

Abstract—This paper presents the evolutionary

programming with an ensemble of memories to deal with

optimization problems in dynamic environments. The proposed

algorithm modifies a recent version of evolutionary

programming by introducing a simulated-annealing-like

dynamic strategy parameter as well as applying local search

towards the most improving directions. Diversity of the

population is enhanced by an ensemble of external archives that

serve as short-term and long-term memories. The archive

members also act as the basic solutions when environmental

changes occur. The algorithm is tested on a set of 6 multimodal

problems with a total 49 change instances provided by CEC

2009 Competition on Evolutionary Computation in Dynamic

and Uncertain Environments and the results are presented.

I. INTRODUCTION

N recent years, evolutionary optimization in dynamic

environments has attracted much interest among

researchers. A successful dynamic optimization algorithm

should not only be able to locate the optimum, as it does in the

static sense, but also be capable of detecting when the

environment changes and tracking the new optimum.

This can be a challenging problem, as in most cases,

especially when the environment has been static for some

time, the population tends to converge to the best solution,

and thereby loses its adaptability. In order to be flexible

enough to respond to environmental changes, the algorithm

needs to explore several potentially good regions in the search

space, and at the same time, maintain the pace of fine search

for the optimal solution.

We have chosen evolutionary programming (EP) as the

main algorithm to perform the task of optimization in

dynamic environments on account of its fast convergence

ability. Therefore our essential task is to increase the diversity

of the population and ensure it does not get trapped into a

single optimal solution so that it cannot evolve further. We

use an ensemble of memory-based archives to introduce

diverse individuals into the population. Moreover, we

examine the strategy parameter in EP and propose a dynamic

scheme that is designed to make the EP more suitable for

optimization in dynamic environments.

We will follow with a literature review of evolutionary

programming and introduce our dynamic strategy parameter

Manuscript received November 10, 2008. This work was supported by the
A*Star (Agency for Science, Technology and Research) under the grant #052

101 0020.

The authors are with the School of Electrical and Electronic Engineering,
Nanyang Technological University, Singapore 639798 (phone:

65-67905404; fax: 65-67933318; e-mails: yuling@ntu.edu.sg,
epnsugan@ntu.edu.sg).

and structure of the ensemble of external memories.

Experimental results and a conclusion will be presented in the

last sections.

II. EVOLUTIONARY PROGRAMMING

Evolutionary programming was first proposed in 1960s as

an alternative method for generating artificial intelligence [1].

Later, since the middle of 1980s, it has been developed to

solve more general tasks including prediction problems,

numerical and combinatorial optimizations, and machine

learning [2], [3]. As a member of evolutionary algorithms, the

basic idea of EP is also the imitation of the natural evolution.

Since this approach models organic evolution at the level of

species, the original EP does not rely on any kind of

recombination or crossover. The main difference between EP

and other evolutionary algorithms such as genetic algorithms

and differential evolution is that there is no information

exchange among individuals in EP. Mutation is the only way

to generate offspring.

Current studies involving evolutionary programming

usually make use of self-adaptation of the strategy parameter

in EP [4]–[6]. According to the description in [4], the

self-adaptive EP is implemented as follows:

1) Generate the initial population of µ individuals, and set

k=1. Each individual is taken to be a pair of real-valued

vectors (xi, ηi), i=1,2,…,µ, where xi is the vector of

objective variables and ηi is a vector of standard

deviations (also known as strategy parameters)

corresponding to Gaussian mutations.

2) Evaluate the fitness value for each individual (xi, ηi) of

the population based on the objective function f(xi).

3) Each parent (xi, ηi), creates an offspring (xi’, ηi’), by:

)1,0()()()('

jiii Njjxjx η+= (1)

))1,0()1,0(exp()()(''

jii NNjj ττηη += (2)

for j=1,2,…,n, where n is the number of dimensions,

N(0,1) denotes a normally distributed one-dimensional

random number with mean zero and standard deviation

one. Nj(0,1) indicates that the random number is

resampled anew for each value of j. The factors τ and

τ’ are commonly set to 1)2(−n and 1
)2(

−
n . The

order of (1) and (2) may be swapped to improve the

performance. Note that the offspring generated by

such rules can be out of the variable domain of the

problem. Hence, boundary checks should be

performed.

