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Abstract

Searching for the optimal subset of features is known as a challenging prob-
lem in feature selection process. To deal with the difficulties involved in this
problem, a robust and reliable optimization algorithm is required. In this
paper, grasshopper optimization algorithm (GOA) is employed as a search
strategy to design a wrapper-based feature selection method. The GOA is a
recent population-based metaheuristic that mimics the swarming behaviors of
grasshoppers. In this work, an efficient optimizer based on the simultaneous
use of the GOA, selection operators, and Evolutionary Population Dynamics
(EPD) is proposed in the form of four different strategies to mitigate the im-
mature convergence and stagnation drawbacks of the conventional GOA. In
the first two approaches, one of the top three agents and a randomly gener-
ated one are selected to reposition a solution from the worst half of the popu-
lation. In the third and fourth approaches, to give a chance to the low fitness
solutions in reforming the population, Roulette Wheel Selection (RWS) and
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Tournament Selection (TS) are utilized to select the guiding agent from the
first half. The proposed GOA_EPD approaches are employed to tackle var-
ious feature selection tasks. The proposed approaches are benchmarked on
22 UCI datasets. The comprehensive results and various comparisons reveal
that the EPD has a remarkable impact on the efficacy of the GOA and using
the selection mechanism enhanced the capability of the proposed approach
to outperform other optimizers and find the best solutions with improved
convergence trends. Furthermore, the comparative experiments demonstrate
the superiority of the proposed approaches when compared to other similar
methods in the literature.

Keywords: Grasshopper Optimization Algorithm, GOA, Feature Selection,
Classification, Metaheuristics, Evolutionary Population Dynamics, Binary

1. Introduction

The existence of thousands of applications of information systems compli-
cated the role of extracting useful information from the collected data [1, 2].
Data mining plays the main role in extracting the useful knowledge from the
collected datasets [3, 4]. The collected datasets may contain irrelevant and
redundant data. Feature selection (FS) is one of the major preprocessing
phases that aims to exclude the irrelevant/redundant data from the dataset
being processed [5, 6].

FS methods can be broadly categorized into three main classes: super-
vised [7], unsupervised [8], and semi-supervised methods [9]. Supervised FS
requires the availability of the class labels to select proper features and used
for classification problems. While in unsupervised FS, the class labels are not
required, and used for clustering tasks. On the other hand, semi-supervised
methods applied when part of the data is labeled.

There are several supervised, semi supervised, and unsupervised FS al-
gorithms in literature. To name a few, the correlation-based feature selec-
tion (CFS) [7], fast correlation-based filter (FCBF) [10], and wavelet power
spectrum (Spectrum) [11] are examples on supervised techniques. While
non-negative spectral learning and sparse regression-based dual-graph reg-
ularized (NSSRD) feature selection is one of the latest unsupervised tech-
niques proposed by Shang et al. in 2017 [8]. The subspace learning-based
graph regularized (SGFS) technique and self-representation based dual-graph
regularized feature selection clustering (DFSC) are also well-established FS
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techniques proposed by Shang et al. in 2016 [12, 13]. On the other hand,
feature selection via spectral analysis, and forward feature selection [9, 14]
are examples on semi-supervised FS.

FS process can be accomplished in four major steps [15]: subset genera-
tion, subset assessment, ending criterion, and validation. From the evaluation
perspectives, FS methods can be divided to two groups based on selection
strategy: wrapper-based and filter-based. In filter-based methods, the se-
lection of a subset is performed independently from the learning algorithm
(e.g., classification). The merits of a feature or a subset of them is estimated
with regard to specific characteristics of the info [16]. Examples of filter
models include Chi-Square [17], Information Gain (IG) [18], Gain Ratio [19],
and ReliefF [20]. In the wrapper-based methods, the goodness of a subset is
evaluated based on a learning algorithm [21]. Examples of wrapper models
include the LVW algorithm [22] and a neural network-based method [23].

Subset generation is considered as a search process to select a subset of
items from the initial set using complete, heuristic search, or a random search
[15, 24, 25]. The complete search generates all possible subsets to select the
best one. If the dataset includes n features, then 2n subsets will be generated
and assessed, which is computationally expensive for the larger size datasets.
Random search is another possible policy to select the attributes. It searches
for the next feature subset randomly [26]. The main drawback of the random
search strategy is that it may perform as a complete search in the worst case
[5, 27].

An alternative strategy to the previous two strategies is the heuristic
search. Heuristic search can be clarified as a ‘depth first’ search managed
by heuristics. According to Talbi [27], metaheuristic search methods can be
defined as “upper level general methodologies (templates) that can be used
as guiding strategies in designing underlying heuristics to solve specific opti-
mization problems”[27]. Various metaheuristics such as Grey wolf optimizer
(GWO) [28, 29], Whale Optimization Algorithm (WOA) [30], Ant Lion Opti-
mization (ALO) [31], Firefly Algorithm (FA) [32], Particle Swarm Optimiza-
tion (PSO) [33], and Ant Colony Optimization (ACO) [34] may demonstrate
superior efficiencies in tackling feature selection problems when compared to
the exact methods [35, 36]. Metaheuristic algorithms have shown improved
results and efficiencies in dealing with many real-life applications such as
path planning [37], clustering [38], and power dispatch [39]. For example,
E.S. Ali et al. applied the ALO to find the best location and sizing of re-
newable distributed generations [40]. Wu et al. utilized the WOA for path
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planning of solar-powered UAV [37]. Faris et al. also reviewed the recent
variants and applications of the GWO [41].The history of metaheuristics is
presented in [42].

The GOA is a new efficient nature-inspired population-based metaheuris-
tic algorithm [43] proposed by Saremi et al. in 2017 to inspire the idealized
swarming behaviors of grasshopper insects in nature. This algorithm can dis-
close improved results and efficiencies on global unconstrained/constrained
optimization and various real-life tasks. The basic GOA has been applied to
realize the best parameters of proton exchange membrane fuel cells (PEM-
FCs) stack and the results exposed the viability of the GOA-based algorithm
in dealing with the steady-state and dynamic models [44]. In 2017, Wu et
al. [45] proposed a dynamic GOA for optimizing the distributed trajectory
of UAVs in urban environments. They proved that this algorithm can attain
enhanced results and satisfactory trajectories. Tharwat et al. [46] devel-
oped a modified multi-objective GOA (MOGOA) with external archive for
constrained and unconstrained problems. Mirjalili et al. [47] also developed
the basic multi-objective GOA and revealed that the proposed algorithm can
tackle several benchmark problem, effectively and with better performance
in terms of accuracy of Pareto optimal solutions and the related distribution.

Although the metaheuristic algorithms do not guarantee finding the best
solution in all runs, they can find relatively accurate solutions in a reason-
able time [27, 48]. Metaheuristics can be classified into two main families;
single-solution and population-based algorithms [27]. In the former class
(e.g., Simulated Annealing), one solution is manipulated and transformed
during the search process, while a set of solutions is evolved in the former
class (e.g., PSO). Single-solution-based algorithms show more exploitative
behaviour; which means digging the space around a possible solution whereas
the population-based class are more explorative or a mix of both behavior;
which means exploring different regions of the space [27]. When designing
a metaheuristic algorithm, these two criteria should be taken into account.
High exploration decreases the quality of results and causes an unpromis-
ing convergence. This results in a failure to find the target global optimum.
However, high exploitation may cause the optimizer to be trapped in Local
Optima (LO).

Evolutionary algorithms (EA) are deep-rooted metaheuristics inspired by
natural processes [49, 50]. Genetic algorithms (GA), by J. H. Holland [51];
and evolutionary programming by L. Fogel et.al [52] are two different kind
of EA. In recent years, many EA are proposed to tackle the optimization
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problems especially in the field of feature selection [53, 54, 55]. Ant Colony
(AntRSAR) and Genetic Algorithm (GenRSAR) are two EAs that have been
proposed by Jensen and Shen [56, 57] and applied to FS problems. For
instance, a chaos-based genetic FS method (CGFSO) has been proposed in
[58]. Two hybrid approaches have been proposed in [59] between the GA and
Simulated Annealing (SA) and in [60] between the GA and Record to Record
algorithm. A Scatter Search-based approach (SSAR) proposed by Jue et al.
[61] is another EA-based FS method. Ant Lion Optimizer (ALO), a recent
well-regarded metaheuristic, proposed by S. Mirjalili in [62], was utilized
as a searching mechanism in a wrapper FS method in [63, 64]. A chaotic
ALO approach was proposed for FS in [65]. The GWO, as another recent
population-based optimizer [29], has been successfully employed to tackle
several applications like the tuning of fuzzy control systems [66]. It has been
applied to FS problems [67, 68] as well. Recently, a new wrapper-based FS
algorithm that uses a hybrid Whale Optimization algorithm (WOA) with SA
algorithm as a search method was proposed in [69].

EAs are modeled to mimic the evolution of individuals from their ini-
tial states to become better adapted to some objectives imposed upon them.
These revolutionary paradigms apply some evolutionary operators (muta-
tion and recombination in GA or pheromone updating rules of ACO) to
some selected individuals (based on some selection mechanisms; random,
tournament, and roulette wheel selection) in the population to generate an
offspring. However, these operators affect and manipulate individuals rather
that the whole population. Evolutionary Population Dynamics (EPD) is an-
other evolutionary operator that manipulates the whole population rather
than manipulating individuals [70]. Using this operator with EAs will omit
the worst individuals from the population rather than improving the best
individuals in the population (e.g., recombination in GA). Extremal opti-
mization (EO) [71] is a metaheuristic algorithm that works based on the idea
of EPD. The EO algorithm has been used in many research fields with much
success [72, 73, 74]. The EPD operator is the main feature that enhanced
the performance of this algorithm [28].

This paper presents an efficient GOA-based optimizer with EPD and
selection operators are proposed to improve the efficacy of the basic GOA
in dealing with FS tasks. In this work, we have made the following key
contributions:

• The significant merits of the EPD operator motivated our attempts to
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apply it to the recently proposed Grasshopper Optimization Algorithm
(GOA) and investigate its effectiveness on FS problems.

• Four variants of GOA with EPD operator are proposed. In the first two
approaches, one of the top three solutions and a randomly generated
solution are selected to reposition a solution from the worst half of the
population. In the third and fourth approaches, to give a chance to
the low fitness solutions to reformulate the population, two different
selection mechanisms (namely Roulette Wheel Selection (RWS) and
Tournament Selection (TS) are utilized to select the guiding solution
from the first half.

• The proposed approaches have been tested on 22 real benchmarks
datasets to show its efficiency for feature selection tasks.

• The hybrid GOA and EPD operator is proposed for the first time to
solve the feature selection tasks.

• The proposed GOA based approaches have been tested on real datasets
with different settings and characteristics to demonstrate its effective-
ness and quality of solutions.

