IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 1, FEBRUARY 2004 1

Evolutionary Programming Using Mutations
Based on the L.évy Probability Distribution

Chang-Yong Lee, and Xin Yao, Fellow, IEEE

Abstract—This paper studies evolutionary programming with
mutations based on the Lévy probability distribution. The Lévy
probability distribution has an infinite second moment and is,
therefore, more likely to generate an offspring that is farther away
from its parent than the commonly employed Gaussian mutation.
Such likelihood depends on a parameter « in the Lévy distribu-
tion. We propose an evolutionary programming algorithm using
adaptive as well as nonadaptive Lévy mutations. The proposed
algorithm was applied to multivariate functional optimization.
Empirical evidence shows that, in the case of functions having
many local optima, the performance of the proposed algorithm
was better than that of classical evolutionary programming using
Gaussian mutation.

Index Terms—Evolutionary optimization, evolutionary pro-
gramming, Lévy mutation, Lévy probability distribution,
mean-square displacement.

1. INTRODUCTION

ONSIDERABLE work has been devoted to computational
methods that are inspired by biological evolution and nat-
ural selection. Among them, genetic algorithms (GAs), evolu-
tionary programming (EP), and evolution strategies (ESs) are
most prominent. These methods have drawn much attention to
the research community in conjunction with the parallel and/or
distributed computations. EP [1], in particular, was studied ini-
tially as a method for generating artificial intelligence [2].
Even though EP first used finite-state machines as the
underlying structure to be evolved [2], it was extended in
the mid-1980s to handle essentially arbitrary data structures
[1], such as applications involving continuous parameters
and combinatorial optimization problems. Since then, EP has
been applied successfully for the optimization of real-valued
functions [3], [4] and other practical problems [5]. The more
elaborate versions of EP incorporating self-adaptation of
variances of mutations were introduced in early 1990s [6], [7].
The self-adaptation rules from ESs [9] have also been incorpo-
rated into EP [8]. Self-adaptive EP for continuous parameter
optimization problems is now a widely accepted method in
evolutionary computation. It should be noted that EP for con-
tinuous parameter optimization has many similarities with ESs,

Manuscript received December 2002; revised May 6, 2003 and June 5, 2003.
This work was supported in part by Kongju National University, Korea, and the
Royal Society, U.K., 2000-2001.

C.-Y. Lee is with the Department of Industrial Information, Kongju National
University, Chungnam 340-802, Korea (e-mail: clee @mail.kongju.ac.kr).

X. Yao is with the School of Computer Science, The University of Birm-
ingham, Edgbaston, Birmingham B15 2TT, U.K. (e-mail: x.yao@cs.bham.
ac.uk).

Digital Object Identifier 10.1109/TEVC.2003.816583

although their development proceeded independently. In this
paper, we focus on EP for continuous parameter optimization,
although many of our conclusions are also applicable to other
evolutionary algorithms.

There are three major operations in a generic evolutionary
algorithm: crossover, selection, and mutation. In contrast to
GAs that emphasize crossover, mutation is the main operation
in EP. In conventional EP, each parent generates an offspring
via Gaussian mutation and better individuals among parents
and offspring are selected as parents of the next generation.
Schematically, Gaussian mutation in EP is accomplished by
adding zero-mean Gaussian random numbers to parents to
obtain offspring.

A study on non-Gaussian mutation in EP was initially car-
ried out in mid-1990s [11]. A mutation operation based on the
Cauchy distribution was proposed as a “fast evolutionary pro-
gramming (FEP)” [11], [20]. FEP converges faster to a better
solution than conventional EP for many multivariate functions
[20]. Unlike the Gaussian probability distribution, the Cauchy
probability distribution has infinite second moment and, as a
result, has a much longer tail. Therefore, Cauchy mutated oft-
spring can be quite different from their parents. It was shown
analytically that FEP has some advantages over conventional
EP [20].

In this paper, we generalize FEP further by using mutation
based on the Lévy probability distribution. With the Lévy prob-
ability distribution, one can extend and generalize FEP because
the Cauchy probability distribution is a special case of the Lévy
probability distribution. The Lévy probability distribution dif-
fers from the Gaussian distribution in that the Lévy distribu-
tion, like the Cauchy distribution, has an infinite second mo-
ment. One of the characteristics of the Lévy distribution is its
power law in the tail region. The power law implies that there is
no characteristic length scale and this is the milestone of fractal
structure. The distribution has drawn much attention from sci-
entific communities in explaining the fractal structure of nature,
in areas such as turbulence, polymers, biological systems, and
even economics [12]. Moreover, by adjusting the parameter «
in the distribution, one can tune the probability density, which
in turn yields adjustable variation in the mutation.

The rest of the paper is organized as follows. In Section 1I,
we discuss the characteristics of the Lévy probability distribu-
tion and the algorithm for generating random variables having
the Lévy probability distribution. In Section III, we analyze
mutation operations based on the two different distribution in
terms of the mean-square displacement and the number of dis-
tinct values obtained by mutation operations. Section IV de-
scribes the multidimensional function optimization problems

1089-778X/04$20.00 © 2004 IEEE

2 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 1, FEBRUARY 2004

using both Gaussian and Lévy mutation operations in EP. This
is followed by results and discussions of the optimization exper-
iments for both mutation operations in Section V. The adaptive
Lévy mutation in EP is discussed in Section VI. The last sec-
tion, Section VII, is devoted to conclusions and future studies.

II. LEVY PROBABILITY DISTRIBUTION

As a finite second moment would lead to a characteristic scale
and the Gaussian behavior for the probability density through
the central limit theorem, P. Lévy, in the 1930s, searched for an
exception to it. He discovered a class of probability distributions
having an infinite second moment and governing the sum of
these random variables [13], [22]. An infinite second moment
implies the absence of a definite scale, which is the paradigm of
fractals.

Consider a process represented by a set {Y;} of identically
distributed random variables. If the sum of these random
variables has the same probability distribution as individual
random variables, then this process is called stable. A typical
example of the stable process is the Gaussian process. While
the Gaussian process has a finite second moment, there is a
class of probability distributions of an infinite second moment
that also yields a stable process. Such a probability distribution
is called the Lévy probability distribution and has the following
form [13], [22]:

1 s
Lany(y) = ;/e " cos(qy)dg, y€ER. (1)
0
The distribution is symmetric with respect to y = 0 and

has two parameters y and «. -y is the scaling factor satisfying
v > 0, and « controls the shape of the distribution, requiring
0 < a < 2. The analytic form of the integral is unknown for
general «, but is known for a few cases. In particular, fora = 1,
the integral can be reduced to the analytic form resulting in the
Cauchy distribution. In the limit of & — 2, the distribution is
no longer the Lévy distribution and becomes the Gaussian dis-
tribution. The parameter « controls the shape of the distribution
in such a way that one can obtain different shapes of probability
distribution, especially in the tail region: the smaller is the pa-
rameter «, the longer the tail. Fig. 1 compares the shapes of the
Lévy distributions of « = 1.0 and o« = 1.5 with the standard
Gaussian distribution.

