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Abstract

Antibiotic resistance can evolve through sequential accumulation of multiple mutations1. To study

such gradual evolution, we developed a selection device, the morbidostat, which continuously

monitors bacterial growth and dynamically regulates drug concentrations such that the evolving

population is constantly challenged. We analyzed evolutionary trajectories of Escherichia coli
populations towards resistance to chloramphenicol, doxycycline, and trimethoprim. Over a period

of ~20 days, resistance levels increased dramatically, with parallel populations showing similar

phenotypic trajectories. Whole-genome sequencing revealed both drug-specific and drug-general

genetic changes. Chloramphenicol and doxycycline resistance evolved through diverse

combinations of mutations in genes involved in translation, transcription, and transport2. In

contrast, trimethoprim resistance evolved in a stepwise manner1,3, through mutations restricted to

the target enzyme dihydrofolate reductase (DHFR)4,5. Sequencing DHFR over time revealed that

parallel populations not only evolved similar mutations, but also acquired them in similar order6.

Uncovering such recurrent genotypic pathways may help the spread of resistance.

Antibiotic resistance is a growing global public health concern7-9. Bacteria can acquire

resistance via horizontal gene transfer or spontaneous mutations2,9-11. Evolution of

resistance through spontaneous mutations is particularly important for certain drugs, such as

quinolones and rifamycin, for which high-level resistance can result from a single point

mutation12,13. For most antibiotics, however, multiple mutations are required for delivering

strong resistance1,3,14,15. But, systematic experimental methods to study this phenomenon at

the genomic level have been lacking. While mutational trajectories to resistant phenotypes

have been suggested, there is little knowledge about the phenotypic and genotypic

evolutionary pathways leading to high levels of resistance and their reproducibility among

parallel evolving populations1-3,16.
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Laboratory evolution experiments have revealed important information about genetic

changes underlying multiple phenotypes including drug resistance2,6,16-20. In such

experiments, bacterial populations are typically exposed to fixed drug concentrations,

chosen to be high enough to partially or completely inhibit growth of the base strain, thus

imposing a selective advantage for resistant mutants, yet low enough for some

spontaneously occurring resistant mutants to survive16,20-22. This range of drug

concentrations is termed the Mutant Selection Window (MSW)23. The MSW is not fixed,

however; after each resistance conferring mutation takes over, a higher drug concentration is

needed to maintain the selection pressure on the population’s now-higher resistance level.

The rate in which the inhibitory drug concentration increases, which reflects the rate of

evolution of resistance, can vary across evolutionary time and different drugs. Therefore, an

unequivocal comparison of long-term evolution of resistance to different drugs requires an

experimental method that continuously tunes drug concentrations according to the actual

rate of evolutionary adaptation2,24.

We developed a microbial selection device, the “morbidostat”, which continuously adjusts

antibiotic concentration to maintain nearly constant growth inhibition of an evolving

microbial population (Fig. 1a). Like traditional continuous-culture systems such as

chemostats, the morbidostat feeds a culture with fresh media at a constant rate, and

approaches a steady state where the growth rate is equal to this fixed dilution rate. In a

chemostat, nutrient limitation provides an inherent feedback that sets the growth rate equal

to the dilution rate. In contrast, the growth rate in the morbidostat is set by antibiotic

inhibition, which is externally adjusted by a control algorithm. The morbidostat maintains

the bacterial population at low densities, such that growth is not nutrient-limited, and

controls the growth rate to match the fixed dilution rate by tuning antibiotic concentration.

Therefore, unlike classical selection approaches, the morbidostat does not elevate drug

concentration in a predefined way, but rather automatically adjusts drug concentration

according to the actual rate in which resistance evolves.

Media flow and control of drug concentration is implemented in repeated cycles. In each

cycle, bacteria grow for a fixed period of time without dilution (Δt = 11 minutes) throughout

which the optical density is recorded (OD, Fig. 1b, grey dots). The device then calculates the

growth rate (r, Fig. 1b, black lines) based on these OD measurements, and adds a fixed

volume ΔV of either media or drug solution to the culture (Fig. 1b,c, green and red circles,

respectively). The drug solution is added only if two conditions are satisfied: first, the OD is

larger than a set threshold (OD > ODTHR = 0.15); and second, the growth rate exceeds the

dilution rate (r > rdilution, i.e. a net increase in OD over the cycle, ΔOD > 0). The parameters

ΔV, V and Δt are fixed for the entire experiment and chosen such that the dilution rate

(rdilution≅ΔV/(V·Δt) =0.4 hour−1) is equal to half the maximal growth rate in the absence of

drug (r0 ≅ 0.8 hour−1), forcing the drug concentration to converge to a level where the

bacterial growth is inhibited by 50%. Therefore, as bacteria become resistant, drug

concentrations are automatically increased to maintain fixed growth inhibition.