The rest of this paper is organized as follows: Section 2 presents a back-
ground about EPD operator. The basics of the GOA algorithm and the
hybridization with EPD operator is given in Section 2 as well. Section 3
presents the details of the proposed approaches. In Section 4, the experi-
mental results are presented and results are analysed. Finally, in Section 5,
conclusions and future work are given. Table 1 describes all the abbreviations
used in this paper.
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Table 1: List of abbreviations

Abbreviations Expansions
Acc Accuracy
ACO Ant Colony Optimization
ALO Ant Lion Optimizer
Atts Attributes
BGOA Binary GOA
BGWO Binary GWO
CFS Correlation-based Feature Selection
CGFSO Chaos-based Genetic FS Method
CM Crossover and Mutation
DFSC Self-representation Based Dual-graph Regularized Clustering
EA Evolutionary Algorithms
EO Extremal Optimization
EPD Evolutionary Population Dynamics
EPSCO Evolutionary Programming using Self-Organizing Criticality
FA Firefly Algorithm
FCBF Fast Correlation-based Filter
FS Feature Selection
F-score Fisher Score
GOA Grasshopper Optimization Algorithm
GWO Grey Wolf Optimizer
GA Genetic Algorithms
IG Information Gain
k-NN k-Nearest Neighbor
LO Local Optima
NSSRD Non-negative Spectral Learning and Sparse Regression-based Dual-graph Regularized
PSO Particle Swarm Optimization
RWS Roulette Wheel Selection
SA Simulated Annealing
SGFS Subspace Learning-based Graph Regularized
SOC Self-Organized Criticality
SSAR Scatter Search-based Approach
StdDev Standard Deviation
TS Tournament Selection
Ts Tournament Size
WOA Whale Optimization Algorithm

2. EPD for The GOA

2.1. Evolutionary Population Dynamics (EPD)

EAs are known as stochastic search methods in which a set of solutions
(population) is initialized and then gradually improved to become better
adapted to the objectives imposed upon them. Some EAs utilize mutation
mechanisms to alter the selected solutions, while others employ the crossover
operators. These operators aim to evolve the top selected solutions that are
mostly the best solutions. The EPD is the process of eliminating the worst so-
lutions in a population by repositioning them around the best ones. The EPD
is basically based on the theory of self-organized criticality (SOC) [75] which

7



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

indicates that a local change in the population may affect the whole popu-
lation and provide delicate balances without external organising force [70].
In the GA, the best solutions are combined using the evolutionary operators
(crossover and mutation). In contrast, in the EPD, the worst solutions should
be omitted from the current population. Evolutionary programming using
self-organizing criticality (EPSCO) [76] and Extremal optimization (EO) [71]
are two metaheuristics methods that were proposed based on the SCO con-
cept. The EPD is a simple and effective mechanism that can be embedded
in different optimizers. It starts by removing the worst solutions from the
swarm and then repositioning the removed solutions around the best search
agents.

2.2. Grasshopper Optimization Algorithm (GOA)

The GOA is a recent swarm-based nature-inspired algorithm [43] pro-
posed by Saremi et al. It mimics the idealized swarming behavior of grasshop-
per insects in nature. Similarly other population-based algorithms [77, 78], in
GOA, a set of candidate solutions (each individual represents a grasshopper)
are randomly generated to construct the initial artificial swarm. Next, all
candidate agents are evaluated with regard to the fitness values and the best
search agent in the current swarm in considered as the target or leader. The
target grasshopper starts attracting the other individuals around its location,
and all grasshoppers start moving towards the target grasshopper.

The movement of the i-th grasshopper towards the target grasshopper is
denoted as Xi and is formulated as in Eq. (1).

Xi = Si + Gi + Ai (1)

where Si is the social interaction, Gi is the gravity force on i-th grasshopper,
and Ai shows the wind advection.The social interaction Si acts as the main
component during the grasshopper movement process. It can be calculated
as Eq. (2):

Si =
N∑

j=1, j 6=i

s (dij) d̂ij (2)

where dij is the Euclidian distance of the i-th with the j-th grasshopper, and
it is calculated as dij = |xj −xi|. While, d̂ij =

xj−xi

dij
is a unit vector from the

i-th grasshopper to the j-th grasshopper. The s function is defined as the
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strength of social forces, which can be calculated as follows:

s (r) = f e
−d
l − e−d (3)

where f is the intensity of attraction and l is the attractive length scale.
Fig. 1 illustrates the impact of s-function on the attraction and repulsion

(i.e., social interaction) of the grasshoppers. In this figure, the distance d
has been considered in the interval of [0, 15]. The repulsion force between
grasshoppers occurs when the distance between them is between 0 and 2.079
units. In the case that the distance between a grasshopper and other agents
is 2.079, it enters to the comfort zone, where neither attraction nor repulsion
occurs there, while the attraction starts increasing after 2.079 till 4 and then
starts decreasing.

0 5 10 15
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−0.08

−0.06
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−0.02

0

0.02

d

S
(d

)

(a) When l=1.5 and f =0.5

0 1 2 3 4
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

d

S
(d

)

(b) When d is inside [0,4]

Figure 1: Function s when l = 1.5 and f = 0.5 and closer window when d changes in [0,4].

Fig. 1 shows that while the distance between grasshoppers becomes
larger, s-function returns values close to 0. Thus, for large distances be-
tween grasshoppers, s-function is not capable of applying strong forces to
them. To overcome this drawback, the distance between agents are mapped
between 1 and 4. The shape of the s-function in the interval [1, 4] is shown
in Fig. 1 (right).

Different social behaviors can be obtained for the artificial grasshoppers
by changing the parameters l and f of s-function in Eq. (3) as shown in Fig.
2.

The conceptual model of the comfort zone and the attraction and repul-
sion forces between the grasshoppers is also shown in Fig. 3.

The gravity force Gi (second component in Eq. (4)) is calculated as
follows:

Gi = −g × êg (4)
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(a) l=1.5 and f in [0,1]
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(b) f=0.5 and l in [1,2]
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(c) f in [0,1], l in [1,2]

Figure 2: behavior of the function s based on l and f .

LOCATION OF TARGET

3D TEMPORAL

COMFORT ZONE

TRAJECTORY OF

GRASSHOPPERS

ATTRACTION FORCE

REPULSION FORCE

Figure 3: Primitive corrective patterns between individuals in a swarm of grasshoppers.

where g denotes the gravitational constant and êg is a unity vector in the
vertical direction of the surface.

The wind advection Ai (third component in Eq. (5)) is calculated as
follows:

Ai = u× êw (5)

where u represents a constant drift and êw denotes a unity vector in accor-
dance with the wind.

In stochastic optimisation, a metaheuristic optimizer must make a fine
balance between the exploration and exploitation when conducting the search
to find a accurate approximation of the global optimum. Therefore, the
mathematical formulation of the GOA, which was presented in Eq. (1),
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should be equipped with special parameters to achieve to this purpose. The
mathematical model proposed by Saremi et al. in this regard is as follows:

Xd
i = c

(
N∑

j=1, j 6=i

c
ubd − lbd

2
s
(
|xd

j − xd
i |
) xj − xi

dij

)
+ T̂d (6)

where ubd and lbd are respectively the upper bound and lower bounds in the
Dth dimension, T̂d is the value of the Dth dimension of the target grasshopper.
Parameter c is a decreasing coefficient to shrink the comfort zone, attraction,
and repulsion regions. Note that S is similar to the s function in Eq. (2). In
Eq. (6), gravity force has been considered equal to Zero (no G component),
and the wind force (A component) is always towards the target grasshopper
T̂d. The adaptive parameter c is considered as decreasing coefficient, it has
been used twice to simulate the deceleration of grasshoppers approaching the
source of food and eventually consuming it. The outer c (first c from the left)
has been used to reduce the search coverage toward the target grasshopper
as the iteration count increases, while the inner c has been used to reduce the
effect of the attraction and repulsion forces between grasshoppers with regard
to the number of iterations to shrink the comfort, repulsion, and attraction
areas.

The parameter c is updated with the following relation, it should be
inversely proportional to the number of executed iterations. This mechanism
increases the degree of exploitation as the iteration count increases. It also
reduces the comfort zone proportional to the number of iterations.

c = cMax− l
cMax− cMin

L
(7)

where cMax and cMin are respectively the maximum and minimum values
of parameter c, l is iteration, and L is the maximum bound of iterations. In
[76], the authors used 0.00001 and 1 for cMin and cMax, respectively.

3. Binary GOA (BGOA) for feature selection

Finding a minimal feature set has been described as a NP-hard problem
[79]. Searching the best combination of features is a challenging problem
especially in the wrapper-based methods. Hence, an intelligent optimization
method is required to reduce the number of evaluations.
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As reported in the literature [76, 47], the GOA algorithm can reveal a
superior efficacy in tackling various optimization cases. The merits of GOA
motivated us to propose a binary version of the GOA optimizer and use
it as the core search engine in this paper when solving FS problems [79].
Based on the NP-hard nature of FS problems, where the search space can
be represented by binary values, some operators of the GOA algorithm need
to be modified. In the continuous GOA, each individual updates its position
based on its current position, the position of the best grasshopper found so
far (target), and the position of all other grasshoppers as in Eq. (6). This
behavior of the GOA is similar to other swarm-based techniques (e.g., PSO).
In the GOA, the first term of Eq. (6) is analogous to the velocity vector
(step) in the PSO. According to the claims provided by Mirjalili and Lewis
[80], one of the easiest ways to convert an algorithm from continuous to binary
version without modifying its structure is to utilize transfer functions. In the
proposed approach, the transfer function (see Fig. 4) use the first term in
Eq. (6), that is re-defined ∆X in Eq. (8) as the probability for changing of
the position elements.

∆X = c

(
N∑

j=1, j 6=i

c
ubd − lbd

2
s
(
|xd

j − xd
i |
) xj − xi

dij

)
(8)

0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V

T
(V

)

Figure 4: Sigmoidal Transfer function.

Sigmoidal function is a common transfer function proposed by Kennedy
and Eberhart [81] as Eq. (9):

T (∆Xt) =
1

1 + e−∆Xt
(9)

where ∆X represents the step vector of a search agent at a specific iteration.
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The position of the current grasshopper will be updated as expressed in
Eq. (10) based on the probability value T (∆Xt) obtained from Eq. (9).

