
Evolutionary Optimization of Societies

in Simulated Multi-Agent Systems

Christoph Oechslein, Alexander Hörnlein, Franziska Klügl

University of Würzburg, Department for Artificial Intelligence,
{oechslein|hoernlein|kluegl}@informatik.uni-wuerzburg.de

http://ki.informatik.uni-wuerzburg.de/

Abstract In this paper we show how to use evolutionary optimization in multi-agent systems
with simple, non deliberative agents to evolve successful interaction in societies, mostly for task
allocation based problems.
The presented generic optimization scheme – which is implemented based on the multi-agent
simulation tool SeSAm – was used to model prehistoric ant species. The idea was to show how
solitary individuals evolve to societies. Results from these experiments are given. Finally future
plans are discussed and evaluated.

Introduction

Simulation is a widely accepted tool to model
systems and to use this modeled system for
answering questions. These answers of the
modeled artificial system can be used to pre-
dict the behaviour of the real system which is
one way simulation models are used.

In multi-agent simulations many intelli-
gent entities (agents) interact among each
other and with a special entity, the world.
Often the spatial relationship between the
agents is an important feature in these mod-
els. An example is an ant colony, where the in-
teracting ants are agents which cooperatively
try to find and hunt down prey or to exploit
other food sources.

Cooperation is especially important for
multi-agent systems with simple, non deliber-
ative agents. In their intelligent and massive
interacting lies the power: ’The whole system
is more than the sum of its parts’. Because
modeling these ’organizations’ – which are
in our understanding more ’task allocation’
problems – is a rather complex task, an idea
is to use an automated method to find good
organization structures for a given problem.
Based on an evaluation function, this process
can be transformed into an optimization pro-

cess, so the process of determining organiza-
tional structures can be solved by a generic
optimization component.

In the next section a few approaches to in-
clude optimization in a simulated multi-agent
system are sketched. After that the details
of the implementation and evaluation experi-
ments are given.

Optimization in Simulated

Multi-Agent Systems

In the literature the optimization of simulated
multi-agent systems is hardly handled, opti-
mization is often just seen in the context of
general simulation, as e.g. in [8]. These generic
approaches can also be used for optimizing
multi-agent simulations. One simulation run
with certain variable settings is seen as one
point in the search space with an associated
evaluation value (response-surface of the sys-
tem). In this space ’normal’ search (like Hill-
climbing) or evolutionary inspired algorithms
[8, 2] try to find optimal (good) values.

In these approaches a simulation run is
treated as a black box. This view has draw-
backs because often the specific simulation ex-
periments could be terminated due to foresee-
able bad evaluation value. Such a termination

1

depends on the evaluation function which is –
in these approaches – not available to the sim-
ulator. This kind of early termination is only
applicable if the evaluation function is not de-
fined for a complete simulation run or if there
are additional heuristics available.

In our opinion this early termination is
crucially for using optimization in multi-
agent systems, mainly due to the very time-
consuming simulation runs (several hours).
Another reason is the often non-deterministic
behaviour which requires few runs to get sta-
tistically concrete predications. On the other
hand the evaluation criterium is mostly based
on single agents or on an aggregate function of
individual fitness, thus determining the time
for an early termination is easily possible.

But there are also other approaches using
optimization in multi-agent systems. Some-
times we want to improve the performance
of a single agent (or a group of agents) so
one could optimize during the simulation run.
This is – as mentioned before – not possible
for all evaluation functions. The optimization
of an individual single agent is possible at dif-
ferent levels, if the behaviour of the agents
changes during its lifetime, it is learning, if
agents can reproduce and the offsprings are
different, it is evolution.

Our goal for the additional optimization
component to our simulation modeling tool
SeSAm was to give the modeler of simple
non deliberative agents an easy tool to opti-
mize. Mostly the complex interaction needed
in these societies are an optimization goal.
But before presenting concrete details of our
optimization solution the basic simulation en-
vironment is sketched.

SeSAm

The SeSAm (Shell for Simulated Agent
Systems, see [6]) provides a generic environ-
ment for modeling and experimenting with
agent-based systems. We specially focused on
providing a framework for the easy graphical
construction of complex models.

As a graphical interface for implementing
a model, built-in animation capabilities, tools
for collecting and analyzing protocol data,
etc. are provided, even scientists without tra-
ditional programming experience are able to
build and experiment with multi-agent mod-
els. In Fig. 1 the structure of the environment
is presented. In principle all of the provided
tools are domain-independent, but in order to
facilitate modeling the system can be adapted
to a given domain.

Simulator

Graphical
Modelling

Animation

Analysis

Environment

Protocol data

positions,...