The scaling factor v can be set to v = 1 without loss of
generality. To see this, rescale y to 4/ = by with some constant
b. Then, from (1), we get the following relation:

1
7 Lay (y) 2

Lanlby) =

where v/ = ~b~“. In particular, by setting 4/ = 1, the above
equation becomes

Lany(¥) =77 Laa(y) 3)

implying that « is nothing but an overall scaling factor. Thus,
with the distribution of v = 1, we can get the distribution of

1 T T T T T T T

=10 -
o=15 -
Gaussian —

0.01 |

2
3 e
T 0.001 | 1
Qo
<
Q
0.0001 1
1e-05 | B
16-06 : - ! .
-20 15 10 10 15 20
Fig. 1. Comparison of the Lévy probability distributions of & = 1.0 and v =

1.5 with the standard Gaussian distribution. The vertical coordinate is of log
scale and v = 1 for all cv.

any other +y. In this study, we fix v = 1 and denote L 1 = L.
For large values of y, (1) can be approximated by [13], [22]

—(a+1)

La(y) <y , lyl > 1 4)

which has a power law behavior. Thus, for 0 < a < 2, this
distribution has infinite second moment. Also, (4) does exhibit
a scale-free characteristic, meaning that (4) is invariant under
the scaling y — by, b € R, up to a constant factor. This is
the reason why the Lévy distribution has been studied widely in
conjunction with fractals.

An algorithm for generating Lévy random numbers is needed
because the analytic form of the Lévy distribution is not known
for general a. Such an algorithm was introduced in [14]. This
algorithm utilizes two independent random variables = and y
from standard Gaussian distribution and performs a nonlinear
transformation

T

yl=

v

)

With this, it was shown that the sum of these variables with an
appropriate normalization

Zn = Livk 6)

converges to the Lévy probability distribution with larger n. It,
however, has a practical disadvantage because it requires gener-
ating many (usually, n = 100) such random variables in order
to get the desired Lévy distribution. To get a more efficient algo-
rithm, the following nonlinear transformation was considered:

w:{(k(a)—l)e‘%ﬂ}v @

where parameters k() and c¢(a) depend on « and are calcu-
lated in [14]. In this way, one can generate random variables
of the Lévy probability distribution for 0.8 < a < 1.95, even
for n = 1. Fig. 2 shows a distribution of the random variables
generated from the above nonlinear transformation with n = 1.

LEE AND YAO: EVOLUTIONARY PROGRAMMING USING MUTATIONS BASED ON THE LEVY PROBABILITY DISTRIBUTION 3

1 T T T T T T T
4
0.1 5? oy 4
foy
$ £\
s A
) $ %‘%
= o001 &2} 1
5 # 2
= o & K
o ey g
8 ' %o
Q AN
© o0.001 | OQ%“??% R .
a o % oS e ©
G N %6 o
o gele® %0 e o
0O~ 00 O 0O -~ O
-~ o 00 LN
o @ OO |
0.0001 po ° N
o
16-05 L L L | . ! !
-20 15 -10 5 5 10 15 20

0
y

Fig. 2. Lévy probability distribution of & = 1.5. Dashed line is obtained from
the numerical integration of the Lévy distribution of (1) and scattered diamonds
are random numbers generated from (7).

III. ANALYSIS OF MUTATION OPERATIONS

Before applying the Lévy mutation to EP, we first analyze
both Gaussian and Lévy mutations to see how effectively they
search the search space.

A. Mean-Square Displacements

The mutation operation in EP can be described schematically
as follows. For each individual z in the population, its offspring
x' is created as

&'~z 4+ pY ®)

where [represents possible adaptive mutation and Y is a
random variable of certain probability distribution.

To see how effectively the mutation operations can explore
the search space, we calculate the root mean-square displace-
ments after many mutation operations, indicating the average
variation of the offspring from the parents.

Denote z! to be an individual at the tth generation. For the
sake of simplicity, assume that adaptive mutation is turned off.
That is, we regard /3 as a constant. Using the above conventions,
an individual at the ¢th generation can be expressed in terms of
an individual at the (¢ — 1)th generation

Llit _ :I?t_l 4 ﬂYt_l (9)

where Y *~! is a random variable generated at the (¢ — 1)th gen-
eration. We are interested in the variation of x after ¢ genera-
tions, which is given by

t—1
Afty=a'—2"=8> V" (10)
k=0
In the case of the Gaussian mutation, each Y* is an identically
distributed random variable from the Gaussian distribution with
mean 0 and variance 1. Therefore, A(¢) has a Gaussian distri-
bution with mean 0 and variance 3t. Thus, the square root of

the mean displacement of A(t) is given by

VIA®)?) = BV Vi (11)

where (---) stands for expectation. This is similar to the
Brownian motion in statistical mechanics. From (11), we see

140 T T T

¥ o
120 | e e

w5 W
N

Levy - 1
Gaussian +

100 ¥

80

x(2)

60

40

20

0

-20 L L L L i L L L L
50 -40 -30 20 -10 O 10 20 30 40 50

Fig. 3. Plot of the two dimensional variables from the Gaussian and Lévy
(a = 1.5) mutations. We started from the origin, °(1) = 2°(2) = 0 and
plotted 1000 points with 3 = 1.

that the average variation of an individual after ¢ generations
depends on +/t. That is, on average, the mutated offspring
x! after ¢ generations differs from its original parent z° by a
factor of v/t. Thus, in order to get a large varied (or mutated)
offspring, we need to carry out successive mutations through
many generations.

Now, consider the Lévy mutation. Since the Lévy probability

distribution has the following limit property

La(y) ~ g when [y| > 1 (12)
we have
(y?) ~ / agrde = oo, for0 <a <2 (13)
Yy

Since the Lévy probability distribution is stable, the sum of its
individual random variables also follows the Lévy probability
distribution. That is, the square root of the mean-square dis-
placement (or variation) of A(%) becomes

VA2 = oo, (14)

It should be noted that, in the case of the Lévy mutation, the
mean-square displacement does not depend on the generation ¢.
Even though generating infinite variation is not realistic in prac-
tice, the infinite displacement implies that it is possible to get a
large variation on the offspring even after just one generation.
The large variation at a single mutation enables the Lévy mu-
tation to search a wider region of the search space globally.
To see this more concretely, consider an individual having two
components, z(5), j = 1,2, as follows:
(1) =20 (1) 4+ gy, Y (15)
:I?(t)(Q) :x(t_l)(Q) 4 ,BYZ(t_l). (16)
Using both mutation operations for Y, we plot variables
(z®(1),z®(2)), t = 1,2,---,1000, as shown in Fig. 3. As
seen in the figure, the Lévy-mutated variables cover a wider
range than those mutated by Gaussian distributions. Large
variations of the mutated offspring can help escape from local

optima. This is especially true when local optima have deep
and wide basins.