Xk
t+1 (t+ 1) =

{
1 If rand < T (∆Xt+1)

0 If rand ≥ T (∆Xt+1)
(10)

Algorithm 1 Pseudo code of the BGOA algorithm

Initialize the GOA parameters cMax, cMin, and maximum iterations L
Initialize a set of random solutions Xi(i = 1, 2, . . . , n) as initial population
Calculate the fitness of all agents
Remark the best solution as the Target
Set T as the best solution
while t < L do

Update c using Eq. (7)
for each individual in the population do

Normalize the distances between grasshoppers into [1, 4]
Update the step vectors (∆X) using Eq. (8)
Update position vectors using Eq. (10)

Update Target if there is a better solution in population
t = t+ 1

return T

In the wrapper FS, a learning algorithm should be involved in the eval-
uation of the selected feature subset. In this work, the k-Nearest Neighbor
(k-NN) classifier [82] is utilized to attain the classification accuracy of the
solution. The higher classification accuracies show that the relevant solution
is better. Moreover, since the aim of FS is to eliminate the number of se-
lected features, the smaller the number of features in the solution, the better
the solution is. These are two contradictory objectives that should be taken
into consideration when designing an objective function for FS algorithms.
In this work, the fitness function in Eq. (11) that can balance among the
selected features in each agent (minimum) and the accuracy of classification
(maximum) is used to evaluate the selected subsets in all approaches.

Fitness = αγR(D) + β
|R|

|N |
(11)

where γR(D) is the classification error rate of the known classier, |R| is the
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number of selected features and |N | is the number of features, α and β are
two parameters to reflect the role of classification rate and length of subset,
α ∈ [0, 1] and β = (1− α) adopted from [63].

3.1. Applying the EPD strategy to BGOA

As discussed earlier, the EPD eliminates the worst solutions from the pop-
ulation and replaces them by generating neighbor solutions around the good
ones. The EPD mechanism is a simple but effective operator for population-
based techniques [70], therefore, it is applied to the conventional GOA here
since it is also a stochastic population-based optimizer. To equip the GOA
algorithm with the EPD technique, the swarm of grasshoppers is divided into
two parts after sorting it based on the fitness values. The half of the worst
grasshoppers is eliminated and reinitialized based on four different strategies
depending on the good half of the population.

In this paper, four different strategies are utilized to combine the EPD
scheme with the binary BGOA. These versions can be categorized into two
main classes based on the implemented selection operators.

3.1.1. BGOA_EPD with random selection operator

The first model for hybridizing is to us random selection operator. For this
purpose, one solution among the best three grasshoppers from the population
is selected in addition to a random grasshopper. Then, the leader of ‘poor’
solution will be selected randomly. To implement this idea, two different
approaches are designed that work based on the random selection technique:

1. BGOA_EPD: it is the simplest hybrid form of the EPD and BGOA
algorithms. In this approach, the random selection mechanism is em-
ployed to select the solutions. This method also uses a simple mutation
operator.
In the first approach, the top three individuals are selected and a fourth
solution is generated randomly. Each solution in the worst half is repo-
sitioned around any of these four solutions depending on a random
number. The process is straightforward; a random number is gener-
ated Xr in each iteration and then one of the following four choices
will be applied for repositioning of the poor solution: when Xr ∈ [0,
0.25], then the best solution is used, when Xr ∈ [0.25, 0.5], then the
second best solution is used, when Xr ∈ [0.5, 0.75], then the third best
solution is employed, and when Xr ∈ [0.75, 1], a random solution is
used.
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...... NN-11+N/2N/2

List of worst grasshoppers

N-221 3Xr

Random agent

List of three best solutions 

and a random one
... NN-11+N/2 N-2

New repositioned list

List of best grasshoppers

Figure 5: The sorted population and related agents that should be repositioned around
the best solutions and a random one

The selected solution will be used as a starting point to reposition the
poor solution. Repositioning the poor solutions around the best solu-
tions aims to heighten the median of the swarm in each step. However,
this process may cause a premature convergence of the algorithm. As
a remedy, a randomly generated solution is used in the first rule to
promote exploration and prevent trapping in local optima.

2. BGOA_EPD_CM: this version is similar to the BGOA_EPD and the
only difference is that it also uses a crossover and a mutation operator.
In the second approach, a random number is generated and one solution
is selected similar to the first strategy, then the selected solution is
mutated to improve the exploration tendency of the algorithm. The
mutated solution is then crossover with the poor solution.

3.1.2. BGOA_EPD with special selection operator

According to the findings of Talbi [27], “it does not mean that using better
solutions as initial solutions will always lead to better local optima”[27].
The best individuals may bias the searching process and this may cause
a premature convergence and a loss of diversity. For this reason, instead
of selecting one of the three best solutions like the previous versions, two
well-regarded selection mechanism are applied to select a solution from the
first half of the population. For each solution in the second half of the
population, select a solution from the first half using the selection mechanism;
mutate and then crossover it with the poor solution. In this regard, the
alternative method for hybridizing the EPD with the BGOA in the BGOA-
EPD algorithm is to also employ a special selection mechanism. There are
two well-known selection techniques: Roulette wheel selection (RWS) [83]
and the TS [84]. These methods are utilized in this work. Therefore, another
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two different strategies that can be developed for the BGOA_EPD are:

1. BGOA_EPD_Tour: in this version, a solution from the first half of the
swarm is selected using the TS operator, then the same crossover and
mutation operators utilized in the BGOA_EPD version are applied on
the obtained solution.
The TS is the most popular selection mechanism used with GA due to
its efficiency and simple implementation. In TS, a set of n individuals
are randomly selected from the whole population, then the best indi-
vidual among the selected individuals will be selected to reposition the
poor solution. The number of selected individuals called tournament
size Ts. The advantage of TS is that it gives a chance to all individ-
uals to guide the poor solutions, which preserve the diversity of the
BGOA_EPD_Tour algorithm. An example of the TS mechanism for
the BGOA_EPD_Tour is illustrated in Fig.6, where three individuals
are selected (Ts = 3) and the best solution among them is picked out.
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Figure 6: The mechanism of TS

After applying the TS operator,the mutation operator with suitable
mutation rate is applied the selected grasshopper hoping to find a bet-
ter solution in the neighbor of the selected solution and to avoid the
BGOA_EPD_Tour algorithm from the premature convergence. After
that, the poor solution is repositioned around the resulting solution by
applying a crossover operator. In the BGOA_EPD_Tour, a solution
is selected using the TS to give a chance to the lower fitness solution
in the first half of the population to be selected.

2. BGOA_EPD_RWS: This version is similar to the BGOA_EPD_Tour
version and the only difference is that it uses the RWS operator instead
of the TS operator.
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In the BGOA_EPD_RWS, in each iteration of the BGOA process,
for each solution in the worst half of the population, a solution from
the first half is selected using the RWS operator. In RWS, individuals
are selected with a probability based on their fitness values. In this
selection strategy, a roulette wheel is formulated with a circumference
equals the sum of all fitness values of the individuals (see Fig 7).
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Figure 7: Selection strategy with roulette wheel mechanism

Each individual will have a segment with a size proportional to its fit-
ness. The probability to select an individual can be seen as spinning
a roulette wheel, and the segment where the pointer stops is taken
and the corresponding individual will be selected. Obviously, the indi-
viduals with the largest fitness (i.e. largest segment sizes) have higher
probability of being selected than those who have lower probability (i.e.
smallest segment sizes). The advantage of RWS that it does not ignore
any individual in the population, therefore, it preserves the diversity of
the population.
After selecting a solution using the RWS operator, it is mutated to
explore more regions of the feature space, then; the resulted solution
from the mutation operator is used to reposition a solution from the
second half by applying a crossover operator.

The mutation rate r for all related approaches is shown in Eq. (12). The
parameter r is decremented from 0.9 to 0,linearly, according to the iteration
number i.

r = 0.9(1 +
(1− i)

L− 1
) (12)

where L was the maximum number of iterations.
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The main difference between these versions is that they use different se-
lection operators. In addition, the BGOA_EPD_CM uses the best solutions
in the population while BGOA_EPD_RWS and BGOA_EPD_Tour vari-
ants do not use this policy. They use other solutions from the first half of
the population.

The overall pseudo code of the BGOA_EPD algorithm is described in
Algorithm 2. Flowchart of the BGOA_EPD is also demonstrated in Fig. 8.

Algorithm 2 Pseudo code of the BGOA_EPD approaches

Initialize GOA parameters (cMax, cMin, and L)
Initialize a set of random solutions Xi(i = 1, 2, . . . , n) as initial population
Obtain the fitness of all agents
Remark the best solution as Target
while t < L do

Update c using Eq. (7)
for each individual in the population do

Normalize the distances between grasshoppers into [1, 4]
Update the step vectors (∆X) using Eq. (8)
Update position vectors using Eq. (10)

Update Target if there is a better solution in the population
Sort the population based on the fitness
for i = (n/2) + 1 to n do

Update the position of i− th grasshopper using EPD approach
t = t+ 1

return Target
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Figure 8: The overall steps for proposed BGOA_EPD approach

Note that the computational complexity of the proposed BGOA_EPD
is not significantly different from the GOA. The computational complexity
of GOA is of O(t × d × n2) where t indicates the number of iterations, d
is the number of variables, and n shows the number of solutions. The pro-
posed binary operators do not change the computational complexity since
they have been applied to the position updating mechanism of the original
GOA. To re-initialize 50% of solutions, however, the additional complexity of
O(n/2) is required, so the overall computational complexity of the proposed
BGOA_EPD is O(t×d×n2+n/2). Note that due to the need to re-evaluate
the objective value of half of the solutions, the number of function evaluations
in BGOA_EPD is n/2 units more that of GOA.
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4. Experimental results and discussions

In this section, the efficacy of the proposed hybrid EPD_BGOA ver-
sions in dealing with 22 well-regarded datasets including Exactly, Breast-
cancer, Zoo, IonosphereEW, Vote, WaveformEW, WineEW, HeartEW,
Colon, Clean1, M-of-n, Tic-tac-toe, KrvskpEW, Leukemia, and SonarEW
is investigated.

Table 2 reports the brief description of the 22 datasets utilized. For more
details, interested readers are referred to the UCI source. These benchmark
cases have been studied in several well-established works. The utilized test set
cover different traits and the instances of small to high dimensional datasets
and can examine the searching competencies of EA and metaheuristics in
tackling the FS problems. Different variants of BGOA algorithm were em-
ployed to search for the best reduct with the minimum error rate based on
KNN classifier (where K = 5 [85]) with the Euclidean distance metric. For
evaluation purposes, each datasets is divided into training and testing sets
where 80% of the instances in the datasets were used for training purposes
and the rest of them is utilized for testing tasks [86].