4) Calculate the fitness of each offspring (xi’, ηi’).

Evolutionary Programming with Ensemble of Explicit Memories for

Dynamic Optimization

E. L. Yu, and P. N. Suganthan, Senior Member, IEEE

I

431978-1-4244-2959-2/09/$25.00 c© 2009 IEEE

5) Conduct pair-wise comparison over the union of

parents (xi, ηi) and offspring (xi’, ηi’), ∀i=1,2,…,µ. For

each individual, q opponents are chosen uniformly at

random from the combined parents and offspring

popluation. For each comparison, if the individual’s

fitness is no smaller than the opponent’s, it receives a

“win.”

6) Select the µ individuals out of (xi, ηi) and (xi’, ηi’),

∀i=1,2,…,µ, that have the most wins to be parents of

the next generation.

7) Stop if the halting criterion is satisfied; otherwise,

k=k+1 and go to Step 3.

In a recent study [7], a new version of EP called unbiased

evolutionary programming (UEP) was introduced and was

shown to have markedly improved performance for

high-dimensional optimization. We will take this version to

solve the dynamic optimization problems. Other than

generating Gaussian deviates in axial directions, a set of

angles is randomly generated in UEP. These are resolved into

a direction vector in the co-ordinate system, which is then

multiplied by a Gaussian deviate.

Several steps are added to the self-adaptive EP mentioned

above. Firstly, an additional parameter φi is assigned to each

of the population member. φ represents an (n 1)-dimensional

vector of angles, initialized randomly from a uniform

distribution between 0 and 2π. After that, create xi,

i=1,2,…,µ, as follows:

a) For each value of i, set prevSin=1. Then for each value

of j, j=1,2,…,n 1, set:

 prevSinjjx ii ×=Δ))(cos()(φ (3)

 prevSinjprevSin i ×←))(sin(φ (4)

Finally set prevSinnxi =Δ)(.

b) Randomly permute the elements of xi.

When generating the offspring (xi’, φi’, ηi’), xi(j) is

multiplied to the increment of xi(j), which makes (1) as:

)()1,0()()()(' jxNjjxjx ijiii Δ+= η (5)

φi’(j) is again randomly generalized from a uniform

distribution between 0 and 2π, and ηi’(j) is derived by (2).

The other steps are as in the classical self-adaptive EP.

To make the UEP more efficient in searching for the

optimum, we introduce a local search method to be applied to

the algorithm. In every generation, the fitness of each

offspring will be compared to that of its parent. From the

largest increments of the fitness values we obtain the

most-improving directions. These directions are used to

perform the local search, which is described by the following

equation:

)(''''

iiii xxFxx −+= (6)

where
ii xx −' offers one of the most-improving direction and

F is a constant (set to 0.85 in this paper).

III. THE PROPOSED DYNAMIC PARAMETER SCHEME

Observing the self-adaptive EP described in II, we find that

the parameter η has a tendency to get near to either infinity or

zero as generation number increases. The former situation is

unfavorable, as solutions vibrate severely even at the end of

the evolution. On the contrary, we may want to have a larger

mutation deviation at the beginning, and, as population

evolves, transfer the population from exploration to fine

search near the good solutions with small mutation deviation.

Annealing of the strategy parameter η will just serve the

purpose.

Simulated annealing (SA) was proposed as a method for

solving discrete optimization problems as well as single and

multiple objective optimization problems in various fields

[8]–[12]. Initial temperature is chosen such that it can capture

the entire solution space. Cooling schedule determines

functional form of the change in temperature required in SA.

