt
k =

{
minp=1,...,P

[
Φ
(
f (p)

k

)]}, in a �xed range ofiterations, Kwindow,∣∣∣KwindowΦopt
k−1 −

∑Kwindow

i=1 Φopt
i

∣∣∣
Φopt
k

≤ η (8)
η being a numerial threshold. Furthermore, onditions quantifying the �diversity� ofthe solutions of the population are also used [5℄.The boundary onditions are usually related to the physial admissibility of thesolution and derive from the a-priori information on the atual solution. Suh aninformation allows one to redue the dimension of the searh spae and is of fundamentalimportane for the (fast) onvergene towards the global optimum.3.3. Single vs. Multiple Objetive OptimizationIn single-objetive problems (SOP s), the optimization is aimed at looking for theminimum (or maximum) of a salar funtion Φ

(
f
)

: Ω ⊆ R
N → R subjet to someonstraints. The solution minimizing the objetive funtion is alled global minimum

f opt = arg
{
minf

[
Φ
(
f
)]}. The su�ient ondition for a point of the solution spae,

f ∈ Ω, to be the global minimum on Ω is that
Φ
(
f opt

)
≤ Φ

(
f
)
, ∀f ∈ Ω . (9)Dual onsiderations hold true for maximization problems.Di�erently, several problems are mathematially desribed in terms of vetorial ostfuntion, Φ

(
f
)

: Ω ⊆ R
N → R

T ,
Φ
(
f
)

=
[
Φ1

(
f
)
, Φ2

(
f
)
, ..., ΦT

(
f
)] (10)where eah salar funtion Φt

(
f
) models a di�erent objetive or performane riterionusually on�iting with the others. This is the ase of multi-objetive problems(MOP s) or vetor optimization problems [43℄[142℄[143℄[175℄ dealing with multiriteriaoptimization. Unlike SOP s, the meaning of optimum modi�es into the �best� trade-o�solution among the whole set of performane riteria. The notion of Pareto optimality[113℄ is generally adopted to properly model this onept. A solution f is Pareto-optimal



Evolutionary Optimization as Applied to Inverse Sattering Problems 9on Ω if no other solutions exist that dominate it. A solution f (a) (stritly) dominates
f (b) if and only if

Φt

(
f (a)
)
≤ Φt

(
f (b)
)
, t = 1, ..., T (11)and

∃t ∈ [1, T ] : Φt

(
f (a)
)
< Φt

(
f (b)
)
. (12)As a onsequene, (a) Pareto optimal solutions annot redue their performanes ona riterion Φt′ without inreasing their e�etiveness in �tting at least another riterion

Φt′′ ; (b) the solution of a MOP is not unique, but all Pareto optimal solutions aresuitable solutions; () the solutions on Ω non-stritly dominated generate the so-alled Pareto front. Sine, no general rules exist for the hoie of the best solutionin MOP s, the global optimum is hosen either aording to the user-requirements orby reformulating the MOP into an equivalent SOP whose salar ost funtion is thelinear ombination of the MOP objetive funtions
Φ
(
f
)

=
T∑

t=1

wtΦt

(
f
) (13)

wt, t = 1, ..., T , being real user-de�ned oe�ients. As far as solution algorithms forthe MOP s are onerned, although many mathematial programming proedures havebeen designed for the retrieval of the solutions of the Pareto front [92℄, EAs seems tobe very suitable to MOP s beause of their intrinsi/impliit parallelism that allows tosimultaneously manage a set of di�erent solutions [43℄ and to �nd multiple solutionsat eah iteration. Moreover, EAs an easily address optimization problems whosePareto fronts are either disontinuous or onave while the searhing apabilities ofother optimizers turn out to be more dependent on the nature of the Pareto front.4. Evolutionary Algorithms - ImplementationsIn this setion, a brief overview on EAs usually (to the best of the authors' knowledge)applied to the solution of inverse sattering problems is reported. The setion issubdivided in three main parts. The �rst one is devoted to desribe geneti-basedoptimization algorithms. Standard implementation of GAs and DE are presentedpointing out the main di�erenes and ommon features. Unlike GAs and DE whoseunderlying arhiteture models a ompetitive and hierarhial framework aimed at



10 A. Massa et al.promoting the reprodution/evolution of �ttest individuals, deentralized optimizationproedures based on the intelligene of swarms, namely the partile swarm optimizerand the ant olony optimizer, are onsidered in the seond part. Finally, some state-of-the-art hybrid algorithms are brie�y summarized.4.1. Geneti-based Optimization4.1.1. Geneti Algorithms - GAs are EAs modeled on onepts of natural seletionand geneti pressure to perform an e�etive sampling of the solution spae. GAs basipriniples were �rst introdued by Holland in 1975 [75℄ and extended to funtionaloptimization by De Jong [47℄ with an immediate di�usion to real-world problems beauseof their e�etiveness in dealing with omplex funtions [69℄[77℄[61℄ when ompared tostandard deterministi proedures.The solutions at the k-th iteration and belonging to the phenotype spae, f (p)

k
,

p = 1, ..., P , are alled individuals, while their orresponding version in the genotypespae are denoted as hromosomes, c(p)k , p = 1, ..., P . At eah iteration or generation,the set Fk =
{
f (p)

k
; p = 1, ..., P

} of P agents or individuals ompose a population of trialsolutions named parents. The set of geneti operators LGA is applied to Fk to generatea new population Fk+1. More spei�ally, the seletion, S, the rossover, C, and themutation, M, at on the parents to determine the individuals of the new population,alled hildren or o�spring.In their basi version, the GAs follow the work�ow in Fig. 1. After the initializationof the population F0 at the �rst iteration (k = 0), new populations, Fk, k ≥ 1, areiteratively generated by applying the geneti operators LGA = {S, C, M} as follows.For eah iteration, a �mating pool� is hosen by applying the seletion proedure to Fk
Fk(S) = S {Fk} . (14)Standard implementations onsider the roulette-wheel seletion or the tournamentseletion [69℄. The seletion proedure performs taking into aount the knowledge onhow urrent individuals �t the problem at hand. Mathematially, suh a knowledgeis aquired by omputing the ost funtion values of the urrent population, Φ

(p)
k =

Φ
(
f (p)

k

), p = 1, ..., P . Fittest individuals have higher probability to be hosen as parentsfor generating new individuals and for reproduing their hromosomes [75℄. Dealing withminimization problems and aording to a �tness proportional seletion mehanism, the



Evolutionary Optimization as Applied to Inverse Sattering Problems 11probability of a parent to be hosen for the �mating pool� is equal to
λ

(p)
k(S) =

1/Φ
(p)
k∑P

i=1 1/Φ
(i)
k

. (15)A new population is then generated by applying rossover and mutation aordingto the values of the probabilisti oe�ients de�ned at the ontrol level
Fk+1 = Fk(C) ∪ Fk(M) (16)where Fk(C) and Fk(M) indiate the set of new individuals obtained by rossover
Fk(C) = C

{
Fk(S)

} (17)and mutation
Fk(M) = M

{
Fk(S)

}
, (18)respetively. The geneti operators are iteratively applied on the mating pool untilthe population is ompleted and the parents, whom neither rossover nor mutation areapplied to, are diretly reprodued in the next population. To enhane the onvergenebehavior of GAs, another operator known as elitism is often used. The elitist strategyis applied whether the ondition Φopt
k+1 > Φopt

k (in minimization problems) holds trueand it onsists in inserting the best individual of the k-th iteration in plae of the worstsolution of the suessive iteration.To further improve the onvergene as well as the global apability of GAs, besidesthe ommonly-used geneti operators, the GAs have been also modi�ed by usingenhaned tehniques like dominane and diploidy, sharing, or knowledge-based operators[69℄.(A) Binary GAsGeneti Algorithms were �rstly implemented to work with binary or disrete unknowns.The problem unknowns are oded, if not already binary, in strings of l =
∑N

n=1Qn bits,
Qn is the number of levels used to quantize the range of existene of the n-th unknownparameter. Both uniform [90℄

f̃n = fminn +

[
fmaxn − fminn

2Qn − 1

]Qn−1∑

i=0

ai(n)2
i (19)or non-uniform quantization [76℄

f̃n =

Qn∑

i=1

ai(n)2
1−iχn (20)



12 A. Massa et al.an be used. More in detail, where ai(n), i = 1, ..., Qn, is the set of bits (or alleles)omposing the oded parameter, cn =
{
a1(n), ..., aQn(n)

}, and χn = fmax
n

2
is the largestquantization level.Geneti operators LGA at on the hromosomes c(p), p = 1, ..., P as follows. Inthe seletion phase, a pair of parents c(p1)k and c

(p2)
k is hosen. The reombinationof the strings of genes is then performed through rossover with probability pC .By onsidering the single-point rossover, an integer value i ∈ [1 : l] is randomlyhosen and two hildren are generated whose hromosomes turn out being equal to

c
(p1)
k+1 =

{
a

(p1)
1,k , ...a

(p1)
i,k , a

(p2)
i+1,k, ..., a

(p2)
B,k

} and c
(p2)
k+1 =

{
a

(p2)
1,k , ...a

(p2)
i,k , a

(p1)
i+1,k, ..., a

(p1)
B,k

}. Eahhild ontains parts of the geneti struture of both parents. Moreover, an individual ismutated with probability pM by randomly �ipping the value from 1 to 0 or vieversa ofsome alleles of the orresponding hromosome, pMB being the bit mutation probability.Obviously, more omplex implementations of the rossover operator (e.g., two-pointrossover, uniform rossover [161℄) and the mutation (e.g., interhange [90℄) exist, aswell.Sine the binary GA (BGA) works with a �nite dimension parameter spae, it turnsout to be more adapt to deal with problems where the unknowns an assume only a�nite number of values. Conerning real (ontinuous) variables, unknown parametersneed to be quantized with an unavoidable quantization error. This error an be reduedby inreasing the gene length l at the ost of a derease in the onvergene speed and aninrease in the memory requirements. Moreover, the GA operators ating on a binary-oded representation of the solution do not assure that the hromosomes of the nextgeneration are admissible solutions. Moreover, if aeptable solutions have to belong tosome domains of the solution spae (e.g., when onstraints are imposed), monitoring thisproperty under the ation of the geneti operators an be laborious and time-onsuming(a deoding should be performed), and the onvergene may therefore be slowed.(B) Real oded GAsBinary enoding is not the only way to represent a parameter when applying GAs. Inthe presene of real parameters, it is more logial to use the �oating point representation[89℄. For the real-oded GA (RGA), a gene is represented by the value of the unknownitself
c
(p)
k = f (p)

k
. (21)