4 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 1, FEBRUARY 2004

TABLE 1
BENCHMARK FUNCTIONS USED IN THIS STUDY. N STANDS FOR THE DIMENSION OF THE FUNCTIONS AND S THEIR RANGES. fi, f2, AND f3 ARE UNIMODAL
FUNCTIONS, f4—fo ARE FUNCTIONS WITH MANY LOCAL MINIMA, AND f10—f14 ARE FUNCTIONS WITH A FEW LOCAL MINIMA ONLY

Test Functions

N S

= Z¢1i1 z?
fa= Eilil (Z;’:l zj)2

fz= Eili_ll{loo(xi+1 — x?)2 + (xz _ 1)2}

30| (—100,100)Y
30| (=100,100)™
30 (—30,30)V

fo = — 5N, zisin(y@)

fs = XN {22 — 10cos(2nz;) + 10}
fo = —20exp{—0.2
fr=qo0 Lit1 23

Tiia?} —eap{f

oy, cos(—'%) +1

N cos(2mz;)} +20 + e 30

30 (—500,500)"
30((—5.12,5.12)N
(-32,32)N

30| (—600,600)"

fs = Z{10sin?(ry;) + SN i — 1)2{1 + 10sin®(7yi1)} + (yn — 1)2} 30| (—50,50)N

+ 3N u(2:,10,100,4), i =141/4(z;+1)

fo=0.1{sin?(3mz1) + SN (i — 1)2{1 + sin®(37zi1)} + (zn — 1)2{1 + sin?(2rzn}}{30| (=50,50)N
+ 3N u(z:5,100,4)

fio =43 — 2121 + 128 + 2125 — 423 + 42} 2| (=55

fui1={1+ (&1 + 22+ 1)2(19 — 1421 + 3% — 14x2 + 62122 + 323)} x 2 (=2,2)N

{30 + (2z1 — 372)?)(18 — 321 + 1227 + 4825 — 36z129 + 273}

fr = = L X (@ — ay) + e} 4 (010"

fis ==X {Eia (@) — ai)? + e} 4 (0,10)¥

fu=-2{i (2 — ai)? + e} ! 4| (0,100

B. Number of Distinct Values Obtained by Mutation
Operations

As seen in (10), an offspring of the ¢th generation can be ex-
pressed in terms of the sum of ¢ random numbers. If one re-
gards each generated random number as a random walk, then
the tth offspring can be thought of as the result of the ¢-step
random walk. From this one can calculate the expected value of
the number of distinct values taken by the ¢-step random walk
for large ¢. This is important because it indicates how effective
the mutation operation is.

Denote D; to be the number of distinct values obtained by the
t-step random walk. In order to get any useful quantities related
to Dy, we need to know the probability distribution of D;, which
in general is hard to obtain except for some special cases. It
is, however, relatively easy to calculate the expectation (D) of
D,. For a t-step random walk, the average can be expressed in
terms of the sum of contributions from each step. Let P, be the
probability that a new value is obtained at step k. At each step,
there are two possible states, either a new value is obtained or
not. If a new value is obtained, then the number of distinct values
is increased by one, otherwise by zero. Therefore, the average
of the total number of distinct values in ¢ steps is given by

-y

Note that we express the average number of distinct values
as the sum of contributions from each step. If Py is a

t

Z(I-Pk+0 (1—-P))
k=1

(Dy) = a7

constant regardless of k, then D, follows the well-known
binomial distribution.

Now, we calculate (D;) for two cases: finite and infinite
second moments. For the Gaussian mutation, which has an

finite second moment, it can be shown [15] that

8t 1
D) ~ oy — o t?
(D) ~ o - o<

where o is the square root of the second moment. In the case
of the Lévy mutation, which has an infinite second moment, the
expected number of distinct values obtained by a random walk
is [16]

(18)

(D) ot for0<a<1
t
X —, fora=1
Int
xt=, forl < o< 2. (19)

From the above two equations, we can see thatforall o, 0 < o <
2, the random walk from the Lévy mutation yields more distinct
values than that from the Gaussian mutation. This in turn im-
plies that one can explore the search space more effectively with
the Lévy mutation. Therefore, the Lévy mutation not only can
search a wider area of the search space but also generate more
distinct values in the search space. The Lévy mutation searches
the search space more evenly. It is the infinite second moment of
the Lévy distribution that makes all the difference. We will see
the effect of the Lévy mutation in the experiments on the func-
tion optimization in the following section.

LEE AND YAO: EVOLUTIONARY PROGRAMMING USING MUTATIONS BASED ON THE LEVY PROBABILITY DISTRIBUTION 5

TABLE I
EXPERIMENTAL RESULTS, AVERAGED OVER 50 INDEPENDENT RUNS, FROM LEP AND GEP. THE NUMBERS IN THE PARENTHESES
INDICATE STANDARD DEVIATIONS. THE ¢-TEST VALUES LISTED ARE GEP-LEP

a=038

a=1.0

a=1.2

a=1.4

a=1.6 a=1.8 Gaussian t-test

f

fon

0.030483
(0.006043)

0.010173
(0.001650)

0.005265

0.003224

0.002614 0.001979 0.000950 | -18.87F

(0.000911) (0.000539) (0.000428) (0.000351) (0.000150) |(ax = 1.8)

fa

105.378755 172.245618 245.264251 285.972195 332.198891 302.296411 497.120615| 3.33f

(62.316131) (113.45391) (176.12988) (196.91763) (175.98249) (156.32334) (298.66450)|(x = 1.6)

f3

102.854049 80.265797 77.714380 72.568030 96.739696 72.343559 98.673779 0.12

(88.248025) (89.156805) (93.602971) (60.285805) (77.401102) (72.916310) (78.908296)|(cx = 1.6)

I

8.3415

-11433.1817 -10695.9293 -10238.3929 -9612.61319 -8927.10660 -7976.67670| 9.371

(222.62858) (307.68776) (404.13107) (519.08325) (499.56902) (493.74672) (510.36871)|(a = 1.8)

f5

42.063987
(15.126775)

24.398049
(4.729001)