The earliest annealing schedules have been based on the

analogy with physical annealing. They set initial temperature

high enough to accept all transitions and used a proportional

temperature. Three important cooling schedules are

logarithmic, Cauchy and exponential. It was shown in [13]

that the classical cooling schedules are all equivalent, with no

clearly better annealing schedule than the logarithmic

schedule to ensure convergence towards the set of optima

with a probability of one.

We use a variant of the exponential form of cooling

schedule to adjust the parameter in EP, which is explained by

the following equation:

)5.0()
1

exp(0 +⋅−= r
n

t

n
Tη (7)

where T0 denotes the initial temperature which is set to 5 for

our experiments, n is the dimension number, t stands for time

or number of generations, and r is a uniformly distributed

random variable in the interval of [0, 1]. This formula applies

to the η value in every dimension of every individual in the

population. A sample of the parameter values over 1000

generations in shown in Fig. 1.

Fig. 1. Semi-log Plot of η.

The above scheme enables EP to have an exponentially

decreasing deviation for mutations with certain perturbation.

It is a simple and explicit form, which is very useful in

432 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

dynamic environments. The strategy parameter at any time

depends only on the initial temperature, but not on the

previous values. This makes it easy for the algorithm to adapt

to environmental changes. On detecting a change, the strategy

parameter will be re-initialized.

IV. HANDLING ENVIRONMENTAL CHANGES

In order to make the algorithm be suitable for optimizing

dynamic problems, we will make some further modifications.

Although we can always regard each change as the arrival of a

new problem, it is more efficient if we can make use of the

previous knowledge about the search space, assuming that the

changes are not too radical. There are many ways to deal with

environmental changes [14], [15]. For example, after a

change is detected, the mutation rate can be raised to increase

the diversity of the population [16], or else, niching methods

can be used to spread out the population so that it may adapt

to changes more easily [17]. Memory-based approaches [18],

[19] have also been proposed to recall information from past

generations, which is especially useful when the new

optimum is not far from previous locations. In addition, we

may apply multi-population techniques to track multiple

peaks in the fitness landscape [20], [21].

Here we propose a diversity enhancement method which is

implemented not only after the environmental changes but

also during the whole run. It is realized using an ensemble of

two memory archives that store solutions found by the

algorithm in different times before the current generation.

The first archive, which represents the short-tem memory,

serves for the regular updating, and the second, which

represents the long-term memory, is used when premature

convergence is identified. When both cannot help and the

population totally loses diversity, we restart the search.

A. Archive Operations

The first archive is renewed every 10 generations, i.e. it

stores all the offspring created in the last 10 generations. A

niching method, clearing [22], is applied to the archive when

it has gathered all the members. This is to ensure the

individuals with high fitness in the archive are distributed

evenly in the search space instead of crowding in one area.

After the clearing procedure, we may assume the archive to

have a certain level of diversity and we can directly make use

of the members to replace the population in order to allow

further exploration.

Different from the standard clearing procedure, we number

all the individuals sequentially within a niche according to

their fitness values. The individual with the highest fitness is

assigned the number “1”. After the numbering, we sort the

archive from number “1” to the largest number so that the

individuals with the highest fitness in every niche are on the

top of the list and the individuals with the second highest

fitness in every niche are next and so on.

Although we are going to replace the whole population

with the top individuals from the sorted archive, we may still

find some consistency of evolution as all the archive members

are from the last 10 generations and there should surely be a

certain number of them from the last generation. Our

experiments have revealed that if we keep part of the

population and replace the other part with the archive

members, there will be some unnecessary redundancy. When

a change is detected, we also count on the first archive to

obtain the starting points for the next round.

The second archive relates to a higher level of diversity, of

which we use the standard deviation of fitness values as the

measure. It is generated in the same way as the first archive

but only in the very beginning of the search and right after

every detected change when the population is most diverse. In

other words, we just maintain this archive until the next

change occurs.

