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Econometrica, Vol. 63, No. 6 (November, 1995), 1371-1399 

EVOLUTIONARY SELECTION IN NORMAL-FORM GAMES 

BY KLAus RITZBERGER AND JORGEN W. WEIBULL1 

This paper investigates stability properties of evolutionary selection dynamics in 
normal-form games. The analysis is focused on deterministic dynamics in continuous time 
and on asymptotic stability of sets of population states, more precisely of faces of the 
mixed-strategy space. The main result is a characterization of those faces which are 
asymptotically stable in all dynamics from a certain class, and we show that every such 
face contains an essential component of the set of Nash equilibria, and hence a 
strategically stable set in the sense of Kohlberg and Mertens (1986). 

KEYWORDS: Dynamics, evolution, noncooperative games, stability. 

1. INTRODUCTION 

MOST APPLICATIONS OF NONCOOPERATIVE GAME THEORY build on such solution 
concepts as Nash equilibrium. As is well known by now, the rationalistic 
foundation of this approach is quite demanding. Not only is it required that 
agents be optimizers, but it also presumes a large degree of coordination of 
different agents' expectations (see, e.g., Tan and Werlang (1988), and Aumann 
and Brandenburger (1992)). In recent years researchers have investigated alter- 
native foundations of Nash equilibrium play. Particularly promising seems the 
approach taken in evolutionary game theory. Instead of asking if agents are 
rational in some epistemologically well-defined sense, one asks if evolutionary 
selection processes induce a tendency towards aggregate Nash equilibrium 
behavior. In other words, one then investigates the validity of Friedman's (1953) 
"as if' paradigm in the context of strategic interaction. 

The idea of an "as if' interpretation of equilibrium points, however, dates 
back to the early days of Nash equilibrium: 

"We shall now take up the "mass-action" interpretation of equilibrium points. ... It is 
unnecessary to assume that the participants have full knowledge of the total structure of 
the game, or the ability and inclination to go through any complex reasoning processes. 
But the participants are supposed to accumulate empirical information on the relative 
advantages of the various pure strategies at their disposal. 

To be more detailed, we assume that there is a population (in the sense of statistics) of 
participants for each position of the game. Let us also assume that the "average playing" 
of the game involves n participants selected at random from the n populations, and that 
there is a stable average frequency with which each pure strategy is employed by the 
"average member" of the appropriate population. 

Since there is to be no collaboration between individuals playing in different positions 
of the game, the probability that a particular n-tuple of pure strategies will be employed 
in a playing of the game should be the product of the probabilities indicating the chance 
of each of the n pure strategies to be employed in a random playing. ... 

l Both authors gratefully acknowledge helpful comments from Jonas Bj6rnerstedt, Josef Hof- 
bauer, a co-editor, and three anonymous referees, and thank the Industrial Institute for Economic 
and Social Research, Stockholm, and the Institute for Advanced Studies, Vienna, for their hospital- 
ity and sponsorship of this research. 
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Thus the assumptions we made in this "mass-action" interpretation lead to the 
conclusion that the mixed strategies representing the average behavior in each of the 
populations form an equilibrium point.... 

Actually, of course, we can only expect some sort of approximate equilibrium, since the 
information, its utilization, and the stability of the average frequencies will be imperfect." 
(Nash (1950, p. 21-23).) 

There are several approaches to formalize the above ideas. One is to investi- 
gate the dynamics of social evolution. The best studied setting for evolutionary 
dynamics was originally motivated by biology and concerns pairwise random 
matchings of individuals drawn from a single infinitely large population and 
playing a symmetric two-player game. In the so-called replicator dynamics 
(Taylor and Jonker (1978)) individuals change from currently worse to better 
strategies at rates which are proportional to current payoff differences. Results 
for the single-population case are encouraging for the Nash equilibrium 
paradigm. Weak dynamic stability in the replicator dynamics was shown to imply 
symmetric Nash equilibrium behavior (Bomze (1986)) and, for a broad class of 
dynamics, it was established that convergence to a stationary state from an 
interior initial state also implies Nash equilibrium behavior (Nachbar (1990)). 

However, many economic applications call for multi-population, rather than 
single-population dynamics. For instance, the player roles may be those of 
"buyers" and "sellers," each type of individual being drawn from his or her 
"player-role population." Moreover, in most applications, the game will not be 
symmetric and may involve more than two players. Thus one is lead to study 
evolutionary selection dynamics in n-player games, in which each player role is 
represented by a distinct population in the spirit of Nash's "mass-action" 
interpretation-the topic of the present paper. 

Individuals are randomly drawn from infinitely large populations also in the 
multi-population setting. Each matching involves one individual from each of 
the player-populations and each individual is "programmed" to use a pure 
strategy available to the player whose role she plays. Over time the strategy 
distribution in each player population changes according to some dynamic 
selection process. The present paper studies classes of such dynamics all of 
which include the replicator dynamics, as well as a family of imitation dynamics. 
And indeed, the earlier positive results from the symmetric single-population 
setting do carry over to the (symmetric and asymmetric) multi-population case. 
Again weak dynamic stability properties and convergence imply Nash equilib- 
rium behavior (Friedman (1991), Samuelson and Zhang (1992); see Section 3 
below for details). 

There is an important caveat to these positive results, viz. that few Nash 
equilibria have strong stability properties in multi-population dynamics. More 
precisely, only strict equilibria are asymptotically stable in the replicator dynam- 
ics (Ritzberger and Vogelsberger (1990, Proposition 1)), and virtually only strict 
equilibria are asymptotically stable in so-called aggregate monotonic selection 
dynamics (Samuelson and Zhang (1992, Theorem 4 and Corollary 1)). Conse- 
quently, many games possess no asymptotically stable equilibrium at all. Hence, 



EVOLUTIONARY SELECTION 1373 

the connection between evolutionary selection in n-player games and Nash 
equilibrium is weaker than it may first appear. 

Since these negative results concern individual points in the strategy space, it 
is natural to turn to sets instead. Nontrivial connected sets of Nash equilibria 
are endemic in normal-form games that derive from extensive forms, and part of 
the refinement literature has also turned to set-valued solution concepts in 
order to cope with existence problems. 

There are a number of set-valued approaches in the literature on evolutionary 
game theory as well. Thomas (1985) develops a set-valued generalization of the 
static concept of evolutionarily stable strategies (Maynard Smith and Price (1973)). 
Swinkels (1992a, 1992b) also proposes set-valued generalizations of evolutionar- 
ily stable strategies and shows that those sets contain sets of Nash equilibria 
which meet certain refinement criteria. Swinkels (1993) deduces the latter from 
dynamic asymptotic stability of sets in a selection dynamics from a broad class. 

In the present paper we focus on asymptotic stability of a certain class of 
strategy sets, namely faces of the mixed strategy space of the game. A face is the 
Cartesian product of sets of mixed strategies, one set for each player, each of 
which consists of all mixtures over some subset of the player's pure strategy set. 
At one extreme end of this spectrum there are individual pure strategy combina- 
tions (minimal faces). The opposite extreme is the set of all mixed strategy 
combinations in the game (the maximal face). Dynamic stability properties of 
faces can thus be associated with predictions in terms of subsets of pure 
strategies, one subset for each player position. 

The focus on asymptotic stability is due to the fact that this property, unlike 
the weaker criterion of Lyapunov stability, is a "structurally robust" property in 
the sense that it is not destroyed by small perturbations of (the vector field of) 
the dynamics. In particular, asymptotic stability is preserved even if small 
fractions of a population occasionally "mutate," "experiment," or "make mis- 
takes," thus generating small shocks to the population state. 

A similar robustness criterion motivates the focus on faces. Since in many 
applications only broad qualitative features of the selection dynamics are know 
or assumed, it is desirable that the sets under consideration be dynamically 
stable in a fairly wide class of selection dynamics. We show that such broader 
robustness of dynamic stability properties disqualifies all (closed) sets in the 
(relative) interior of any face. Hence, when such robustness is called for, the 
restriction to sets which are faces is not so severe, and asymptotic stability 
provides predictions which are immune to small amounts of (unmodeled) drift. 

Our main result is a characterization of all faces which are set-wise asymptoti- 
cally stable in all dynamics from a class of dynamics which contains all aggregate 
monotonic selection dynamics. The characterizing criterion is that the set in 
question be "closed" under a certain correspondence which we call the "better- 
reply" correspondence-in analogy with the well-known best-reply correspon- 
dence used in noncooperative game theory. This "new" correspondence assigns 
to each mixed strategy combination cr those pure strategies for each player 
which give that player at least the same payoff as she has in cr. Such pure 
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strategies are thus weakly better replies to o- than o- is itself. We call a product 
set of pure strategies closed under the better-reply correspondence if the image 
under this correspondence of every mixed strategy combination with support in 
the set is contained in the set. (Such a set is necessarily "closed under rational 
behavior," or a curb set; see Basu and Weibull (1991).) 