Evolutionary Optimization as Applied to Inverse Sattering Problems 13As a onsequene, new geneti operators are designed although the peuliaritiesof the original operators should be maintained. Mutation and rossover must remaina mean to explore the parameter spae randomizing seleted solutions and a way to(randomly) mix the good harateristis of the hromosomes, respetively.In RGAs, the rossover is de�ned as the arithmetial linear ombination of twohromosomes. One two parents f (p1)

k
and f (p2)

k
are seleted, the resulting o�spring aregiven by

f
(p1)
n,k+1 = rf

(p1)
n,k + (1 − r) f

(p2)
n,k

f
(p2)
n,k+1 = (1 − r) f

(p1)
n,k + rf

(p2)
n,k , n = 1, ..., N. (22)The RGAmutation onsists in adding a random value sn ∈

{
f

(p)
n,k − fminn , fmaxn − f

(p)
n,k

}to a randomly-seleted pth hromosome
f

(p)
n,k+1 = f

(p)
n,k + sn . (23)Whether the new trial solutions are not physial and do not belong to the solutionspae (f /∈ Ω), they are modi�ed exploiting the a-priori knowledge on the boundariesof the solution spae as follows

f
(p)
n,k+1 =

{
fminn if f

(p)
n,k < fminn

fmaxn if f
(p)
n,k > fmaxn

. (24)The RGA gained inreasing popularity beause it is easy to implement,omputationally e�ient when dealing with a small number of real-valued unknowns,and suitable for �ne-tuning the seletive pressure [4℄.(C) Hybrid oded GAsIn some problems, the a-priori knowledge on the solution allows a parametrization of asubset of the unknowns through a small set of disrete desriptors
fd = H{dj; j = 1, ..., J} , d ∈ [1, L] (25)where {dj ; j = 1, ..., J} is the sub-set of disrete equivalent parameters being J < L <

N . In suh a ase, a suitable enoding proedure must be de�ned in order to provide aone-to-one mapping between the phenotype spae and the genotype spae, but at thesame time, exploiting the features of the unknown parameter set. A hybrid oded GA



14 A. Massa et al.(HGA) is desribed in [22℄ to deal with mirowave imaging problems. A set of integer-valued equivalent parameters, {dj; j = 1, ..., J}, is binary oded and a �oating-pointrepresentation is used for the remaining real unknowns, {fn; n = L+ 1, ..., N}. As faras the geneti operators are onerned, they have been properly modi�ed to maintainthe struture of the hybrid hromosomes. During mutation, if the gene to be perturbedis binary-oded, it is hanged from 0 to 1 or vieversa as for the BGA. Otherwise, themutation (23) de�ned for the RGA is onsidered.Conerning the e�ieny and e�etiveness of HGA-based strategies, theexploitation of some a-priori information to de�ne a suitable parametrization funtion
H and the hoie of a redued set, instead of the whole number, of representativeparameters is of fundamental importane to redue the dimension of the searh spae.Moreover, the parametrization method an be pro�tably adopted to prevent thegeneration of solutions physially not admissible.4.1.2. Di�erential Evolution - Unlike GAs, the Di�erential evolution algorithm hasbeen originally proposed by Storn and Prie [150℄ for the global optimization overontinuous spaes. They were mainly aimed at simplifying the evolution proess of
GAs as well as to enhane the onvergene rate [151℄[121℄. The iterative evolution ofthe DE is similar to that of the GAs. Eah urrent population is replaed by betterindividuals obtained by applying the DE operators, LDE, still based on geneti but nowexeuted in a di�erent sequene: the mutation, M, the rossover, C, and seletion, S.The DE iteratively evolves as shown in Fig. 2. During the mutation proess, anintermediate solution is generated in orrespondene with eah individual f (p)

k
as follows

t
(p)
k+1 = f (p1)

k
+ ε

(
f (p2)

k
− f (p3)

k

)
, p = 1, ..., P (26)where p, p1, p2, p3 ∈ [1, P ] (p 6= p1 6= p2 6= p3) are the indexes of di�erent individualsrandomly hosen in Fk. The agents f (p1)

k
, f (p2)

k
, and f (p3)

k
are alled donor vetorsor seondary parents, and 0 < ε ≤ 2 is a real and onstant value that ontrols theampli�ation of the di�erential variation (f (p2)

k
− f (p3)

k

). The rossover is then appliedbetween the intermediate solution, t(p)k+1, alled mutant vetor and the primary parent,
f (p)

k
, aording to the following strategy

u
(p)
k+1 =

{
t
(p)
k+1 if (r < pC)

f (p)

k
otherwise

. (27)



Evolutionary Optimization as Applied to Inverse Sattering Problems 15Finally, the seletion takes plae and f (p)

k+1
is hosen aording to a greedy riterionby omparing Φ

(
f (p)

k

) with Φ
(
u

(p)
k+1

). In a minimization problem, f (p)

k+1
= u

(p)
k+1 when

Φ
(
u

(p)
k+1

)
≤ Φ

(
f (p)

k

), while f (p)

k+1
= f (p)

k
otherwise.As regards to the ontrol parameters of DE, they are the rossover probability

pC and the ampli�ation oe�ient ε to be arefully hosen to avoid a prematureonvergene to sub-optimal solutions or a slow onvergene rate [151℄.As ompared to GAs, the main di�erenes are (a) the order of exeution of thegeneti operators (Fig. 2) and (b) the ompetition between parents and hildren duringthe seletion phase whih laks in GAs sine the o�spring are all aepted while theparents are all disarded. Unlike GAs, the �ttest parents have higher probability togenerate hildren with better �tness. Moreover, the risk that the average �tness of thepopulation an get worse is greater in GAs sine rossover and mutation are performedafter seletion. Furthermore, sine the seondary parents are hosen from the populationwith equal probability (and not through a proportional �tness seletion), theDE usuallyinreases its global searhing apabilities. Finally, the ost funtion of the best individual
Φopt
k , k = 1, ..., K, monotonially dereases in theDE beause of theDE implementationof the seletion mehanism and without the need of partiular elitist strategy.Despite the basi version of the DE, many di�erent versions of the algorithm exist[1℄[121℄[33℄. To identify them the notation DE/x/y/z is generally adopted [151℄. Morein detail,

x is the mutated solution randomly hosen (x = rand) or set to the bestindividual within the population (x = best);
y is equal to the number of di�erene vetors used in the di�erential variation;
z indiates the rossover sheme.Aording to suh a notation, the version of the DE presented above is identi�ed as�DE/rand/1/bin�. For ompleteness, let us notie that the mutation operator of theversion �DE/best/2/bin� is de�ned as

t
(p)
k+1 = f opt

k
+ ε

(
f (p1)

k
+ f (p2)

k
− f (p3)

k
− f (p4)

k

)
. (28)4.2. Optimization by Swarm Intelligene4.2.1. Partile Swarm Optimizer - The partile swarm optimizer is a robust stohastisearh proedure suitable for the optimization of ontiguous unknowns inspired by the



16 A. Massa et al.soial behavior of inset swarms, shool of �shes and �oks of birds. In the PSO, anagent, b(p)k , alled partile is haraterized by a position f (p)

k
in the solution spae and aveloity v(p)

k that models the apability of the p-th partile to �y from the urrent positionto another suessive position f (p)

k+1
. The whole set of partiles {b(p)k , p = 1, ..., P

},onstitutes the swarm Fk. In its lassial implementation [85℄, the partile updateequations are
f (p)

k+1
= f (p)

k
+ v

(p)
k+1 (29)and

v
(p)
n,k+1 = ωv

(p)
n,k + C1r1

(
p

(p)
n,k − f

(p)
n,k

)
+ C2r2

(
gn,k − f

(p)
n,k

) (30)whose physial interpretation, derived by Newton's laws, has been given in [107℄.In (30), ω, C1, and C2 are ontrol parameters known as inertial weight, ognitiveand soial aeleration terms, respetively [87℄. Moreover, r1 and r2 are tworandom variables having uniform distribution in [0, 1]. With referene to aminimization problem, the values p(p)
k

= arg
{
mini=1,...,k

[
Φ
(
f (p)

i

)]} and g
k

=

arg

{
min

i = 1, ..., k; p = 1, ..., P

[
Φ
(
f (p)

i

)]} are the so-alled personal and globalbest solutions, namely the best positions found by the p-th partile and by the wholeswarm until iteration k, respetively.As far as the iterative optimization is onerned (Fig. 3), starting from guess valuesof f (p)

0
and v

(p)
0 , p = 1, ..., P , the positions and veloities of the partiles are updatedaording to Eqs. (29) and (30).The main advantages of the PSO if ompared to either the GAs or the DE an besummarized in the followings:

• the simpliity of the algorithm implementation and the use of a single operator(i.e., the veloity update) instead of three geneti operators (i.e., the rossover, themutation, and the seletion);
• the easy manipulation of the alibration parameters [138℄ (i.e., the swarm size, theinertial weight, and the aeleration oe�ients) whih ontrol the veloity updateoperator. Even if the number of ontrol parameters (i.e., the population size, therossover rate, the mutation rate) is similar, it is ertainly easier to set the PSOindexes than evaluating the optimal setting among various operators and severaloptions of implementation;
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• the ability to prevent the stagnation by ontrolling the inertial weight and theaeleration oe�ients to sample new regions of the solution spae. In standard
GAs and DE, the stagnation ours when the trial solutions assume the samegeneti ode lose to that of the �ttest individual. In suh a ase, the rossoverdoes not ontribute to the evolution and only a luky mutation ould loate a newindividual in other interesting region of the solution spae;

• a smaller number of agents, whih turns out in a redued omputational ost of theoverall optimization and enables a reasonable ompromise between omputationalburden and e�ieny of the iterative proess.Although the PSO is intrinsially an optimizer for ontinuous spaes, a binary version ofthe algorithm exists [86℄, as well. In order to deal with disrete spaes [86℄, the oneptsof trajetory, position and veloity have been properly rede�ned in terms of hanges ofprobabilities. More spei�ally, eah dimension of the solution spae is normalized toassume values between 0 and 1. In suh a spae, the veloity is onstrained to the samerange of variation and its value gives the probability threshold for having a binary allelewith zero or one value. The new allele is then omputed as follows
f

(p)
n,k+1 =





1 if r < Λ

(
v

(p)
n,k+1

)