When the standard deviation of fitness in the population is

successively very small, say, less than a predefined threshold

for the last 50 generations, we shall replace 95 percent of the

population with the members from the second archive, so that

reasonably good and diverse members are stored. This means

that for the 95 percent of the population the evolution is dated

back to the very beginning of the current environmental state.

We still keep 5 percent of the elites so that they can continue

fine search without any impact.

In an effort to avoid repeatedly using the same individuals

in the second archive, we use a probabilistic scheme when

picking the archive members. As we have mentioned earlier,

the archive is already properly sorted, so we pick the

individuals from the archive sequentially with a fixed

probability of 0.8. The individuals that are chosen out will be

put to the bottom of the archive.

B. Detection of Changes

The detection of changes plays an important part in our

algorithm. We must firstly detect the changes effectively so

that we can take relevant measures. As is said in [14], we may

use the deterioration of the population performance or the

time-averaged best performance as an indicator; or we may

re-evaluate several individuals and if the fitness of at least one

individual has changed, we recognize it as a change.

As far as our experiments are concerned, we adopt the

second strategy. The experimental results show that it is very

efficient provided that the environmental change has an

influence on every individual. The “interesting points” we

focus on are the top three solutions in first archive (after

clearing) as they are going to get into the population as soon

as a change is detected. We do so with the purpose to decrease

the wastage of function evaluations.

C. When Population Totally Loses Diversity

There are times that the population will lose diversity

totally. All the individuals are converging to a single point.

This can be disadvantageous as in a dynamic environment the

optimum will probably move to another location sooner or

later.

In our experiments, we found that partial restart is not

enough to stop this situation. Reference [17] has also

suggested that the main problem of partial restart is that it is

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 433

very hard for the newly introduced solutions to establish

themselves when the population contains highly fit

individuals. Therefore when we find that the standard

deviation of fitness is extremely small, say, less than another

predefined threshold, we are going to reinitialize all the

population except the best one. Moreover, we set the strategy

parameter η to the initial value and restart the “time”

according to it.

V. EXPERIMENTATION

We use the test suite provided by CEC 2009 Competition

on Evolutionary Computation in Dynamic and Uncertain

Environments. There are 6 multimodal test functions, the

mathematical definitions of which can be found in [23]. The

first test problem F1 is the dynamic peak generator with 10

and 50 peaks. The other problems F2–F6 are dynamic

composition functions. Seven change instances are examined.

They are small-step changes (T1), large-step changes (T2),

random changes (T3), chaotic changes (T4), recurrent changes

(T5), recurrent changes with noise (T6), and random changes

with changed dimensions (T7). They make a total 49 test

instances. For every test instance, 60 changes are involved in

each run and a problem will be tested on 20 independent runs.

We use the population size of 100 for all the test problems.

20% of the function evaluations are assigned to local search

with 5 directions applied to 4 individuals, and the rest of

function evaluations are for generating offspring by the UEP

algorithm. The tournament size q for the selection phase of

EP is 10. Other parameters of our algorithm include the

interval of archive updating, the initial temperature of η, the

clearing radii in the archives, and the thresholds with regard

to premature convergence and complete loss of diversity. The

first three are set to be 10 generations, 6, and 5 respectively.

The thresholds can be set to approximately 1/100 and 1/1000

of the initial fitness deviation for the cases of premature

convergence and loss of diversity. The computers we use for

simulation have the following configuration.

TABLE I

COMPUTER CONFIGURATION

CPU P4, 3000 MHz

Memory Total 4GB

Operating System Linux

Programming Language MATLAB 7.4 (R2007a)

VI. RESULTS

All the environmental changes are successfully detected in

our experiments. The absolute function errors [23] after

reaching maximum number of fitness evaluations for all the

changes are recorded. Average best, average mean, average

worst values and standard deviations of the error values are

listed in Tables II–VII. Fig. 2–8 show the convergence graphs

for each problem (median run) for dimension n=10. The

overall performance of the algorithm is summarized in Table

VIII.