All the fair tests and the computed results in this research are conducted
and prepared on a PC with Intel Core(TM) i5-5200U 2.2GHz CPU and 4.0GB
RAM. The maximum iterations (L) is set to 100 and the number of search
agents (N) is 10. Additionally, all statistical results are recorded over 30
independent runs. The dimension of cases is equal to the number of features
in each experimented dataset. The α and β parameters in the fitness equation
are set to 0.99 and 0.01, respectively.
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Table 2: List of used datasets

No. Dataset No. of Features No. of instances
1. Breastcancer 9 699
2. BreastEW 30 596
3. Exactly 13 1000
4. Exactly2 13 1000
5. HeartEW 13 270
6. Lymphography 18 148
7. M-of-n 13 1000
8. PenglungEW 325 73
9. SonarEW 60 208
10. SpectEW 22 267
11. CongressEW 16 435
12. IonosphereEW 34 351
13. KrvskpEW 36 3196
14. Tic-tac-toe 9 958
15. Vote 16 300
16. WaveformEW 40 5000
17. WineEW 13 178
18. Zoo 16 101
19. Clean1 166 476
20. Semeion 265 1593
21. Colon 2000 62
22. Leukemia 7129 72

4.1. Evaluation of proposed methods

In this part, the efficiency, convergence and the quality of the results
of four developed hybrid approaches are deeply measured and compared to
each other’s to distinguish the preeminent variant for more advanced investi-
gations. The four techniques utilizing different operators and the random, TS
and RWS mechanisms are substantiated and compared to judge and discover
the influence of the crossover and mutation strategies and using a specific
selection scheme in preference to the random selection policy on either the
results or efficacy of the proposed variants. The performance of the proposed
optimizers is evaluated and compared in terms of the average classification
accuracy (Acc), selection size, and fitness values, computational times, and
convergence rates over all runs of each technique. The Acc is measured via
the nominated features on the used dataset. The standard deviation (Std-
Dev) of all proposed versions is also provided for all metrics, datasets and
algorithms.

Table 3 exposes the attained Acc and related StdDev results for the
BGOA_S algorithm versus other designed versions. Tables 4-6 also reflect
the average selected attributes, fitness, and CPU time values along with the
related StdDev for the proposed techniques.

From Table 3, it can be detected that the hybrid BGOA_EPD_Tour can
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Table 3: Comparison of the BGOA_S with four hybrid versions using Acc and StdDev
metrics

Dataset
BGOA_S BGOA_EPD BGOA_EPD_CM BGOA_EPD_RWS BGOA_EPD_Tour

Acc StdDev Acc StdDev Acc StdDev Acc StdDev Acc StdDev
Breastcancer 0.969 0.000 0.966 0.000 0.969 0.000 0.977 0.000 0.980 0.001
BreastEW 0.960 0.005 0.962 0.002 0.963 0.003 0.964 0.003 0.947 0.005
Exactly 0.946 0.036 0.997 0.006 0.993 0.009 0.999 0.008 0.999 0.005
Exactly2 0.760 0.000 0.734 0.005 0.744 0.013 0.762 0.000 0.780 0.000
HeartEW 0.826 0.010 0.842 0.006 0.841 0.012 0.815 0.008 0.833 0.004
Lymphography 0.815 0.012 0.895 0.013 0.844 0.012 0.878 0.009 0.868 0.011
M-of-n 0.979 0.030 0.997 0.007 0.999 0.004 0.999 0.004 1.000 0.000
PenglungEW 0.861 0.015 0.868 0.008 0.839 0.021 0.750 0.012 0.927 0.013
SonarEW 0.895 0.011 0.921 0.007 0.883 0.006 0.922 0.008 0.912 0.009
SpectEW 0.851 0.011 0.850 0.007 0.882 0.006 0.852 0.007 0.826 0.010
CongressEW 0.953 0.004 0.983 0.003 0.974 0.004 0.983 0.004 0.964 0.005
IonosphereEW 0.883 0.007 0.907 0.004 0.922 0.007 0.911 0.005 0.899 0.007
KrvskpEW 0.956 0.008 0.960 0.006 0.959 0.006 0.963 0.004 0.968 0.003
Tic-tac-toe 0.803 0.007 0.797 0.001 0.789 0.000 0.785 0.000 0.808 0.000
Vote 0.951 0.004 0.948 0.006 0.953 0.004 0.960 0.003 0.966 0.003
WaveformEW 0.729 0.009 0.739 0.006 0.743 0.004 0.740 0.004 0.737 0.003
WineEW 0.979 0.004 0.994 0.006 0.993 0.005 0.988 0.003 0.989 0.000
Zoo 0.990 0.010 0.976 0.008 0.960 0.004 1.000 0.000 0.993 0.009
Clean1 0.883 0.008 0.885 0.005 0.893 0.005 0.885 0.006 0.863 0.004
Semeion 0.975 0.002 0.979 0.001 0.986 0.001 0.974 0.001 0.976 0.002
Colon 0.745 0.010 0.812 0.012 0.712 0.008 0.810 0.010 0.870 0.006
Leukemia 0.928 0.014 0.889 0.000 0.931 0.014 0.855 0.012 0.931 0.014

relatively outperform other competitors in terms of Acc and StdDev metrics
in dealing with 10 and 11 datasets, respectively. The simple binary BGOA_S
cannot reveal higher accuracies than any hybrid variant over all 22 datasets.
For the M-of-n dataset, the BGOA_EPD_Tour has classified with 100% Acc
and 0 StdDev using only 6.47 attributes. From Table 3, it is observed that the
BGOA_EPD_RWS can provide superior Acc rates compared to other vari-
eties in tackling the BreastEW, CongressEW, SonarEW, and Zoo datasets.
The BGOA_EPD_RWS has attained the Acc of 100% in solving the Zoo
test case. The BGOA_EPD_CM outperform others in terms of Acc in deal-
ing with the 6 datasets: IonosphereEW, SpectEW, WaveformEW, Clean1,
Semeion, and Leukemia problems. The BGOA_EPD has outperformed com-
petitors in realizing the HeartEW, Lymphography, and WineEW. In tackling
the CongressEW, both BGOA_EPD and BGOA_EPD_RWS have reached
to a same Acc rate 98.3%, while based on selected attributes in Table 4,
the BGOA_EPD_RWS with 5.5 selected attributes has outperformed the
BGOA_EPD.

Regarding the Acc rates, the BGOA_EPD_Tour can outperform the
BGOA_S over 19 problems and there is a marked shift in the rates for the
BGOA_EPD_Tour and improvement varies from 1% to 12.5%.A comparable
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pattern can be detected from the results of BGOA_EPD_RWS, it outper-
form the BGOA_S technique on 17 datasets, whereas the BGOA_EPD_CM
and BGOA_EPD outperform the basic optimizer on 15 problems.

According to the selected attributes (Atts) in Table 4, it is seen that the
simple BGOA_S is better than the BGOA_EPD_Tour on 19 datasets. It
also is superior to the BGOA_EPD_RWS and BGOA_EPD_CM in dealing
with 17 problems.

Table 4: Average selected attributes using the developed algorithms

Dataset
BGOA_S BGOA_EPD BGOA_EPD_CM BGOA_EPD_RWS BGOA_EPD_Tour

Atts StdDev Atts StdDev Atts StdDev Atts StdDev Atts StdDev
Breastcancer 4.00 0.000 5.13 0.346 4.17 0.379 4.73 0.980 5.00 0.000
BreastEW 15.37 2.697 20.00 2.729 17.50 1.889 17.20 2.747 17.33 2.440
Exactly 7.63 0.809 6.60 0.498 6.57 0.504 6.43 0.568 6.53 0.571
Exactly2 1.27 0.450 7.97 0.809 5.67 3.565 1.50 0.509 1.53 0.507
HeartEW 6.77 1.524 6.67 0.922 5.77 0.817 6.13 1.548 8.40 1.037
Lymphography 7.47 2.080 10.60 1.003 10.60 1.522 11.60 1.476 10.63 1.217
M-of-n 7.53 0.973 6.53 0.629 6.57 0.504 6.57 0.568 6.47 0.507
PenglungEW 150.13 8.509 166.53 15.937 198.90 8.707 174.77 15.460 178.33 15.486
SonarEW 28.57 3.191 36.37 3.157 36.03 3.489 35.73 2.778 36.77 4.240
SpectEW 9.93 1.856 14.13 1.995 12.83 2.437 11.93 2.463 11.10 3.044
CongressEW 4.33 1.322 7.67 1.729 6.53 2.145 5.50 1.592 5.77 2.012
IonosphereEW 13.43 3.115 18.93 3.269 17.93 2.420 17.77 3.785 16.40 3.701
KrvskpEW 19.90 3.010 22.33 3.010 22.10 2.551 22.43 2.417 21.67 2.496
Tic-tac-toe 6.83 0.379 5.03 0.183 6.00 0.000 6.10 0.305 5.00 0.000
Vote 5.27 2.083 6.73 1.015 6.57 1.995 6.07 1.617 5.43 1.223
WaveformEW 21.20 2.952 25.53 3.082 25.80 3.295 24.93 2.876 26.23 3.451
WineEW 6.33 1.348 7.27 0.944 7.23 0.817 6.83 1.147 8.80 1.472
Zoo 8.13 1.167 7.97 1.426 7.93 1.230 7.77 0.774 9.17 1.967
clean1 82.93 5.948 103.80 6.880 105.20 6.206 96.00 9.127 92.60 7.802
Semeion 134.90 7.662 169.63 11.137 171.50 7.361 159.87 9.885 157.03 11.485
Colon 967.87 23.882 1194.33 89.430 1198.33 97.070 1050.83 70.247 1063.67 64.618
Leukemia 3495.23 48.699 4138.27 373.767 4366.87 288.129 3896.63 292.866 3768.80 224.842

Inspecting the fitness measures (Fitness) in Table 5, the best opti-
mizer is the BGOA_EPD_Tour. It shows the lowest values for the ob-
jective function in tackling the 10 datasets: Breastcancer, Exactly, Exactly2,
KrvskpEW, M-of-n, PenglungEW, Tic-tac-toe, Vote, Colon, and Leukemia.
The BGOA_EPD_RWS has shown a relatively good performance in deal-
ing with 4 test cases: BreastEW, CongressEW, SonarEW, and Zoo. The
BGOA_EPD_CM has provided a lower fitness for IonosphereEW, SpectEW,
WaveformEW, Clean1, and Semeion datasets.