The equivalence of closure under the better-reply correspondence and asymp- 
totic stability of the associated face provides an operational criterion by means 
of which pure strategy subsets spanning an asymptotically stable face can be 
identified, a criterion based exclusively on the data of the game. In particular 
examples this criterion has significant cutting power (see Section 6). However, as 
yet the strength of the criterion in general remains an open issue. Therefore, 
there may be many games where few pure strategies can be "robustly" rejected 
on grounds of dynamic social evolution as modeled here. 

There is a stark contrast between "robust" evolutionary predictions and 
noncooperative game theory concerning completely mixed Nash equilibria. For 
while these pass all the Nash equilibrium refinements based on strategy pertur- 
bations ("trembles"), no such equilibrium is robustly stable in the present class 
of evolutionary selection dynamics. More precisely, even if such an equilibrium 
is dynamically stable in some aggregate monotonic selection dynamics, it is 
unstable in others. Hence, unless we are convinced that "real life" adaption is 
well described by dynamics in the "stable subclass," we may have to live with the 
possibility of ever-lasting oscillations in certain aggregate social behaviors.2 

We also show that a face spanned by a product set of pure strategies which is 
closed under the better-reply correspondence contains an essential component 
of Nash equilibria. That is, it contains a closed and connected set of Nash 
equilibria such that every nearby game, in terms of pure strategy payoffs, has a 
nearby Nash equilibrium. This is one of the most stringent set-wise refinements 
from the noncooperative game theory literature, implying strategic stability in 
the sense of Kohlberg and Mertens (1986). 

Put together with the above characterization result, one obtains that an 
asymptotically stable face contains an essential component of Nash equilibria. 
This implication parallels Theorem 1 in Swinkels (1993). He shows that if a set is 
asymptotically stable in a selection dynamics from a broad class, and meets a 
certain topological condition, met by any face, then it contains a hyperstable set 
of Nash equilibria in the sense of Kohlberg and Mertens (1986). 

The material is organized as follows. Section 2 contains notation and basic 
definitions. Section 3 provides, in a unified and sometimes more general form, 
essentially known results on point-wise stability (except for Propositions 2 and 
3). All proofs for this section have been relegated to an Appendix at the end of 
the paper. In Section 4 we elaborate on a class of correspondences which we call 
behavior correspondences, of which the best-reply and better-reply correspon- 

2Even if a solution persistently oscillates the time average of the population state may be of 
significance. In games with a unique interior Nash equilibrium, for instance, it converges under the 
replicator dynamics to the equilibrium, provided the closure of the orbit is interior (cf. Hofbauer and 
Sigmund (1988)). 
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dences are instances, and we relate sets closed under such correspondences to 
the notions of strict and non-strict Nash equilibrium. Our main result is given in 
Section 5. Section 6 contains examples of the concepts used. Some directions for 
further research are mentioned in Section 7. 

2. NOTATION AND DEFINMONS 

2.1. The Game 

Let F be a normal-form game with player set X= {1, 2,..., n}, for some 
positive integer n, and with S = x ieSi as the set of pure strategy combina- 
tions s =( s2, ... , sn), where each set Si consists of Ki pure strategies s5, 

k = 1,2, .. ., Ki, available to player i E AX. The set of mixed strategies of player i 
is thus the (Ki - 1)-dimensional unit simplex Ai = {ueI E 1urk = 1), and 
A = x,= Ai is the polyhedron of mixed strategy combinations o- = (-1,. .., o An) 

in the game. We identify each pure strategy si E Si with the corresponding unit 
vector ek E- Ai (hence Si is the subset of vertices of Ai). The support of some 
mixed strategy o-i E Ai is denoted by supp(i) = {si E Siluik > 0). The mapping 
U: S -+.> 9J ngives the payoffs of pure strategy combinations, and the multilinear 
expected payoff function U: A -, I 'n is defined in the usual manner. 

Let / = PBi: A -> S be the pure best-reply correspondence which maps 
mixed strategy combinations to their pure best-reply strategy combinations. 
More precisely, for each player i E: X and strategy combination o- E A, 

3i ( cr) = { Sk E- Si lUi( cr_ i, Si) 2 U (c_is )bs ES}. - {s 1L(i,S1)?L(o-_i Si),g VSi = Si} 

The correspondence assigning mixed best replies is denoted i3 = E Pi , where 

/i(oT) = {&j E AilSUpp(i) C i(of)}. 

It is well known that both ,B and /3 are u.h.c. correspondences on A. 
A Nash equilibrium is a strategy combination o- E A which is a fixed point of 

/3. The set of Nash equilibria of a game F is denoted by 

E(F) = {oE AlIce fi(o)}. 

A strict equilibrium is a strategy combination o- E A which is its own unique 
best reply, i.e., such that {or} = ,B(o-). Every strict equilibrium o- e E(F) is pure, 
so one may view it as a fixed point of /3 in S. 

2.2. Dynamics 

A regular selection dynamics on A is a system of ordinary differential equa- 
tions (time indices suppressed) 

rIk =fOk(cr)ckO Vk = 1, ... . Ki Vi EX= 
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with fi: A . Ki Vi X, and f = x<i xf is such that 

(i) f is Lipschitz continuous on A, 
(ii) fi(u-) - o=O , e A, vi EA3 

As a consequence of the Picard-Lindelof Theorem the above system has a 
unique solution cr(., uc): 9J -> A through every initial state ocr E A, O(t, u E) E 

A denoting the state at time t E 9t. All regular selection dynamics have the 
property that extinct strategies stay extinct forever. 

The best studied regular selection dynamics in evolutionary game theory is 
the so-called replicator dynamics. For an n-player game F, this dynamics is 
usually defined by the following system of (quadratic) ordinary differential 
equations on the polyhedron A: 

ik= [4i( cr_ -i( U(u)] ik, Vk= 
19 . . ., Ki, ViEX 

(see, e.g., Taylor (1979), Zeeman (1980), Hofbauer and Sigmund (1988), Fried- 
man (1991), Samuelson and Zhang (1992)). Altematively the replicator dynamics 
is sometimes written 

J[(u-j,s )U(cU)]au, Vk-= 1,... 9,Ki,ViE, 

where the average payoff to each population i, Ui(o), is taken to be positive 
(Maynard Smith (1982, p. 200), Hofbauer and Sigmund (1988, p. 273)).4 In the 
biology literature, "there is ... room for doubt as to which form is more appro- 
priate" (Maynard Smith (1982, p. 201)). Following the economics literature 
(Samuelson and Zhang (1992, p. 370), Swinkels (1993, p. 466)) we will hereafter 
refer to the first and more common version as the replicator dynamics. The 
second version will be called the payoff-normalized replicator dynamics. As will 
be seen below, many of our results hold for classes of evolutionary selection 
dynamics which contain both versions. 

An aggregate monotonic selection (AMS) dynamics (Samuelson and Zhang 
(1992)) is a regular selection dynamics such that for all iE #, o-E A, and 
0',qo it" GE Ai , 

Ui(ocr_i, 0ri < Ui(ocr_i, orj ) <*fj(ocr) 
* 
ocri < fi(ocr) 

* cri 

By a straightforward generalization of Theorem 3 in Samuelson and Zhang 
(1992, pp. 374) it can be shown that any AMS dynamics can be written in the 
form 

fik(o-)=wi(o-)[Ui(os-i{sC)-Ui(o-)], Vk= 1, ... ,Ki, ViE A, 

3This definition can be shown to be equivalent to the one given by Samuelson and Zhang (1992, 
p. 368). 

4We are grateful to an anonymous referee for pointing this out. 
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for some positive function wc: A ++ for every i E AX. The class of AMS 
dynamics is thus given by all "player-specific reparameterizations of time" in the 
replicator dynamics, the latter being the special case c1i(o-) = 1, Vou e A, Vi e X. 
The payoff-normalized replicator dynamics is the special case with w1i( u)= 
1Ui(o) > 0, Veo , Vi eX. 

A weaker condition than aggregate monotonicity is to require the equivalence 
to hold only for pure strategies oui' = s' c Si and o-r" = s" EC Si. Such a selection 
dynamics is called monotonic: 

Ui(cr_i,s S) < Ui(cr_i, Sh) -fi k(Of) <fi h(O) 

for all ie=- X, uEA, and sS G ESi. 
Another class of selection dynamics which also contains all AMS dynamics is 

the following: A sign-preserving selection (SPS) dynamics is a regular selection 
dynamics such that for all i e AX, all o- e A, and all sG E supp( or) 

Ui( cr_i, Si ) < Ui( cr) fk( cr) < O. 

In other words: Strategies which are at least as good as the average grow at 
nonnegative rates, and strategies which perform worse than average are pre- 
cisely those which are selected against.5 This class of selection dynamics con- 
tains all AMS dynamics and turns out to be of special significance for the 
present approach. 