20.507714
(4.339205)

20.600218
(4.2007428)

25.076582 38.266239 63.415617 | 6.861
(5.758605) (8.978101) (15.660637)|(cx = 0.8)

e

0.179721
(0.028128)

0.088504
(0.009141)

0.060169
(0.005743)

0.048737
(0.005138)

0.045005 0.974767 8.882487 | 14.08%
(0.006544) (2.198305) (3.259676) |(ov = 1.8)

fr

0.012990
(0.011138)

0.012899
(0.017892)

0.025948
(0.033769)

0.029154
(0.029484)

0.038724 0.041181 0.058204 | 1.49
(0.050343) (0.047762) (0.063867) |(c = 1.8)

fs

0.000279
(0.000057)

0.000097
(0.000018)

0.000055
(0.000009)

0.022922
(0.069665)

0.178059 0.301026 0.620834 | 1.95'
(0.343713) (0.427370) (1.064294) |(a = 1.8)

fo

1.029439
(2.283157)

0.004141
(0.000703)

0.001394
(0.000214)

0.000737
(0.000117)

0.000520 0.000460 0.094838 | 2.8
(0.000063) (0.000191) (0.475849) |(ox = 1.8)

fio

-1.028949
(0.003247)

-1.028753
(0.007019)

-1.029691
(0.003460)

-1.029168
(0.004669)

-1.029783 -1.020775 -1.030435 | 1.06
(0.002860) (0.002442) (0.003212) |(a = 1.6)

fll

3.189039
(0.218324)

3.183000
(0.264132)

3.258343
(0.339389)

3.193855
(0.302817)

3.374878 3.255450 3211548 | 0.31
(0.463998) (0.369106) (0.268470) |(o = 1.4)

fiz

-7.839394
(2.934361)

-7.841831
(2.813423)

-8.494128
(2.488407)

-7.689142
(3.110630)

-7.842465 -8.936393 -8.067509 | 0.004
(2.915006) (2.321307) (2.791307) |(c = 0.8)

fis

-9.683556
(1.958713)

-9.672865
(2.014291)

-8.786782
(2.764645)

-9.861692
(1.633838)

-9.418368 -9.277473 -8.995198 | 0.03
(2.155953) (2.599248) (2.605137) |(a = 0.8)

fia

-9.705024
(2.284323)

-9.932785
(1.856711)

-9.754729
(2.130905)

-10.198659
(1.335125)

-9.202691 -9.369379 -9.277539 | 0.54
(2.704432) (2.525967) (2.654420) |(cx = 0.8)

T'The ¢ value of 49 degrees of freedom is significant at a 0.05 level of significance by a two-tailed ¢-test.

IV. FUNCTION OPTIMIZATION USING EP

For GEP, we use the algorithm given in [11].

In this section, we discuss EP algorithms for function opti-
mization using the Gaussian and Lévy mutation operations. For
convenience, we will call EP with the Lévy mutation LEP and
that with the Gaussian mutation GEP. In optimizing a function
f (&), an EP algorithm aims to find

Zmin such that VZ,

f(fmin) S f(f)

(20)

Step 1) Generate the initial population consisting of indi-
viduals, each of which can be represented a set of
real vectors, (Z;, d5), 4 = 1,2,-++, u. Each #; and
d; has m independent components

Ei = {Ji(l),Ji(Q),---,Ji(m)}. (22)

6 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 1, FEBRUARY 2004

Step 2) LEP and GEP differ only in this step.
LEP: For each parent (Z;, d;), create an offspring
(@, &%) as follows: for j = 1,2,---,m

o;(j) = 0i(j) exp {r'N(0,1) + 7N;(0, 1)}
;(§) = i(4) + 0i(§) Lj(a)

where, L;(«) is arandom number generated anew
for each j from the Lévy distribution with the
parameter c.

GEP: For each parent (;, d;), create an offspring
(7, &) as follows: for j = 1,2,---,m

oi(j) =0i(j) exp{T'N(0,1) + 7N;(0,1)} (25
73(7) = wi(7) + o7(7)N;(0,1) (26)
where N(0,1) stands for a standard Gaussian
random variable fixed for a given ¢ and N;(0,1)
a newly generated Gaussian random variable for

each component j. The parameters 7 and 7’ are
defined as [17]

(23)
(24)

and 7/ !
2y vem

Step 3) From p parents and their y offspring, calculate their
fitness values fi, fa,-- -, fou.
Define and initialize a “winning function” for every
parent and offspring as w; = 0,fore =1,2,---,2u.
For each i, select one fitness function, say f;(j # ¢)
and compare the two fitness functions. If f; is less
than f;, the winning function for individual ¢ in-
creases by one, w; = w; + 1. Perform this procedure
q times for every parent and offspring.
According to the winning function w;,¢ =
1,2,---,2u, select p individuals that have the
largest winning values to be the parents for the next
generation.
Repeat Steps 2-5, until the stopping criteria are sat-
isfied.

In the above algorithm, the parameter « in LEP remains un-
changed during evolution. The effect of different as will be
studied in later sections.

27)

T =

Step 4)

Step 5)

Step 6)

V. EXPERIMENTAL RESULTS AND ANALYSIS

We applied LEP and GEP in Section IV to a set of bench-
mark optimization problems. Table I shows the benchmark func-
tions and the ranges of the variables that have been used in this
study. These were considered in an early study [11]. We divided
the functions into three broad classes: functions with no local
minima, many local minima, and a few local minima. The fol-
lowing parameters were used in our experiments:

* population size: ¢ = 100;

e tournament size: ¢ = 10;

e initial standard deviation: o = 3.0;

* maximum number of generations: 1500 for f1, fo, - -, fo,

30 for flo, fll’ and 100 for f12, f13, f14.

Table Il summarizes our experimental results. It is clear from the
table that LEP performed no worse than GEP on all benchmark
functions except for the sphere function.

100000 T T T T T T T
=08
=10 ----
10000 a=12 - 4
oa=14
o=16 -
=18
1000 gaussian — A
» 100 E
7]
g
= 10 4
&=
€
=1
1S 1F 4
£
€
0.1 | E
0.01 4
0.001 4
0.0001 L L L L L L L
0 200 400 600 800 . 1000 1200 1400 1600
generation
()
1e+06 T T T T T T T
=08 -
o=10
=12 -
oa=14
a=16 -—-=
a=18
gaussian ——
100000 E
%]
7]
[0}
c
=
&=
£ 10000 E
>
£
k=
£
1000 4
100 1 1 1 1 1 1 1 s
0 200 400 600 800 . 1000 1200 1400 1600
generation
(®)
1e+09 T T T T T T T
=038 -
o=10 -
1e+08 ﬁi i:
a=1
a=18 ---
gaussian ——
1e+07 4
B 1e+06 i
(o]
c
=
=
£ 100000 E
>
E
c
é 10000 E
1000 E
100 E
L

L L L L 1
0 200 400 600 1000 1200 1400 1600

800 .

generation
©

Fig. 4. Evolutionary processes of LEP and GEP. The results were averaged

over 50 independent trials. (a), (b), and (c) correspond to the results of test
functions fi, f2, and f3, respectively.