0 otherwise
(31)by de�ning a suitable transformation funtion Λ

(
v

(p)
n,k+1

) usually onsisting of a sigmoid
Λ
(
v

(p)
n,k+1

)
=

1

1 + exp
(
−v(p)

n,k+1

) . (32)4.2.2. Ant Colony Optimizer - The ACO is a population-based global optimizationalgorithm inspired by the foraging behavior of ant olonies looking for food soures [52℄.The ants move in the spae surrounding the nest looking for the best (shortest) pathbetween the food soures and the nest. Likewise the PSO, the ACO is based on theonepts of swarm intelligene and ooperation, but it also exploits the paradigm ofstigmergy and self-organization [64℄. In this sense, the ativity of eah agent f (p)

k
or antin the olony Fk is guided not only by the work in progress (the goal of optimization),but also from the information available in the loal environment. To modify the loalenvironment, eah ant leaves a hemial substane alled pheromone while movingwithin the solution spae along a path. The amount of pheromone on a path quanti�esits degree of optimality, but it deays with time (evaporation mehanism). These



18 A. Massa et al.mehanisms allow one to avoid poor food soures on one hand and on the other toe�iently sample the whole solution spae.The �rst implementation of the ACO [52℄ was originally developed for disreteoptimization problems and it was applied to solve omplex ombinatorial problems[53℄[95℄. In its basi version (Fig. 4) onerned with the searh of a path within adisrete spae (e.g., in the Traveling Salesman Problem [53℄), eah ant odes a vetor
f (p)

k
representative of a set of disrete symbols or loations, f (p)

k
= {a1, ..., aN}. Let ussuppose ψijk be the amount of pheromone on the edge between the loation ai and aj ,

i, j ∈ [1, N ], with i 6= j. Every vetor, f (p)

k
, p = 1, ..., P , is randomly initialized at the�rst iteration (k = 0) and a uniform level of pheromone is assigned to eah path withinthe searh spae, ψij0 = cost. Suessively, the pheromone level of eah edge of the pathovered by the p-th ant is updated

ψ̃ijk+1 = ψijk +

P∑

i=1

δ
{
ψijk , f

(p)

k

} H

Φ
(
f (p)

k

) , ∀ψijk (33)where δ {ψijk , f (p)

k

}
= 1 when ψijk ∈ f (p)

k
(i.e., the path rossed by solution f (p)

k
ontainsthe branh individuated by ψijk ) and δ {ψijk , f (p)

k

}
= 0, otherwise. Moreover, H is a realpositive onstant term. The evaporation proedure takes plae to redue the amount ofpheromone on eah path of the graph

ψijk+1 = (1 − ρ) ψ̃ijk+1, ∀ψ
ij
k (34)

ρ ∈ (0 , 1] being a parameter aimed at ontrolling the evaporation rate. At eahiteration, the probability to move towards a new position aj within the graph leavingthe position ai is given by
pψ
(
ψijk+1

)
=

ψijk+1∑
j Ξ
(
ψijk+1

) (35)where Ξ
(
ψijk+1

)
= ψijk+1 if ψijk+1 is a physially-admissible path and Ξ

(
τ ijk+1

)
= 0,otherwise.The ACO has been also extended to the optimization in ontinuous spaes[12℄[148℄[149℄. The Continuous ACO (CACO) onsiders a solution arhive where Y > Psolutions are stored and used to generate new solutions. The value Y depends uponthe problem omplexity and eah solution of the arhive is identi�ed by its �tness tothe problem at hand, Φ

(p)
k = Φ

(
f (p)

k

), p = 1, ..., Y . At eah iteration, a new set of Psolutions is probabilistially-generated and added to the solution arhive. The Y + P



Evolutionary Optimization as Applied to Inverse Sattering Problems 19solutions are ranked from the best (p = 1) to the worst (p = Y ) aording to theorresponding �tness. Suessively, the worst P solutions are then removed form thearhive.The new solutions are obtained sampling a suitable probability density funtions,
Θk. Usually, the probability density funtion is a weighted sum of N dimensionalGaussian funtions

Θk (fn) =

Y∑

p=1
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−

(
fn − f

(p)

n

)2

2
(
ς
(p)
n,k

)2


 , n = 1, ..., N (36)where the mean value f (p)

n,k and the standard deviation ς
(p)
n,k are given by f

(p)

n = f
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n,k,

n = 1, ..., N , and ς
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. Moreover, the weights of the Gaussianfuntions are de�ned as

w
(p)
k =

1

̟Y
√

2π
exp

[
− (p− 1)2

2 (̟Y )2

]
, p = 1, ..., P (37)

ǫ being a parameter modeling a kind of onvergene pressure mehanism. When ̟ issmall, the best-ranked solutions are preferred, while when it is large, the probabilitybeomes more uniform.4.3. Hybrid OptimizationEvolutionary algorithms are known as robust optimization tehniques able to e�etivelyexplore wide parameter spaes. However, EAs generally require a high number ofost funtion evaluations to onverge, thus o�ering redued performanes in termsof omputational e�ieny when ompared to deterministi optimization tehniques.However, whether the evaluation of the ost is omputationally fast, EAs are stillvery good andidates for a suessful solution of the problem at hand espeially whenloal minima are present. Otherwise, when the evaluation of the ost funtion isumbersome, di�erent approahes have been proposed to make EA-based proeduresmore ompetitive still maintaining their positive features. On one hand, suitableenodings (as shown in Set. 4.1.1) allow a redution of the dimension of the solutionspae. On the other hand, to save omputational resoures and to inrease theonvergene rate, an e�etive strategy is the hybridization [14℄. As a matter of fat,gradient-based minimization tehniques [119℄ usually onverge very fast and yield goodresults dealing with onvex funtionals. However, they an be trapped in loal minima



20 A. Massa et al.in highly nonlinear problems. In order to exploit omplementary advantages, EA-based proedures and deterministi methods an be oupled aording to the followingstrategies:
• the EA/CG-based approah;
• the Memeti Algorithm (MA).4.3.1. EA/CG-based approah - The simplest and more general way to realize ahybridized version of an EA is that of onsidering a �two-stage optimization�. Firstly,the optimization is performed with an EA and subsequently the algorithm swithes toa deterministi proedure or vieversa.In [166℄, a miro-GA (µGA) has been oupled with a deterministi methodproposing a ommuniation riterion for stopping the stohasti algorithm and invokingthe deterministi optimizer. Moreover, a hybrid optimization method ombining the GAand the Levenberg-Marquardt algorithm (LMA) has been proposed in [169℄. The LMAis used to loalize a minimum and the minimization proedure swithes to the GA inorder to limb loal minima. Another hybrid proedure based on a RGA-based strategyhas been presented in [24℄ where the global searh approah is onsidered to loatethe attration basin of the global optimum while the CG approah is used to reah theglobal optimum within the same attration basin. Whether the onvergene threshold isnot reahed during the deterministi minimization, the RGA restarts with a populationwhose individuals are randomly-generated around the urrent optimal solution.The main drawbak of these approahes is the need to evaluate the �quality� of aminimum and/or the loseness of the trial solution to the attration basin of the globalminimum. This requires either an aurate knowledge of the ost funtion, generallynot available, or a heuristi de�nition of the degree of auray of eah trial solution.To overome the drawbaks, a more sophistiated approah has been presented in[97℄ whih onsiders a loser oupling between stohasti and deterministi optimizers.The oupling is obtained by means of a step-by-step optimization (SbS − GA) whereonly the best individual of eah population undergoes a deterministi optimization fora �xed a limited number of intermediate iterations or until a stationary ondition holdstrue. Suessively, standard geneti operators are exeuted on the whole population ofsolutions.



Evolutionary Optimization as Applied to Inverse Sattering Problems 214.3.2. Memeti Algorithm - Likewise the step-by-step hybridization, MemetiAlgorithms have been introdued to de�ne a loser oupling between stohasti anddeterministi optimizers for enhaning the omputational e�ieny of EAs. Unlike the
SbS − GA, a stronger oupling between the stohasti approah and the deterministitehnique is obtained by introduing a geneti operator whih performs a gradient-likebased minimization (e.g., �hill-limbing� operator [158℄, G-Bit improvement [69℄).The MA is a hierarhial algorithm based on the onept of �meme� [46℄. A memeis a unit of information transmitted when people exhange ideas. Eah idea is a trialsolution f (p)

k
, omposed by a set of memes. Sine ideas are proessed before propagatingthem, eah individual an be assumed as a loal minimum/maximumof the ost funtion

Φ. From an algorithmi point of view [109℄[103℄, the proessing of an idea is simulatedby means of a deterministi proedure and its propagation and/or evolution with astohasti GA-based, or more generally EA-based, tehnique aording to the �owhartshown in Fig. 5. In mode detail, after the initialization (k = 0) eah individual,
f (p)

k
, p = 1, ..., P , is onsidered as initial point for a loal optimization proedure inorder to obtain a population of loal optima, F̂k+1 =

{
f̂

(p)

k+1
; p = 1, ..., P

}. Afterwards,an iterative loop is performed where global and loal searh algorithms are iterativelyapplied to the whole population until a onvergene riterion is satis�ed. Furthermore,in order to assure a fast onvergene and to preserve the harateristis of the bestindividual, the elitist strategy is generally adopted.As ompared to other EAs, the MAs exhibit some interesting features. Sine thepopulation is only omposed of loal optima, the individuals move from one minimumto another. Therefore, a limited number of iterations is usually required to onvergealso with a small population. On the ontrary, although very e�etive in terms ofonvergene rate, the main drawbak of MAs is the unaeptable omputational loadwhen the number of unknowns is large and the fat that they need loal minimization,where the knowledge of the gradient of the funtional is often a must.5. Evolutionary Algorithms - Theoretial Bakground5.1. Convergene Analysis and Control-Parameter SettingIn this setion, a theoretial analysis pointing out some interesting issues related to theonvergene behavior of EAs is disussed and properly referened. Some hints on thein�uene of the various operators on the algorithm behavior as well as some indiations