For a SPS dynamics the ordering of growth rates of population shares is not 
determined from payoffs, while for a monotonic selection dynamics it is. On the 
other hand, for a monotonic selection dynamics the signs of growth rates of 
population shares of strategies that do neither best nor worst are not deter- 
mined, while for a SPS dynamics they are. So, though the intersection of the 
class of SPS dynamics and monotonic selection dynamics is nonempty, the two 
are distinct classes. 

Aggregate monotonicity, which is thus a special case of both monotonic and 
sign-preserving selection dynamics, can be derived from underlying microeco- 
nomic models that assume a certain imitative adaptation of the behavior of 
individuals. In large populations one may imagine the following scenario (for 
details see Bjornerstedt and Weibull (1993)): While at each instant of time every 
individual is bound to use a particular pure strategy, occasionally one or the 
other individual reviews her or his strategy choice. Suppose these "arrival times" 
are governed by independent Poisson processes, which may depend on the 
current population state. Once an individual reviews her strategy, she will switch 
to a new pure strategy with a conditional probability that may depend positively 
on its current success (payoff) and popularity (population frequency). Note that 
such an adaption process does not presume any knowledge about payoffs to 
other player positions in the game. If, in particular, individuals with currently 
less successful strategies review their strategy choice at a linearly higher rate 

5A similar, though slightly stronger definition of "sign-preserving" dynamics appears in Nachbar 
(1990). 
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than individuals with more successful strategies, and/or the conditional switch- 
ing probability towards any pure strategy is proportional to its popularity, with 
the proportionality factor linearly increasing in the strategy's current success, 
then an AMS dynamics results. In particular, both the replicator dynamics and 
its payoff-normalized version can be so derived. Without the linearity assump- 
tions these imitation processes merely result in SPS or monotonic selection 
dynamics, depending on the nature of the imitation mechanism. 

Given some regular selection dynamics on the polyhedron A of mixed strategy 
combinations, a set A cA is called positively invariant if any solution path 
starting in A remains in A for the entire future: o-(t, o-) EA, Vo-0 EA, 
Vt E 91 +. It is called invariant if, moreover, any solution path in A has also 
been in A for the entire past, o-(t, o-) EA, Vo-0 EA, Vt E 91. A point o* E A 
is called stationary or a rest point, if {o- c A is an invariant set. Both A and its 
interior int( A) are invariant in every regular selection dynamics.6 

Let F(F) c A be the set of rest points in a given regular selection dynamics. 
It is easily verified that the set F( F) of all rest points is the same for all SPS 
and all monotonic selection dynamics and is given by 

F(F) = {oC AjUj(o-_j,si) = Ui(ou), Vsi c supp(o-i), Vi c. 

A closed invariant set A c A is said to be (Lyapunov) stable, if the solution 
curves remain arbitrarily close to A for all initial states sufficiently close to A. 
Formally, a neighborhood R of a closed set A c A is an open set containing A, 
and: 

DEFINITION: A closed invariant set A c A is (Lyapunov) stable, if for every 
neighborhood -7' of A there exists a neighborhood -7" of A such that 
u(t, uc) E-' for all 0. 0 E" 'n A and all t ? 0. 

A more stringent stability notion is that of asymptotic stability. It requires on 
top of (Lyapunov) stability that the set A be a local attractor in the sense that 
all dynamic paths starting sufficiently close to A converge to A over time. 
Formally, we have the following definition: 

DEFINITION: A closed invariant set A c A is asymptotically stable if it is stable 
and there exists some neighborhood R of A such that o- (t, o 0) >t? A, for all 
0o E- n A.7 

Since any stationary point o- E A constitutes a closed subset {o-} of A, the 
above definitions also cover stability notions for points. The induced stability 
criteria for points coincide with the standard definitions (see, e.g., Hirsch and 
Smale (1974, pp. 185)). 

6 Since A is lower-dimensional than the embedding Euclidean space, it has empty interior. But A 

has a nonempty relative interior, denoted int( A). A subset of A is called relatively interior if it is a 
subset of int( A). 

7The notation o-(t, u0) -o A is used to mean minaE Allou(t, o-?)-all -t o000, where 11H11 
denotes the Euclidean metric. 
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For a given game F, two player positions i, j EAX are said to be symmetric, if 
Si=Sj and Ui(s ij, sk,s)= U(sj Ws si ̂ s) Vk,h = 1,...,K= K., Vs _ eS_ e 
If i and ] are symmetric player positions, then Ui(o-i, sik) = U(V-__ s"k), Vk = 
1,..., Ki, and Uif(o) = Uj(o-), for all o- EEA with oi = oj. Hence, for any AMS 
dynamics which satisfies wi(o ) = wj( o-), Vo- E A, symmetry of i and j implies 
that the diagonal D 1 = {v e AI oi = oy} is an invariant set (because o-v = o-. vi 
= 6). If X= {1, 21 and the two player positions are symmetric, then (p4%-) - 
W2( o) is simply a reparametrization of time which does not change the solution 
curves. So any such AMS dynamics induces the same orbits as the replicator 
dynamics on D12 c A1 x A2. This is, for instance, the case for the payoff-nor- 
malized version of the replicator dynamics. Since D12 is isomorphic with the 
state space of single-population dynamics in symmetric two-player games, every 
AMS dynamics with (il = W2 induces the replicator dynamics in the correspond- 
ing single-population dynamics.8 

3. POINT-WISE STABILITY 

From the discussion it is clear that a Nash equilibrium is a rest point for any 
sign-preserving or monotonic selection dynamics (but not vice versa): E( F) c 
F(F). But the connection between evolutionary dynamics and Nash equilibrium 
extends further. For monotonic single-population selection dynamics in symmet- 
ric two-player games it has been shown that any (Lyapunov) stable state 
constitutes a (symmetric) Nash equilibrium, and that convergence from an initial 
state in which all pure strategies are present implies that the limit state 
corresponds to a (symmetric) Nash equilibrium (Nachbar (1990)). On the other 
hand, if a state is asymptotically stable in the replicator dynamics, then it 
corresponds to an isolated and (symmetric trembling-hand) perfect Nash equilib- 
rium (Bomze (1986)). 

These positive results carry over to multi-population dynamics in symmetric 
and asymmetric n-player games (Nachbar (1990), Friedman (1991), Samuelson 
and Zhang (1992)). Formally: Call a state o- E A reachable in a selection 
dynamics if there exists o- ' E int( A) such that o-(t, o 0) t ?, o-. It follows from 
continuity that such a state o0 is stationary in the selection dynamics under 
consideration. 

PROPOSITION 1: For any monotonic selection dynamics: 
(a) If of E A is Lyapunov stable, then u E E( F). 
(b) If of E A is reachable, then u E E( F). 

PROOF: See Appendix. 

For predictive purposes, however, these dynamic properties appear too weak. 

8 By single-population dynamics we mean that interacting individuals are drawn from the same 
population. 
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For if a population state is reachable but not Lyapunov stable, then arbitrary 
small perturbations of the state-by (unmodeled) "mutations," "mistakes," or 
"experiments," say-can lead the population far away. Likewise, if a population 
state is Lyapunov but not asymptotically stable, then certain small shocks to the 
state will dislocate the population state permanently (for a discussion of the 
related notion of "evolutionary drift" see Binmore and Samuelson (1994)). By 
contrast, the more stringent criterion of asymptotic stability does guarantee a 
"local pull" towards the state (or set) in question. In particular, asymptotic 
stability (of a point or set) is preserved (for some nearby point or set) even if the 
vector field is slightly bent inwards at the boundary of A as, for instance, by 
small amounts of mutations. 

However, it has been shown that in the replicator dynamics no interior 
population state is asymptotically stable (cf. Amann and Hofbauer (1985); 
Hofbauer and Sigmund (1988, p. 282), Ritzberger and Vogelsberger (1990, 
Lemma 5)). Moreover, each face of A can be thought of as a smaller game of its 
own, derived from F by deleting all unused pure strategies. The replicator 
dynamics of such a reduced game is just the replicator dynamics of F restricted 
to the corresponding face of A, each face being invariant. Consequently, no 
mixed strategy combination, in which at least one player randomizes, is asymp- 
totically stable in the replicator dynamics. 

This evolutionary instability of mixed equilibria parallels the well known 
"epistemic" instability of mixed equilibria in the noncooperative approach 
(Harsanyi (1973), van Damnme, (1987, p. 19)): In a mixed equilibrium some 
player can choose another randomization than the one prescribed by the 
equilibrium, without losses of expected payoff, given that the other players stick 
to their equilibrium strategies.9 If other players anticipate this possibility, then 
they may want to change their strategies, etc. 

The dynamic instability of interior states can be shown to lead to the 
following characterization:'0 

PROPOSITION 2: A Nash equilibrium is asymptotically stable in the replicator 
dynamics if and only if it is a strict equilibrium. 

PROOF: See Appendix. 