Using the morbidostat, we carried out an experiment with drug sensitive Escherichia coli
(MG1655) in three antibiotics separately: chloramphenicol (CHL), doxycycline (DOX), and

trimethoprim (TMP). Chloramphenicol and doxycycline are ribosome inhibitors whereas

trimethoprim inhibits folic acid biosynthesis by binding to dihydrofolate reductase

(DHFR)5,15,25. To test the reproducibility of the evolutionary pathways, five isogenic

populations (designated CHL1-5, DOX1-5 and TMP1-5) were evolved in parallel under the

inhibition of each drug. We followed the evolving dose-response curves of all 15

populations by measuring the growth rates of daily frozen samples of each population over

drug concentration gradients (Fig. 2a, b; Methods). These measurements indicate the

evolutionary increase in resistance levels of the populations over time (IC50, Fig. 2b;
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measurements based on drug concentrations and growth rates recorded during the course of

the morbidostat experiment showed similar results, Dynamic IC50, Methods). Note that our

IC50 calculations are based on exponential growth rate measurements, and therefore

insensitive to drug induced cell size changes that might affect the conversion of OD to cell

number (see Supplementary Table 1 for the average cell sizes of the ancestral and evolved

strains in the presence and absence of drugs).

The resistance level increased dramatically, with all parallel populations showing similar

qualitative and quantitative changes over time (Fig. 2). At the end of the evolution

experiments, the IC50 values for chloramphenicol, doxycycline, and trimethoprim increased

by ~870, ~10, and ~1680 fold, respectively (Fig. 2c-e). Comparing the three drugs, we found

that resistance to chloramphenicol and doxycycline increased smoothly over time (Fig.

2d,e), whereas trimethoprim resistance increased in a stepwise fashion (Fig. 2b,c). This

indicated that adaptation in trimethoprim proceeds through adaptive mutations confined to a

smaller genomic region, leading to periods of stagnation during which the population awaits

the appearance of rare mutations26. To test this hypothesis and identify the genetic changes

responsible for resistance, we performed whole genome sequencing of all 15 evolved

populations.

We picked an isogenic clone from the final day of each evolved population and sequenced

their genomes using Illumina whole-genome sequencing (Methods). We identified a list of

single nucleotide polymorphisms (SNPs) for each clone and checked them by Sanger

sequencing, with ~80% being confirmed (Supplementary Table 2). Sequenced strains had

two or more SNPs, with the only exception of CHL-2 in which we had reliably identified

one SNP. Fig. 3a diagrams the locations of all 47 SNPs that were found by whole genome

sequencing and confirmed by Sanger sequencing. The majority of these mutations were

either amino acid replacements (35 out of 47) or promoter mutations (9 out of 47). Two

silent mutations and a truncation mutation were also observed. Interestingly, the same silent

mutation, c480645a, was independently observed in CHL-1 and CHL-4. The clonal

abundances of each SNP within the evolving heterogeneous populations were estimated by

sequencing of each mutated loci in four additional clones derived from the evolved

populations. Most SNPs (39 out of 47) were highly abundant (>75%) in the populations

from which they were isolated (Supplementary Table 2). By plotting the Illumina coverage

along the genome, we looked for gene deletions and amplifications. Genomic amplifications

were found in CHL-1, DOX-4, DOX-5, and TMP-3; while no genomic deletion was

detected (Supplementary Fig. 1).