From Table 6, it can be observed that the BGOA_S is the fastest ap-
proach in a same computational environment with other optimizers. When
comparing the algorithms with the TS-based and RWS-based selection op-
erators, it is seen that for 19 datasets, BGOA_EPD_RWS outperforms
the BGOA_EPD_Tour. For only BreastEW, Exactly, and Tic-tac-toe, the
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Table 5: Average fitness values for proposed versions

Dataset
BGOA_S BGOA_EPD BGOA_EPD_CM BGOA_EPD_RWS BGOA_EPD_Tour

Fitness StdDev Fitness StdDev Fitness StdDev Fitness StdDev Fitness StdDev
Breastcancer 0.036 0.000 0.040 0.000 0.036 0.000 0.028 0.001 0.026 0.001
BreastEW 0.045 0.005 0.044 0.002 0.043 0.003 0.041 0.003 0.058 0.004
Exactly 0.059 0.036 0.008 0.006 0.012 0.010 0.006 0.008 0.006 0.006
Exactly2 0.239 0.000 0.269 0.005 0.257 0.015 0.237 0.000 0.219 0.000
HeartEW 0.178 0.009 0.161 0.006 0.162 0.012 0.188 0.008 0.171 0.004
Lymphography 0.187 0.012 0.110 0.013 0.161 0.012 0.127 0.009 0.137 0.011
M-of-n 0.027 0.030 0.008 0.007 0.006 0.004 0.006 0.004 0.005 0.000
PenglungEW 0.142 0.015 0.136 0.008 0.166 0.020 0.253 0.012 0.078 0.012
SonarEW 0.109 0.010 0.084 0.007 0.122 0.006 0.083 0.008 0.094 0.008
SpectEW 0.152 0.011 0.155 0.007 0.123 0.006 0.152 0.006 0.177 0.010
Tic-tac-toe 0.203 0.007 0.206 0.001 0.215 0.000 0.220 0.000 0.196 0.000
CongressEW 0.049 0.004 0.022 0.003 0.030 0.004 0.020 0.005 0.039 0.005
IonosphereEW 0.120 0.008 0.098 0.004 0.082 0.007 0.094 0.005 0.105 0.007
KrvskpEW 0.049 0.008 0.046 0.006 0.047 0.006 0.043 0.004 0.038 0.003
Vote 0.052 0.004 0.055 0.006 0.050 0.005 0.044 0.003 0.037 0.003
WaveformEW 0.274 0.009 0.265 0.006 0.261 0.004 0.263 0.005 0.267 0.003
WineEW 0.025 0.004 0.012 0.005 0.013 0.005 0.017 0.003 0.018 0.001
Zoo 0.015 0.010 0.028 0.007 0.044 0.004 0.005 0.000 0.012 0.008
Clean1 0.121 0.008 0.120 0.004 0.112 0.005 0.120 0.006 0.141 0.004
Semeion 0.030 0.002 0.027 0.001 0.020 0.001 0.031 0.001 0.030 0.001
Colon 0.257 0.010 0.192 0.012 0.291 0.008 0.194 0.010 0.134 0.006
Leukemia 0.076 0.014 0.116 0.001 0.074 0.014 0.149 0.012 0.073 0.014

BGOA_EPD_Tour has a slightly better run speed.
The average ranking of the proposed binary and hybrid versions in terms

of Acc, Att, and fitness metrics is presented in Table 8. In Table 8, the rank
of each method on a dataset is calculated, then, the sum of the ranks based
on each metric is obtained. The total sum shows the sum of the ranks of
each optimizer based on all metrics. The final rank shows the final average
place of each algorithm in handling all 22 datasets. The utilized ranking
system gives a lower place to those items that have better value according to
a specific metric. The overall and final ranks are inside [1, 5] interval.

Table 8 divulges that the BGOA_EPD_RWS and BGOA_EPD_Tour
has achieved to the best places. Regarding the Acc metric, the
BGOA_EPD_Tour won the competition and BGOA_EPD_RWS was
the second winner, while the BGOA_EPD_CM and BGOA_EPD were
both the third front-runners and BGOA_S gained the last stage. Based
on the orders for the Fit measure, the best solvers can be spot-
ted as the BGOA_EPD_Tour, BGOA_EPD_RWS, BGOA_EPD_CM,
BGOA_EPD, and BGOA_S, respectively. Regarding the Att measure, the
best is the BGOA_S, while the BGOA_EPD_Tour and BGOA_EPD_RWS
have acquired the second and third places.

Based on the final ranks, the best two algorithms (BGOA_EPD_RWS
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Table 6: Average CPU time (seconds) of proposed techniques

Dataset
BGOA_S BGOA_EPD BGOA_EPD_CM BGOA_EPD_RWS BGOA_EPD_Tour

Time StdDev Time StdDev Time StdDev Time StdDev Time StdDev
Breastcancer 3.537 0.248 4.053 0.232 4.370 0.222 4.131 0.214 4.146 0.191
BreastEW 3.780 0.199 5.256 0.221 5.761 0.237 5.427 0.249 5.404 0.241
Exactly 4.874 0.238 6.166 0.301 6.881 0.313 6.155 0.262 6.014 0.277
Exactly2 5.223 0.344 6.204 0.285 6.882 0.351 5.934 0.265 5.942 0.257
HeartEW 2.803 0.164 3.276 0.183 3.667 0.165 3.484 0.190 3.505 0.178
Lymphography 2.540 0.148 3.145 0.144 3.547 0.169 3.413 0.161 3.427 0.162
M-of-n 4.792 0.234 5.641 0.220 6.406 0.288 5.812 0.279 6.173 0.271
penglungEW 2.836 0.164 18.597 0.784 21.038 0.920 19.494 0.756 19.560 0.822
SonarEW 2.713 0.160 5.469 0.263 6.113 0.262 5.774 0.240 5.801 0.245
SpectEW 2.705 0.154 3.465 0.147 3.916 0.189 3.746 0.183 3.775 0.164
Tic-tac-toe 4.226 0.210 4.961 0.210 5.227 0.255 5.214 0.250 5.097 0.222
CongressEW 3.248 0.160 3.835 0.186 4.273 0.207 4.093 0.211 4.109 0.205
IonosphereEW 2.899 0.152 4.441 0.205 4.988 0.207 4.717 0.201 4.735 0.199
KrvskpEW 49.520 1.668 58.357 1.773 62.814 3.055 56.831 1.871 57.043 1.743
Vote 2.799 0.158 3.364 0.164 3.491 0.154 3.618 0.187 3.640 0.179
WaveformEW 123.546 4.381 152.292 4.186 157.271 5.641 145.890 4.420 152.167 4.812
WineEW 2.492 0.151 3.054 0.152 3.176 0.152 3.281 0.176 3.766 0.301
Zoo 2.485 0.145 3.076 0.137 3.182 0.156 3.371 0.186 3.614 0.240
clean1 7.204 0.225 16.423 0.542 16.988 0.566 16.904 0.600 17.220 0.608
Semeion 88.934 1.514 129.229 2.182 130.251 2.154 120.308 2.480 123.254 2.147
Colon 4.964 0.338 100.832 3.628 106.310 4.461 107.901 4.333 112.236 4.364
Leukemia 15.322 0.884 383.067 19.075 379.074 15.501 381.100 15.244 394.688 15.418

Table 7: P-values of the Wilcoxon test the classification accuracy results of the proposed
approaches (p ≥ 0.05 are underlined, and N/A means not applicable).

BGOA_S BGOA_EPD BGOA_EPD-CM BGOA_EPD_RWS BGOA_EPD_Tour
Breast Cancer 2.71E-14 2.71E-14 2.71E-14 1.22E-12 N/A
BreastEW 1.42E-04 1.32E-02 2.25E-01 N/A 1.88E-11
Exactly 2.04E-10 9.53E-06 1.21E-04 1.00E+00 N/A
Exactly2 1.69E-14 1.01E-12 5.37E-13 1.69E-14 N/A
HeartEW 7.62E-09 N/A 2.15E-01 1.29E-11 7.19E-08
Lymphography 1.98E-11 N/A 1.79E-11 6.41E-06 1.89E-11
M-of-n 8.60E-07 4.19E-02 8.15E-02 3.34E-01 N/A
penglungEW 3.75E-12 8.38E-13 5.90E-12 2.63E-12 N/A
SonarEW 4.77E-11 7.19E-01 7.57E-12 N/A 2.11E-05
SpectEW 2.46E-11 1.56E-11 N/A 1.29E-11 1.79E-11
CongressEW 1.35E-11 6.58E-01 3.87E-09 N/A 1.54E-11
IonosphereEW 1.82E-11 2.68E-10 N/A 2.95E-08 5.21E-11
KrvskpEW 3.14E-09 4.23E-06 1.48E-08 3.29E-06 N/A
Tic-tac-toe 1.19E-13 2.71E-14 2.71E-14 1.69E-14 N/A
Vote 9.06E-12 7.00E-12 1.64E-11 2.11E-08 N/A
WaveformEW 3.04E-08 3.16E-03 N/A 3.13E-02 3.73E-07
WineEW 1.07E-10 N/A 4.35E-01 2.50E-05 5.59E-05
Zoo 3.80E-06 1.55E-13 2.71E-14 N/A 6.18E-04
Clean1 1.09E-06 4.81E-07 N/A 2.15E-06 1.94E-11
semeion 1.77E-11 1.80E-11 N/A 1.83E-11 1.96E-11
Colon 9.45E-14 2.39E-13 6.50E-14 1.13E-13 N/A
Leukemia 3.09E-01 4.63E-13 N/A 3.31E-12 N/A
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Table 8: Overall ranking results

Algorithm BGOA_S BGOA_EPD BGOA_EPD_CM BGOA_EPD_RWS BGOA_EPD_Tour

Metric Acc Att Fit Acc Att Fit Acc Att Fit Acc Att Fit Acc Att Fit

Breastcancer 3 1 3 5 5 5 3 2 3 2 3 2 1 4 1
BreastEW 4 1 4 3 5 3 2 4 2 1 2 1 5 3 5
Exactly 5 5 5 3 4 3 4 3 4 1 1 1 1 2 1
Exactly2 3 1 3 5 5 5 4 4 4 2 2 2 1 3 1
HeartEW 4 4 4 1 3 1 2 1 2 5 2 5 3 5 3
Lymphography 5 1 5 1 2 1 4 2 4 2 5 2 3 4 3
M-of-n 5 5 5 4 2 4 2 3 2 2 3 2 1 1 1
PenglungEW 3 1 3 2 2 2 4 5 4 5 3 5 1 4 1
SonarEW 4 1 4 2 4 2 5 3 5 1 2 1 3 5 3
SpectEW 3 1 2 4 5 4 1 4 1 2 3 2 5 2 5
CongressEW 5 1 5 1 5 2 3 4 3 1 2 1 4 3 4
IonosphereEW 5 1 5 3 5 3 1 4 1 2 3 2 4 2 4
KrvskpEW 5 1 5 3 4 3 4 3 4 2 5 2 1 2 1
Tic-tac-toe 2 5 2 3 2 3 4 3 4 5 4 5 1 1 1
Vote 4 1 4 5 5 5 3 4 3 2 3 2 1 2 1
WaveformEW 5 1 5 3 3 3 1 4 1 2 2 2 4 5 4
WineEW 5 1 5 1 4 1 2 3 2 4 2 3 3 5 4
Zoo 3 4 3 4 3 4 5 2 5 1 1 1 2 5 2
Clean1 4 1 4 2 4 2 1 5 1 2 3 2 5 2 5
Semeion 4 1 3 2 4 2 1 5 1 5 3 5 3 2 3
Colon 4 1 4 2 4 2 5 5 5 3 2 3 1 3 1
Leukemia 3 1 3 4 4 4 1 5 2 5 3 5 1 2 1

Sum of the ranks 88 40 86 63 84 64 62 78 63 57 59 56 54 67 55
Overall rank 5 1 5 3 5 4 3 4 3 2 2 2 1 3 1

Total sum 214 211 203 172 176
Final ranks 5 4 3 1 2
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and BGOA_EPD_Tour) have demonstrated very competitive performances
and the ranks are 172 and 176, respectively. There is a notable gap between
the ranks of top winners having the RWS and TS selection schemes and
the third front-runner, the BGOA_EPD_CM that runs the mutation and
crossover to relocate the feeble grasshoppers based on top front-runners of
the population.