TABLE II

ERROR VALUES ACHIEVED FOR F1

Peaks (m) Errors T1 T2 T3 T4 T5 T6 T7

10

Avg_best 0.0054 0.00445 0.00435 0.0057 0.01105 0.0104 0.0032

Avg_worst 35.009 51.032 47.041 13.96 47.763 54.099 52.805

Avg_mean 5.7109 10.658 10.87 1.5033 8.2954 8.232 13.123

STD 9.6761 13.851 13.499 3.0008 13.227 13.102 14.96

50

Avg_best 0.0063 0.00535 0.00505 0.00585 0.0197 0.0164 0.00375

Avg_worst 26.538 50.227 44.899 13.497 21.09 27.041 43.844

Avg_mean 5.7391 13.285 15.896 1.4109 2.2653 3.1577 12.703

STD 6.8424 12.944 13.365 2.4466 4.239 5.6002 11.917

TABLE III

ERROR VALUES ACHIEVED FOR F2

Errors T1 T2 T3 T4 T5 T6 T7

Avg_best 0.1266 0.1383 0.13615 0.132 0.12985 0.1195 0.0896

Avg_worst 38.758 45.346 29.778 32.751 34.247 35.26 38.11

Avg_mean 6.2147 7.2236 4.9885 4.2067 3.5058 3.478 6.7124

STD 9.6292 11.024 8.245 7.5828 7.3318 7.5956 10.274

434 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

TABLE IV

ERROR VALUES ACHIEVED FOR F3

Errors T1 T2 T3 T4 T5 T6 T7

Avg_best 0.1996 0.17025 0.17975 0.20085 0.16635 0.1431 0.1243

Avg_worst 512.53 504.83 501.49 555.05 507.77 506.33 492.96

Avg_mean 151.98 140.47 136.67 164.96 95.123 107.54 107.69

STD 190.71 182.71 183.86 216.4 151.82 158.36 160.33

TABLE V

ERROR VALUES ACHIEVED FOR F4

Errors T1 T2 T3 T4 T5 T6 T7

Avg_best 0.13325 0.1386 0.13335 0.13045 0.13 0.1118 0.0814

Avg_worst 37.581 47.009 36.414 34.924 31.496 35.28 46.404

Avg_mean 6.601 8.1906 7.1991 5.0355 3.121 3.5162 8.3141

STD 10.032 11.923 10.145 8.3325 6.6867 7.3484 11.558

TABLE VI

ERROR VALUES ACHIEVED FOR F5

Errors T1 T2 T3 T4 T5 T6 T7

Avg_best 0.20075 0.18235 0.19615 0.2484 0.2035 0.184 0.17445

Avg_worst 44.887 54.133 36.438 39.928 55.669 56.092 56.026

Avg_mean 7.9042 10.091 7.2867 6.2507 8.2195 7.9011 10.779

STD 11.287 13.28 10.201 10.116 13.016 12.911 13.533

TABLE VII
ERROR VALUES ACHIEVED FOR F6

Errors T1 T2 T3 T4 T5 T6 T7

Avg_best 0.1493 0.14815 0.15235 0.15565 0.1404 0.12375 0.13875

Avg_worst 94.921 73.431 58.111 50.242 100.68 84.709 237.13

Avg_mean 17.303 18.732 16.005 11.753 26.311 24.558 25.231

STD 22.801 19.006 17.397 13.594 29.318 26.794 48.063

Fig. 2. Convergence Graph for F1 (10 peaks)

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 435

Fig. 3. Convergence Graph for F1 (50 peaks)

Fig. 4. Convergence Graph for F2

Fig. 5. Convergence Graph for F3

436 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

Fig. 6. Convergence Graph for F4

Fig. 7. Convergence Graph for F5

Fig. 8. Convergence Graph for F6

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 437

From the above we can see that the proposed algorithm

performs well in all the change instances of test functions F2,

F4, and F5. It is also very effective in change instances T1, T4,

T5, and T6 of function F1, but not equally advantaged in

change instances T2, T3, and T7. It has some difficulties in

solving problem F6, and it is not able to trace the changing

optimum in F3. While it is quite natural that the problems with

small-step changes can be solved smoothly, it is interesting to

see that the algorithm can handle chaotic changes as well.