Adaptation to the protein synthesis inhibiting drugs (chloramphenicol and doxycycline)

occurred mostly through mutations in membrane proteins and transcription/translation genes

(Fig. 3a). Mutations found in populations evolved in the presence of these drugs appeared in

genes with similar functions as well as in multidrug resistance genes acr, cmr, and mar,
known to confer resistance to these drugs14,27,28. Even though doxycycline and

chloramphenicol target ribosomes, no mutations were found in ribosomal genes although

such mutations were previously isolated in selection experiments on agar plates29-32. The

absence of ribosomal mutations may reflect a cost in growth rate, or negative epistatic

interactions with the other mutations fixing in these cultures. Amplified genomic regions in

these strains also included multidrug resistance genes or transporter genes (For example, in

the case of cmr, one of the populations had a gene amplification while others had a promoter

mutation, compare CHL-1 versus CHL3-5 in Supplementary Fig. 1). Consistently, all of the

populations which evolved resistance to chloramphenicol also developed doxycycline

resistance (Fig. 3b, middle-right panel), and vice versa (Fig. 3b, middle-bottom panel). For

each of these two drugs, all of the populations reached the same level of resistance, but

acquired different sets of mutations (Fig. 3). Curiously, these populations reached a plateau
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in their phenotypic adaptation despite the apparent availability of additional mutations that

occurred in the other parallel evolving populations. These observations suggest that there are

multiple alternative ways to circumvent chloramphenicol or doxycycline induced protein

synthesis stress using a small number of mutations in a diverse set of genes. The waiting

time for mutations to appear in these populations is likely to be short due to the large target

size for possible mutations, consistent with the smooth phenotypic changes in these

populations (Fig. 2, d and e).

In contrast, most of the mutations in populations evolved under trimethoprim inhibition were

found in the target gene DHFR, with almost all of the specific amino acid substitutions

appearing repeatedly in several of the parallel evolving populations. Consistently, these

populations showed no cross-resistance to doxycycline or chloramphenicol (Fig. 3b, left

panels; except for TMP-1, which had three non-DHFR mutations in acrA, acrB, and rpoB
and accordingly showed mild cross-resistance to chloramphenicol). All the TMP populations

acquired one of the two promoter mutations (g-9a or c-35t; c-35t is known in a clinical

context to upregulate DHFR expression)33. Interestingly, culture TMP-3, the only one that

acquired the g-9a promoter mutation, had a genomic amplification spanning the DHFR gene

(Supplementary Fig. 1). Mutations in the coding region (P21L, A26T, A26V, A26S, L28R,

W30C, W30G, W30R, and I94L) were close to the DHFR’s substrate binding site

(Asp27)4,5,33-35; all are known or predicted to have effects on DHFR’s enzymatic activity

(Supplementary Table 2)3-5,15,35. Among these mutations, three (c-35t, P21L, and W30R)

were found in clinical isolates15,33, four (P21L, A26T, W30R, I94L) were reported in

laboratory selection36, and four (c-35t, g-9a,L28R, W30C) appeared in independent

selection experiments we performed on agar plates (Supplementary Note, Supplementary

Table 3). The independent recurrence of the exact same nucleotide changes in replicate

populations (13 recurrent mutations in trimethoprim, compared to 2 in chloramphenicol and

1 in doxycycline), while may depend on the similarity of the selection pressure in these

parallel populations, suggest a smaller genomic target of mutations leading to trimethoprim

resistance, consistent with the stepwise nature of the phenotypic adaptation in this drug (Fig.

2b). The recurrent emergence of the same genotypic changes in independently evolving

populations raised the question whether the order at which these mutations emerge, and not

only their presence, was also tightly constrained1,3,37.

To determine the order of fixation of mutations during the evolution of trimethoprim

resistance, we sequenced the DHFR locus of four random clones derived from the daily

samples of parallel evolved populations (Methods). We found that the appearance and

fixation of mutations were mostly sequential (Fig. 4b), although we observed several

exceptions where two different mutations appeared simultaneously in competing clones in

the population (clonal interference, Supplementary Note)38. The evolutionary trajectories

shared striking similarities (Fig. 4b): all accumulated four DHFR mutations, all had a

promoter mutation, and in each case the final mutation was an alanine mutation at residue 26

(A26T, A26V, and A26S). Also, two populations (TMP-1 and TMP-2) accumulated exactly

the same DHFR mutations (c-35t, P21L, L28R, and A26T) in precisely same order.

Comparing to a null random permutation model, we found that the ordered nature of these

mutations was very unlikely to have occurred by chance (P=0.002, Methods, Fig. 4c).