The reason might be that the BGOA_EPD_CM and BGOA_EPD
have utilized the best grasshoppers of the population, and this can bias
the exploration phase, which has instigated premature convergence and a
loss of diversity in the population. This effect of best solutions has de-
creased the quality of the outcomes, and consequently, the grades of the
BGOA_EPD_CM and BGOA_EPD in the ranking system have dropped
compared to the BGOA_EPD_Tour and BGOA_EPD_RWS. From the
other side, BGOA_EPD_Tour inherits the advantage of TS, which can pre-
serve the diversity of grasshoppers and consequently, the BGOA_EPD_Tour
has an advanced potential to retain and recover a stable balance between the
exploration and exploitation inclinations. In addition, BGOA_EPD_Tour
applies the mutation scheme to the selected grasshopper hoping to find a
better solution in the neighbor of the selected solution and to avoid the LO.
For these reasons, the BGOA_EPD_Tour can outperform all based on Acc
and fitness measures.

Based on final ranks, the best version is the BGOA_EPD_RWS. The
reason is that this version does not ignore any grasshopper in the popula-
tion, so it is capable of preserving the diversity of the agents, which can help
the BGOA_EPD_RWS to perform deeper exploration levels. This fact has
enabled the BGOA_EPD_RWS to avoid LO and discover better results. In
addition, after selecting an agent with the RWS operator, it is mutated to ex-
plore more areas of the feature space, then; the resulted solution is used again
to reposition a solution from the second half by applying the crossover oper-
ator. these operators also improve the efficacy of the BGOA_EPD_RWS in
balancing the exploration and exploitation as compared to other developed
versions.

The convergence trends for the all proposed variants according to the
fitness measure on all 22 datasets are also compared and demonstrated in
Figs. 9 and 10.

From Fig. 9, it can be observed that the BGOA_EPD_RWS has exposed
the best curves compared to other versions in tackling the BreastEW, Con-
gressEW, Lymphography, and SonarEW problems. The BGOA_EPD_Tour
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Figure 9: Convergence curves of the proposed approaches for Breastcancer, BreastEW,
Exactly, Exactly2, HeartEW, Lymphography, M-of-n, penglungEW, and SonarEW,
SpectEW, CongressEW, and IonosphereEW datasets.
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Figure 10: Convergence curves of the proposed approaches for KrvskpEW, Tic-tac-toe,
Vote, WaveformEW, WineEW, Zoo, Clean1, Semeion, Colon, and Leukemia datasets.
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can reveal a quicker tendency than others in treating the Breastcancer, Ex-
actly2, HeartEW, KrvskpEW, M-of-n, and penglungEW datasets, while the
BGOA_EPD has stagnated to LO in early steps of the exploration phase,
for example when solving the Breastcancer, CongressEW, Exactly, HeartEW,
IonosphereEW, KrvskpEW, Lymphography, and penglungEW tasks. From
the curves on Fig. 9, it can be inferred that the approaches utilizing the TS
and RWS schemes have a head-to-head convergence proclivity.

It seems that the TS and RWS-embedded variants perform better than
versions employing random selection and top solutions for rearranging of the
worst grasshoppers. This reveals that enhancing the median of all popula-
tion using only top solutions and a random grasshopper may increase the
chance of BGOA_EPD to be easily captivated in LO when penetrating the
fruitless regions of the feature space. The trends of the BGOA_EPD_CM
also support that the crossover and mutation schemes has heightened the
inclusive leaning of the BGOA_EPD in balancing the exploration and ex-
ploitation traits. Therefore, it is seen that the BGOA_EPD_CM can con-
verge faster to better results than the BGOA_EPD in basically all cases.
And yet, the BGOA_EPD_CM cannot surpass both BGOA_EPD_Tour
and BGOA_EPD_RWS in terms of convergence results, except in solving
the IonosphereEW. Therefore, it is seen that using selection mechanisms
has alleviated the unripe convergence shortcoming of the BGOA_EPD. In
RWS-based version, the door is open for the weak solution in the first
half of the population to be selected but the better solutions have more
chance. In this regard, the BGOA_EPD_Tour attains better results than
BGOA_EPD_RWS.

According to Fig. 10, the convergence shortcomings of the BGOA_EPD
can still be detected. However, it converged to improved results for the
Clean1. The BGOA_S can be better than the BGOA_EPD regarding the
convergence and it shows competitive trends for all cases.

The BGOA_EPD_CM has revealed enriched tendencies compared to the
BGOA_EPD and BGOA_S, mainly on SpectEW, WaveformEW, WineEW,
and Semeion problems, which has slightly outperformed other methods. It
shows that the extra operators assist the BGOA_EPD in fleeing from the
LO. When the TS-based selection theme has met the BGOA_EPD, it has
shown best curves on the Tic-tac-toe, Vote, Colon, and Leukemia, whereas
the BGOA_EPD_RWS has not exposed the excellent curves, except on the
Zoo. The reason is that the TS can enhance and preserve the diversity of
the solutions, which can encourage more stable balance between the local
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and global search trends. Then, it helps the BGOA_EPD_Tour to un-
cover superior trends on harder cases like the Leukemia with 7129 and Colon
with 2000 features. It is seen that the tendencies of BGOA_EPD_Tour
and BGOA_EPD_RWS are very competitive on the WineEW and Wave-
formEW.

Considering all results, convergence curves and final rankings of
algorithms, it can be recognized that two best versions are the
BGOA_EPD_RWS and BGOA_EPD_Tour algorithms. In the next
section, the BGOA_EPD_Tour, which is the best hybrid variant of
BGOA_EPD ,is considered to be further compared to other well-established
optimizers with regard to the efficacy, performance on different metrics and
convergence behaviors.

4.2. Comparison with other metaheuristics

In this section, the efficacy and qualitative results of the
BGOA_EPD_Tour techniques is compared to the several well-regarded
and related optimizers in the FS field from different aspects. The binary
versions of the GWO (bGWO) [67], GSA (BGSA) [87], and BA (BBA) [88]
are utilized here to deeply investigate the comparative efficiency of these
well-established methods against the developed BGOA-based version.

All trials have completed during a same condition and all conditions were
similar to the described info in preceding section. The parameters of optimiz-
ers are sensibly selected using many trial and error processes to comprehend
the finest feasible settings. Table 9 shows the the used parameters.

Table 9: The parameter settings

Algorithm Parameter Value

GSA G0 100
α 20

BA Qmin Frequency minimum 0
Qmax Frequency maximum 2
A Loudness 0.5
r Pulse rate 0.5

GWO a [2 0]

Table 10 exposes the attained Acc and related StdDev results for the
proposed algorithms versus other metaheuristics. Tables 11-13 also reflect
the average selected attributes, fitness, and CPU time values along with the
related StdDev for the compared techniques. Table 14 shows the results of
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Wilcoxon sum rank statistical test for the accuracy results in Table 10. For
the used test, the best technique for each dataset is considered as the base
method to be compared with other peers, independently.

Table 10: Classification accuracy results of the BGOA_EPD_Tour compared to other
metaheuristics

Dataset
BGOA_EPD_Tour bGWO BGSA BBA

Acc StdDev Acc StdDev Acc StdDev Acc StdDev
Breastcancer 0.980 0.001 0.968 0.002 0.957 0.004 0.937 0.031
BreastEW 0.947 0.005 0.954 0.007 0.942 0.006 0.931 0.014
Exactly 0.999 0.005 0.809 0.076 0.697 0.060 0.610 0.065
Exactly2 0.780 0.000 0.743 0.017 0.706 0.023 0.628 0.057
HeartEW 0.833 0.004 0.792 0.017 0.777 0.022 0.754 0.033
Lymphography 0.868 0.011 0.813 0.028 0.781 0.022 0.701 0.069
M-of-n 1.000 0.000 0.894 0.041 0.835 0.063 0.722 0.080
penglungEW 0.927 0.013 0.850 0.014 0.919 0.000 0.795 0.029
SonarEW 0.912 0.009 0.836 0.016 0.888 0.015 0.844 0.036
SpectEW 0.826 0.010 0.810 0.014 0.783 0.024 0.800 0.027
CongressEW 0.964 0.005 0.948 0.011 0.951 0.008 0.872 0.075
IonosphereEW 0.899 0.007 0.885 0.009 0.881 0.010 0.877 0.019
KrvskpEW 0.968 0.003 0.934 0.015 0.908 0.048 0.816 0.081
Tic-tac-toe 0.808 0.000 0.754 0.032 0.753 0.024 0.665 0.063
Vote 0.966 0.003 0.944 0.010 0.931 0.011 0.851 0.096
WaveformEW 0.737 0.003 0.723 0.007 0.695 0.014 0.669 0.033
WineEW 0.989 0.000 0.960 0.012 0.951 0.015 0.919 0.052
Zoo 0.993 0.009 0.975 0.009 0.939 0.008 0.874 0.095
clean1 0.863 0.004 0.908 0.006 0.898 0.011 0.826 0.021
semeion 0.976 0.002 0.972 0.003 0.971 0.002 0.962 0.006
Colon 0.870 0.006 0.661 0.022 0.766 0.015 0.682 0.038
Leukemia 0.931 0.014 0.884 0.016 0.844 0.014 0.877 0.029

From Table 10, it is seen that the hybrid BGOA_EPD_Tour can ev-
idently outperform all contestants on 20 datasets. The bGWO also out-
perform others on 2 problems: BreastEW and clean1. In comparison
with the BGSA, the BGOA_EPD_Tour can provide better rates on a11
problems. In dealing with 21 datasets, the classification accuracies of the
BGOA_EPD_Tour have improved in the interval of 0.5% (Semeion) to 30%
(Exactly) in comparison with the BGSA. It can also outperform the BBA on
all 22 datasets.

