
 

Abstract—This paper presents the evolutionary 

programming with an ensemble of memories to deal with 

optimization problems in dynamic environments. The proposed 

algorithm modifies a recent version of evolutionary 

programming by introducing a simulated-annealing-like 

dynamic strategy parameter as well as applying local search 

towards the most improving directions. Diversity of the 

population is enhanced by an ensemble of external archives that 

serve as short-term and long-term memories. The archive 

members also act as the basic solutions when environmental 

changes occur. The algorithm is tested on a set of 6 multimodal 

problems with a total 49 change instances provided by CEC 

2009 Competition on Evolutionary Computation in Dynamic 

and Uncertain Environments and the results are presented. 

I. INTRODUCTION

N recent years, evolutionary optimization in dynamic 

environments has attracted much interest among 

researchers. A successful dynamic optimization algorithm 

should not only be able to locate the optimum, as it does in the 

static sense, but also be capable of detecting when the 

environment changes and tracking the new optimum. 

This can be a challenging problem, as in most cases, 

especially when the environment has been static for some 

time, the population tends to converge to the best solution, 

and thereby loses its adaptability. In order to be flexible 

enough to respond to environmental changes, the algorithm 

needs to explore several potentially good regions in the search 

space, and at the same time, maintain the pace of fine search 

for the optimal solution. 

We have chosen evolutionary programming (EP) as the 

main algorithm to perform the task of optimization in 

dynamic environments on account of its fast convergence 

ability. Therefore our essential task is to increase the diversity 

of the population and ensure it does not get trapped into a 

single optimal solution so that it cannot evolve further. We 

use an ensemble of memory-based archives to introduce 

diverse individuals into the population. Moreover, we 

examine the strategy parameter in EP and propose a dynamic 

scheme that is designed to make the EP more suitable for 

optimization in dynamic environments. 

We will follow with a literature review of evolutionary 

programming and introduce our dynamic strategy parameter 
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and structure of the ensemble of external memories. 

Experimental results and a conclusion will be presented in the 

last sections. 

II. EVOLUTIONARY PROGRAMMING

Evolutionary programming was first proposed in 1960s as 

an alternative method for generating artificial intelligence [1]. 

Later, since the middle of 1980s, it has been developed to 

solve more general tasks including prediction problems, 

numerical and combinatorial optimizations, and machine 

learning [2], [3]. As a member of evolutionary algorithms, the 

basic idea of EP is also the imitation of the natural evolution. 

Since this approach models organic evolution at the level of 

species, the original EP does not rely on any kind of 

recombination or crossover. The main difference between EP 

and other evolutionary algorithms such as genetic algorithms 

and differential evolution is that there is no information 

exchange among individuals in EP. Mutation is the only way 

to generate offspring. 

Current studies involving evolutionary programming 

usually make use of self-adaptation of the strategy parameter 

in EP [4]–[6]. According to the description in [4], the 

self-adaptive EP is implemented as follows: 

1) Generate the initial population of µ individuals, and set 

k=1. Each individual is taken to be a pair of real-valued 

vectors (xi, ηi), i=1,2,…,µ, where xi is the vector of 

objective variables and ηi is a vector of standard 

deviations (also known as strategy parameters) 

corresponding to Gaussian mutations. 

2) Evaluate the fitness value for each individual (xi, ηi) of 

the population based on the objective function f(xi).

3) Each parent (xi, ηi), creates an offspring (xi’, ηi’), by: 

                    )1,0()()()('

jiii Njjxjx η+=   (1) 

                    ))1,0()1,0(exp()()( ''

jii NNjj ττηη +=   (2)  

for j=1,2,…,n, where n is the number of dimensions, 

N(0,1) denotes a normally distributed one-dimensional 

random number with mean zero and standard deviation 

one. Nj(0,1) indicates that the random number is 

resampled anew for each value of j. The factors τ and 

τ’ are commonly set to 1)2( −n  and 1
)2(

−
n . The 

order of (1) and (2) may be swapped to improve the 

performance. Note that the offspring generated by 

such rules can be out of the variable domain of the 

problem. Hence, boundary checks should be 

performed. 

4) Calculate the fitness of each offspring (xi’, ηi’).
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5) Conduct pair-wise comparison over the union of 

parents (xi, ηi) and offspring (xi’, ηi’), ∀i=1,2,…,µ. For 

each individual, q opponents are chosen uniformly at 

random from the combined parents and offspring 

popluation. For each comparison, if the individual’s 

fitness is no smaller than the opponent’s, it receives a 

“win.” 