We conclude that the evolution of resistance to trimethoprim proceeds through mutations on

the target enzyme that are sequentially fixed through ordered pathways. The observation of

constrained evolutionary trajectories for drug resistance is consistent with earlier predictions

based on phenotypic measurements of bacteria with synthetically engineered intermediate

genotypes for drug resistant alleles1,3. Our study represents one of the first direct

demonstrations of ordered adaptive pathways leading to strong antibiotic resistance in

bacteria complementing previous observations in parallel evolving virus populations39,40.
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Future studies with higher numbers of parallel evolving cultures can reveal additional paths

to resistance and determine how such paths depend on the environment, population size and

strength of the selection pressure.

Online Methods

Bacterial strains, media, and growth conditions

All experiments were performed with the drug-sensitive wild type MG1655 E. coli strain.

Cells were grown at 30°C in sterile M9 minimal media supplemented with 0.4% glucose and

0.2% amicase (Sigma).

Morbidostat schematics and protocol details

Detailed information on the morbidostat schematics, construction, calibration, as well as a

complete description of the experimental procedure can be found in the Supplementary Note

and Supplementary Fig. 2.

Dilution rate in morbidostat

Dilution rate is calculated with rdilution= f. ln(V/(V+ ΔV)) where f is the frequency of

dilutions in an hour (f=5), V is the total volume of the culture before the dilution (V ≈
12ml), and ΔV is the added volume per injection (ΔV ≈ 1 ml). In these settings, rdilution is

~0.4 hour−1.

Growth rate in the morbidostat

All of the experiments were done at 30°C in M9 minimal media supplemented with 0.4%

glucose and 0.2% amicase. Growth media is filter sterilized and kept at room temperature

for 2 days on the bench before using in the experiments to avoid contamination. We

characterized the bacterial growth under these conditions by growing E. Coli (MG1655)

cells for 12 hours (Supplementary Fig. 2e). The cells grew in exponential phase when the

OD was between 0.02 and 0.25 and the exponential growth rate was ~0.8 hour−1 (red line,

Supplementary Fig. 2e). The growth rate variability (standard deviation) across all fifteen

cultures was 7.5%.

Whole genome sequencing

Isogenic bacterial cells were grown overnight in LB media and their chromosomal DNA was

purified by using commercial bacterial DNA isolation kits (UltraClean Microbial DNA

Isolation Kit, cat # 12224-50, MO BIO Laboratories, Inc., USA). Chromosomal DNA

libraries were prepared for Illumina sequencing using DNA sample prep kits (Nextera™

DNA Sample Prep Kit, cat# GA091120, EPICENTRE Biotechnologies, USA).

Chromosomal DNA libraries were submitted to Partners HealthCare Center for Personalized

Genetic Medicine (PCPGM) for whole genome sequencing on Illumina GAIIx (75bp single-

end reads, average coverage of 6 million reads per strain). These reads were then aligned

onto the MG1655 reference chromosome (NC_000913.2) using the Illumina pipeline, and

putative Single Nucleotide Polymorphisms (SNPs) were identified with SAMTools41.

Sanger Sequencing Protocol

Sanger sequencing was used to verify high-confidence SNPs (SAMTools threshold >60)

found with Illumina sequencing. Isogenic bacterial populations frozen in 15% glycerol were

sent to GENEWIZ Inc. (NJ, USA) for sequencing. Primer design, PCR quality control,

amplification and sequencing services were commercially available from GENEWIZ. Every

locus was sequenced in both directions, with fragments of approximately 400 bp insuring

high quality reads over the region containing the SNPs, and sequence quality was verified by
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manual inspection. The complete list of confirmed SNPs and their predicted effects are

listed in the Supplementary Table 2.

Functional impacts of mutations

The functional impact of individual mutations was predicted using the online Mutation

Assessor tool (mutationassessor.org) available from the Computational Biology Center of

the Memorial Sloan Kettering Cancer Center42. The Mutation Assessor tool uses multiple

sequence alignments of related genes in other organism to determine the functional impact

of a specific mutation. This functional impact is scored on the basis of SNP conservation

and specificity given the position’s conservation and specificity. The predicted functional

impact scores of the confirmed SNPs are listed in Supplementary Table 2.