A. Unimodal Functions

Fig. 4 shows the evolutionary processes, averaged over 50 in-
dependent trials, for f; — f3. LEP converged faster than GEP
for all three functions initially, around 600 to 800 generations.
However, the difference between the two becomes unclear when

LEE AND YAO: EVOLUTIONARY PROGRAMMING USING MUTATIONS BASED ON THE LEVY PROBABILITY DISTRIBUTION 7

-2000 T T T T T T T

-3000 |

-4000

-5000 [b

-6000

-7000

-8000

minimum fitness

-9000

-10000

-11000

-12000 1 T e
00 1200 1400 1600

I
0 200 400 600

800 .
generation
(a)

100 T T T T T T T

gaussian —

minimum fitness

0.1 i 1

L 1 L L
0 200 400 600

0.01

L 1
800 . 1000 1200 1400 1600
generation

(©)

1e+10 T T T T T

‘gaussia'n'
o=0.8

1e+08

1e+06

10000

100

minimum fitness

0.01

0.0001

1e-06

L L L L I I I
0 200 400 600 800 1000 1200 1400 1600
generation

(e)
Fig. 5.

the algorithms were run for a longer time. GEP even overper-
formed LEP on f1, the sphere function. Such behaviors are very
similar to those observed earlier in the comparison of Gaussian
and Cauchy mutation [20]. LEP converged faster initially be-
cause of Lévy mutation’s long jumps and more distinct values.
However, long jumps can be detrimental when the population
is close to the global optimum. The offspring generated by long

400 T T T T T T

350

[RIRIRIN]

CQRRARKKRKRRK

Q
5]
@
@,

300 -

200

150

minimum fitness

50

L L L L

1000 1200 1400 1600

. . .
0 200 400 600 800 .
generation

(®

1000 T T T T T T

[N

100

CRRIRKRKRR

Q
)
@
o

minimum fitness

1 L 1
1000 1200 1400 1600

0.01

. . I
0 200 400 600 800 .
generation

(@

1e+10 T T T T T

1e+08

1e+06

10000

100

minimum fitness

L . . L L L L
200 400 600 800 1000 1200 1400 1600
generation

0.0001
0

()

Evolutionary processes for functions f4—fg. The results were averaged over 50 independent trials. (a)—(f) correspond to functions f4—fo, respectively.

jumps tend to move away from the global optimum, which is
what happened for f; toward the later stage of evolution.
B. Functions With Many Local Minima

For the functions with many local minima, i.e., f5 — fo, theex-
perimental results are givenin Fig. 5. Itis clear that LEP produced

8 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 1, FEBRUARY 2004

-0.6 T T T T T 16 T T T T T
=08 - =08 -
=10 ---- =10 ----
-0.65 a=12 - a=12 -
o=14 a=14 - 4
=16 --- =16 -
o=18 -~ =18
0.7 gaussian —— gaussian ——
» -0.75 4 “
173 »
[0} Q
£ o8 4 £ 1
= =
€ £
> =
E 085 1 E _
£ £
€ €
09 J
-0.95 4
A 1 Gz —
1.05 1 L | 1 L | I
0 5 15 . 25 30 25 30
generation
(@ (b)
0 T T T T T T T
1.0
-1 0=12 - 7
o=14 -
0=1.6 ~=--
2 1.8
o 3T 7]
» »
@ @
c c
E 4 =
&= &=
£ £
=1 =1
E st E
£ S
€ sl £
7k
8+
-9 1 1 1 1 Ty kil leited Amemimm o $rmemimoo o 4 - = S—
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
generation generation
(c) (d)

T T
'gaussian’
8

minimum fitness

0 10 20 30 40 60 70 80 920 100

50
generation
(e

Fig. 6. Evolutionary processes of LEP and GEP. The results were averaged over 50 independent trials. (a)—(e) correspond to functions f10—f14, respectively.

consistently better results than GEP, both in terms of initial con- One would expect the performance difference between LEP and
vergence speed and final results. This is not surprising because ~ GEP to be greater as the number of local minima increases.
Lévy mutation’s long jumps enabled LEP to move from one local

minimum area to another relatively easily in comparison with ~ C. Functions With a Few Local Minima

Gaussian mutation. Lévy mutation’s ability to explore the search Fig. 6 shows the results of LEP and GEP on functions with a
space more evenly also helped in achieving good performance. few local minima, i.e., fi9p — f14. In this case, it is hard to tell

LEE AND YAO: EVOLUTIONARY PROGRAMMING USING MUTATIONS BASED ON THE LEVY PROBABILITY DISTRIBUTION 9

the performance difference between LEP and GEP, especially
for f1p and f11. This is also clearly reflected by the ¢-test re-
sults in Table II. The reasons for such behaviors from LEP and
GEP might be related to the average distance between an initial
population and the global optimum. In other words, LEP did not
outperform GEP significantly because initial populations gener-
ated for f1p — f14 were relatively close to the global minima.
Lévy mutation’s long jumps did not help in such cases. This is
not unlike the situation with FEP, which performed worse than
GEP on Shekel functions (fi2 — f14) [20].

VI. ADAPTIVE LEVY MUTATIONS
A. Motivation

The results for fio — f14 in Fig. 6 show clearly that different
o values in LEP could lead to different final results for LEP. No
single o value was the best for all different problems. There is
a need to find different «v values for different problems.

Although different « values were tested in the previous sec-
tion, they were fixed during evolution. It is desirable to have
different o values not only for different problems but also for
different evolutionary search stages for a single problem. Self-
adaptation can be introduced into LEP to find an appropriate o
value dynamically and autonomously [19]. The idea presented
here was inspired by IFEP proposed in [20]. IFEP is an EP algo-
rithm based on mixing different mutation operators. It generates
two candidate offspring from each parent, one by Cauchy mu-
tation and the other by Gaussian mutation, and selects the better
one as the surviving offspring.