Deklarative and procedural
domain-knowledge

Agent-Behavior

Figure 1: The SeSAm Simulation environment.

An agent is specified by the following three
categories:

1. Sensoric abilities and internal variables,
2. the action selection procedure including

all internal representation used for it and
3. the effectoric abilities.

The most important points for this paper is
the action selection architecture. Each agent
has a current activity which determines the
actions it executes on itself and on its environ-
ment once every time step. The termination
of the current activity is driven by specified

2

termination rules. The rule based transitions
between different activities and the activities
themselves can be formulated like every other
part of the behavior model using tools as de-
picted in Fig. 2 and forms an activity graph
as shown in Fig. 4.

Figure 2: Graphical representation of activities and
transitions can be used as a powerful tool
for editing and navigating.

As can be seen in the last figures rules can
be parameterized by variables of the agents,
which plays an important rule in the evolution
component described in the next section.

The Evolution Component

As mentioned above optimization is crucial
to the design process of multi-agent systems,
since the exact – quantitativ – interactions
between agents are hard to specify.

The purpose of this component was to
provide a generic tool to help modelers run
their own evolution experiments, and to let
the evolution find quantitative relationships.
The first goal is particularly important for us
as we are cooperating with researchers in bi-
ology. These experts use SeSAm for building
models, to answer questions, like ’How did
evolution manage to find organizational struc-
tures as found in ant colonies?’.

Back to the design an important ques-
tion is how the search space of the genetic
search should be structured. There are mainly
two distinct approaches: Using some kind of
atomic values to parameterize a given solu-
tion or find the whole solution. The first ap-

proach is the most common in GA[3] or ES[1],
the second one is used by GP[7]. To optimize
societies in the first approach the modeler
would build a parameterized activity graph
where evolution tries to find good parameter
settings. In the second approach the modeler
would only specify what action and sensors
the agent could have and the evolution tries
to find the whole activity graph.

GP evolution has the advantage of having
the possibility to find all solutions to a prob-
lem, but that’s also the handicap of this ap-
proach since it needs a lot of resources (com-
puter time and space) to evaluate solution and
the resulting solution is often hard to under-
stand.

The implemented evolution component
operates on numbers like ES, i.e. one gene
value is a number which can be used in the ac-
tivity graph, e.g. in transition rules (if ([gen

value 1] > 0.5) → queen-task). So the
organizational structure – mainly the task al-
location structure – is first encoded by the
modeler in the parameterized activity graph
and the evolution tries to find good parameter
settings.

There exist a few recombination operators
and a few mutation possibilities which are ex-
plained in the following sections. The calcula-
tion of the fitness is by ’surving of the fittest’,
i.e. an agent can mate and die either is respon-
sible to the modeler. She has to incorporate
these actions in the model (as you can see in
Fig. 4). The modeler could also implement a
combination of fitness calculation and ’surv-
ing of the fittest’ by modeling more selective
choice of the mating partner.

Mutation in biology and also in computer
science is the local search part of the evolu-
tion. Therefore the mutation operator should
not change the gen ’too much’. This is accom-
plished allowing smaller changes with higher
probabilities and larger ones with less, i.e.
the mutationmodification is distributed us-
ing a normal probability function as shown in
Fig. 3. The standard deviation of this normal
distribution is also a part of the genom of an

3

agent as in standard, ’modern’ ES strategies
(and also in other see e.g. [4] for a survey) al-
lowing the evolution to find the appropriate
step size for mutation.

543210-1-2-3-4-5

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

x

exp(x^2*(-1))

higher
bound

current
value

lower
bound

standard
deviation

Figure 3: Distribution for mutating the value of a
gen.

With this component a few scenarios were
implemented, the most important and broad-
est is described in the following. More about
the experiments can be found in [5].

The Ant Experiment

In this scenario the agents were given a broad
repertoire of behaviours. Each agent could
’hunt’, ’mate’, ’fight’, ’take care of brood’ but
the preference to the several behaviours is
given by a few inherited variables. Among
other genes like ’when to start laying eggs’
or ’at what level of energy eating brood’, the
most important genes are the following (also
look at Fig. 4):

queen factor: How often is the agent in this
part of the activity graph.

soldier factor: How often the ant leaves the
nest to hunt and how good is it at fighting.

nurse factor: Determines when to take care
of brood.

Since being good at all things always has
advantages, the disadvantages of being an

allrounder is the added complexity in the
body/brain with is modeled by needing more
energy to construct such an offspring. Each
factor has a lower bound – ants with values
below are completely unable to perform the
corresponding behaviour.