22 A. Massa et al.on the values of the ontrol parameters are given.The study mainly fouses on GAs and PSO as benhmark algorithms based ondi�erent evolutionary onepts: the survival of the �ttest and the exploitation of swarmintelligene, respetively.5.1.1. Geneti Algorithms Several theoretial analyses on the GAs behavior are basedon the onept of shemata, originally introdued by Holland [75℄ to identify any partialstring pattern among those available in the searh spae that an be proessed by the
GA. In [75℄, a lassial binary GA, with reprodution, roulette-wheel seletion, single-point rossover and mutation was onsidered to point out the law for either the growthor deay during the optimization proess of some string patterns. In order to illustratethe shemata theorem, let us onsider the following example.With referene to a population with l = 5 bits hromosomes, the shemata ∗0 ∗ 11is haraterized by �xed alleles (i.e., the seond, the fourth, and the �fth) and some�don't are� positions (i.e., the �rst and the third). All possible shemata within apopulation are expressed in terms of a three letters alphabet A+ = {0, 1, ∗}. Thetotal number of admissible shemata is equal to (2 + 1)l, while the number of shematawithin a population of P individuals an range from 2l up to P ×2l sine eah allele of ahromosome an assume the atual value 0/1 or the don't are symbol. Eah shematais identi�ed by two quantities: the order, o (·), and the length, δ (·). The shemata orderis equal to the number of �xed alleles within the shemata. The length of a shematais the distane between the �rst and last position with �xed alleles. For example, thetwo shemata s(t) = {0 1 ∗ ∗ 1} and s(h) = {∗ ∗ 0 1 ∗} have order and length equal to
o
(
s(t)
)

= 3, o (s(h)
)

= 2 and δ (s(t)
)

= 4, δ (s(h)
)

= 1, respetively.The e�ets of geneti operators LGA on the survival of a shemata during theevolution of the population have been arefully analyzed in [75℄ and [69℄. Summarizing,the number m (s, k) of ourrenes of a shemata s within a population at the k iterationinreases/dereases proportionally to
m (s, k) ∼= m (s, k − 1)

Φav (s)
1
P

∑P
p=1 Φ

(p)
k−1

[
1 − δ (s)

l − 1
pC − o (s) pM

] (38)where Φav (s) is the average �tness of the individuals of the population ontaining theshemata s and the ondition pM ≪ 1 is assumed.It is worth pointing out that when rossover and mutation are not used and theindividuals diretly reprodue throughout the generations only on the basis of the



Evolutionary Optimization as Applied to Inverse Sattering Problems 23proportional seletion, the e�et of repliation leads to an exponential growth/deayof shemata having an average �tness above/below the average �tness of the wholepopulation. By supposing
Φav (s) = (1 + ι)

1

P

P∑

p=1

Φ
(p)
k−1 (39)and the perentage ι onstant during the optimization proess, it turns out that

m (s, k) ∼= m (s, 0) (1 + ι)k (40)
m (s, 0) being the ourrene of the shemata s within the initial population. Equation(40) points out the exponential e�et of the geneti pressure on the onvergene of the
GA [44℄. On the other hand, a shemata survives to rossover and mutation when thefollowing ondition holds true

δ (s)

l − 1
pC + o (s) pM < 1 (41)where (1 − δ(s)

l−1
pC

) and (1 − pM)o(s) ∼= 1− o (s) pM sine pM ≪ 1 are the rossover andmutation survival probabilities, respetively. To satisfy (41), the values usually adoptedfor the probability of mutation and rossover are pC ∈ [0.5, 0.9] and pM ∈ [0.001, 0.1].The results of suh analysis de�ne the so-alled Shemata Theorem or FundamentalTheorem of GAs whose main outome is that �short, low-order, above-average shematareeive exponentially inreasing trials in subsequent generations�. In [69℄, Goldberg alsoformulated the Building Bloks Hypothesis by stating that the GA solution onverges tothe portion of the searh spae oded by the building bloks omposed by high-�t, short,and low-order shemata whih have low probability of being disrupted by rossover andmutation.Further studies have been suessively arried out to give some indiations on theonvergene of the GAs to the optimal solution Φbest. In [139℄, a probabilisti analysison the onvergene of a anonialGA is presented. The algorithm is desribed through aMarkov hains model and it is aimed at assessing the onverge ondition on the sequeneof trial solutions
limk→∞Pr

{
Φopt
k = Φbest

}
= 1 . (42)By onsidering a proportional seletion mehanism and without elitism, it has beendemonstrated that the anonialGA never onverges to the global optimum. As a matterof fat, it has been proved that there is a non null probability that, whatever the initial



24 A. Massa et al.distribution of the population F0, the algorithm is able to �nd a solution with �tnessvalue Φopt
k < Φbest, k → ∞. In this sense, it turns out that the Shemata Theorem [75℄does not imply the onvergene to the global optimum in stati optimization problems.However, it has been also shown [139℄ that the elitism an assure global onvergenesine the �transition time� between whatever two states/solutions of the solution spaeis �nite and the global solution an be found at least one in an unlimited run of thealgorithm.The theoretial analysis arried out by Qi and Palmieri has onsidered, �rstseparately and then in a uni�ed framework, the e�ets of the proportional seletion, themutation [122℄ and the rossover [123℄ with the assumption of an in�nite populationsize (i.e., F =

{
f (p); p = 1, ..., P ; P → ∞

}) over ontinuous spaes (i.e., f ∈ R).In this sense, the whole solution spae is sampled by agents and, thanks to thishypothesis, the distribution of the population an be modeled with a sequene ofontinuous probability density funtions Θ (Fk), k = 1, ...,∞, instead of using disretedistributions. As far as the geneti operators are onerned, it has been shown in [122℄that the seletion tends to onentrate the individuals around the �ttest solution (i.e.,the global optimum) aording to the geneti pressure proportional to the value of boththe density funtion Θ (Fk) and the �tness funtion Φ (Fk). Suh a mehanism alsojusti�es the e�etiveness of GAs in dealing with multimodal funtionals haraterizedby multiple global optima. On the opposite, the mutation spreads the distributionobtained after seletion proportionally to the onvolution between the mutation densityand the distribution of the population [122℄.Beause of the in�nite dimension of the population, the seletion operator byitself guarantees the onvergene to the global solution without the need of mutation.However, the use of mutation is mandatory in real optimization problems when �nitepopulations are used sine it enables the exploration of new regions of the solution spae.As regards to rossover (either single-point, multi-point, or uniform [48℄), theanalysis in [123℄ shows that it is able to �nd new solutions in a smarter way as omparedto mutation thanks to a good trade-o� between exploration and exploitation apabilities.As a matter of fat, the rossover is able to diversify the population. Its iteratedappliation redues the orrelations among the solution parameters while maintainingthe marginal distribution of eah unknown unaltered and equal to that of the initialpopulation (i.e., epistasis theorem [123℄).Still onerned with the onvergene issue, a Markov hain analysis based on the



Evolutionary Optimization as Applied to Inverse Sattering Problems 25Shemata Theorem has been skethed in [57℄[153℄ where an in�nite number of iterationsis onsidered. Moreover, a onvergene analysis with an in�nite population size in alsodisussed in [159℄. Furthermore, the e�ets of rossover have been thoroughly analyzedin [162℄.Under geneti drift onditions § and in the ase of a simple GA when mutation iseither applied or not, the results in [110℄, numerially assessed in [3℄ through omputersimulations, indiate that the mean onvergene time grows proportionally to thepopulation size. Conerning the mutation, an �optimal value� has been identi�ed toallow all the solutions being explored with the same probability. Other empirial resultsabout geneti drift for di�erent versions of GAs an be found in [67℄[78℄.Many other studies on the GA onvergene and properties an be found in thestate-of-the-art literature and are urrently under development. The interested readeris referred to the speialized literature for a more omplete disussion of these issues.5.1.2. Di�erential Evolution - Sine the main objetive of DE is to improvethe onvergene rate of GAs, the main theoretial e�orts have been addressedtowards the optimal hoie of the parameters ontrolling the evolution. This fatis on�rmed by several works on this topi published in the referene literature (see[63℄[94℄[171℄[168℄[121℄[133℄ and referenes therein).Sine the basi idea of DE is to adapt the searh step inherently along theevolutionary proess to have a suitable trade-o� between exploitation and explorationand the sale of the perturbation vetors is roughly proportional to the extent of thepopulation diversity, the ontrol parameters should allow large perturbations at thebeginning of the evolution proess when parental individuals are far away to eah other.When the evolutionary proess proeeds to the �nal stage, the population must befored to a small region around the attration basin of the global optimum throughsmall perturbations. As a result, the adaptive searh step would bene�t the evolutionalgorithm by performing global searh with a large perturbation step at the beginningof the optimization and re�ning the population with a small searh step at the end.In suh a framework, although [151℄ states that the strategy parameters for the
DE are not di�ult to hoose, there are not general rules for hoosing the DEontrol oe�ients. Moreover, even though there are only three parameters to set,
§ The random drift of the gene frequeny is aused by the probabilisti generation of suessivepopulations. It models the highlighting of genes with partiular values.



26 A. Massa et al.the appliation of DE on several test funtions as in [63℄ showed that �nding the globaloptimum is very sensitive to the hoie of the ontrol variables: P (population size), ε(ampli�ation fator), and pC (rossover probability). Notwithstanding, the followingrules of thumb have been given in [63℄:
• a population size between Pmin = 3 ×N and Pmax = 8 ×N ;
• a good initial hoie for the ampli�ation fator ε = 0.6 to be inreased if onesuspets that this setting auses the trial solution being trapped in a loal optimum.As a matter of fat, a larger ε inreases the probability for esaping a loal optimum,although for ε > 1 the onvergene rate dereases sine it is more di�ult to reahthe global solution when the perturbation is longer than the distane between twoindividuals;
• a large pC often speeds-up onvergene, but from a ertain threshold value upwardsthe population may onverge prematurely and stagnate. A good hoie, whateverthe ost funtion at hand, seems to be a value between 0.3 and 0.9.Besides a areful analysis on the sensitivity of the DE optimization to the values ofthe ontrol parameters, innovative operators have been also introdued by exploitinggeometrial relationships to further speed up the onvergene (e.g., trigonometrimutation [60℄).5.1.3. Partile Swarm Optimization In [42℄, Cler and Kennedy examined in detailsthe behavior of the PSO and de�ned some onditions on the PSO parameters to avoida divergent searh. With referene to a simpli�ed one-dimensional (i.e., N = 1) anddeterministi (C1r1 = C1 and C2r2 = C2) model, desribed by the following updatingequations

vk+1 = vk + ϕ (t− fk)

fk+1 = fk + vk+1 (43)where ϕ = C1 + C2 and t = C1p+C2g
C1+C2

is the index related to both the ognitive andthe soial term and by supposing the personal best and global best position �xed (i.e.,
pk = p and gk = g), it has been shown that when ϕ ≥ 4, the partiles diverge as afuntion of k, while when 0 < ϕ < 4 the trajetories are osillating around the position
t [112℄ with yli or quasi-yli behavior depending on ϕ. These onlusions have been