Reproducibility of mutational orders (RMO)

We devised a statistical method for assessing the probability of observing the order at which

the mutations occurred in five populations by random chance. We define the Reproducibility

of Mutational Order (RMO) score of two ordered sequences of mutations by the number of

shared mutation pairs that occurred in the same order, from which we subtract the number of

shared mutation pairs that occurred in reverse order. (Ex: RMO([A,B,C,D], [A,X,C,B]) = 2

− 1 = 1, as two shared mutation pairs occurred in the same order [A-B, A-C] but one shared

mutation pair occurred in an opposite order, [B-C] and [C-B]). The RMO for the set of five

populations we observed is 22 (summing the RMO of all 10 distinct pairs of sequences). The

highest possible total RMO score for five populations acquiring four of the six mutations we

observe is 28. A random permutation of the order at which mutations appear in those five

populations produces as high an RMO in less than 200 cases out of 100,000 iterations (Fig.

4c), yielding a p-value of 0.002 that characterizes the probability that the observed degree of

ordering of mutations is produced by chance. We also repeated the same test generating five

trajectories by randomly picking four mutations from the observed pool of six mutations. In

this case, we found that only 0.073% of randomly generated trajectories are equally or more

ordered that the experimentally observed trajectories.

Phenotyping protocol

We created a frozen record library in order to measure phenotypic and genotypic changes

with high temporal resolution. On a daily basis, cells were frozen and stored at −80°C in

15% glycerol. These samples were organized in 96 well plates. We measured the drug

resistance of these libraries using an automated robotic system (Caliper). First, we filled

twenty (96-well) plates with drug solutions (in minimal growth media) with increasing drug

concentrations. Each well in a given plate had the same volume (150μl) and drug

concentration. The first plate had the highest drug concentration and the twentieth plate was

drug free. Drug concentrations across the other plates were diluted by a factor of 0.6

([drug]k-1 = 0.6. [drug]k). The cells in master plates were transferred into these plates using

96-pinner. Cells in 96 well plates were grown for 24 hours in an environment controlled

room with rapid shaking at 30°C. Optical densities of the cells in these plates were measured

every ~ 30 minutes using a plate reader (EnVision, Perkin Elmer).

Calculating static MIC and IC50

OD reads from the plates used in the phenotyping experiment were used to calculate values

for the IC50 and MIC of the evolving strains. For every well, in every plate, the growth rate

during the exponential phase was measured by fitting an exponential curve to the region the

data points where the OD was between 0.01 and 0.1. For each strain within the frozen record

library, the calculated growth rates were used to produce dose response curves

(Supplementary Fig. 3). These dose response curves reflect the effect of increasing
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concentrations of antibiotics on the strain’s growth rate. For IC50 and MIC analysis, the

growth rates were normalized using the growth rate in the no-drug condition. The IC50 and

MIC values were calculated by interpolating the drug concentrations corresponding to

growth rates of 50% and 10%, respectively (Supplementary Fig. 3).

Measuring static MIC for isogenic cells

We repeated the same protocol for measuring the MIC of single colonies from each

population. We plated cells from frozen record library and randomly picked single colonies

for every day of the experiment. These colonies were organized in 96 well plates and were

grown in a range of different drug concentrations for 24 hours. The lowest drug

concentration at which background subtracted OD was less than 0.02 after 24 hours was

defined as MIC43. All of the evolved strains were tested for their MIC values for

chloramphenicol, doxycycline, and trimethoprim.

Calculating Dynamic IC50

For every cycle during the morbidostat experiment, we fit an exponential growth curve to

the OD vs. time data and using Matlab’s robust fit linear regression routines. Using the

exponential growth regressions, we can calculate the initial OD and final OD of each cycle.

By finding the ratio of the final and initial ODs of successive cycles, we can calculate the

precise dilution which occurred in the culture tube between the cycles. These dilutions are

sparsely spread around the target dilution rate of 8%. Given the strength of each dilution and

the knowledge of which stock solution (media, low concentration drug stock or high

concentration drug stock) was used, for every cycle, we calculate the antibiotic

concentrations in the culture tubes. We plot the growth rate as a function of drug

concentration and produce drug response curves as shown in Supplementary Fig. 4. A curve

is produced for each time period separating drug injections. During this time window, we

calculate the population’s dynamic IC50 by finding the drug concentration where the

resulting growth rate is 0.4 hour−1.