The Lévy distribution provides an ideal opportunity for
designing adaptive mutations because of its continuously ad-
justable parameter «. In this study, we implement the adaptive
Lévy mutation by generating several candidate offspring using
different o values, and select the best as the survival offspring.
To evaluate the performance of adaptive Lévy mutation, we
keep the difference between LEP and adaptive LEP (i.e.,
LEP with adaptive Lévy mutation) as small as possible. The
adaptive LEP implemented in this paper is the same as LEP
except for the following: we generate four candidate offspring
with @ = 1.0, 1.3, 1.7, and 2.0 from each parent and select the
best one as the surviving offspring. This scheme is adaptive
because which « to use is not predefined and is determined by
evolution.

It is known that Gaussian mutation (« = 2.0) works better
for searching a small local neighborhood, whereas Cauchy mu-
tation (o = 1.0) is more effective at exploring a large area of the
search space [20]. By adding two additional candidate offspring
(a = 1.3 and 1.7), one is not limited to the two extremes. LEP
will be able to determine dynamically which « value to use de-
pending on which search stage it is in, from global exploration to
local fine tuning. Similar ideas to this can be found in the study of
acomplex adaptive system, such as the minority game [21].

B. Experimental Results and Discussions

We applied the adaptive LEP to the same test functions using
the same set of parameters as described in Section V. Since the
adaptive LEP uses four different « values, we compared the
adaptive LEP with four LEP algorithms with four different «

100000 T T T T T T
‘adaptive’
10000 F\]
1000]
» 100 E
o
@
£
£ 10 E
€
>
£ 1 1
S
E 0.1 4
0.01 4
0.001 4
0.0001 , . .
0 200 400 600 800 1000 1200 1400 1600
generation
(a)
100000 . T T T T T —
‘adaptive’
. =10 ===
N
10000 | N\ E
1000 | E
w
o0
Q
£ 100 |]
E
£
3
E wop E
£
£
1 b]
01 | 1
0.01 . . \
0 200 400 600 800 1000 1200 1400 1600
generation
(®
16409 : T . . r r r
1e+08 E
1e+07 E
3 4
8 e+06 El
=
L=
E
£ 100000 E
>
£
f=
= 10000 1
£
1000 E
100 E
10 . . \ \ . . .
0 200 400 600 800 1000 1200 1400 1600
generation
(©)
Fig. 7. Evolutionary processes of different LEP on fi-f5. The results were

averaged over 50 independent runs. (a), (b), and (c) correspond to results for
f1, f2, and f3, respectively. The “adaptive” in the legend indicates the result
of the adaptive LEP. The others indicate LEP with the corresponding «. The
population size for the adaptive LEP was 100 and the others 400.

values. For each function, five different sets of experiments were
carried out.

To make the comparison fair in terms of computing time, the
population size of the adaptive LEP was reduced to one quarter
of that used for LEP with a single fixed «, since each individual

10 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 1, FEBRUARY 2004

-2000 T T T T T T T
adaptive —
0=1.0 -~
-3000 poy S]
o=17 =
0=2.0 ——-
-4000 b
-5000 B
7]
171 |
@ -6000 Hi g
£
= 3
£ -7000 |} g
>
=
‘© -8000 g
£
-9000 bl
-10000 B
-11000 -
-12000 L VRS SRRSO SRS Matmimiainhiaivs m vil— roooos
0 200 400 600 800 . 1000 1200 1400 1600
generation
(@)
100 T T T T T T T
adaptive —
o=1.0 ----
o=13 -
o=1.7 -
0=2.0 —--
7]
171
(9]
c
=
=
£ 4
>
£
£
€
0.01 s L L L L L L
0 200 400 600 800 . 1000 1200 1400 1600
generation
(©
T T T T T T T
adaptive —
1e+9 0=1.0 —=- '
1e+6 4
(7]
171
[0}
,E- 1e+3 i
=
£
>
£
c
£ 0 i
1e-3 i
1e-6 L L L I L L L
0 200 400 600 800 . 1000 1200 1400 1600
generation
(O]

400 T T T T T T T
adaptive —
0
350
300 q
B 250 1
Q
c
=
=
1< 200 q
=1
£
c
é 150 ~
100 B
50 q
0 1 1 1 L L 1 I
0 200 400 600 800 . 1000 1200 1400 1600
generation
(®)
1000 T T T T T T T
7]
»
o 1
c
=
=
€
=
£
£ ~ 1
€ Y
0.01 L L L L L L 1
0 200 400 600 800 . 1000 1200 1400 1600
generation
()
T T T T T T T
adaptive —
1e+9 0=1.0 - 7
1e+6 4
7]
@\
Q
_-g 1e+3 b
=
£
=
£
c
£ o i
1e-3 B
10-6 L L L L L L L
0 200 400 600 800 . 1000 1200 1400 1600
generation

Fig. 8. Evolutionary processes of different LEP algorithms. The results were averaged over 50 independent runs. (a)—(f) correspond to the results for f4 to fo,
respectively. The “adaptive” in the legend indicates the result of the adaptive LEP. The others indicate LEP with a single fixed «. The population size for the

adaptive LEP was 100 and the others 400.

in the adaptive LEP generates four offspring. When the size of
the population was the same, we obtained much better results in
favor of the adaptive LEP. It is worth pointing out that the adap-
tive LEP with a quarter of the original population size actually
used less computing time, because operations, such as selection,
used less time in a small population.

Fig. 7 shows the experimental results of different LEP algo-
rithms on the three unimodal functions. It is clear that the adap-
tive LEP converged faster than all other nonadaptive LEP and
to a better solution.

Fig. 8 shows the results of different LEP algorithms on the six
functions with many local minima. The adaptive LEP performed

LEE AND YAO: EVOLUTIONARY PROGRAMMING USING MUTATIONS BASED ON THE LEVY PROBABILITY DISTRIBUTION 11

-0.84 T T T T

'adéptive‘
o=1
(7]
7]
(] 4
c
=
=
£ 4
=]
£
£ 1
S
L L L
15 20 25 30
generation
()
0 T T T T T T T T T
adaptive —
0=1.0 ----
" 1
%]
Q
c
=
€ i
=]
£
£
E -
12 L L L L L L L L L

’adlaptive’
0=1.0 -------
0=20 ==
%]
%] 4
[0}
c
=
€ 1
>
£
£ 1
€
rEnze, N)
15 20 25 30
generation
()
T T T T T T
adaptive —
o=1.0 ----
=13 -
a=1.7
a=2.

minimum fitness

0 10 20 30 0 50 .. 6l 70 80 90 100 0 10 20 30 40 50 . 60 70 80 90 100
generation generation
(c) (d)

0 T T T T T T T T T
adaptive ——
=10 ----
o=1.3 -
a=1.7
0=2.0 -=- o
-]
(%]
Q
£
E=
e 4
>
£
£
E -
12 . . L . L . . L)

40 50 . 60
generation

70 80 90 100

(e)

Fig. 9. Evolutionary processes of different LEP algorithms. The results were averaged over 50 independent runs. (a)—(e) correspond to the results for fio—fi4,
respectively. The “adaptive” in the legend indicates the result of the adaptive LEP. The others indicate LEP with a single fixed ov. The population size for the

adaptive LEP was 100, and the others 400.

better than others on all functions but f4 and f-. Even for f; and
f7, the adaptive LEPs initial convergence speed still seemed to
be faster than others.