Evolutionary Optimization as Applied to Inverse Sattering Problems 27drawn from the analysis of (43) re-arranged in matrix form as follows: Fk+1 = MFkwhere Fk = [vk, zk]
T , being zk = (t− fk), and the dynami matrix is given by

M =

[
1 ξ

−1 1 − ξ

]
. (44)As a matter of fat, it turns out that Fk = MkF0, F0 being the initialization vetor. Asu�ient ondition to reah an equilibrium point at the onvergene (i.e., t) is that theamplitudes of the two eigenvalues of M are lower than unity [157℄. However, a randomhoie of ϕ auses the unontrolled inreasing of the veloity term vk+1 [87℄.Further developing the approah based on the generalized matrix, it has been provedthat the following onstrition system

vk+1 = χ [vk + C1r1 (p− fk) + C2r2 (g − fk)]

fk+1 = fk + vk+1 (45)where χ = 2

|2−ǫ−√
ǫ2−4ǫ| = 0.7298 with ϕ = 2C1 = 2C2 = 4.1 guarantees the stability ofthe optimization proess.Other variants of the PSO exist and a areful analysis about the onvergene takinginto aount the randomness of the algorithm has been reported in [120℄.Conerning the optimal hoie of the ontrol oe�ients, it is still worthwhile topoint out that sine higher values of ω produe relatively straight partile trajetories,resulting in a good global searh harateristi, while small values of ω enourage aloal searhing, some researhers have gained advantage from a derease [56℄[147℄ or arandom variation of ω during the iterations [58℄. As regards to the oe�ients C1 and

C2, they are usually set to 2.0 as reommended by some papers in the PSO literature[85℄[87℄[146℄ and found through experimentation in several optimization �elds [15℄.5.1.4. Ant Colony Optimization - A �rst proof on the onvergene of an ACO-basedalgorithm, named graph-based ant system (GBAS), was reported in [72℄[73℄ where ithas been shown that the global solution an be found at least one throughout theoptimization proess. Although reliable, suh a proof does not hold true whatever theproblem and it is limited to the GBAS implementation whih usually di�ers from the
ACO version used in inverse sattering.



28 A. Massa et al.In [104℄, similarities between the pheromone update mehanism and the stohastigradient desent have been pointed out to show that a lass of ACO onverges to a loaloptimum with probability equal to 1. On the same line of reasoning of [72℄, Stutzle andDorigo proved in [152℄[54℄ that for a lass of ACO-based algorithms with a lower bound
ψmin on the pheromone level, the suess expetany of the optimization is equal to
Pr
{
Φopt
k = Φbest

}
≥ 1 − η, with η small as desired and lose to zero for an unlimitediterative proess (i.e., Pr {Φopt

k = Φbest
}
→ 1 when k → ∞). Moreover, the pheromonedeposited on the optimal path is higher than that left on others only after few iterations.A similar onvergene proof has been also yielded in [172℄ by exploiting a simulatedannealing onept and introduing an adaptive pheromone deposition funtion.Besides the theoretial works on the onvergene issues, some e�orts have been alsodevoted to the appliation of the ACO to optimization problems not �suitable� for thestruture of the algorithm itself. To desribe this behavior, Blum and Dorigo [13℄ usedthe term �deeption� previously introdued by Goldberg [68℄ to identify un�t problemsfor the GA onepts. The arising onlusions highlighted that in some ases ACO notonly reahes a sub-optimal (loal) solution (i.e., �rst order deseption), but also that theperformane of the algorithm an get worse (i.e., seond order deseption). For furtherindiations on this issue, the interested reader is referred to the exhaustive survey onthe ACO theory available in [55℄.6. Evolutionary Algorithms - Appliations to Inverse SatteringIn this setion, the appliation of EAs to inverse sattering problems is analyzed. Fornotation simpliity and without loss of generality, the inverse sattering problems isformulated in two-dimensions and TM illuminations are onsidered to deal with a salarsystem of equations. The extension to the vetorial 3D problem is straightforward andit does not modify the meaning and aim of the following disussion.Sine EA-based approahes have been applied to retrieve both dieletri anddissipative satterers as well as perfetly onduting objets (PEC), the mathematialdesription of both problems as well as the analytial expression of the arising ostfuntions used during the optimization will be summarized. The theoretial reasonsof the e�etiveness of EAs in dealing with the ill-posedness and non-linearity of theseproblems will be disussed, as well.The last part of this setion provides a representative overview, to the best of



Evolutionary Optimization as Applied to Inverse Sattering Problems 29the authors' knowledge, on the solution of inverse sattering problems through EAs.Although a fair omparison among various algorithms and di�erent implementations isimpratiable due to (a) the ustomization of eah EAs to the sattering senario athand, (b) di�erent metris adopted to de�ne the ost funtion to be optimized, and ()di�erent strategies at the ontrol level (e.g., di�erent stopping riteria), a summary ofthe performane of some EAs is reported in Tabs. I and II. More spei�ally, Table Ionerns with the EA-based approahes for qualitative imaging (i.e., the retrieval of theobjet's support and shape) of both ondutors and dieletri satterers. The values ofthe key omputational indexes (where available) are given and ompared: the number ofunknowns, N , the number of trial solutions at eah iteration, P , the number of iterationsneeded to ahieve the onvergene, Kend, and the orresponding total omputationaltime, Ttot. Analogously, the performanes of quantitative imaging (i.e., the retrieval ofthe dieletri properties within the investigation domain) tehniques based on EAs aresummarized in Tab. II.6.1. Inverse Sattering of Dieletri ObjetsLet us onsider a region, alled investigation domain Di, haraterized by a relativepermittivity ǫ(r) and ondutivity σ(r). Suh a region is probed by a set of V transverse-magneti (TM) plane waves, with eletri �eld ζv(r) = ζv(r)ẑ (v = 1, . . . , V ), r = (x, y),and the sattered �eld, ξv(r) = ξv(r)ẑ, is olleted at M(v), v = 1, ..., V , measurementpoints rm(v), m(v) = 1, ...,M(v), distributed in the observation domain Do.In order to eletromagnetially desribe the investigation domain Di, let usintrodue the ontrast funtion
τ(r) = [ǫ(r) − 1] − j σ(r)

ωε0
, r ∈ Di (46)where ω is the working angular frequeny and the time dependene ejωt is supposed.Under the hypothesis of a linear, isotropi, and non-magneti propagation medium, thesattered �eld ξv(r) is the solution of the following Helmholtz equation (see [10℄)

∇2ξv(r) − κ2(r)ξv(r) = −jωµ0J
v(r) (47)where κ(r) = ω

√
µoǫo [τ(r) + 1] is the wavenumber. Moreover, Jv(r) is the equivalenturrent density de�ned within Di and radiating in free-spae

Jv(r) = τ (r)Ev (r) (48)
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Ev being the eletri �eld in the presene of the satterer (i.e., the total �eld). Byimposing that ξv(r) satis�es the Sommerfeld's radiation onditionlimr→+∞

√
r

(
∂ξv(r)

∂r
− jκ(r)ξv(r)

)
= 0 , (49)the solution of (47) in a two-dimensional senario is given by the following Lippmann-Shwinger integral equations [35℄

ξv
(
rm(v)

)
=
(

2π
λ

)2 ∫
Di
τ (r′)Ev (r′)G2D

(
rm(v)/r

′) dr′ , rm(v) ∈ Do , (50)
ζv (r) = Ev (r) −

(
2π
λ

)2 ∫
Di
τ (r′)Ev (r′)G2D (r/r′) dr′ , r ∈ Di , (51)where λ is the bakground wavelength. Moreover, G2D (r/r′) is the two-dimensionalfree-spae Green's funtion given by

G2D (r/r′) = −j
4
H

(2)
0

(
2π

λ
‖r − r′‖

)
, (52)

H
(2)
0 being the seond-kind zeroth-order Hankel funtion.Inverse sattering tehniques are aimed at reonstruting the objet funtion τ(r)in Di starting from the knowledge of ξv (rm(v)

), rm(v) ∈ Do, and ζv (r). Unfortunately,the arising problem is non-linear and ill-posed [10℄. Moreover, a losed form solutionof the integral equations in (50) and (51) does not generally exist. Consequently, theinverse sattering problem has to be reformulated and e�etive inversion methodologieshave to be employed.Sine analytial solutions are rarely available, a numerial solution is then lookedfor. For instane, equations (50) and (51) are disretized aording to the point-mathingversion of the Method of Moments [137℄. The investigation domain Di is partitionedinto N square sub-domains Dn entered at rn, n = 1, ..., N . In eah sub-domain, a pulsebasis funtion is de�ned
Bn (r) =

{
1 if r ∈ Dn

0 if r /∈ Dn

, (53)and the ontrast funtion turns out to be expressed as follows
τ (r) =

N∑

n=1

τnBn (r) , r, rn ∈ Di (54)where τn = τ (rn), n = 1, ..., N . By assuming the inident �eld ζv and the total �eld
Ev onstant inside eah sub-domain Dn, the disrete form of the Lippmann-Shwingerequations is given by

ξvm(v)

(
rm(v)

)
=
∑N

n=1 τnE
v
n (rn)G2D

(
rm(v)/rn

)
, rm(v) ∈ Do , (55)
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ζvn (rn) = Ev

n (rn) −
∑N

p=1 τpE
v
p

(
rp
)
G2D

(
rn/rp

)
, rn ∈ Di , (56)where G2D (rm/rn) is the disretized form of the two-dimensional Green's operator.In order to ope with ill-posedness, the inverse sattering problem is usuallyreast as an optimization one de�ning a suitable ost funtion proportional to themismath between the measured �elds and their numerially evaluated ounterparts tobe minimized. Additional regularization or penalty terms an be also added to the ostfuntion in order to enhane the reliability of the inversion proess. The ost funtionalis a funtion of the trial solution f =