Selection of trimethoprim resistant mutants on agar plates

15 agar plates (1.5% agar, M9 salts, 0.2% amicase, and 0.4% glucose) with different

trimethoprim concentrations ([trimethoprim (μg/ml)] = 1500, 750,....,0.36, 0.18, 0) were

prepared in sterile conditions. ~109 cells were spread on each plate and plates were

incubated at 30°C for three days. Colony forming units were then picked, restreaked to

isolation, and sequenced.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The morbidostat is a continuous-culture device that automatically tunes drug
concentration to maintain constant growth inhibition
a, The assay runs in cycles of growth periods (Δt = 11 minutes) and dilutions with either

fresh media (green) or drug solution (red). The population is diluted with antibiotic solution

when OD exceeds ODTHR (0.15) and the net growth over the complete cycle is positive

(ΔOD>0). b, Representative bacterial growth in the morbidostat. OD is recorded at 1Hz

(plotted at 0.1Hz, grey dots). Growth rates (r) within growth periods are calculated by fitting

exponential growth functions (black lines). Red and green markers in panels a and b indicate

dilutions with drug solution and fresh media, respectively. c, Representative bacterial

growth and inhibition in the morbidostat for an extended time period. Only final OD within

growth cycles are plotted for clarity. Grey rectangle delimits data shown in panel b. Red

circles show the cycles after which drug solution were added.
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Figure 2. Parallel populations reach high level of resistance in similar adaptive trajectories
a, Sample measurements of OD versus time (circles) and fitted growth rates (exponential fit,

color represent normalized growth rate r/r0) of the ancestral strain in different trimethoprim

concentrations. b, Normalized growth rates of bacterial populations obtained from daily

samples (x-axis) of the evolving populations in a range of fixed drug concentrations (y-axis).

Day 0 corresponds to the ancestral strain before evolution. IC50 values are represented with

black circles (r/r0=0.5). c-e, Resistance levels over time for parallel populations evolving

under trimethoprim (c), chloramphenicol (d) and doxycycline (e) inhibition. Resistance

increases by ~1680, 870 and 10 fold, respectively. Trimethoprim resistance increases in a

stepwise fashion. The resistance data for each of the 15 populations is derived from high-

throughput phenotyping as demonstrated in panel a (The TMP-1 population of panel c is the

one represented in panel b, black circles).
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Figure 3. Distinct and common genetic changes revealed by whole-genome sequencing
a, Single Nucleotide Polymorphisms (SNPs) confirmed by Illumina and Sanger sequencing.

The horizontal arrow blocks and rectangles represent the coding and noncoding regions of

genes respectively. SNPs found in 15 populations are shown by different symbols with

colors indicating the drug applied during evolution (red: chloramphenicol, green:

doxycycline, blue: trimethoprim). Note that SNPs found in multiple populations are shown

with vertically stacked symbols appended to the genes. The SNPs fall in three major

functional groups: (1) transcription and translation, (2) folic acid biosynthesis, and (3)

membrane proteins. Arrow thickness reflects the frequency of mutations occurring within

each functional group when the bacterial populations were challenged with the specified

drugs. b, Resistance levels (of Illumina sequenced clones) to chloramphenicol, doxycycline,

and trimethoprim. Black dotted lines indicate MIC for the ancestral strain. Diagonal panels

(highlighted in color) represent evolved strains’ MIC values for the drugs they evolved

against. Strains evolved against chloramphenicol exhibit elevated doxycycline resistance,

and vice versa, while evolution under trimethoprim inhibition leads to little or no cross-

resistance with either doxycycline or chloramphenicol.
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Figure 4. Semi-ordered acquisition of trimethoprim resistance mutations
a, Structure of E. Coli DHFR enzyme (1RX2.pdb) bound to its substrate, dihydrofolate

(black, arrow), mutated residues shown in color (legend). b, IC50 values (gray lines) and

time-resolved genetic changes in DHFR for each of the five replicate (TMP 1-5). For each

day, mutations found in 4 randomly sampled clones are represented by a column of pie

charts whose color and shape indicate the mutated residue and replacement amino acid,

respectively (panel a, legend). For each mutation, the quadrants of the pie chart indicate the

presence (filled) or absence (empty) of this mutation in each of the 4 sequenced clones (the

correspondence between clones and quadrants is conserved across all mutations, to indicate

whether mutations are found on the same or different clones). Colors of the mutated sites

and the pie charts are independent from colors in previous figures. (Inset) (TMP-4),

Additional colonies were sequenced from days 8-10 to verify the disappearance of W30C. c,

Reproducibility of the order of fixation of mutations between the 5 parallel populations in

the observed data (arrow) and when the order of mutations is randomly permuted (bar

histogram). Only 0.2% of randomly permuted trajectories are equally or more reproducible

than the observed trajectories shown in panel b.
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