The best and worst average Acc that the bGWO have reached is 97.45%
and 66.13% on Zoo and Colon datasets, respectively. For M-of-n case,
the BGOA_EPD_Tour have reached to 100% accuracy, while bGWO has
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the accuracy of 89.41%, which shows the superior efficacy of the proposed
EPD-based optimizer. Based on the overall ranks, the BGOA_EPD_Tour
has achieved to the first place and bGWO, BGSA, and BBA are the next
choices, respectively. several substantial improvements in the StdDev in-
dex can also be detected. The main reason for improved efficacy of the
BGOA_EPD_Tour is that the poor solutions are repositioned around the
better ones in the BGOA_EPD_Tour using the EPD, and during this pro-
cess, the selection mechanisms has assisted the proposed approach to main-
tain the diversity of swarm, and then, recover a fine balance between the
exploration and exploitation. Therefore, in the case of stagnation to LO,
they can escape from them using the random nature behind the utilized
operators.

From the results reflected in Table 11, it is evident that the
BBA algorithm is better than other algorithms on 19 datasets. The
BGOA_EPD_Tour and BGSA algorithms have attained the next ranks.
For CongressEW and Vote, is observed that the BGOA_EPD_Tour can
show the best results.

Table 11: Average number of selected attributes results of the BGOA_EPD_Tour and
BGOA_EPD_RWS compared to other metaheuristics

Dataset
BGOA_EPD_Tour bGWO BGSA BBA

Att StdDev Att StdDev Att StdDev Att StdDev
Breastcancer 5.000 0.000 7.100 1.447 6.067 1.143 3.667 1.373
BreastEW 17.333 2.440 19.000 4.307 16.567 2.979 12.400 2.762
Exactly 6.533 0.571 10.233 1.654 8.733 1.048 5.733 1.893
Exactly2 1.533 0.507 7.333 4.155 5.100 2.107 6.067 2.333
HeartEW 8.400 1.037 8.167 2.001 6.833 1.315 5.900 1.647
Lymphography 10.633 1.217 11.100 1.971 9.167 1.895 7.800 2.203
M-of-n 6.467 0.507 9.633 0.964 8.467 1.432 6.167 2.086
penglungEW 178.333 15.486 166.333 28.232 157.167 7.729 126.167 15.601
SonarEW 36.767 4.240 36.233 8.613 30.033 3.700 24.700 5.377
SpectEW 11.100 3.044 12.633 2.442 9.533 2.300 7.967 2.282
CongressEW 5.767 2.012 7.300 2.136 6.767 2.402 6.233 2.063
IonosphereEW 16.400 3.701 19.233 5.015 15.400 2.513 13.400 2.594
KrvskpEW 21.667 2.496 27.367 3.388 19.967 2.125 15.000 2.853
Tic-tac-toe 5.000 0.000 6.700 1.343 5.867 1.137 4.700 1.489
Vote 5.433 1.223 7.400 2.222 8.167 1.821 6.133 2.177
WaveformEW 26.233 3.451 31.967 4.612 19.900 2.917 16.667 3.304
WineEW 8.800 1.472 8.600 1.754 7.367 1.098 6.067 1.741
Zoo 9.167 1.967 10.367 2.484 8.167 1.177 6.567 2.501
clean1 92.600 7.802 121.267 20.691 83.700 5.421 64.767 10.016
semeion 157.033 11.485 200.100 31.022 133.533 7.422 107.033 10.947
Colon 1063.667 64.618 1042.100 126.721 995.833 20.021 827.500 55.371
Leukemia 3768.800 224.842 3663.767 294.872 3555.133 39.713 2860.000 247.642
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Inspecting the results in Table 12, it is observed that the proposed
BGOA_EPD_Tour is capable of outperforming all algorithms and revealing
the best costs in realizing 20 datasets.

The BGOA_EPD_Tour shows superior costs compared to the BBA,
BGSA, and bGWO algorithms on 90.9%, 95.45%, and 90.9% of the datasets,
respectively. The reason is that the TS-based selection operator assists the
algorithm to maintain the diversity of grasshoppers. It also utilizes top so-
lutions to guide the poor ones and this strategy improves the exploitative
behavior of algorithm. Hence, the BGOA_EPD_Tour an enriched potential
to retain and recover a stable balance between the exploration and exploita-
tion phases in dealing with difficult feature spaces. The effect of selection
operators are seen in the background of the improved results.

The proposed BGOA_EPD_Tour has also attained an acceptable Std-
Dev values. Regarding the fitness, the bGWO show a good efficacy on 2
datasets. The penglungEW, Colon, Tic-tac-toe, krvskpEW cases can be
considered as relatively large datasets and the fitness values of the developed
EPD-based version is relatively less than other optimizers.

Based on Table 13, the BGSA is the fastest approach and the binary BBA
is placed at the next rank.

Table 14 shows all datasets that the proposed method provides the best
results (20 cases), the improvements are meaningful and accuracy of classifi-
cation results has significantly increased compared to the other competitors.

The convergence curves for the compared algorithms on all datasets are
demonstrated in Figs. 11 and 12. It can be seen that the BGOA_EPD_Tour
has an accelerated behavior on all 22 problems. Based on the last found solu-
tions, which can be seen from the ending points of the curves, it can outper-
form all techniques in tackling 20 problems except the BreastEW and Clean1
datasets, which no stagnation behavior occurs but the concluding marks are
not better than the bGWO algorithm. Premature convergence behaviors
can be detected in the curves of the bGWO, BBA and BGSA in dealing
with several cases including the Exactly, Vote, Tic-tac-toe, SpectEW, and
Zoo cases. For 20 datasets, the curves BGOA_EPD_Tour are superior to
those of other competitors. Based on the aforementioned remarks, it can be
recognized that the novel EPD-based operators have strengthened the over-
all tradeoff between the exploratory and exploitative steps. Consequently, it
alleviates the immature convergence drawbacks of the BGOA in dealing with
FS problems.
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Table 12: Average fitness results of the BGOA_EPD_Tour and BGOA_EPD_RWS com-
pared to other metaheuristics

Dataset
BGOA_EPD_Tour bGWO BGSA BBA

Fitness StdDev Fitness StdDev Fitness StdDev Fitness StdDev
Breastcancer 0.026 0.001 0.039 0.003 0.049 0.003 0.044 0.005
BreastEW 0.058 0.004 0.051 0.007 0.063 0.006 0.056 0.006
Exactly 0.006 0.006 0.197 0.077 0.307 0.059 0.323 0.074
Exactly2 0.219 0.000 0.260 0.019 0.295 0.024 0.326 0.017
HeartEW 0.171 0.004 0.213 0.017 0.226 0.021 0.208 0.015
Lymphography 0.137 0.011 0.191 0.028 0.222 0.022 0.226 0.024
M-of-n 0.005 0.000 0.112 0.041 0.170 0.063 0.171 0.056
penglungEW 0.078 0.012 0.154 0.013 0.085 0.000 0.168 0.017
SonarEW 0.094 0.008 0.169 0.016 0.116 0.015 0.110 0.021
SpectEW 0.177 0.010 0.194 0.014 0.220 0.024 0.172 0.012
CongressEW 0.039 0.005 0.056 0.011 0.053 0.008 0.064 0.015
IonosphereEW 0.105 0.007 0.120 0.009 0.122 0.010 0.108 0.012
KrvskpEW 0.038 0.003 0.073 0.015 0.097 0.047 0.117 0.047
Tic-tac-toe 0.196 0.000 0.251 0.032 0.251 0.024 0.257 0.024
Vote 0.037 0.003 0.060 0.010 0.073 0.011 0.071 0.013
WaveformEW 0.267 0.003 0.283 0.007 0.307 0.014 0.304 0.014
WineEW 0.018 0.001 0.047 0.012 0.054 0.015 0.036 0.013
Zoo 0.012 0.008 0.032 0.009 0.065 0.008 0.042 0.015
clean1 0.141 0.004 0.099 0.006 0.106 0.010 0.156 0.013
semeion 0.030 0.001 0.036 0.003 0.034 0.002 0.033 0.003
Colon 0.134 0.006 0.341 0.022 0.237 0.014 0.279 0.035
Leukemia 0.073 0.014 0.120 0.016 0.160 0.013 0.085 0.023
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Table 13: Average CPU time (seconds) results of the BGOA_EPD_Tour and
BGOA_EPD_RWS compared to other metaheuristics

Dataset
BGOA_EPD_Tour bGWO BGSA BBA

Time StdDev Time StdDev Time StdDev Time StdDev
Breastcancer 4.146 0.191 3.879 0.236 3.461 0.194 3.456 0.184
BreastEW 5.404 0.241 4.602 0.234 3.748 0.173 3.862 0.196
Exactly 6.014 0.277 6.154 0.275 4.876 0.311 4.956 0.272
Exactly2 5.942 0.257 6.050 0.380 5.033 0.374 5.224 0.394
HeartEW 3.505 0.178 2.739 0.174 2.812 0.182 2.767 0.201
Lymphography 3.427 0.162 2.602 0.161 2.589 0.150 2.634 0.145
M-of-n 6.173 0.271 6.157 0.241 5.138 0.293 4.892 0.361
penglungEW 19.560 0.822 7.717 0.432 3.060 0.171 4.166 0.238
SonarEW 5.801 0.245 3.677 0.193 2.703 0.146 2.850 0.191
SpectEW 3.775 0.164 2.869 0.176 2.723 0.162 2.809 0.161
CongressEW 4.109 0.205 3.309 0.172 3.217 0.188 3.244 0.158
IonosphereEW 4.735 4.735 3.564 0.184 2.921 0.145 3.018 0.148
KrvskpEW 57.043 1.743 78.113 4.606 49.534 2.527 47.923 2.576
Tic-tac-toe 5.097 0.222 6.208 0.622 4.344 0.278 4.237 0.278
Vote 3.640 0.179 2.851 0.154 2.824 0.152 2.834 0.178
WaveformEW 152.167 4.812 213.955 13.607 125.804 6.770 119.990 8.169
WineEW 3.766 0.301 2.628 0.173 2.585 0.171 2.624 0.141
Zoo 3.614 0.240 2.623 0.136 2.547 0.158 2.777 0.192
clean1 17.220 0.608 13.683 0.647 7.397 0.288 7.589 0.467
semeion 123.254 2.147 169.538 9.191 90.601 2.212 82.776 5.579
Colon 112.236 4.364 36.694 1.998 5.154 0.242 12.176 0.774
Leukemia 394.688 15.418 130.878 6.366 16.441 0.683 39.379 2.418

36



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

Table 14: P-values of the Wilcoxon test the classification accuracy results of
BGOA_EPD_Tour and other meta heurstics algorithms (p ≥ 0.05 are underlined, and
N/A means not applicable).