{
τ̃n, Ẽ

v
n; n = 1, ..., N

} and it an be expressed inmatrix form as follows [10℄
Φ
{
f
}

= α
PV

v=1‖ξv−Gv

EXT
eτ eE

v‖2

PV
v=1‖ξv‖2 + β

PV
v=1‖ζv− eE

v
+Gv

INT
eτ eE

v‖2

PV
v=1‖ζv‖2 (57)where Gv

EXT
and Gv

INT
are the M ×N external Green's matrix and the N ×N internalGreen's matrix, respetively. Moreover, α and β are two user-de�ned regularizationparameters. Furthermore, ζv is the N × 1 inident �eld array, the M × 1 entries of ξvare given by the measured sattered �eld samples, and Ẽ

v is the N × 1 array of theestimated total eletri �eld.The atual solution f opt is looked for as the N × 1 trial array that minimizes theost funtion (57)
fopt = arg{mink=1,...,K

[
Φ
{
f
k

}]} (58)where f
k

=
{
τ̃k, Ẽ

v

k

} is the trial solution at the step k-th iteration of the optimizationproedure.6.2. Inverse Sattering of Perfet Eletri CondutorsWhen dealing with PEC haraterized by a ondutivity σ → ∞, Equation (50)modi�es as follows
ξv
(
rm(v)

)
= −ωµ0

4

∮
γ
Jvs (r′)G2D

(
rm(v)/r

′) dr′ , rm(v) ∈ Do , (59)
Jvs (r) being the surfae urrent density de�ned only on the boundary γ of the unknownsatterer. Sine the following ondition holds true on the surfae of the PEC

ξv (r) + ζv (r) = 0 , r ∈ γ, (60)the sattering equation is given by
ζv (r) = ωµ0

4

∮
γ
Jvs (r′)G2D (r/r′) dr′ , r ∈ γ , (61)



32 A. Massa et al.and the unknown urrent Jvs (r) desriptive of the satterer (i.e., the ontour γ) isomputed through the inversion of the linear system (61) starting from the knowledgeof ζv (r). Likewise the inversion of dieletri satterers, the reonstrution proess isreast as the minimization of the following ost funtion
Φ
{
γ
}

=
PV

v=1‖ξv−Gv

EXT
J̃

v

s(γ)‖2

PV
v=1‖ξv‖2 (62)where γ is the parametrized representation of the satterer ontour γ.Beause of the non-linearity of the sattering problem and the presene of loalminima (i.e., false solutions of the inverse sattering problem) in the ost funtion (57)or (62), the quality and the reliability of the �nal solution mostly depends on thee�etiveness of the searh strategy.6.3. EAs-based Approahes for Inverse SatteringThe �rst multiple-agent evolutionary tehniques applied to solve mirowave inversesattering problems were the geneti algorithms. Chiu and Liu in [39℄ applied the

BGA for the 2D inversion of a PEC ylinder illuminated by an inident TM-polarizedplane wave. The 2D surfae-reonstrution problem has been reformulated into a mono-dimensional one by desribing the ontour of the ylinder as a funtion of the polar angle
θ

γ (θ) =

M/2∑

m=0

Amcos (mθ) +

M/2∑

m=1

Bmsin (mθ) (63)with θ ∈ [0, 2π], where the unknowns to be determined
f =

{
A0, A1, AM

2
, B1, B2, ..., BM

2

} (64)are the real oe�ients of the Fourier series expansion. The number of unknownparameters was set to N = M + 1 = 9 and various experiments onsidering stringsof length l = 8 × N and l = 10 × N have been performed to validate the EA-basedinversion method. As far as GA parameters are onerned, a population of P = 300individuals was hosen with pC = 0.8 and pM = 0.04. Suessively, the sensitivityof the reonstrution on the GA parameters has been analyzed in [40℄ by the sameauthors under TE illuminations. The outomes have been that for this kind of problemsa suitable hoie of the GA parameters was: a population dimension in the range
P ∈ [300, 600], a hromosome length of l ∈ [8, 16]×N bits, and probabilities of rossover



Evolutionary Optimization as Applied to Inverse Sattering Problems 33and mutation in the following ranges 0.7 < pC < 0.9 and 5 × 10−4 < pM < 5 × 10−2,respetively. Suh a GA-based inversion proedure was extended in [41℄ to image lossyor imperfetly onduting ylinders. More spei�ally, the GA was used to retrieve alsothe ondutivity of the unknown satterer by oding both the Fourier oe�ients of theshape and the value of the ondutivity of the objet.Following the guidelines in [39℄ for de�ning the inversion problem, an approahbased on a miro-GA has been presented in [79℄ to enhane reonstrution andonvergene performanes of standard GAs. A number of N = M + 1 = 5 unknownswas onsidered to desribe the ontour of the satterer through (63) and a population of
P = 5 individuals with l = 12×N hromosomes was used. The main advantages of the
µGA are that it employs a small population, thus reduing the overall omputationalburden, and assures a fast onvergene to sub-optimal solutions while maintainingsuperior searh ability.Takenaka and o-workers [154℄ proposed a volume-reonstrution approah toestimate widths and loations of parallel strips in 1D and 2D problems without any a-priori information on the number of strips. The investigation domain Di was disretizedin N = 20, 36 ells and either an empty (�ai = 0�) or oupied (�ai = 1�) state wasassigned to eah ell. If ai = 1, the ith ell is oupied by a metalli strip, ai = 0otherwise. It is worth pointing out that, the original problem was reformulated as thede�nition of a binary map to allow a straightforward use of the BGA. The populationdimension was set to P = 50 with �xed rossover probability pC = 0.8 and variablemutation probability in the range pM ∈ [0.01, 0.5]. The approah was extended in[100℄ to retrieve loations and two-dimensional ross setions of onduting ylinders.To improve the onvergene rate for a 2D disretization of the senario under test, austomized rossover, alled retangular blok rossover, was developed to e�ientlydeal with a binary reonstrution map. Moreover, a larger population with P = 200individuals was onsidered beause of the wider solution spae (N = 225). In [173℄, asimilar BGA-based approah has been tested against Ipswih experimental data-set toreonstrut metalli objets. The investigation domain Di was disretized into N = 400ells and the GA parameters were set to P = 100, pC = 0.8, and pM = 0.2.To avoid the quantization error related to the disretization of the real oe�ientsin (63), Qing and o-workers proposed in [124℄[125℄[127℄ a strategy based on a RGA.For omparative purposes, some benhmark examples previously addressed in [39℄ withthe BGA have been onsidered. An experimental validation of the method has been



34 A. Massa et al.presented in [128℄, as well.In an alternative fashion, the ontour of the onduting ylinders has beenapproximated in [129℄ by means of loal shape funtions mathematially expressed interms of losed ubi B-splines
γ (θ) =

M−1∑

m=0

ρm

(
M

2π
θ −m

)
, θ ∈ [0, 2π] (65)where eah segment ρm is a linear ombination of four ubi polynomials Qi (t),

i = 0, ..., 3, as follows
ρm (t) = pm−1Q0 (t) + pmQ1 (t) + pm+1Q2 (t) + pm+2Q3 (t)

pm−1, ..., pm+2 being the ontrol points. In this ase, the parameters to be optimized arethe set of ontrol points
f = {p0, ..., pM−1} . (66)Dealing with these problems, the RGA was used with probability oe�ients equal to

pC = 1.0 and pM = 0.1. More reently, the representation of PEC ontours usingubi splines has been extended to deal with three-dimensional (3D) eletrially largeonduting pathes [141℄.Previous referenes and the obtained results point out that theGA-based tehniqueshave demonstrated to work e�etively in retrieving strong satterers in free-spaethrough the minimization of the mismath between the measured and the reonstrutedsattered �eld. In addition, the robustness of the GA in suh a framework has beenproved sine the onverge to the global optimum has been obtained with high probabilitydespite a rough initialization of the iterative proess. More reently, an innovativestrategy based on Geneti Programming (GP ) [88℄ has been presented in [163℄. A newgeometry-enoding sheme was introdued and a tree-shaped hromosome was used todesribe the shapes of the ylinders as the union and subtration of onvex polygons.In [65℄, the binary GA was also applied to both the detetion of irular ondutingylinders buried in an homogeneous dieletri medium and the dieletri pro�le retrievalof layered media. A similar approah has been onsidered in [101℄ to reonstrut theeletrial parameters (ǫi, σi, µi, i = 1, ...,M) of a multilayered radome of �nite size ∆.In this ase, the hromosome was the binary representation of the following unknownarray
f = {ǫ1, σ1, µ1, d1, ..., ǫM , σM , µM , dM} (67)



Evolutionary Optimization as Applied to Inverse Sattering Problems 35being ∑N
n=1 dn = ∆. To inrease the auray of the reonstrution and improve theonvergene rate, an adaptive hromosome struture was hosen in order to iterativelyadjust the existene range of eah parameter.An inverse sattering tehnique for the detetion of perfetly onduting ylindrialobjets buried in a half-spae have been desribed in [38℄. An improved �steady-state�

GA (SS − GA) ‖ was used to redue the omputational burden and a non-uniformprobability distribution was introdued to ontrol the generation of new individualsthrough rossover and mutation. The shapes of the buried objets have been representedonsidering both Fourier series (63) and Cubi-splines (65) representations. Eahunknown was oded with l = 20 bits string and a population of P = 100 individualswas hosen. Moreover, the following setup was hosen: pC = 0.05 and pM = 0.5. Ifompared to standard GA, the values of the ontrol parameters, turn out di�erent inmagnitude. This is due to the steady-state GA implementation sine only a portion ofnew individuals is generated through rossover and mutation, while the whole populationis updated in standard GA. In [38℄, it has also been veri�ed that even for an initialguess far away from the optimal solution the omputational ost to reah the globalsolution is muh less in SS − GA than for simple GAs. Moreover, a further redutionof the omputational time was obtained running the optimization proess in parallel ona multiproessor luster system.In the framework of subsurfae imaging, a GA-based approah for the retrieval ofthe dimension and loation of a 3D buried objet has been presented in [93℄. A parallelbinary GA proedure has been onsidered to speed up the �tness evaluation omputedthrough the FDTD (Finite-Di�erene Time-Domain) method. More in detail, the ostfuntion has been de�ned as the di�erene between the measured and the alulated s11parameters on a frequeny band from νL up to νH at the port of the probing antenna
Φ̂ = 1 −

√∑νH

ν=νL

[
smeas11 (ν) − scalc11 (ν)

]2
√∑νH

ν=νL
[smeas11 (ν)]2

. (68)As far as the GA is onerned, a population of P = 50 individuals and pC = 0.5 and
pM = 0.2 were hosen.Besides shape reonstrution problems, the reonstrution of the dieletriproperties of unknown objets has been faed in [23℄ by means of a quantitative (pixel
‖ In steady-state GAs, only a portion of the population is updated and a suitable replaement strategyis onsidered.