It is well known that the single-population replicator dynamics for symmetric 
two-player games can have asymptotically stable rest points which are interior. 
This can happen if, for instance, the diagonal D12 of A is contained in the 

9Harsanyi, however, shows that mixed equilibria which satisfy a regularity condition (cf. Harsanyi 
(1973, Lemma 9)) still have a justification as limiting equilibria of games with randomly perturbed 
payoffs as the perturbations approach zero. 

10 Proposition 2 appears as Proposition 1 in Ritzberger and Vogelsberger (1990), and is a slight 
sharpening of Theorem 4 and Corollary 1 in Samuelson and Zhang (1992), for the case of the 
replicator dynamics. 
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convergent manifold of an equilibrium which is a saddle point in the full state 
space A. 

Proposition 2 says that the Nash equilibria which are asymptotically stable in 
the multi-population replicator dynamics are precisely those which constitute 
the only best-reply to a neighborhood of themselves. So what are the dynamic 
stability properties of equilibria which are a best-reply to a neighborhood of 
themselves, but not the only one? Such a notion is known as a robust equilib- 
rium (Okada (1983)). A Nash equilibrium o- is called robust, if there exists some 
neighborhood & of o- such that u e (o- 0) Vo-0 E & n A. One might, there- 
fore, expect that for robust equilibria the weaker (Lyapunov) stability criterion is 
satisfied. This turns out to be true within the class of sign-preserving selection 
(SPS) dynamics. 

PROPOSITION 3: (a) Every robust equilibrium is Lyapunov stable in any SPS 
dynamics. 

(b) For every robust equilibrium there exists a neighborhood & such that 
o-(t, cr0) >t oo E() Fn , Vo0 Ea n A, in any AMS dynamics. 

PROOF: See Appendix. 

4. BEHAVIOR CORRESPONDENCES 

Let ( be the class of u.h.c. correspondences- no = xir oi: A-> S such that 
,13(u) c po(o-) for all o- E A (weak inclusion). Correspondences so c ( will 
henceforth be called behavior correspondences. For any correspondence so: A -> S, 
and any nonempty set A c A, sp(A) c S denotes the (nonempty) union of all 
images po(o-) with o- cA, i.e., so(A)= U E A p(f). 

Let P be the set of all nonempty product sets X c S, i.e., X = E Xi, where 
0 =A Xi c Si, Vi E A. For any nonempty set Xi c Si, let Ai(Xi) be the set of all 
mixed strategies with support in Xi. For any X FP, let A(X) = Xi 4i(Xd). 
This is the face of the polyhedron A spanned by X. Such a face (X) is itself a 
polyhedron of mixed strategy combinations associated with the reduced game in 
which the pure strategy set of player i EcK X is Xi. 

Basu and Weibull (1991) call a set X E P closed under rational behavior (curb) 
if it contains all its best replies, i.e., if 13( A(X)) cX, and call it tight curb if 
,(( A(X)) =X. More generally: given any behavior correspondence so e cP, we 
here call a set Xe P closed under (p if sp(A(X)) cX and fixed under sD if 
cp( A(X)) = X."1 Clearly X E P is a curb set if it is closed under some behavior 
correspondence so E (, by ,(3A(X)) c sp( A(X)) c X. A set X E P is a minimal 
closed set under so if it is closed under so and contains no proper subset which is 
closed under sp. 

11 The terminology is motivated by the fact that a fixed set for a correspondence is the direct 
generalization of a fixed point of a function, when the correspondence is viewed as a function from 
the power set into itself (cf. Berge (1963, p. 113)). 
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The following lemma generalizes some basic properties of curb sets to sets 
which are closed under some behavior correspondence. The proof follows Basu 
and Weibull (1991). 

LEMMA 1: (a) If X E P is a minimal closed set under p E k, then it is a fixed set 
under q'. 

(b) For every p e P there exists a minimal closed set. 
(c) If a singleton set X = {s} is closed under some 'p c P, then s E S is a strict 

equilibrium. 

PROOF: (a) Suppose X E P is a minimal closed set under 'p E P, but X O 
(p(A(X)). Then there exists some player i e X such that 'pj( A(X)) c Xi. Let 
Zi = 'op(A(X)), and V]j i, let Zj = Xj. Clearly 'o(A(Z)) c 'o( A(X)) c Z, so X is 
not minimal-a contradiction. 

(b) By 'p(A) c S the nonempty collection Q c P of sets X E P which are 
closed under some given 'p E P is finite and partially ordered by set inclusion, 
and hence contains at least one minimal such set. 

(c) If a singleton set X = {s} is closed under 'o c P, then 0 # ,8(s) c 'p(s) c 
{s}, and so 13(s) = {s}, i.e., s E S is a strict equilibrium. Q.E.D. 

The next result is a key observation for the subsequent analysis. Essentially it 
provides a generalization of a property of strict equilibria which non-strict Nash 
equilibria lack, and which, in a sense, is the converse of the defining property of 
Nash equilibrium. While a strategy combination u e A is defined as a Nash 
equilibrium whenever it is contained in its set of best replies, {u} C,1(u), only 
strict equilibria have the complementary (curb) property of containing all their 
best replies, 13(u) c {u}. In the first case unilateral deviations are nonprofitable; 
some may be costly and others costless. In the second case all unilateral 
deviations are costly. Not surprisingly, strict equilibria, therefore, satisfy all the 
requirements for which the refinement literature has asked. In particular, every 
strict equilibrium is pure (a vertex of A) and it is the unique best reply not only 
to itself but, by continuity of the payoff function, also to all strategy combina- 
tions in some neighborhood of itself. Formally, if u- E E(F) is strict, then there 
is some neighborhood W of u such that 13(?/nA)c{u}. Hence, such an 
equilibrium is robust to all sufficiently small perturbations of the players' beliefs 
about each others' play. 

The following lemma generalizes this observation, first, from the best-reply 
correspondence to all behavior correspondences, and, second, from individual 
strategy combinations to sets of strategy combinations. As a special case the 
result holds for all curb sets. (Note that the proof of Lemma 2 relies exclusively 
on the fact that behavior correspondences are closed mappings.) 

LEMMA 2: If X E P is closed under some 'p E P, then there exists a neighbor- 
hood W/ of A(X) such that 'D(Wn A) cX. 
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PROOF: Suppose cp(A(X)) cX and there is no neighborhood Z/ of A(X) 
such that sp(Z n A) cX. Let Y be the complement of X in S, and identify X 
and Y with the associated sets of vertices of A. Then X and Y are disjoint 
closed subsets of A. By hypothesis, Y is nonempty and there exists a sequence 
{o- T=1 from A converging to some point o c- A(X) such that cp( ) contains 
some point from Y, for all T = 1,2,... Since so is u.h.c. and Y is closed, this 
implies that also p(o- 0) contains some point from Y. But Y is disjoint from X 
and hence sp(uo-) is not a subset of X-a contradiction. Q.E.D. 

The next result establishes basic relationships between sets which are closed 
under some behavior correspondence and the set of Nash equilibria. Recall that 
the set E( F) c A of Nash equilibria of any normal-form game F is the union of 
finitely many, disjoint, closed and connected sets, called connected components 
(Kohlberg and Mertens (1986, Proposition 1)). The following observation is 
trivially valid for any behavior correspondence so c P: Every connected compo- 
nent C c E(F ) is qontained in the face A(X) spanned by some set X c P which 
is closed under so (just let X = S). Proposition 4(a) below establishes the partial 
converse that for any X e P which is closed under some behavior correspon- 
dence each connected component of Nash equilibria is either disjoint from or 
contained in the face spanned by X. Proposition 4(b) shows that every face 
spanned by a set X c P which is closed under some behavior correspondence 
contains a set of Nash equilibria which satisfies some of the strongest known 
set-wise refinement criteria, essentially (van Damme (1987, p. 266)), hyperstabil- 
ity, and strategic stability (Kohlberg and Mertens (1986, p. 1022 and p. 1027)). 
Since generic extensive-form games have only finitely many Nash equilibrium 
outcomes (Kreps and Wilson (1982, Theorem 2)), all strategy combinations in 
any connected set of Nash equilibria result in the same outcome in such games. 

PROPOSITION 4: (a) If X c P is closed under some behavior correspondence 
(p c- and C is a connected component of Nash equilibria, then either C cA(X) 
or C n A(X) = 0. 

(b) If X c P is closed under some (pc e q, then A(X) contains an essential 
connected component of Nash equilibria and, hence, a hyperstable set and a 
strategically stable set of Nash equilibria. 

PROOF: (a) Suppose X c P is closed under fp c- P, and let C c E( F) be a 
connected component of Nash equilibria such that C n A(X) # 0. By Lemma 2 
there exists a neighborhood Z/ of A(X) such that p(?/ n A) cX. Suppose C is 
not a subset of A(X). Then there exists some o- I C qcn which does not 
belong to A(X). But f3(uo-) c p(o-0) cX, so o- 0 f 3(uo-), a contradiction to or? 
being a Nash equilibrium. 