6) Select the µ individuals out of (xi, ηi) and (xi’, ηi’),

∀i=1,2,…,µ, that have the most wins to be parents of 

the next generation. 

7) Stop if the halting criterion is satisfied; otherwise, 

k=k+1 and go to Step 3. 

In a recent study [7], a new version of EP called unbiased 

evolutionary programming (UEP) was introduced and was 

shown to have markedly improved performance for 

high-dimensional optimization. We will take this version to 

solve the dynamic optimization problems. Other than 

generating Gaussian deviates in axial directions, a set of 

angles is randomly generated in UEP. These are resolved into 

a direction vector in the co-ordinate system, which is then 

multiplied by a Gaussian deviate. 

Several steps are added to the self-adaptive EP mentioned 

above. Firstly, an additional parameter φi is assigned to each 

of the population member. φ represents an (n 1)-dimensional 

vector of angles, initialized randomly from a uniform 

distribution between 0 and 2π. After that, create xi,

i=1,2,…,µ, as follows: 

a) For each value of i, set prevSin=1. Then for each value 

of j, j=1,2,…,n 1, set: 

                    prevSinjjx ii ×=Δ ))(cos()( φ   (3) 

                    prevSinjprevSin i ×← ))(sin(φ   (4)  

Finally set prevSinnxi =Δ )( .

b) Randomly permute the elements of xi.

When generating the offspring (xi’, φi’, ηi’), xi(j) is 

multiplied to the increment of xi(j), which makes (1) as: 

                    )()1,0()()()(' jxNjjxjx ijiii Δ+= η   (5)  

φi’(j) is again randomly generalized from a uniform 

distribution between 0 and 2π, and ηi’(j) is derived by (2). 

The other steps are as in the classical self-adaptive EP. 

To make the UEP more efficient in searching for the 

optimum, we introduce a local search method to be applied to 

the algorithm. In every generation, the fitness of each 

offspring will be compared to that of its parent. From the 

largest increments of the fitness values we obtain the 

most-improving directions. These directions are used to 

perform the local search, which is described by the following 

equation: 

                    )( ''''

iiii xxFxx −+=   (6) 

where 
ii xx −'  offers one of the most-improving direction and 

F is a constant (set to 0.85 in this paper). 

III. THE PROPOSED DYNAMIC PARAMETER SCHEME

Observing the self-adaptive EP described in II, we find that 

the parameter η has a tendency to get near to either infinity or 

zero as generation number increases. The former situation is 

unfavorable, as solutions vibrate severely even at the end of 

the evolution. On the contrary, we may want to have a larger 

mutation deviation at the beginning, and, as population 

evolves, transfer the population from exploration to fine 

search near the good solutions with small mutation deviation. 

Annealing of the strategy parameter η will just serve the 

purpose. 

Simulated annealing (SA) was proposed as a method for 

solving discrete optimization problems as well as single and 

multiple objective optimization problems in various fields 

[8]–[12]. Initial temperature is chosen such that it can capture 

the entire solution space. Cooling schedule determines 

functional form of the change in temperature required in SA. 

The earliest annealing schedules have been based on the 

analogy with physical annealing. They set initial temperature 

high enough to accept all transitions and used a proportional 

temperature. Three important cooling schedules are 

logarithmic, Cauchy and exponential. It was shown in [13] 

that the classical cooling schedules are all equivalent, with no 

clearly better annealing schedule than the logarithmic 

schedule to ensure convergence towards the set of optima 

with a probability of one. 

We use a variant of the exponential form of cooling 

schedule to adjust the parameter in EP, which is explained by 

the following equation: 

                    )5.0()
1

exp(0 +⋅−= r
n

t

n
Tη   (7) 

where T0 denotes the initial temperature which is set to 5 for 

our experiments, n is the dimension number, t stands for time 

or number of generations, and r is a uniformly distributed 

random variable in the interval of [0, 1]. This formula applies 

to the η value in every dimension of every individual in the 

population. A sample of the parameter values over 1000 

generations in shown in Fig. 1. 

Fig. 1.  Semi-log Plot of η.

The above scheme enables EP to have an exponentially 

decreasing deviation for mutations with certain perturbation. 