BGOA_EPD_Tour bGWO BGSA BBA
Breast Cancer N/A 9.46E-13 1.40E-12 1.69E-12
BreastEW 1.04E-05 N/A 2.89E-08 1.46E-09
Exactly N/A 2.13E-12 1.70E-12 1.71E-12
Exactly2 N/A 1.02E-12 1.18E-12 1.21E-12
HeartEW N/A 2.77E-11 1.27E-10 1.44E-11
Lymphography N/A 6.90E-10 1.89E-11 2.11E-11
M-of-n N/A 1.20E-12 4.54E-12 1.21E-12
penglungEW N/A 4.38E-12 1.31E-03 7.45E-12
SonarEW N/A 1.74E-11 1.38E-08 8.57E-10
SpectEW N/A 3.51E-06 4.25E-09 1.73E-05
CongressEW N/A 1.32E-08 3.56E-08 2.30E-11
IonosphereEW N/A 2.50E-07 1.65E-08 3.82E-07
KrvskpEW N/A 3.69E-11 4.21E-10 2.88E-11
Tic-tac-toe N/A 1.13E-12 1.17E-12 1.21E-12
Vote N/A 4.12E-11 6.44E-12 7.66E-12
WaveformEW N/A 1.06E-09 2.98E-11 2.99E-11
WineEW N/A 7.91E-13 9.49E-13 4.39E-12
Zoo N/A 1.93E-08 1.66E-12 1.71E-11
Clean1 2.05E-11 N/A 3.08E-05 2.61E-11
semeion N/A 2.00E-07 1.99E-09 2.77E-10
Colon N/A 8.62E-13 3.60E-13 1.25E-12
Leukemia N/A 4.43E-11 5.63E-12 7.69E-10
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Figure 11: Convergence curves for BGOA_EPD_Tour and other state-of-art meth-
ods for Breastcancer, BreastEW, Exactly, Exactly2, HeartEW, Lymphography, M-of-n,
penglungEW, and SonarEW, SpectEW, CongressEW, and IonosphereEW datasets..
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Figure 12: Convergence curves for BGOA_EPD_Tour and other state-of-art methods
for KrvskpEW, Tic-tac-toe, Vote, WaveformEW, WineEW, Zoo, Clean1, Semeion, Colon,
and Leukemia datasets.
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4.3. Comparison with other meta-heuristics in the literature

In this part, the classification rates of the proposed EPD-based approach
are compared to some reported results from the past literature. Table
15 compares the average classification results of the BGOA_EPD_Tour
with other algorithms obtained from the previous specialized works. The
BGOA_EPD_Tour is compared to the reported classification results of GA
and PSO from [89] and results of the bGWO1, bGWO2, GA, and PSO from
[90]. Note that the first versions of GA and PSO were executed with exact
settings in the implementation of the authors in [89]. While the results of
other four approaches (bGWO1, bGWO2, GA, and PSO) in the table were
obtained by the authors with the same datasets in [90].

Table 15: Classification accuracies of the BGOA_EPD_Tour versus other meta-heuristics
from the specialized literature

BGOA_EPD_Tour GA [89] PSO [89] bGWO1[90] bGWO2 [90] GA [90] PSO [90]
Breastcancer 0.980 0.957 0.949 0.976 0.975 0.968 0.967
BreastEW 0.947 0.923 0.933 0.924 0.935 0.939 0.933
Exactly 0.999 0.822 0.973 0.708 0.776 0.674 0.688
Exactly2 0.780 0.677 0.666 0.745 0.750 0.746 0.730
HeartEW 0.833 0.732 0.745 0.776 0.776 0.780 0.787
Lymphography 0.868 0.758 0.759 0.744 0.700 0.696 0.744
M-of-n 1.000 0.916 0.996 0.908 0.963 0.861 0.921
penglungEW 0.927 0.672 0.879 0.600 0.584 0.584 0.584
SonarEW 0.912 0.833 0.804 0.731 0.729 0.754 0.737
SpectEW 0.826 0.756 0.738 0.820 0.822 0.793 0.822
CongressEW 0.964 0.898 0.937 0.935 0.938 0.932 0.928
IonosphereEW 0.899 0.863 0.876 0.807 0.834 0.814 0.819
KrvskpEW 0.968 0.940 0.949 0.944 0.956 0.920 0.941
Tic-tac-toe 0.808 0.764 0.750 0.728 0.727 0.719 0.735
Vote 0.966 0.808 0.888 0.912 0.920 0.904 0.904
WaveformEW 0.737 0.712 0.732 0.786 0.789 0.773 0.762
WineEW 0.989 0.947 0.937 0.930 0.920 0.937 0.933
Zoo 0.993 0.946 0.963 0.879 0.879 0.855 0.861
clean1 0.863 0.862 0.845 - - - -
semeion 0.976 0.963 0.967 - - - -
Colon 0.870 0.682 0.624 - - - -
Leukemia 0.931 0.705 0.862 - - - -

− The results of this dataset are not available.

From the results in Table 15, it is evident that the attained classifica-
tion rates by the developed EPD-based approach in this work are higher
than other optimizers on 21 datasets and have a substantial superiority
compared to those of GWO, GA, and PSO algorithms. The rates of the
BGOA_EPD_Tour are better than the results of GA and PSO in [89] for all
22 datasets. In comparison with the revealed results in [90], the BGOA-based
algorithm provides better classification rates than the PSO, GA, and bGWO1
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on all 18 available datasets and it can provide better than the bGWO2 on 17
datasets. These results also affirm that the proposed EPD-based and selec-
tion operators in the BGOA_EPD_Tour not only enriched its exploitation
and exploitation capabilities and alleviated its stagnation problems but also
enhanced the quality of the attained solutions for 22 datasets with various
dimensions and characteristics.

4.4. Comparison with filter-based techniques

In this subsection, the classification of the EPD-embedded BGOA opti-
mizer is compared to five well-known filter-based techniques [91]: correlation-
based feature selection (CFS) [7], fast correlation-based filter (FCBF) [10],
fisher score (F-score) [92], IG [93], and wavelet power spectrum (Spectrum)
[11]. These filter-based techniques have carefully selected from two main
classes: univariate and multivariate approaches. The IG, Spectrum, and
F-Score are from the univariate strategies, which do not reflect the depen-
dencies of the features in the assessment measure. In addition, CFS and
FCBF are from the other category, which can employ the dependencies of
the features. These approaches are investigated here because they have dif-
ferent mechanisms for utilizing the class labels of the training info to realize
the relevance of analyzed features. The supervised approaches such as CFS,
FCBF, F-Score and IG can utilize class labels whereas the unsupervised tech-
niques such as Spectrum cannot handle labels for assessing the features. The
results for the filter-based techniques after 20 runs are compared with the
rates of the BGOA_EPD_Tour in Table 16.
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Table 16: Classification accuracy results of all filter-based methods versus the
BGOA_EPD_Tour algorithm

Dataset CFS FCBF F-Score IG Spectrum BGOA_EPD_Tour
Breastcancer 0.957 0.986 0.979 0.957 0.957 0.980
BreastEW 0.825 0.798 0.930 0.930 0.772 0.947
Exactly 0.670 0.440 0.600 0.615 0.575 0.999
Exactly2 0.705 0.545 0.680 0.620 0.660 0.780
HeartEW 0.648 0.648 0.759 0.759 0.796 0.833
Lymphography 0.500 0.567 0.667 0.667 0.767 0.868
M-of-n 0.785 0.815 0.815 0.815 0.580 1.000
PenglungEW 0.600 0.667 0.800 0.667 0.400 0.927
SonarEW 0.310 0.214 0.048 0.191 0.048 0.912
SpectEW 0.736 0.774 0.793 0.793 0.736 0.826
CongressEW 0.793 0.793 0.908 0.828 0.828 0.964
IonosphereEW 0.857 0.857 0.729 0.800 0.829 0.899
KrvskpEW 0.768 0.934 0.959 0.934 0.377 0.968
Tic-tac-toe 0.000 0.000 0.010 0.010 0.167 0.808
Vote 0.950 0.950 0.933 0.967 0.850 0.966
WaveformEW 0.620 0.710 0.662 0.662 0.292 0.737
WineEW 0.778 0.889 0.861 0.889 0.889 0.989
Zoo 0.800 0.900 0.650 0.850 0.600 0.993
clean1 0.716 0.642 0.632 0.547 0.611 0.863
semeion 0.875 0.875 0.875 0.868 0.875 0.976
Colon 0.750 0.667 0.667 0.667 0.500 0.870
Leukemia 0.929 0.857 0.980 0.980 0.357 0.931

Inspecting the comparative results in Table 16, it is seen that the TS-
based optimizer can outperform other algorithms on 17 datasets, while the
IG and F-Score methods have obtained the best results for 2 datasets. It
surpassed the supervised univariate approaches such as F-Score and IG, and
the supervised multivariate types such as CFS and FCBF, and the unsu-
pervised Spectrum technique. Furthermore, the results indicate that the
wrapper-based FS procedures can provide superior rates in comparison with
the filter-based versions since they can utilize both labels and dependen-
cies during the selection of associated subsets. It can be concluded that the
proposed algorithm has merits among other well-regarded optimizers and
outperforms some well-known filter-based approaches.

Taken together, the results and discussions showed that the binary op-
erators integrated into the BGOA algorithm were beneficial. The proposed
operators slightly change the solutions that accelerates local search and con-
vergence of the proposed algorithm. The EPD operator randomly changes
the worst solutions, which promotes diversity and global search of the pro-
posed algorithm. In feature selection problems, the shape of search space
changes for every new dataset. Feature selection is normally considered for
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problems with medium or large number of features as well. To handle these
difficulties, therefore, we need an efficient optimization algorithm that shows
less local optima stagnation and high accuracy. Both operators proposed in
the method assist BGOA_EPD in handling these difficulties.

5. Conclusion and future directions

In this study, an efficient GOA-based optimizer with EPD and selec-
tion operators was proposed to improve the efficacy of the basic GOA in
dealing with FS tasks. The proposed GOA_EPD approaches were utilized
extensively to tackle 22 benchmark datasets. The overall classification ac-
curacy, selected features, fitness, consumed CPU time, and convergence be-
haviors of all hybrid versions were compared in detail to select the best ver-
sion of the BGOA_EPD. The BGOA_EPD_Tour and BGOA_EPD_RWS
has obtained the best place among four developed hybrid variants. The
BGOA_EPD_Tour technique was utilized and compared in detail to various
well-known metaheuristic-based and filter-based FS methods. The compre-
hensive comparative results and analysis revealed the improved efficacy of
the proposed algorithm for solving different FS tasks.

Future studies can focus on the application of the EPD strategy to other
population-based optimizers. The efficacy of the proposed binary GOA and
EPD-based algorithms can also be employed to tackle other data mining
problems. For future works, we intended to compare the proposed GOA-
EPD with different classes of FS methods in the field.
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