And we would also like to note that the recurrent changes are

not meant to be easy for the algorithm because the optimal

solution is definitely moving to another peak (in the sense of

maximization problems) after every change. Nonetheless, the

performance of the algorithm is not obviously flawed in such

circumstances.

VII. CONCLUSION

We have proposed the evolutionary programming with an

ensemble of explicit memories for dynamic multimodal

optimization. Though we use EP as the main algorithm, our

implementation of the memory archives is general enough to

be applied to other algorithms such as genetic algorithms and

particle swarm optimizers. We test the algorithm on the

benchmarks of CEC 2009 Competition on Dynamic

Optimization. It has showed suitability for the majority of the

test problems, but further analysis is still needed before we

can claim its success in dynamic optimization.

REFERENCES

[1] L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence

through Simulated Evolution. John Wiley & Sons, 1966.
[2] D. B. Fogel, System Identification Through Simulated Evolution: A

Machine Learning Approach to Modeling. Ginn, 1991.

[3] D. B. Fogel, Evolutionary Computations: Toward a New Philosophy of
Machine Intelligence. Wiley-IEEE Press, 1995.

[4] H.-P. Schwefel, Numerical Optimization of Computer Models. John
Wiley & Sons, 1981.

[5] D. B. Fogel, L.J. Fogel and J.W. Atmar, “Meta-Evolutionary

Programming,” in Proc of the 25th Asilomar Conf. on Signals, Systems
and Computers, Pacific Grove, CA, 1991, pp. 540–545.

[6] K.-H. Liang, X. Yao, and C. S. Newton, “Adapting Self-Adaptive
Parameters in Evolutionary Algorithms,” Applied Intelligence, vol. 15,

No. 3, November 2001, pp. 171–180.

[7] C. MacNish and X. Yao, “Direction Matters in High-Dimensional
Optimisation,” in Proc. Congress on Evolutionary Computation, Hong

Kong, 2008, pp. 2372–2379.
[8] B. Suman and P. Kumar, “A Survey of Simulated Annealing as a Tool

for Single and Multiobjective Optimization,” J. of the Operational
Research Society, vol. 57, 2006, pp. 1143–1160.

[9] S. E. Carlson and R. Shonkwiler, “Annealing a Genetic Algorithm over

Constraints,” in Proc. IEEE Int. Conf. on Systems, Man, and
Cybernetics, vol. 4, 1998, pp. 3931–3936.

[10] J. M. Górriz, C. G. Puntonet, J. D. Morales and J. J. delaRosa,
“Simulated Annealing Based-GA Using Injective Contrast Functions

for BSS,” Lecture Notes in Computer Science, Springer, vol. 3514,

2005, pp. 585–592.
[11] L. Fang, P. Chen, and S. Liu, “Particle Swarm Optimization with

Simulated Annealing for TSP,” Proc of the 6th Conference on 6th
WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering

and Data Bases, vol. 6, Corfu Island, Greece, 2007, pp. 206–210.

[12] S. Bandyopadhyay, S. Saha, U. Maulik, and K. Deb, “A Simulated
Annealing-Based Multiobjective Optimization Algorithm: AMOSA,”

IEEE Trans. Evolutionary Computation, vol. 12, No. 3, June 2008, pp.
269–283.

[13] E. Triki, Y. Collette, and P. Siarry, “A Theoretical Study on the

Behavior of Simulated Annealing Leading to a New Cooling
Schedule,” European J. of Operational Research, vol. 166, 2005, pp.

77–92.
[14] J. Branke, Evolutionary Optimization in Dynamic Environments,

Springer, 2002.