It is a simple and explicit form, which is very useful in 
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dynamic environments. The strategy parameter at any time 

depends only on the initial temperature, but not on the 

previous values. This makes it easy for the algorithm to adapt 

to environmental changes. On detecting a change, the strategy 

parameter will be re-initialized. 

IV. HANDLING ENVIRONMENTAL CHANGES

In order to make the algorithm be suitable for optimizing 

dynamic problems, we will make some further modifications. 

Although we can always regard each change as the arrival of a 

new problem, it is more efficient if we can make use of the 

previous knowledge about the search space, assuming that the 

changes are not too radical. There are many ways to deal with 

environmental changes [14], [15]. For example, after a 

change is detected, the mutation rate can be raised to increase 

the diversity of the population [16], or else, niching methods 

can be used to spread out the population so that it may adapt 

to changes more easily [17]. Memory-based approaches [18], 

[19] have also been proposed to recall information from past 

generations, which is especially useful when the new 

optimum is not far from previous locations. In addition, we 

may apply multi-population techniques to track multiple 

peaks in the fitness landscape [20], [21]. 

Here we propose a diversity enhancement method which is 

implemented not only after the environmental changes but 

also during the whole run. It is realized using an ensemble of 

two memory archives that store solutions found by the 

algorithm in different times before the current generation. 

The first archive, which represents the short-tem memory, 

serves for the regular updating, and the second, which 

represents the long-term memory, is used when premature 

convergence is identified. When both cannot help and the 

population totally loses diversity, we restart the search. 

A. Archive Operations 

The first archive is renewed every 10 generations, i.e. it 

stores all the offspring created in the last 10 generations. A 

niching method, clearing [22], is applied to the archive when 

it has gathered all the members. This is to ensure the 

individuals with high fitness in the archive are distributed 

evenly in the search space instead of crowding in one area. 

After the clearing procedure, we may assume the archive to 

have a certain level of diversity and we can directly make use 

of the members to replace the population in order to allow 

further exploration. 

Different from the standard clearing procedure, we number 

all the individuals sequentially within a niche according to 

their fitness values. The individual with the highest fitness is 

assigned the number “1”. After the numbering, we sort the 

archive from number “1” to the largest number so that the 

individuals with the highest fitness in every niche are on the 

top of the list and the individuals with the second highest 

fitness in every niche are next and so on. 

Although we are going to replace the whole population 

with the top individuals from the sorted archive, we may still 

find some consistency of evolution as all the archive members 

are from the last 10 generations and there should surely be a 

certain number of them from the last generation. Our 

experiments have revealed that if we keep part of the 

population and replace the other part with the archive 

members, there will be some unnecessary redundancy. When 

a change is detected, we also count on the first archive to 

obtain the starting points for the next round. 

The second archive relates to a higher level of diversity, of 

which we use the standard deviation of fitness values as the 

measure. It is generated in the same way as the first archive 

but only in the very beginning of the search and right after 

every detected change when the population is most diverse. In 

other words, we just maintain this archive until the next 

change occurs. 

When the standard deviation of fitness in the population is 

successively very small, say, less than a predefined threshold 

for the last 50 generations, we shall replace 95 percent of the 

population with the members from the second archive, so that 

reasonably good and diverse members are stored. This means 

that for the 95 percent of the population the evolution is dated 

back to the very beginning of the current environmental state. 

We still keep 5 percent of the elites so that they can continue 

fine search without any impact. 

In an effort to avoid repeatedly using the same individuals 

in the second archive, we use a probabilistic scheme when 

picking the archive members. As we have mentioned earlier, 

the archive is already properly sorted, so we pick the 

individuals from the archive sequentially with a fixed 

probability of 0.8. The individuals that are chosen out will be 

put to the bottom of the archive. 

B. Detection of Changes 

The detection of changes plays an important part in our 

algorithm. We must firstly detect the changes effectively so 

that we can take relevant measures. As is said in [14], we may 

use the deterioration of the population performance or the 

time-averaged best performance as an indicator; or we may 

re-evaluate several individuals and if the fitness of at least one 

individual has changed, we recognize it as a change. 

As far as our experiments are concerned, we adopt the 

second strategy. The experimental results show that it is very 

efficient provided that the environmental change has an 

influence on every individual. The “interesting points” we 

focus on are the top three solutions in first archive (after 

clearing) as they are going to get into the population as soon 

as a change is detected. We do so with the purpose to decrease 

the wastage of function evaluations. 