(b) If Xc P is closed under (p c- q, then it is closed under 13 e P, by 
,X3(A(X)) c q'(A(X)) c X. Thus for all o- c A(X) and all i c X 

5ik 
0 X. => Ui(o_i, Si) < max Ui(of_i, I I . I 

&~~iGE Ai 
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By continuity (and the maximum theorem) there exists a neighborhood a of the 
game F= (S, u) under consideration in the space of normal-form games F' = 

(S, v) such that the above implication holds for all games in 6. Consequently, 
for all games F' = (S, v) c- 6 one has v3U(A(X)) cX, i.e., Xc P is also closed 
under the best reply correspondence 8v3 of the game F'. The reduced game 
Fx = (X, u), where players are restricted to the strategy spaces Xi, Vi EA, has 
an essential component of Nash equilibria Cx c E(Fx) (cf. Kohlberg and 
Mertens (1986, Proposition 1)). In other words: For every e > 0 there exists a 
neighborhood Ax of Fx = (X, u) such that for every F4 = (X, v) C &I there 
exists some o' c E(F4) within distance e from Cx c A(X) (in the Hausdorff 
metric). Then 

&--= {F' = (S,v) e6"IF4= (X,v) e6"&} 

defines a neighborhood of F= (S, u), and any F' = (S, v) c 6E has some o' c 
E(F4) within distance e from Cx. But, since F' c- 6, 8v(A(X)) cX and so 
c' c E(F'). Moreover, 83u(A(X)) cX implies Cx C E(F), so Cx is an essential 
component for the game F. Every essential component contains a hyperstable 
set, and every hyperstable set contains a strategically stable set by standard 
arguments (cf. Kohlberg and Mertens (1986, p. 1022)). Q.E.D. 

An important role in the analysis below will be played by the "better-reply" 
correspondence y = xi ,r yi: A -* S, defined by 

Yi(o-) ={Si E silui(o-i, Si) 2Uj(or)}, Vlic-X. 

Evidently y is u.h.c. and gi(o-) c yi(o-) for all players i c-A and strategy 
combinations o- c A, so y is a behavior correspondence. 

In other words: yi assigns to each strategy combination o- c A those pure 
strategies si which give at least the same payoff as o-1. Such strategies si are thus 
(weakly) better replies to o, than o-i is. Moreover, yi(o-) always contains some 
pure strategy from the support of o-1. In particular, if o- is a Nash equilibrium, 
then yi(o-) contains the whole support of o-1, and indeed one then has y(o) = 

,8(o-). As a consequence, a singleton set X= {s} is closed under y if and only if 
s c S is a strict equilibrium. More generally, this is true for all behavior 
correspondences the images of which are contained in the images of the 
"better-reply" correspondence: 

COROLLARY 1: If (p c- P is such that (p(o-) c y(o), Vo- c , then a singleton set 
X = {s} c P is closed under (p if and only if s c S is a strict equilibrium. 

PROOF: Lemma l(c) covers the "only if ' part. If o c- A is a strict equilibrium, 
then a- = s is pure and ,3(s) = y(s) = {s}. Thus p(s) = {s} for all fp c- P which 
satisfy p(s) c y(s), Vs E S. Q.E.D. 
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5. SET-WISE STABILITY 

We are now in a position to establish a characterization of asymptotic stability 
of faces of the polyhedron A of mixed strategy combinations, a characterization 
based exclusively on the data of the game under consideration. By applying this 
characterization no detailed information on the dynamics is needed in order to 
judge whether a given face is asymptotically stable or not; it is sufficient that the 
dynamics meets the conditions of a sign-preserving selection (SPS) dynamics. In 
particular, the class of asymptotically stable faces agrees for all such dynamics. 

THEOREM 1: For any SPS dynamics and any set X FP: The face A(X) is 
asymptotically stable if and only if X is closed under y. 

PROOF: Suppose first y(A(X)) cX. Then there is some neighborhood SR of 
A(X) such that y(C n A) cX, by Lemma 2. There exists some e > 0 such that 
_W contains the "e-slice" (s) = {o- c linf: E A(X) II cr - <f 11 s}. For any player 
i EiX, let Yi be the complement to Xi in Si and consider any SPS dynamics 

= ukf k(u', V= K.Ve4 If iu(t0) -Ai(X.) =Ai, (IT = ir, Vk =,.,Ki, Vi cX. If Yi is empty, oi(t, 
Vo-0 e? , AVt. Otherwise, for every S5k C Yi and cr c-(e) we have Ui(ori , s k) < 

Ui(o), since y(m(e)) cX. But this implies j- k <0, for all c(E) with 
Fik > 0. Hence oik(t, or?) u 

?, Vo- E(e), implying oi(t ?) tO, Ai(Xi). 
In order to establish the Lyapunov stability property of A(X): For any neighbor- 
hood M', let the neighborhood M" be such that M" n A is an e'-slice MW') c 
ml n A, and apply the above argument. This proves the "if' part. 

Second, assume X is not closed under -y E '. Then there is some pure 
strategy combination s eX, player i e AX and pure strategy sk 0 Xi such that 
Li(Ks_Sk)>2 Ui(s-), since otherwise Ui(s-i, s) - Ui(s) < 0, Vs EX, Vi Ec4, and 
Vs'E Si \ Xi, which would imply Ui(ocri, s') - Ui(oc) < 0, Vo1 EA (X), Vi E-A, 
and Vs' E Si \ Xi, which is equivalent to X being closed under y. Let s* = 

(s_ ,s s), and let X* E P be defined by X7 = {9}, Vj 0 i, and Xi* = {gi, sik}, i.e., 
A(X*) is the one-dimensional face (or edge) spanned by the two pure strategy 
combinations s and s*. Moreover, Ui(s*) - Ui(g) 2 0, and since Ui is linear in 
oi, Ui(o_, si) -S i(o) ? 0, Vo e A(X*). Clearly A(X*) is invariant under any 
SPS dynamics. Hence, for any initial state o E A(X*) the solution path 
through o-0 has 6rk2O, in any SPS dynamics, implying that o-(t, o- 0) does not 
approach A(X) as t -* oo. The two faces A(X*) and A(X) having the point 
cr= s in common implies that A(X) is not asymptotically stable. Q.E.D. 

REMARK 1: Suppose X E P is closed under y and consider an AMS dynamics 
with player-specific "shift-factors" 1i, i E A'. For every i E XAand sEi- Yi = Si \ Xi 
let 

/ik = inf wi(_)[Li(o) -L(o-., Sik)] , 
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where (s) is the "e-slice" as in the proof of the Theorem. Since y(A(X)) cX, 
it follows for e > 0 sufficiently small that 8ik > 0. Therefore, i< - 8ikcoikk which 
implies that ur-k(t) < o-.k(O)exp{ - aikt}, V-(O) Em(e), Vt 2 0. In this sense the 
weights assigned to pure strategies outside the set X converge to zero exponen- 
tially in any AMS dynamics. 

REMARK 2: Consider a symmetric two-player game. Let (o-1) = {s1 E 

S1 U1(sj, o-1) 2 Ul(o-1, o-1)} and for any X1 c S1 let j (A1(X1)) = U al A 1(X)1). 

The same arguments as in the first part of the proof of Theorem 1 can be used 
to show that if X1 c S1 satisfies 5(A1(X1)) c X1 then A1(Xl) is asymptotically 
stable in any single-population sign-preserving selection dynamics. 

One readily verifies, by the argument in the second part of the proof of 
Theorem 1, that if X c P is not closed under y, then A(X) cannot be 
asymptotically stable in any monotonic selection dynamics either (because 
U(9-i, sk) > U(s), gi = si, implies f.k(u)>fh(u) VoC z(X*), by Vo=(s,v), 
Vo- c A(X*), from monotonicity). 

The other implication of Theorem 1 also generalizes to a wider class of 
dynamics. Suppose the dynamics is of the form 6ik= ik(u), Vk = 1,..., Ki, 
Vi E=/, for some Lipschitz continuous functions (i: A -> t Ki, Vi EX, which 
leave A, but not necessarily all faces; positively invariant, and the dynamics is 
weakly sign-preserving (WSP) in the sense 

kif-et) < Ui(O-) 
(: 

ik(O-) < ?, VSt E- SUpp(0-,FS i (o0- , Si)U() I)O iseup(), Vo-E=A, 

for all i E A4'. Such WSP dynamics can be of interest when, due to mutations, say, 
the vector field ( points inwards at the boundary of A. Applying the argument 
in the first part of the proof of Theorem 1, closure under y implies asymptotic 
stability in any WSP dynamics. 

COROLLARY 2: (a) If the face A(X) is asymptotically stable in some monotonic 
selection dynamics, then X is closed under y. 

(b) If X E P is closed under y, then A(X) is asymptotically stable in any WSP 
dynamics. 