Fig. 9 shows the results of different LEP algorithms on
the four functions with a few local minima. In this case, the
performance of all LEP algorithms was very similar to each

other. There was no statistically significant difference among
them although the adaptive LEP appeared to converge faster
than others.

Table III summarizes the above results and gives the ¢-test re-
sults, which shows that the adaptive LEP was only outperformed
by nonadaptive LEP on a single problem f;. It also shows that

12 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 1, FEBRUARY 2004

TABLE 1II
THE EXPERIMENTAL RESULTS, AVERAGED OVER 50 INDEPENDENT RUNS, OF THE ADAPTIVE LEP AND FOUR NONDAPTIVE LEP ALGORITHMS.
“MEAN BEST” INDICATES THE AVERAGE OF THE MINIMUM VALUES OBTAINED AND “STD DEV” STANDS FOR THE STANDARD DEVIATION.
“BEST «”” INDICATES THE v VALUE THAT LED TO THE BEST NONDAPTIVE LEP

Funct- Number of Adaptive

ions Generation Mean Best (Std Dev)

Best Lévy Best o t-test

Mean Best (Std Dev)

f 1500 6.32 x 107* (7.6 x 107°) 6.59 x 10~% (6.4 x 107%) 2.0 1.9
f2 1500 0.041850 (0.059696) 30.628906 (22.113122) 1.0 9.68f
f3 1500 43.40 (31.52) 57.75 (41.60) 1.7 1.9
fa 1500 -11469.2 (58.2) -11898.9 (52.2) 1.0 -7.69t
fs 1500 5.85 (2.07) 12.50 (2-29) 1.3 1507
fe 1500 1.9x 1072 (1.0x 1073) 3.1x 1072 (20x1073) 1.7 37.57
fr 1500 2.4x1072 (2.8x1072) 1.8x 1072 (1.7x1072) 1.0 -1.28
fs 1500 6.0x 1075 (1.0x 107%) 3.0 x 107® (4.0 x 107%) 1.3 40.75
fo 1500 9.8 x107° (1.2 x 107%) 2.6 x 10~ (3.0 x 107%) 1.7 35.10
fio 30 -1.031 (0.00) -1.031 (0.00) 1.0 0.0
fi1 30 3.000 (0.000) 3.000 (0.000) 2.0 0.0
fi2 100 -9.54 (1.69) -9.95 (0.99) 2.0 -147
fis 100 -10.30 (0.74) -10.40 (1.0 x 107%) 2.0 -0.95
fia 100 -10.54 (4.9 x 107%) -10.54 (3.1 x 1073) 1.7 00

t The ¢ value of 49 degree of freedom is significant at a 0.05 level of significance by a

two-tailed test.

the adaptive LEP was quite robust was able to deal with a wide
range of different functions. In general, the adaptive LEP was
able to perform at least as good as nonadaptive LEP with a fixed
a. This was achieved without introducing any extra parame-
ters and no extra computation time. The results further confirm
the importance of mixing variable step sizes (induced by dif-
ferent v values) in an evolutionary algorithm if we do not know
a problem well in advance.

In order to see how the adaptive LEP works, we take fg as
an example for detailed analysis. Similar analysis can be done
for other functions. In Fig. 10, we plot the number of successful
mutations in a population for four different v values as a function
of the number of generations. From Fig. 10 and the corresponding
Fig. 8(c), we observe that until the algorithm was close to a solu-
tion (up to around 400th generation in Fig. 8(c), non-Gaussian
mutations (« 1.0, 1.3, 1.7) occupied about a half of the
population. However, once the algorithm is in the vicinity of the
solution (after around 400th generation in Fig. 8(c), the Gaussian
mutation took over and played a dominant role. In other words,
non-Gaussian mutations played a significant role in the early
stages of evolution, while the Gaussian mutation filled a major
rolein the later stages of evolution. This is not unexpected since in
the early stages the distance between the current search points and
the global minimum was usually large and, thus, non-Gaussian
mutations tended to be more effective. As the evolution pro-
gressed, the current search pointapproached the global minimum,
and as aresult, the Gaussian mutation started to be more effective.
A similar behavior was observed previously in IFEP [20].

number of mutations

st

Gl
1400

$0 SERNS

1000 1200 1600

800 .
generation

Fig. 10. Number of successful mutations for o = 1.0, 1.3, 1.7, and 2.0 in a
population when the adaptive LEP was applied to function fs. The total number
of successful mutations should add up to 100%.

VII. CONCLUSION

A new search operator, Lévy mutation, and its adaptive ver-
sion have been proposed and studied in this paper. Both analyt-
ical and experimental work has been carried out to explain why
and how Lévy mutation works. In particular, it has been shown
that Lévy mutation can lead to a large variation (i.e., step size)
and a large number of distinct values in evolutionary search, in

LEE AND YAO: EVOLUTIONARY PROGRAMMING USING MUTATIONS BASED ON THE LEVY PROBABILITY DISTRIBUTION 13

comparison with traditional Gaussian mutation. Lévy mutation
is also more general and flexible than Cauchy mutation [20]
because of the o parameter. In fact, it is the o parameter that
enabled us to devise a simple yet effective adaptive version of
Lévy mutation. Our experimental results have shown that the
adaptive LEP performed well on a number of benchmark func-
tions we tested.

The adaptive and nonadaptive Lévy mutation operators have
many aspects for future studies, among which the following
three are worth mentioning. First, we have not considered the
region of 0 < a < 0.7. This is mainly due to the fact that
a fast algorithm for generating the Lévy random numbers in
the 0 < a < 0.7 region has not been found. However, in
order to see whether a further reduction in o would lead to even
better results, we need to include this region of the parameter.
Second, in applying the adaptive Lévy mutation, we applied the
Lévy mutation only to the variation of the variables, not to the
strategy parameters. It is interesting to investigate the applica-
tion of the adaptive Lévy mutation to the strategy parameters.
Finally, although we restricted the parameter « to four discrete
values, a better scheme might be to let « evolve/adapt continu-
ously during evolution. Such a scheme will be much closer to
self-adaptation in evolutionary computation.