C. When Population Totally Loses Diversity 

There are times that the population will lose diversity 

totally. All the individuals are converging to a single point. 

This can be disadvantageous as in a dynamic environment the 

optimum will probably move to another location sooner or 

later.

In our experiments, we found that partial restart is not 

enough to stop this situation. Reference [17] has also 

suggested that the main problem of partial restart is that it is 
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very hard for the newly introduced solutions to establish 

themselves when the population contains highly fit 

individuals. Therefore when we find that the standard 

deviation of fitness is extremely small, say, less than another 

predefined threshold, we are going to reinitialize all the 

population except the best one. Moreover, we set the strategy 

parameter η to the initial value and restart the “time” 

according to it. 

V. EXPERIMENTATION

We use the test suite provided by CEC 2009 Competition 

on Evolutionary Computation in Dynamic and Uncertain 

Environments. There are 6 multimodal test functions, the 

mathematical definitions of which can be found in [23]. The 

first test problem F1 is the dynamic peak generator with 10 

and 50 peaks. The other problems F2–F6 are dynamic 

composition functions. Seven change instances are examined. 

They are small-step changes (T1), large-step changes (T2),

random changes (T3), chaotic changes (T4), recurrent changes 

(T5), recurrent changes with noise (T6), and random changes 

with changed dimensions (T7). They make a total 49 test 

instances. For every test instance, 60 changes are involved in 

each run and a problem will be tested on 20 independent runs. 

We use the population size of 100 for all the test problems. 

20% of the function evaluations are assigned to local search 

with 5 directions applied to 4 individuals, and the rest of 

function evaluations are for generating offspring by the UEP 

algorithm. The tournament size q for the selection phase of 

EP is 10. Other parameters of our algorithm include the 

interval of archive updating, the initial temperature of η, the 

clearing radii in the archives, and the thresholds with regard 

to premature convergence and complete loss of diversity. The 

first three are set to be 10 generations, 6, and 5 respectively. 

The thresholds can be set to approximately 1/100 and 1/1000 

of the initial fitness deviation for the cases of premature 

convergence and loss of diversity. The computers we use for 

simulation have the following configuration. 

TABLE I

COMPUTER CONFIGURATION

CPU  P4, 3000 MHz 

Memory Total 4GB 

Operating System Linux 

Programming Language MATLAB 7.4 (R2007a) 

VI. RESULTS

All the environmental changes are successfully detected in 

our experiments. The absolute function errors [23] after 

reaching maximum number of fitness evaluations for all the 

changes are recorded. Average best, average mean, average 

worst values and standard deviations of the error values are 

listed in Tables II–VII. Fig. 2–8 show the convergence graphs 

for each problem (median run) for dimension n=10. The 

overall performance of the algorithm is summarized in Table 

VIII. 

TABLE II

ERROR VALUES ACHIEVED FOR F1

Peaks (m)   Errors   T1   T2   T3   T4   T5   T6   T7

10

Avg_best 0.0054 0.00445 0.00435 0.0057 0.01105 0.0104 0.0032 

Avg_worst 35.009 51.032 47.041 13.96 47.763 54.099 52.805 

Avg_mean 5.7109 10.658 10.87 1.5033 8.2954 8.232 13.123 

STD 9.6761 13.851 13.499 3.0008 13.227 13.102 14.96 

50

Avg_best 0.0063 0.00535 0.00505 0.00585 0.0197 0.0164 0.00375 

Avg_worst 26.538 50.227 44.899 13.497 21.09 27.041 43.844 

Avg_mean 5.7391 13.285 15.896 1.4109 2.2653 3.1577 12.703 

STD 6.8424 12.944 13.365 2.4466 4.239 5.6002 11.917 

TABLE III

ERROR VALUES ACHIEVED FOR F2

Errors   T1   T2   T3   T4   T5   T6   T7

Avg_best 0.1266 0.1383 0.13615 0.132 0.12985 0.1195 0.0896 

Avg_worst 38.758 45.346 29.778 32.751 34.247 35.26 38.11 

Avg_mean 6.2147 7.2236 4.9885 4.2067 3.5058 3.478 6.7124 

STD 9.6292 11.024 8.245 7.5828 7.3318 7.5956 10.274 
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TABLE IV 