In view of Lemma l(a) Theorem 1 implies that a set X E P is fixed under y if 
and only if the associated face A(X) is a minimal asymptotically stable face of 
the polyhedron A, in any SPS dynamics. Furthermore, since a pure strategy 
combination s E S, viewed as a singleton set, is fixed under the better-reply 
correspondence if and only if it is a strict equilibrium (Corollary 1), Theorem 1 
also implies the following characterization of asymptotically stable pure strategy 
combinations: 

COROLLARY 3: For any SPS dynamics: A pure strategy combination is asymptot- 
ically stable if and only if it is a strict equilibrium. 



EVOLUTIONARY SELECrION 1387 

Combining Theorem 1 with Proposition 4(b) yields that any face which is 
asymptotically stable in some SPS dynamics contains a closed and connected set 
of Nash equilibria which is essential, contains a hyperstable set, and hence a 
strategically stable set in the sense of Kohlberg and Mertens (1986): 

COROLLARY 4: If a face A(X) is asymptotically stable in some SPS dynamics, 
then it contains an essential component of Nash equilibria, and thus also a 
hyperstable and a strategically stable set. 

In the sense of set inclusion there is thus a link between asymptotic stability 
in evolutionary dynamics and strategic stability. The converse of Corollary 4 is 
trivial: Any strategically stable set, or essential component of Nash equilibria, is 
contained in some (minimal) face spanned by a set X E P which is closed under 
the better-reply correspondence. 

As mentioned inthe introduction, the claim that an asymptotically stable face 
of A contains a hyperstable subset also follows from Theorem 1 of Swinkels 
(1993). His result states that if a closed set A c A is (i) asymptotically stable in 
some myopic adjustment dynamics, a class which includes all SPS dynamics, and 
(ii) has a basin of attraction which contains a (relative) neighborhood of A the 
closure of which is homeomorphic to A, then A contains a hyperstable subset.'2 
The topological condition (ii) is clearly met by all asymptotically stable faces of 
A. Since a set is hyperstable (roughly) if it is minimal with respect to essentiality 
(cf. Kohlberg and Mertens (1986, p. 1022)), Corollary 4 also follows from 
Swinkels' result. 

The hypothesis in Corollary 4 and in Swinkels' result, asymptotic stability of a 
given set, may, however, often be hard to verify. In such a case Theorem 1 is 
helpful, because it provides an operational necessary and sufficient condition for 
asymptotic stability, at least for a certain class of subsets of A and selection 
dynamics. 

This raises the following issue: Which (closed) subsets of A, other than its 
faces, are asymptotically stable in which class of selection dynamics? There is a 
trade-off here between the precision of evolutionary predictions, in the sense of 
"small" asymptotically stable sets, and the robustness of those predictions with 
respect to the dynamics. In many applications only broad qualitative features of 
the dynamics are known or assumed. So a fair amount of robustness of stability 
properties with respect to the details of the dynamics seems desirable. But such 
a robustness with respect to a subclass of selection dynamics may require 
relatively "large" sets. 

In particular, it turns out that even a subclass of SPS dynamics, the AMS 
dynamics, is rich enough to disqualify all (closed) sets which belong to the 

12 Swinkels (1993) calls a regular dynamics a myopic adjustment dynamics if all Nash equilibria are 
rest points and Ek ikfik(oy)Ui(o__, sik) > 0 holds, Vo Ee A, Vi E.4X. It is not difficult to see that any 
SPS dynamics meets these requirements. 
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relative interior of any of the faces of A.3 No such set can even be (Lyapunov) 
stable in all AMS dynamics, unless the relevant face consists entirely of rest 
points for all SPS and monotonic selection dynamics. Hence, one can disregard 
all relatively interior (closed) sets if one requires predictions to be robust across 
the class of AMS dynamics. 

PROPOSITION 5: If a closed set A c int(A(X)), for some X e P, is (Lyapunov) 
stable in all AMS dynamics, then A(X) c F( F). 

PROOF: See Appendix. 

An alternative robustness test is to require that the subsets under considera- 
tion be asymptotically stable in the benchmark case of the replicator dynamics. 
However, as pointed out in Section 3, no interior strategy combination is 
asymptotically stable in the replicator dynamics. The generalization of this claim 
to (relatively) interior closed sets is immediate. Therefore, to require asymptotic 
stability in the replicator dynamics again discards (relatively) interior closed sets. 

PROPOSITION 6: No closed set in the (relative) interior of a face is asymptotically 
stable in the replicator dynamics. 

PROOF: See Appendix. 

Clearly, when precise information on the dynamics is available, it is possible 
in some games to identify proper subsets of asymptotically stable faces which are 
themselves asymptotically stable or at least (Lyapunov) stable in that dynamics. 
This is the case, for instance, with the "matching pennies" game for which the 
solution paths to the replicator dynamics are closed orbits around the Nash 
equilibrium point. Although its unique (interior) Nash equilibrium constitutes a 
strategically stable singleton set, the only subset of A which is (Lyapunov) stable 
in all AMS dynamics is A itself. In fact, in this game the unique Nash 
equilibrium outcome is dynamically unstable in certain AMS dynamics which 
are arbitrarily close to the replicator dynamics (see the proof of Proposition 5 in 
the Appendix). Hence, in this sense, its (Lyapunov) stability in the replicator 
dynamics is not even locally robust in the space of AMS dynamics. 

Another difference between strategic and evolutionary dynamic stability is 
that, though also some strategically stable sets may induce several outcomes (cf. 
Kohlberg and Mertens (1986, Figure 11)), for generic extensive-form games 
there exists at least one strategically stable set which induces a single outcome. 
However, as seen in the "matching pennies" game, a face which is asymptoti- 
cally stable in all SPS dynamics need not correspond to a unique outcome, even 
if the face contains a strategically stable set which induces a single outcome. 

13 As with A, the relative interior of a face A(X) is denoted by int( A(X)). A subset A c A(X) is 
called relatively interior, if it is a subset of int( A(X)). 
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Hence, evolutionary processes may result in paths along which also the outcome 
persistently oscillates, even in nondegenerate games. For, while in a completely 
mixed Nash equilibrium each player is indifferent between all her pure strate- 
gies, she is required to randomize in a particular fashion in order to keep the 
other players "in equilibrium." In an evolutionary setting, however, there is no 
outside coordination mechanism, and individuals now and then change strategy 
in the light of little information. In particular, they need not know the payoffs 
associated with other player positions. Therefore, there is a priori nothing there 
to "bring them to order." 

6. EXAMPLES 

EXAMPLE 1: Figure 1 shows the (reduced) normal form of a game where 
player 1 first chooses whether to take an outside option (sl) or to move into a 
2 x 2 subgame of the "battle-of-the-sexes" type that consists of the last two 
strategies for both players (van Damme (1989, Figure 1)). The game has two 
components of Nash equilibria, both of which contain subgame perfect equilib- 
ria: In the first component player 1 chooses her outside option and player 2 
plays her first pure strategy with probability at least 1/3 (o-1h = 1,1/3 < o- 2 1). 
The second component is the strict equilibrium, oQ2 = cr 2 =1. The first compo- 
nent does not contain a strategically stable set nor an equilibrium that satisfies 
forward induction in the sense of van Damme (1989, p. 485). 

The game has three curb sets, S, X= {s2} X {52}, and Y= {s1, 2}2X {s , s2}, 

but only S and X are closed under -y. By Theorem 1 the (singleton) set X which 
induces the strategically stable outcome and satisfies forward induction in the 
sense of van Damme is the only asymptotically stable face (except for the full 
strategy set) in this game, for any SPS dynamics. 

s1 s2 S2 S2 

2 2 
S1 5 

S2 
0 3 

1 So 1 

Si 3 1 0 
3 Si 3 0 

FIGURE 1. 
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SI s2 S3 s4 2 2 2 2 

-0.1 -0.1 -2.1 -2.1 
S1 0 0 - 0.8 - 0.8 

2 - 0.2 0 - 2.0 - 1.8 
$I 0.1 0 - 0.8 - 0.9 

3 - 2.8 - 1.0 - 3.0 - 1.2 
S1 -0.9 0 -0.8 0.1 

4 - 2.9 -0.9 - 2.9 - 0.9 
Si - 0.8 0 - 0.8 0 

FIGURE 2. 

EXAMPLE 2: Figure 2 shows the normal form of the "beer-quiche" signaling 
game due to David Kreps (Kohlberg and Mertens (1986, Figure 14, p. 1031); cf. 
also Cho and Kreps (1987, Figure 1)). In this game, player 1 observes a choice by 
nature assigning a type to her, "strong" with probability 0.9 and "weak" with 
probability 0.1. Then she sends either a "strong" or a "weak" signal. Upon 
seeing the signal, player 2 decides whether to retreat or fight. Normal form 
strategies correspond to the following choices: Player 1 can either always send a 
"strong" signal (sl), or send a "strong" signal when she is strong and send a 
"weak" signal when she is weak (S2), or send a "weak" signal when she is strong 
and send a "strong" signal when she is weak (se), or always send a weak signal 
(s4). Player 2 can either retreat upon seeing a "strong" signal and fight upon 
seeing a "weak" signal (sl), or always retreat (s2), or always fight (S3), or fight 
-upon seeing a "strong" signal and retreat upon seeing a "weak" signal (s4). The 
game has two connected components of Nash equilibria. In the first, "good" 
component player 1 always sends a "strong" signal and player 2 retreats upon 
seeing a "strong" signal but fights with probability at least 1/2 upon seeing a 
"'weak" signal (o-1I = 1, o-1 + o-22 = 1, o-2 2 1/2). In the second, "bad" compo- 
nent player 1 always sends a "weak" signal and player 2 retreats upon seeing a 
"weak" signal but fights with probability at least 1/2 upon seeing a "strong" 
signal (o- 4 = 1, o22 + -24 = 1, 24 2 1/2). 