Experimenting with this model showed
the emergence of spots which some affiliated
ants. In these ’nests’ also occur specializa-
tion: There exist plain queens and plain non
queens. In Fig. 5 the timeline of the change in
the queen, soldier and nurse factor is given.
The queen factor tends to the lower bound,
which means that only 10% of offsprings of a
queen are itself queens. The nurse and hunt
factor stay at the higher bound, meaning all
ants can take care of brood and go hunting.
In other runs we noticed the correlation be-
tween low hunt factor and high distance be-
tween nests or high pray density. Also if the
pray density is high the nurse factor declines.

These simulation runs showed, that under
particular circumstances it is more profitable
for individual ants to not engage in reproduc-
tion and instead to work for the colony. More
experiments and the tighter inclusion of biol-
ogists should validate the model and give us
the chance to reason better about the results.

Results & Discussion

Modeling societies in multi-agent systems is
hard (but necessary) – particularly with sim-
ple, non deliberative agents –, since the in-
teractions between the agents are compli-
cated. Our approach is to use optimization
to automatically build successful societies. We
explained the generic method used in ’nor-
mal’ simulation for optimization and argued
– mainly due to the long duration of one sim-
ulation run in multi-agent systems –, that an
other approach could be more fruitful.

We introduced shortly our multi-agent
simulation tool SeSAm, in this tool it is pos-
sible for the domain expert to model graphi-
cally. Afterwards we explained the added evo-
lution component, which enable individual

4

optimization during a simulation run. We use
a ES evolution method with ’survival of the
fittest’ as selection strategie. It tries to opti-
mize a given parameterized activity graph.

The component was tested and evaluated
in a biological inspired model, where the evo-
lution from indivual ’ants’ to colonies of ant
with division of labor emerged. The tests was
very promising and our cooperation with re-
searchers in biology will be fruitful. Also other
kinds of optimization levels in multi-agent
systems should be explored, like the generic,
the learning or the static approach. Static
approach would be optimization of a model
without simulating.

References

[1] Bäck, Th. and H.-P. Schwefel: Evolutionary
computation: An overview. In Proceedings of the
Third IEEE Conference on Evolutionary Compu-
tation, pages 20–29. IEEE Press, Piscataway NJ,
1996.

[2] Glover, F., J. Kelly, and M. Laguna: New ad-
vances and applications of combining simulation
and optimization. In Charnes, J., D. Morrice,
D. Brunner, and J. Swain (editors): Proceedings
of the Winter Simulation conference, pages 144–
152, 1996.

[3] Goldberg, D.: Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-
Wesley, Reading, Mass., 1989.

[4] Hinterding, R., Z. Michalewicz, and A.E.

Eiben: Adaptation in evolutionary computation -
a survey. In Proceedings of the 4th IEEE Interna-
tional Conference on Evolutionary Computation.

[5] Hörnlein, A., C. Oechslein und F. Puppe: Op-
timierung in simulierten biologischen Multiagen-
tensystemen mit Hilfe evolutionärer Verfahren. In:
Klügl, F., F. Puppe, P. Schwarz und H. Szc-

zerbicka (Herausgeber): Bericht des Instituts für
Informatik, Band 253, 2000.

[6] Klügl, F. and F. Puppe: The Multi-Agent
Simulation Environment SeSAm. In Büning,

H. Kleine (editor): Proc. of the Workshop Simu-
lation and Knowledge-based Systems 1998, 1998.

[7] Koza: Genetic Programming III. Morgan Kauf-
mann Publishers, Inc., San Francisco, 3rd edition,
1999.

[8] Law, A. and D. Kelton: Simulation Modelling
and Analysis. McGraw-Hill, 3rd edition, 2000.

[9] Oechslein, C., F. Klügl und F. Puppe: Kali-
brierung von Mutiagentenmodellen. In: Köchel,

P. (Herausgeber): KI-Methoden in der simula-
tionsbasierten Optimierung (CSR-99-03), Seiten
71–78. Chemnitzer Informatik-Berichte, 1999.

5

hunt

prey insect

search
mark

set mark

to nest

fight

mate

laying
egg

fly away

noop

brooding behaviour

... from
stomach

... from
stock

feed
brood

eat from
stock

eat

eat
brood

queen behaviour normal behaviour

grow up

hunting behaviour

influenced by

nurse factor

influenced by

soldier factor

influenced by

queen factor

Figure 4: Graph of possible behaviours of prehistoric ant.

Queen factor Soldier factor Nurse factor

Figure 5: Change in genpool: The x-axis is the value of the gen, the y-axis is the frequency of the values and
the z-axis is the time. The first row is the last result of this run.

6

	Evolutionary Optimization of Societies in Simulated Multi-Agent Systems
	Introduction
	Optimization in Simulated Multi-Agent Systems
	SeSAm
	The Evolution Component
	The Ant Experiment
	Results & Discussion