36 A. Massa et al.based) mirowave imaging tehnique. A binary GA with Q = 256 quantization levelshas been used to desribe the real-valued unknowns. The inverse sattering problemhas been solved in the framework of the Born approximation to redue both the non-linearity of the desriptive sattering equations as well as the total number of unknowns.The hromosome to be optimized was
f = {τ1, τ2, ..., τn, ..., τN} (69)where N = 900. The simulations were arried out with a population of P = 100individuals and rossover and mutation probability oe�ients were set to pC = 0.7and pM = 4 × 10−4, respetively. Moreover, a sensitivity analysis was performedvarying the ontrol parameters in the following range: P ∈ [40, 200], 0.6 < pC < 0.8, and 4 × 10−4 < pM < 10−3. It has been proved that for small-sized populationsthe quantitative errors inrease as for either low value of pC or high pM . The sameoptimization proedure has been validated in [115℄ against experimental data aquiredwhen onsidering highly-ontrasted bodies. Sine, the Born approximation annot beapplied, the unknown vetor was omposed of both the ontrast funtion τ and the total�eld Ev in the investigation domain
f = {τ1, τ2, ..., τN , Ev

1 , E
v
2 , ..., E

v
N ; v = 1, ..., V } . (70)Beause of the ontinuous nature of the parameters to be optimized, a real-oded

GA has been proposed in [24℄ and signi�antly superior performanes with respet tothe BGA have been attained [25℄. The potentialities of the RGA have been furtherpointed out and the methodology extended to hybrid-oded hromosomes in order todeal with both nondestrutive testing and evaluation (NDT −NDE) problems [26℄ andbiomedial imaging [29℄. More spei�ally, the unknowns were expressed by means ofthe following vetor
f = {x0, y0, L, W, θ, E

v
1 , E

v
2 , ..., E

v
M ; v = 1, ..., V } (71)oding through binary strings the values of the baryenter (x0, y0), the length (L), thewidth (W ), and the orientation (θ) of either a rak in NDT − NDE problems or apathology in ase of biomedial imaging. Di�erently, a �oating-point representationhas been used to ode the unknown �eld values. Reliable values of the probabilityoe�ients for the RGA turned out to be pC = 0.7 and pM = 0.4.In NDT − NDE problems, the appliation of GAs starts with a BGA proposedin [2℄ to identify the qualitative nature (i.e., length, width, orientation, and baryenter)



Evolutionary Optimization as Applied to Inverse Sattering Problems 37of a rak on the surfae of an objet. In order to takle more omplex diagnosisproblems, an innovative desription of the rak based on a suitable parameter seletion(71) as well as a more e�etive exploitation of the a-priori information has beenonsidered in [116℄[30℄[7℄ to redue the number of problem unknowns and enable ane�ient use of HGAs. Although e�etive, these approahes onsidered satteringon�gurations haraterized by the presene of only a single defet. To overomesuh a limitation, two enhaned GA-based optimization tehniques able to deal withmultiple defets in a dieletri host medium have been proposed in [8℄. Both methodsadopted a multirak variable-length hybrid oding. The former strategy was based ona hierarhial implementation, whih onsiders a set of parallel sub-proesses, eah onelooking for a solution with a �xed number of raks. The other deals with a singleoptimization proess aimed at retrieving the best reonstrution among di�erent rak-length solutions. Beause of the use of an ad-ho operator to orretly reombine thedisrete (binary) and ontinuous part of the hromosome, the ontrol probabilities werekept onstant to pC = 0.7 and pM = 0.4 for eah portion of the hromosome struture.Unlike [8℄, also the reonstrution of the dieletri properties of the defets has beenaddressed in [9℄.Similar onepts have been exploited to deal with biomedial imaging problems asdisussed in [29℄. The hromosome struture was still hosen as a two-part variable-length string. In suh a ase, the variable-length struture was used beause of thevariable number of disretization sub-domains oupied by the pathology where theunknown �eld has to be omputed.A parallel SS − GA integrated with a FDTD approah has been presented in[167℄[140℄ for early aner detetion. Parallel omputing was onsidered due to the largeomputational burden of the FDTD-based approah aused by the �ne disretizationof the investigation domain (N = 600 × 600 ells).As regards to the e�orts devoted to inrease the omputational e�ieny of
GA-based inversions, ad-ho versions or spei� operators have been designed.Representative examples of a wide literature are the use of nonuniform probabilitydensities in BGAs [37℄ and a paraboli rossover operator for RGAs [18℄.Despite the suess of GAs-based approahes in several area of eletromagnetiand inverse sattering, more reently other EAs have shown better performane. Dueto its faster onvergene with respet to GAs, the DE was alternatively used to faeeletromagneti inversion and it has been �rstly applied to image irular-ylindrial



38 A. Massa et al.ondutors and tunnels [105℄[106℄. Later, the DE was used to solve benhmark problems[130℄ and its performanes were ompared to the solutions from the RGA in [127℄. Apopulation of P = 5×N individuals was onsidered. Moreover, the rossover probabilityand the mutation intensity were set to pC = 0.9 and ǫ = 0.7, respetively. Without apriori information on the number of ylinders within the investigation region, the DEstrategy with individuals in groups (GDES) has been proposed [131℄. The key ideaof the GDES is to organize the population into di�erent groups. The individuals ofthe same group ode the same number of ylinders and have the same hromosomelength. Suessively, an innovative DE-based algorithm was proposed by Qing [132℄.In the dynami DE strategy (DDES), a larger (virtual) population has been hosen tospeed up the onvergene. The new individuals generated at iteration k + 1 ompeteduring the same iteration with their parents. As a onsequene, the mating operationturns out being more sensitive to the fast hanges of the population with a onsequentenhanement of the onvergene rate.Beause of the strong dependene of the DE performane on both its ontrolparameters and the ost funtion to be optimized, an extensive alibration of thepopulation size, P , the rossover probability, pC , and the mutation intensity, ǫ, has beenarried out in [133℄ spei�ally for imaging problems onerned with PEC ylinders infree spae. More reently, a omparative study on the e�ieny of DE and PSO whenapplied to the shape reonstrution of PEC satterers has been reported in [134℄.In [97℄, an approah for the detetion of 2D buried inhomogeneities has beendesigned by ombining two DE-based optimization tehniques. More spei�ally, theDE/1/best/bin version (pC = 0.8 and ǫ = 0.6) was used to rapidly loate the attrationbasin of a minimum and suessively the algorithm swithed to the DE/1/rand/bin(pC = 1.0 and ǫ = 0.6) to avoid the trial solution be trapped in a loal minimum.
DE has been also applied to the 3D detetion of unexploded ordnane (UXO) [34℄and lossy spherial objets buried in the subsoil [6℄. In this latter ase, a modi�ed DEalgorithm was onsidered where multiple populations evolve in parallel analogously to[131℄.More reently, EAs inspired by the foraging behavior of swarms have proved tooutperform previous EAs in dealing with a set of imaging problems also related tohigh-dimensional ontinuous spaes.A standard PSO algorithm has been used in [145℄ to reonstrut 1D permittivityand ondutivity pro�les in lossy and inhomogeneous media. Beause of its ability in



Evolutionary Optimization as Applied to Inverse Sattering Problems 39exploring the parameter spae and avoiding wrong solutions thanks to the ooperativebehavior of the agents, the PSO has been also pro�tably onsidered for thereonstrution of 2D dieletri satterers [31℄[49℄[50℄[62℄. The enhaned onvergenerate of the PSO with respet to the RGA has been assessed both in [49℄ and [50℄.Moreover, the alibration of the PSO ontrol parameters arried out in [49℄ has provedthat the most suitable setup (in terms of derease of the ost funtion in a �xed amountof iterations) is: ω = 0.4 and C1 = C2 = 2.0, in aordane with the outomes of otherpublished papers (see Setion 5.1.3). Moreover, the ratio N
P
∼= 5.5 has been dedued asa good rule of thumb for the size P of the swarm for this lass of optimization problems.The retrieval of 3D lossy dieletri objets has been addressed in [80℄[81℄. Due tothe limited set of independent sattering data and the dimensionality of the problem athand, an adaptive multiresolution tehnique was integrated into the swarm evolution toredue the searh spae and make more e�ient the PSO-based minimization [51℄.In order to deal with high-dimensional spaes, an alternative approah based on a

µPSO, employing a redued swarm in analogy with the µGA, has been also presentedin [83℄. Otherwise, to avoid the premature onvergene of the standard version of the
PSO, modi�ed soial strutures have been envisaged [82℄. More spei�ally, besidesthe standard version of the PSO (i.e., that presented in this work), whose struture isknown as gbest topology sine the information are instantaneously ommuniated to thewhole swarm, in [82℄ other topologies are onsidered in order to limit the ommuniationbetween the partiles [99℄ to prevent premature onvergene.The PSO has been also suessfully applied in industrial and biomedial imagingproblems. For example, a swarm-based reonstrution algorithm for the detetion andharaterization of multiple inlusions in onrete strutures has been presented in [156℄.Moreover, a PSO-based tehnique for early aner detetion has been disussed in [170℄.In the framework of swarm based approahes, only preliminary results are available(e.g., [118℄) onerning the appliation of the ACO to inverse sattering even thoughan interesting hybridization with the linear sampling method (LSM) has been reentlystudied in [20℄ to inspet 3D homogeneous dieletri satterers.As far as hybrid algorithms are onerned, a µGA and a RGA oupled with aloal searh method have been presented in [166℄ and in [126℄, respetively, for imagingperfetly onduting ylinders. In [174℄, the GA was ombined with a tabu mehanismto avoid a (repetitive) sampling of poor regions within the searh spae. Following thesame guidelines outlined in [163℄, the authors ombined a GA-inspired optimization