The only set Ye P which spans a face containing the second, "bad" compo- 
nent and which is closed under y is the whole strategy set S. On the other hand, 
the first, '"good" component is contained in the face spanned be the set 
X = {s, s } X {sW, s2} E P, i.e., the set where player 1 either always sends a 
"strong" signal or sends a "strong" signal when she is strong and a "weak" 
signal when she is weak, and player 2 either retreats upon seeing a "strong" 
signal and fights upon seeing a "weak" signal or always retreats. From the 
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payoffs in Figure 2 it is easy to verify that the set X is closed under the 
better-reply correspondence and, in fact, is a fixed set both under y and P3. So, 
in this example closure under -y selects the strategy subset that contains the 
"intuitive" pure strategies. 

EXAMPLE 3: The payoff bi-matrix in Figure 3 shows a two-player game with 
three strategies for each player. The game has three Nash equilibria, one of 
which (in the lower right corner) is strict. The other two are mixed, one being 
the equilibrium of the "matching-pennies" game that consists of the first two 
strategies for each player. Whether the set X = {s1, s 2} x {s1, s2} is closed under 
y depends on the parameter x. If x is negative, then the set X is closed under 
y, otherwise not. However, for all x < 2 the X is closed under P. If x ? 0, then 
by Theorem 1 the face A(X) is not asymptotically stable in any SPS dynamics. 
Figure 4 illustrates some computer simulations of solution paths to the replica- 
tor dynamics starting near A(X) and converging to the strict equilibrium 
S = (s3, s3). Here x = 1.9, so X is closed under ,. In the diagram pj, resp. qj, 
denote the population shares using the jth pure strategy, for j = 1,2,3, for 
player roles 1, resp. 2. Note that the restriction of this game to mixed-strategy 
profiles in the face A(X) is, by itself, a constant-sum game with value 1 - x/2. If 
x is negative, then X is closed under y, and the constant-sum "subgame" has its 
own domain of attraction, just like a strict equilibrium. (In fact, the game then is 
a kind of generalized coordination game.) 

EXAMPLE 4: As a final example, consider the three-player 3 X 2 x 2 game of 
Figure 5, in which player 1 chooses tri-matrix, player 2 row, and player 3 column. 
For any fixed pure strategy of the first player, players 2 and 3 face a symmetric 
2 x 2 game. When player 1 uses her first strategy (sl), the first strategies of 
players 2 and 3 (sl and s', respectively) are strictly dominant. However, if 
players 2 and 3 would use those strategies, then player l's best reply is to switch 
to her second strategy (s2). But when player 1 uses her second strategy, the 

1 52 s3 

2 x 0 
S1 -x 2 0 

s2 x 2 0 
2 -x 0 

0 0 1 
S3 0 0 1 

FIGURE 3. 
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+ 

FIGURE 4. 

second strategies of players 2 and 3 (s2 and S3) are strictly dominant, and if they 
would use these, player l's best reply is her first strategy. When player 1 uses her 
third strategy (s3), finally, players 2 and 3 face a game of pure coordination. 

It is not difficult to show that the product set X = {s, sXS2XS3EP 

obtained by taking all players' first two strategies constitutes (the maximal) curb 
set, i.e., it is closed under p3. But one can show that the excluded strategy, s3, is 
not strictly dominated. Hence, it is a priori possible that the population share 
using strategy s3 does not tend to zero along some interior solution paths. If this 
is the case even for (interior) trajectories starting arbitrarily close to the face 
spanned by X, then a set closed under ,B need not even attract a neighborhood. 

Indeed, computer simulations produce precisely such trajectories; see Figure 
6 for solution orbits to the replicator dynamics. Since players 2 and 3 always 
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1I 2 1 
s2 ?3 ?3 ?3 ?3 

o 2 3 0 
1 l< ?2 2 1 0 1 

2 1 0 1 

o 3 2 0 
1 0 1 2 

0 2 

32 0 

Si 

2 0 

1 0 

0 2 
0 1 

0 1 

S3 ?1 

FIGURE 5. 

earn identical payoffs, the diagonal o-2 = o-3 is invariant. The diagram shows a 
solution curve for which initially u1(0) = (0.05,0.90,0.05), and or2(0) = ur3(0) = 

(0.15,0.85), plotted in three-dimensional space with orj on the "horizontal" axis, 
oa2 on the "vertical" axis, and o21 = o31 on the "depth" axis. The face spanned 
by X is the sloping square. As one sees in this diagram, after a few initial rounds 
the solution curve swirls out towards a perpetual motion near the edges of the 
polyhedron, recurrently moving virtually as far away from the face spanned by X 
as it is possible.14 So one peculiar feature of this example is that outcomes do 
not converge. The only trajectories that can be shown to converge to the face 
spanned by X are those starting in the straight line segment L = {o- GE A o21 = 

o-31 = 1/2, o-1 = o- }. This set is invariant and intersects the face spanned by X 
at its mid-point, a Nash equilibrium which constitutes a (singleton) strategically 
stable set in the sense of Kohlberg and Mertens (1986). 

This illustrates why evolutionary predictions may have to be less precise than, 
say, strategically stable sets of Nash equilibria are. All interior trajectories which 
do not start in L will move outwards towards the edges of the polyhedron, but 
they will never come to a halt. Rather each such trajectory will visit each of the 
six vertices infinitely often. Since L is lower-dimensional than the polyhedron 
shown in Figure 6, a prediction that concentrates on the Nash equilibrium will 
ignore the most likely results of evolution. 

14 The phenomenon illustrated by Figure 6 is known as a "heteroclinic cycle" in the theory of 
dynamical systems (cf. Sigmund (1992), Gaunersdorfer (1992)). 
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2=3Is strategy 

I Is 2nd strategy 

FIGURE 6. 

7. DIRECTIONS FOR FURTHER RESEARCH 

The results in the present paper suggest that set-wise criteria such as closure 
under a behavior correspondence may have stronger implications for dynamic 
evolutionary selection than the Nash equilibrium property has. This raises 
several further issues. Are similar methods capable of identifying faces which 
meet weaker stability criteria? Can the approach be generalized to a wider class 
of sets and/or dynamics (cf. Swinkels (1993))? For which classes of games do 
dynamic evolutionary approaches have strong cutting power? Can a similar 
approach be applied to the extensive form of the game (Noldeke and Samuelson 
(1993))? Finally, deterministic selection dynamics in continuous time constitute 
only one possible formalization of evolutionary processes. It would be of great 
interest to explore the relation of closure under a behavior correspondence and, 
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say, attractors in stochastic adaption processes for finite populations (see, e.g., 
Hurkens (1994)). 
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APPENDIX 

PROOF OF PROPOSITION 1: (a) Every Lyapunov stable state must be a rest point. Consider 
a eF(F) \ E(F). There is some i E=Xand s5 0 supp(i) such that Ui(o- j, sr) > Ui(o), and hence 

fik(cy) >f1h(cr) = 0, Vsi E supp(oi), by monotonicity and stationarity. By continuity of fi there is a 
neighborhood a' of oa such that fik(&') > 0, Val' E 6' rl A. But this implies that ojk(t, U,) is strictly 
increasing in t, whenever ; E E n A, 5ik > 0, and o(t, 53) E 6'. Hence, either oIk(t, 53) increases 
forever, or o(t, v3) q a' for some t > 0. In both cases oa is not Lyapunov stable, because o-ik = O. 

(b) Suppose a' E int(A) and a (t, a 0) a oo. Then af E F(F). If a o E(F), then, as in the 
proof of (a), there is i EA', s5 0 supp(ai), and a neighborhood a of oa such that f/k(o') >0, 
Vo' ec'n A. Convergence of a-(t, ao) to oa implies that there is some T> 0 such that o(t, ao) E 

n int(A), Vt 2 T, because int(A) is invariant. But convergence to oa and Sik = 0 imply that there is 
some t > T such that 6ik < O, which contradicts fik(o') > 0, Val' c a n . Hence, o- c E(F). Q.E.D. 

PROOF OF PROPOSITION 2: Results in Sections 4 and 5 do not rely on Proposition 2 and can thus 
be used here. 

(i) First assume that 5f E E(F ) is asymptotically stable in the replicator equation. By Proposition 
6 it must then be pure and by Corollary 3 it must be a strict equilibrium. 