ACKNOWLEDGMENT

The authors are grateful to Dr. D. Fogel for acting as the
Editor-in-Chief for this submission, and to the anonymous
reviewers, anonymous Associate Editor, and Dr. D. Fogel for
their useful comments that have helped greatly in improving
this paper.

REFERENCES

[1] D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of
Machine Intelligence. New York: IEEE Press, 1995.

[2] L.J.Fogel, A.J. Owens, and M. J. Walsh, Artificial Intelligence Through
Simulated Evolution. New York: Wiley, 1966.

[3] D. B. Fogel and J. W. Atmar, “Comparing genetic operators with
Gaussian mutation in simulated evolutionary processes using linear
systems,” Biol. Cybern., vol. 63, pp. 111-114, 1990.

[4] D.B.Fogel and L. C. Stayton, “On the effectiveness of crossover in sim-
ulated evolutionary optimization,” Bio. Syst., vol. 32, no. 3, pp. 171-182,
1994.

[5] A.V.Sebald and J. Schlenzig, “Minimax design of neural net controllers
for highly uncertain plants,” IEEE Trans. Neural Networks, vol. 5, pp.
73-82, Jan. 1994.

[6] D. B. Fogel, L. J. Fogel, and W. Atmar, “Meta-evolutionary program-
ming,” in Proc. 25th Asilomar Conf. Signals, Systems and Computers,
R. Chen, Ed., 1991, pp. 540-545.

[7] D.B.Fogel, “Evolving Artificial Intelligence,” Ph.D. dissertation, Univ.
California, San Diego, CA, 1992.

[8] N. Saravanan and D. B. Fogel, “Learning of strategy parameters in evo-
lutionary programming: an empirical study,” in Proc. 3rd Annual Conf.
Evolutionary Programming, A. Sebald and L. Fogel, Eds. River Edge,
NIJ: World Scientific, 1994, pp. 269-280.

[9] H.-P. Schwefel, Numerical ~ Optimization — of Computer
Models. Chichester, U.K.: Wiley, 1981.
[10] J. Reed, R. Toombs, and N. Barricelli, “Simulation of biological evolu-

tion and machine learning,” J. Theor. Biol., vol. 17, pp. 319-342, 1967.
X. Yao and Y. Liu, “Fast evolutionary programming,” in Evolutionary
Programming V: Proceedings of the 5th Annual Conference on Evolu-
tionary Programming. Cambridge, MA: MIT Press, 1996.

B. Mandelbrot, The Fractal Geometry of Nature. San Francisco, CA:
Freeman, 1982.

[11]

[12]

[13] P.Lévy, Theorie de I’Addition des Veriables Aleatoires.
Gauthier-Villars, 1937.

R. Mantegna, “Fast, accurate algorithm for numerical simulation of Lévy
stable stochastic process,” Phys. Rev. E, vol. 49, no. 5, pp. 4677-4683,
1994.

A. Bunde and S. Halvin, Eds., Fractals in Science.
Springer-Verlag, 1994, ch. 5.

J. Gillis and G. Weiss, “Expected number of distinct sites visited by a
random walk with an infinite variance,” J. Math. Phys., vol. 11, no. 4,
pp. 1307-1312, 1970.

T. Bick and H.-P. Schwefel, “An overview of evolutionary algorithms
for parameter optimization,” Evol. Comput., vol. 1, pp. 1-23, 1993.

X. Yao, G. Lin, and Y. Liu, “An analysis of evolutionary algorithms
based on neighborhood and step size,” in Proc. 6th Int. Conf. Evolu-
tionary Programming, 1997, pp. 297-307.

C.-Y. Lee and X. Yao, “Evolutionary algorithm with adaptive Lévy mu-
tations,” in Proc. CEC2001, 2001, pp. 568-575.

X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,”
IEEE Trans. Evol. Comput., vol. 3, pp. 82—102, July 1999.

D. Challet and Y.-C. Zhang, “Emergence of cooperation and organiza-
tion in an evolutionary game,” Physica A, vol. 246, pp. 407418, 1997.
B. Gnedenko and A. Kolmogorov, Limit Distribution for Sums of Inde-
pendent Random Variables. Cambridge, MA: Addition-Wesley, 1954.

Paris, France:

[14]

[15] New York:

[16]

[17]
[18]

[19]
[20]
[21]

[22]

Chang-Yong Lee received the B.S. degree in com-
puter science and statistics from Seoul National Uni-
versity, Seoul, Korea, in 1983, and the Ph.D. degree
from the University of Texas at Austin, in 1995, for
research in computational and nuclear physics.

From 1996 to 1998, he was a Senior Researcher at
the Basic Research Center, Electronics and Telecom-
munication Research Institute (ETRI), Korea.
In 1998, he joined Kongju National University,
Chungnam, South Korea, as an Assistant Professor,
where, currently he is an Associate Professor in the
Department of Industrial Information. His main research interests include the
evolutionary computations, Internet ecology, and bioinformatics.

Dr. Lee will have his biographical profile included in the 7th edition of Mar-
quis Who’s Who in Science and Engineering.

Xin Yao (M’91-SM’96-F’03) received the B.Sc. de-
gree from the University of Science and Technology
of China (USTC), Hefei, the M.Sc. degree from the
North China Institute of Computing Technologies
(NCI), Beijing, and the Ph.D. degree in computer
science from the USTC, in 1982, 1985, and 1990,
respectively, all in computer science.

He is currently a Professor of Computer Science
and the Director of the Centre of Excellence for
Research in Computational Intelligence and Appli-
cations (CERCIA), University of Birmingham, U.K.,
and a Visiting Professor at four other universities in China and Australia. He
was a Lecturer, Senior Lecturer, and an Associate Professor at University Col-
lege, University of New South Wales, the Australian Defence Force Academy
(ADFA), Canberra, Australia, between 1992-1999. He held Postdoctoral
Fellowships from the Australian National University (ANU), Canberra, and
the Commonwealth Scientific and Industrial Research Organization (CSIRO),
Melbourne, between 1990 and 1992. His major research interests include
evolutionary computation, neural network ensembles, global optimization,
computational time complexity, and data mining.

Dr. Yao is the Editor-in-Chief of the IEEE TRANSACTIONS ON EVOLUTIONARY
COMPUTATION, an Associate Editor, and an Editorial Board Member of five
other international journals, and the Chair of the IEEE Neural Networks So-
ciety Technical Committee on Evolutionary Computation. He is the recipient of
the 2001 IEEE Donald G. Fink Prize Paper Award and has given more than 20
invited keynote and plenary speeches at various conferences. He has chaired/co-
chaired more than 25 international conferences in evolutionary computation and
computational intelligence, including CEC 1999, PPSN VI 2000, CEC 2002,
and PPSN 2004.