40 A. Massa et al.with a loal searh method [164℄ reduing the number of ost funtion evaluations toreonstrut bowtie-shaped onduting ylinders from 1.17×105 [163℄ down to 5421. Anhybrid-GA has been also proposed in [66℄ to retrieve the dieletri pro�le of a layeredmedium.In the framework of quantitative imaging problems, the permittivity reonstrutionof 2D objets with large size and high ontrast has been arried out in [114℄ by ombininga Levenberg-Marquardt algorithm with the GA. To speed-up the onvergene, a Polak-Ribière onjugate gradient (CG) has been merged into a global optimization loopperformed with a RGA in [24℄[116℄[117℄. Furthermore, a parallel implementation ofsuh a hybrid tehnique has been detailed in [98℄.As regards to memeti algorithms, they have been used to detet ylindrialinhomogeneities starting from phaseless data obtained by syntheti as well asexperimental measurements [28℄. Moreover, a MA-based approah has shown toe�etively work for the eletromagneti reonstrution of buried objets [27℄[32℄, aswell. Beause the heavy omputational burden, MAs appliations are usually limitedto low-dimensionality problems.7. Summary and ConlusionsIn this paper, a review of Evolutionary Algorithms as applied to inverse satteringproblems has been reported. After an introdution on the genesis of EAs (Set. 2), themost representative and widespread evolution-based tehniques have been desribed ina ommon framework and by means of a uniform notation (Set. 3) to point out themain similarities and di�erenes among the various implementations detailed in Set.4. Some theoretial hints onerning the onvergene properties and the parametersseletion have been also disussed (Set. 5). Setion 6 has been devoted to presentstate-of-the-art appliations of EAs to eletromagneti imaging problems. Suh a ritialdisussion has pointed out that the suess of EAs in dealing with nonlinear ill-posedinverse sattering problems mainly relies in a suitable set of answers to the followingkey-issues:
• a suitable representation of the unknowns and a proper hoie of the EA ismandatory starting from a areful analysis of the problem at hand and its numerialdesription (i.e., the ost funtion). Aording to the �No free lunh theorem� [165℄,the �optimum� algorithm does not exist sine the average performane of any pair



Evolutionary Optimization as Applied to Inverse Sattering Problems 41of algorithms aross all the possible problems is idential;
• physial onstraints need to be taken into aount to enhane the e�etivenessof EAs by reduing the area of the solution spae to be sampled during theoptimization;
• the a-priori knowledge on the senario under test needs to be pro�tablyinorporated into both the solution representation and the evolutionary operatorsto guide the searh proess and inrease its onvergene rate;
• great are must be exerised in de�ning the ost funtion sine it represents theonly link between the physial problem and its numerial ounterpart. Failing suha de�nition prevents the atual solution is reahed at the onvergene of the EA toits global optimum;
• the alibration of the evolutionary proedures needs to be arefully performed tofully exploit the EA potential. On the other hand, it should be stressed that nosingle-test-ase alibration is neessary, but the tuning of the ontrol parametersmust be arried out on a lass of problems (e.g., imaging of dieletri objets) toavoid �over�tting� and onfer generalization features on the EA;
• the feasibility and reliability of an EA must be assessed �rst on a benhmark of testfuntions and then in omparison with other deterministi and stohasti mirowaveimaging tehniques.8. Open Problems and New Researh DevelopmentsAs far as the appliation of EA-based mirowave imaging tehniques to inversesattering problems is onerned, it should be �rst pointed out that the developmentof evolutionary tehniques has reeived a great boost in the last twenty years duethe ontinuous enhanement of the omputational apabilities of modern personalomputers, but also for their �exibility and features usually very suitable to fae withthe ill-posedness and nonlinearity of the arising optimization problem. As a matter offat,
• EAs are multiple-agent optimizers;
• EAs are global and hill-limbing algorithms thanks to their stohasti nature;
• EAs allow the straightforward introdution of a-priori information or onstraints;
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• EAs are able to deal with �oating-point and/or disrete and/or binary unknownssimultaneously;
• EAs are intrinsially parallel algorithms;
• EAs are easily integrated with loal optimizers.However, some other drawbaks limit their e�etiveness besides typial negative issuesof inverse sattering problems. For example,
• the omputational burden (espeially when moving towards 3D senarios);
• the low onvergene rate when lose to the global solution although in its attrationbasin;
• the dependene on the parametrization of the problem unknowns;
• the sensitivity to the alibration parameters.As regards to the omputational issues, some reeipts to limit these drawbaks onsist in:(a) reduing the number of problem unknowns by reurring to a suitable parametrizationof the satterer under test [26℄[30℄ or onsidering a multi-resolution strategy [50℄[51℄ or amulti-stage reonstrution [108℄; (b) hybridizing the EA with a deterministi optimizer[114℄[24℄[98℄; () omputing at eah iteration the seondary unknowns (i.e., the �elddistribution within the investigation domain) by means of fast forward solvers (see [36℄and the referene therein); (d) exploiting the expliit parallelism of EAs through aparallel implementation [98℄.With referene to the EA parallelization (d), whih has been left out in themain body of the paper, it is well known that one of the most attrative featuresof nature-inspired optimization tehniques is their parallelism that allows an e�etivesampling of the solution spae. Besides the impliit parallelism still exploited in serialimplementations, the parallelism of an EA is also guaranteed by its multiple-agentnature. As a matter of fat, a number of sample points equal to the population dimensionis proessed at eah iteration to e�etively look for the global optimum. In order tofully exploit also this harateristi, a parallel implementation of the iterative proedurewould fully exploit also this harateristi enabling (i) a parallel and simultaneous searhfrom multiple points in the solution spae; (ii) a more e�ient searh, even when noparallel hardware is available; (iii) a higher e�ieny than sequential implementation,and (iv) a speedup due to the use of multiple CPUs.



Evolutionary Optimization as Applied to Inverse Sattering Problems 43Despite these envisaged advanes, it should be also pointed out that the use of aparallelized (bare/hybrid) EA is not di�erent from other parallel methodologies and itse�ieny largely depends upon the system arhiteture, the parallel exeution overhead,the number of new agents reated at eah iteration, the population struture, and theparallel granularity (i.e., the CPU time of the steps being exeuted in parallel). Theseadvanes an be reahed only if:
• a strutured population [21℄ is taken into aount to obtain not only a fasteralgorithm, but also a superior numerial optimization able to pro�tably exploitthe multi-agent nature of the EA;
• some agents do a di�erent loal searh (deentralized loal optimization) in order toimprove the onvergene rate of the iterative proess;
• the evolution proess expliitly keeps memory of the population evolution in orderto redue/avoid the runtime of the ost funtion evaluation for similar/equalindividuals;
• the evolutionary operators are applied in parallel.As regards to the enhanement of the onvergene rate through the redution ofthe extension of the solution spae to be sampled during the optimization, thenumber of iteration Kend evidently redues in orrespondene with an inrease/e�ient-exploitation of the a-priori information. Indeed, an additional information on theloation of the attration basin of the global solution usually helps the evolutionaryproedure in loating the atual solution as well as the EA designer in de�ning theoptimal parametrization of the problem unknowns.Another way to save omputational resoures when applying EAs to inversesattering problems is to use a suession of inversion proedures, eah one onernedwith a number of unknowns smaller or equal than the information ontent of thesattering data in order to �simplify� the ost funtion to be optimized. The redutionof the omplexity of the ost funtion an be yielded in di�erent ways aording tosome reently developed strategies. In suh a framework, it is worthwhile to mentionmulti-resolution methods [50℄[51℄ devoted to perform an iterative syntheti zoom overthe region where the satterer is supposed to be loated and multi-stage reonstrutions[108℄[20℄ where eah inversion is aimed at identifying di�erent harateristis of theunknown satterer until its omplete desription/knowledge.
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Algorithm Object Geometry N P

N
Kend T ime [sec] PC Reference

BGA PEC 2D 9 ∼ 33 − ∼ 1.8 × 103 Sun Sparc 20 [39℄
BGA PEC 2D 36 ∼ 1.4 173 330 Sun Sparc 20 [100℄
BGA PEC∗ 2D 400 0.25 − − − [173℄
BGA PEC 3D 6 − 30 ∼ 6.7 × 104 Pentium 4 [141℄
RGA PEC 2D 8 32 35 ∼ 1.6 × 104 IBM P − 133 [127℄
RGA PEC∗ 2D 6 50 40 ∼ 8.6 × 104 MIPS R10K [96℄
µGA PEC∗ 2D 10 − − ∼ 1.7 × 104 Sun Sparc 20 [166℄
µGA PEC 2D 5 1 1000 ∼ 3.5 × 103 Pentium 4 [79℄

GA/CG PEC∗ 2D 5 40 220 − − [174℄

GA/CG + tabu PEC∗ 2D 5 40 75 − − [174℄

DE PEC 2D 5 5 40 − − [106℄

DE PEC∗ 2D 6 ∼ 7 − − HP OmniBook XE3 [130℄

DE PEC 2D 16 10 ∼ 160 ∼ 4 × 103 HP OmniBook XE3 [130℄

DE (GDES) PEC 2D 16 ∼ 18 23 ∼ 1.2 × 103 Pentium 4 [131℄

PSO PEC 2D 10 30 200 − − [134℄

BGA conductor 2D 10 30 − − − [41℄

RGA dielectric 2D 6 50 20 ∼ 8.6 × 104 MIPS R10K [96℄

DE dielectric 2D 5 5 30 − − [106℄

TableI.Computationalindexesof
E
Asappliedtotheshapereonstrutionofmetalli

andhomogeneousdieletriobjets.
Nisthenumberofunknownparameters,

Pisthe
numberoftrialsolutionsforeahiteration,

K
en
d isthenumberofiterationat

onvergene.Theasterisk
∗meansinversionofexperimentaldata.
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Algorithm Object Geometry N P

N
Kend T ime [sec] PC Reference

BGA dielectric 2D 900 − 2000 270 Pentium II [23℄
BGA dielectric 2D 400 0.15 8000 − − [25℄
RGA dielectric 2D 810 0.2 10000 ∼ 104 Pentium [24℄

RGA dielectric 2D 500 − 8000 ∼ 1.2 × 103 − [50℄

GA/CG dielectric 2D 810 0.2 3400 ∼ 2 × 104 Pentium [24℄

PSO dielectric 2D 500 0.05 8000 ∼ 7.6 × 102 − [50℄

PSO† dielectric∗ 2D 2664 7.5 × 10−3 − 1.75 × Kend − [50℄

micro − PSO dielectric 2D 125 0.04 500 − − [83℄

PSO† dielectric 3D 3250 ∼ 0.04 5100 ∼ 2.1 × 104 − [51℄

TableII.Computationalindexesof
E
Asappliedtothereonstrutionofthedieletri

distribution.
Nisthenumberofunknownparameters,

Pisthenumberoftrial
solutionsforeahiteration,

K
en
d isthenumberofiterationatonvergene.The

asterisk
∗meansinversionofexperimentaldata.Thesymbol†indiatestheuseofa

multi-resolutionstrategy.