[15] Y. Jin and J. Branke, “Evolutionary Optimization in Uncertain
Environments—A Survey,” IEEE Trans. Evolutionary Computation,

vol. 9, No. 3, June 2005, pp. 303–317.
[16] H. G. Cobb, “An Investigation into the Use of Hypermutation as an

Adaptive Operator in Genetic Algorithms Having Continuous,

Time-dependent Nonstationary Environments,” Naval Res. Lab.,
Washington, DC, Tech. Rep. AIC-90-001, 1990.

[17] W. Cedeño and V. R. Vemuri, “On the Use of Niching for Dynamic

Landscapes,” in Proc. Int. Conf. Evol. Comput., 1997, pp. 361–366.
[18] J. Branke, “Memory Enhanced Evolutionary Algorithms for Changing

Optimization Problems,” in Proc of the 1999 Congress on Evolutionary
Computation, vol. 3, 1999, pp. 1875–1882.

[19] S. Yang, “Explicit Memory Schemes for Evolutionary Algorithms in

Dynamic Environments,” Evolutionary Computation in Dynamic and
Uncertain Environments, vol. 51, 2007.

[20] R. K. Ursem, “Multinational GAs: Multimodal Optimization
Techniques in Dynamic Environments,” in Proc. Genetic and

Evolutionary Computation Conf., 2000, pp. 19–26.

[21] M. Wineberg and F. Oppacher, “Enhancing the GA’s Ability to Cope
with Dynamic Environments,” in Proc. Genetic Evol. Comput. Conf.,

D. Whitley et al., Eds., 2000, pp. 3–10.
[22] A. Pétrowski, “A Clearing Procedure as a Niching Method for Genetic

Algorithms,” in Proceedings of the 1996 IEEE Int. Conf. on

Evolutionary Computation, New York, USA, 1996, pp. 798–803.
[23] C. Li, S. Yang, T. T. Nguyen, E. L. Yu, X. Yao, Y. Jin, H.-G. Beyer,

and P. N. Suganthan, “Benchmark Generator for CEC’2009
Competition on Dynamic Optimization,” Tech. Rep., Univ. of

Leicester, Univ. of Birmingham, Nanyang Technological Univ., 2008.

TABLE VIII

ALGORITHM OVERALL PERFORMANCE

F1(10) F1(50) F2 F3 F4 F5 F6

T1 (0.85365)*0.015 (0.85275)*0.015 (0.62892)*0.024 (0.2391)*0.024 (0.6198)*0.024 (0.55021)*0.024 (0.46945)*0.024

T2 (0.78253)*0.015 (0.74912)*0.015 (0.61966)*0.024 (0.24515)*0.024 (0.59625)*0.024 (0.52358)*0.024 (0.43583)*0.024

T3 (0.76886)*0.015 (0.70595)*0.015 (0.66252)*0.024 (0.27313)*0.024 (0.62127)*0.024 (0.56062)*0.024 (0.46881)*0.024

T4 (0.92328)*0.015 (0.92981)*0.015 (0.74413)*0.024 (0.33056)*0.024 (0.72009)*0.024 (0.65535)*0.024 (0.5996)*0.024

T5 (0.82083)*0.015 (0.89972)*0.015 (0.65367)*0.024 (0.26922)*0.024 (0.65597)*0.024 (0.52499)*0.024 (0.37705)*0.024

T6 (0.83403)*0.015 (0.9015)*0.015 (0.69926)*0.024 (0.26169)*0.024 (0.6832)*0.024 (0.56829)*0.024 (0.40828)*0.024

T7 (0.72982)*0.01 (0.75187)*0.01 (0.63527)*0.016 (0.30215)*0.016 (0.59808)*0.016 (0.5208)*0.016 (0.43222)*0.016

 Mark 0.0820 0.0831 0.1064 0.0437 0.1031 0.0895 0.0731

 Performance(sum the mark obtained for each case and multiply by 100): 58.0939

438 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