(ii) If 5; E E( F ) is a strict equilibrium, then it is asymptotically stable by Corollary 3. Q.E.D. 

PROOF OF PROPOSITION 3: (a) Assume that there exists a neighborhood a of a such that 
fEc fi(a 0), Va IEn A. Choose e1' c a to be a neighborhood of 5f such that I' n A is convex 
and ik > 0 =:ik > 0, Vo C- ' n A, Vk =1. Ki, Vi Ec . Define the function V.: At nA-KR 

by 

Kg 

V#J(ff) =- Et Et Ck on(ik) 2 0, 

ieAt k= 1 

which is continuously differentiable on b". By Jensen's inequality, a- 0 53 implies 

Iva-a n(a aik > - E In( E -k ) =0, 
ie k= i k=1 5i 

so av= 5f is the unique minimum of V,. 
Taking the time derivative of V., yields 

d Ki 

iEE k= 1 



1396 K. RITZBERGER AND J. W. WEIBULL 

because Uik > 0 =* si E 3(cr), Vca E e1' n A, hence Ui(o- i,si) 2 UL(of), which by. the definition of SPS 
dynamics implies fik(f)> 0, Vsk E supp(f), Vi EAX. Hence, V. is a local Lyapunov function, 
implying that ff is a stable rest point for any SPS dynamics. 

(b) If the SPS dynamics is specialized to an AMS dynamics, then from robustness it follows now 
that J'(of) = 0 implies Ui(o- j, vi) = UL(of), Vi EtX, such that ao- i3(o), and hence ac-E(F). Thus 
VI'(o) < 0 for all acrEe ' n A which satisfy aoE(F). Therefore, a (t, a 0) , E(F) nfl', vc c0E 
6"' n A, as required. Q.E.D. 

PROOF OF PROPOSITION 5: Since each face of A is invariant in every regular selection dynamics, 
and the restriction of such a dynamics to any face is a regular selection dynamics with respect to the 
associated reduced game, we may assume without loss of generality that X = S. 

Consider an AMS dynamics ik =fC(cy)ci k and call the "shift-factors" w1)i from the representa- 
tion of AMS dynamics given in Section 2.2 payoff increasing if there exists a continuously 
differentiable function gi: Ji -* Ti++ with positive derivative, g' > 0, such that w1i(o) =g i(a)), 
Vo E A. 

CLAIM 1: If a closed set A c int(A) with nonempty interior is positively invariant in an AMS 
dynamics with payoff increasing "shift-factors" cwi, Vi e A, then A = F(F): 

Define the vector field ; on int(A) by 

where P(c) = HI rI (Th 

for all k = 1. Ki, Vi e A. Because P(-) > 0 on int(A), multiplying the vector field associated 
with the AMS dynamics by P(u)- 1 does not alter the solution curves of the AMS dynamics in 
int(A). Thus the differential equation &= {(uo) has the same rest points and the same stability 
properties on int( A) as the original AMS dynamics. Henceforth let ^(t, a') denote a solution to 
&= {(of) through a' = a(0, ar0) E int(A). 

Define the directional derivative, at some point ai E int(Ai), of a differentiable function g: int(Ai) 
-i in the direction towards a vertex s5 of Ai by 

dg(ij, Si) = kg - i - grad(g(ai)). 

If wi is differentiable, Vi E A, by the explicit representation of AMS dynamics one obtains 

dik(a, sk) UP(crY'[coi(cr)(K -2)[L1(cr_,sf) 

+j vi[if_i,S~) Ui(o-)]dc)i(o, s/)]. 

The divergence of a vector field is the trace of its Jacobian, so 

Ki 

div;(o-) =P(o)- , , o[,ss) - 

ieAX k= 1 

at any oa E int( A). If the player-specific "shift-factors" wi are payoff increasing, then 

Ki 

div;(uf) =P(uf) gi(Uj(uf)) , [Ui(uf_i,s S) -Ui(af)] 2vi k2 0, 
-<X k=1 

for all a- c int(A). Clearly, div (cr) > 0, Va cE int(A) \ F(F), and div (cr) = 0, Va c- int(A) n F(F). 
Suppose the closed set A c int(A) with int(A) $ 0 is positively invariant in the AMS dynamics 

with payoff increasing "shift-factors." Assign to A the volume VO = JA do > 0, because int(A) # 0, 
define A(t) = {acE ala= a(t, a0), a?0 EA} and V(t) = JA(t)d a. If A is positively invariant, then 
A(t) cA c int(A), Vt 2 0. By Liouville's theorem (see, e.g., Hofbauer and Sigmund (1988, pp. 170, 
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281)) the volume V(t) of A(t) satisfies 

V(t)=f div;(u)dcv?0, Vt?0. 
A(t) 

Therefore, V(t) 2 VO, > 0, Vt 2 0. But, because A is positively invariant, also VO 2 V(t), Vt 2 0, such 
that V(t) = 0, Vt ? 0. Hence VO = JA n F(r) da, since div (u) > 0, Va cEA \ F(F). Because VO > 0, 
it follows that A n FFr) must contain an open set (with strictly positive volume). However, FFr) is 
the set of zeros of the replicator equation (the AMS dynamics with wiF(a) = 1, Vao e A, Vi e v) and, 
therefore, the set of solutions of a polynomial equation. A system of polynomial equations which 
vanishes on an open nonempty set vanishes everywhere and, consequently, F(F) = A. This estab- 
lishes Claim 1. 

CLAIM 2: If a closed set A c int(A) is (Lyapunov) stable in all AMS dynamics, then A =F(): 
If the closed set A c int(A) is (Lyapunov) stable in all AMS dynamics, then it must be stable in 

an AMS dynamics with payoff increasing "shift-factors." By definition, for every neighborhood .V' of 
A there exists a neighborhood .V" of A such that 

W(t) = {acEAlaj= a (t, acv), oc" E." fn A) ca', Vt> 0, 

where ao(t, a?v) denotes the solution to an AMS dynamics with payoff increasing "shift-factors." 
Choose .0 such that closure (a' n A) c int(A) and define 0.O = U,> 0.2o(t). Then B closure(C?F) 
c int(A) and R0O is a (relative) neighborhood of A, because for every t 0 the set W(t) is 
(relatively) open as the image of the (relatively) open set .0" n A under the continuous one-to-one 
mapping a ,-* a(t, a), and 0.O is (relatively) open as the union of (relatively) open sets .V(t), and 
A c.S. by construction. But 0.O is positively invariant as the union of (forward) orbits. Since with 
.S. also its closure B is positively invariant, B is a closed set with nonempty (relative) interior which 
is contained in int( A) and positively invariant in the AMS dynamics with payoff increasing 
"shift-factors." Consequently, Claim 1 implies A = F(F). Q.E.D. 

PROOF OF PROPOSITION 6: Again we may assume without loss of generality A(X) = A. Consider 
the replicator dynamics, i.e., the AMS dynamics with wi(a) = 1, Va E A, Vi E A. Define the vector 
field ; on int(A) as in the proof of Proposition 5 by multiplying the vector field associated with the 
replicator dynamics by P(a)1. Then dwj(u, ssk) = 0, Voe EA, Vsi Ec Si, Vi ECA', implies div (o) = 0, 
Va E int(A). If a compact set A c int(A) is asymptotically stable in the replicator dynamics, then it is 
so for a = ;(o-). Denote by a(t, a ?) a solution to a = ;(oa) with a(0, o" ?) = a ? E int(A). Let 
.-V c int(A) be a relative neighborhood of A with compact closure !W c A such that acvE = 

a(t, a ?) -* co A. Define '(t) = {a Eial a = a(t, a ?), a ?0 Ei.). Assign to .V volume V(0) = Jw du 
> 0 and to A volume VO = JA do-. 

Suppose for some ?> 0 there exists no finite time after which .?(t) is within (Hausdorff) 
distance ? from A and remains there. Then there exists an increasing sequence {tk}.k= I with 
tk k W oo + 

00 
and initial states {a k}= 1 'k Ej,V k, such that the (Hausdorff) distance between 

cv(tk, cvk) and A is at least ?, for all k. Since !T is compact, the sequence {cv}k)= contains a 
convergent subsequence, so we can assume that it converges to a * Ei.. By the hypothesis of 
asymptotic stability the distance from c(tk, a* ) to A converges to zero. Thus there is some k' such 
that ac(tk, va*) is within distance ?/2 from A, for all k 2 k'. Since the the solution mapping is 
continuous in initial conditions and A is Lyapunov stable, ac(tk, ak) is within distance ? from A, 
for some k 2 k'-a contradiction. 

Consequently, for every ? > 0 there is some finite time after which the whole set .?(t) is within 
(Hausdorff) distance ? from the set A and remains there. Thus V(t) =() d a --t VO < V(0) 
implying that for some t one must have V(t) < 0. But the latter contradicts 

V(t)=f div;(c )dc=0, Vt?0, 

by Liouville's theorem. Q.E.D. 
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