ERROR VALUES ACHIEVED FOR F3

Errors   T1   T2   T3   T4   T5   T6   T7

Avg_best 0.1996 0.17025 0.17975 0.20085 0.16635 0.1431 0.1243 

Avg_worst 512.53 504.83 501.49 555.05 507.77 506.33 492.96 

Avg_mean 151.98 140.47 136.67 164.96 95.123 107.54 107.69 

STD 190.71 182.71 183.86 216.4 151.82 158.36 160.33 

TABLE V

ERROR VALUES ACHIEVED FOR F4

Errors   T1   T2   T3   T4   T5   T6   T7

Avg_best 0.13325 0.1386 0.13335 0.13045 0.13 0.1118 0.0814 

Avg_worst 37.581 47.009 36.414 34.924 31.496 35.28 46.404 

Avg_mean 6.601 8.1906 7.1991 5.0355 3.121 3.5162 8.3141 

STD 10.032 11.923 10.145 8.3325 6.6867 7.3484 11.558 

TABLE VI 

ERROR VALUES ACHIEVED FOR F5

Errors   T1   T2   T3   T4   T5   T6   T7

Avg_best 0.20075 0.18235 0.19615 0.2484 0.2035 0.184 0.17445 

Avg_worst 44.887 54.133 36.438 39.928 55.669 56.092 56.026 

Avg_mean 7.9042 10.091 7.2867 6.2507 8.2195 7.9011 10.779 

STD 11.287 13.28 10.201 10.116 13.016 12.911 13.533 

TABLE VII 
ERROR VALUES ACHIEVED FOR F6

Errors   T1   T2   T3   T4   T5   T6   T7

Avg_best 0.1493 0.14815 0.15235 0.15565 0.1404 0.12375 0.13875 

Avg_worst 94.921 73.431 58.111 50.242 100.68 84.709 237.13 

Avg_mean 17.303 18.732 16.005 11.753 26.311 24.558 25.231 

STD 22.801 19.006 17.397 13.594 29.318 26.794 48.063 

Fig. 2.  Convergence Graph for F1 (10 peaks) 
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Fig. 3.  Convergence Graph for F1 (50 peaks) 

Fig. 4.  Convergence Graph for F2

Fig. 5.  Convergence Graph for F3
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Fig. 6.  Convergence Graph for F4

Fig. 7.  Convergence Graph for F5

Fig. 8.  Convergence Graph for F6
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From the above we can see that the proposed algorithm 

performs well in all the change instances of test functions F2,

F4, and F5. It is also very effective in change instances T1, T4,

T5, and T6 of function F1, but not equally advantaged in 

change instances T2, T3, and T7. It has some difficulties in 

solving problem F6, and it is not able to trace the changing 

optimum in F3. While it is quite natural that the problems with 

small-step changes can be solved smoothly, it is interesting to 

see that the algorithm can handle chaotic changes as well. 

And we would also like to note that the recurrent changes are 

not meant to be easy for the algorithm because the optimal 

solution is definitely moving to another peak (in the sense of 

maximization problems) after every change. Nonetheless, the 

performance of the algorithm is not obviously flawed in such 

circumstances. 

VII. CONCLUSION

We have proposed the evolutionary programming with an 

ensemble of explicit memories for dynamic multimodal 

optimization. Though we use EP as the main algorithm, our 

implementation of the memory archives is general enough to 

be applied to other algorithms such as genetic algorithms and 

particle swarm optimizers. We test the algorithm on the 

benchmarks of CEC 2009 Competition on Dynamic 

Optimization. It has showed suitability for the majority of the 

test problems, but further analysis is still needed before we 

can claim its success in dynamic optimization.  
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T5  (0.82083)*0.015   (0.89972)*0.015   (0.65367)*0.024  (0.26922)*0.024  (0.65597)*0.024  (0.52499)*0.024   (0.37705)*0.024 

T6  (0.83403)*0.015   (0.9015)*0.015   (0.69926)*0.024  (0.26169)*0.024  (0.6832)*0.024   (0.56829)*0.024   (0.40828)*0.024 

T7  (0.72982)*0.01   (0.75187)*0.01   (0.63527)*0.016  (0.30215)*0.016  (0.59808)*0.016  (0.5208)*0.016   (0.43222)*0.016 

 Mark  0.0820 0.0831 0.1064 0.0437 0.1031 0.0895 0.0731 

 Performance(sum the mark obtained for each case and multiply by 100):  58.0939 
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