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Evolutionary Trajectory Planner for Multiple UAVs
in Realistic Scenarios

Eva Besada-Portas, Luis de la Torre, Jesús M. de la Cruz, Member, IEEE, and Bonifacio de Andrés-Toro

Abstract—This paper presents a path planner for multiple un-
manned aerial vehicles (UAVs) based on evolutionary algorithms
(EAs) for realistic scenarios. The paths returned by the algorithm
fulfill and optimize multiple criteria that 1) are calculated based
on the properties of real UAVs, terrains, radars, and missiles and
2) are structured in different levels of priority according to the
selected mission. The paths of all the UAVs are obtained with the
multiple coordinated agents coevolution EA (MCACEA), which is
a general framework that uses an EA per agent (i.e., UAV) that
share their optimal solutions to coordinate the evolutions of the
EAs populations using cooperation objectives. This planner works
offline and online by means of recalculating parts of the original
path to avoid unexpected risks while the UAV is flying. Its search
space and computation time have been reduced using some special
operators in the EAs. The successful results of the paths obtained
in multiple scenarios, which are statistically analyzed in the paper,
and tested against a simulator that incorporates complex models
of the UAVs, radars, and missiles, make us believe that this planner
could be used for real-flight missions.

Index Terms—Aerial robotics, multiobjective evolutionary algo-
rithms (EAs), path planning for multiple mobile robot systems.

I. INTRODUCTION

U
NMANNED aerial vehicles (UAVs) are aircrafts without

onboard pilots that can be remotely controlled or can fly

autonomously based on preprogrammed flight plans [1]. The

autonomy level achieved by the UAVs depends on the method-

ology used to control the vehicle and to generate its routes. Al-

though both tasks are equally important (and become especially
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critical when the UAVs must operate in urban terrains [2]), this

paper focuses only on the second: the development of a planner

capable of solving the route-generation problem by obtaining

a near-optimal path in every possible situation that UAVs can

face [3].

The advances in microcontroller design, optimization tech-

niques, and control theory increment the number of fields,

both civil and military, where UAVs are currently being used:

surveillance, reconnaissance, geophysical survey, environmen-

tal and meteorological monitoring, aerial photography, search-

and-rescue tasks, etc. Although all these missions seem differ-

ent, the optimality of a route for any of them can be defined

by different optimization planning criteria (such as minimal fly-

ing time and/or path length) and fulfillment of some mission

constraints (such as flying at a given altitude or visiting some

points). Besides, the physical characteristics of the UAVs and

the environment also restrict the feasibility of any route and

should be considered by a realistic planner.

On military missions, UAVs work in dangerous environments,

and therefore, it is vital to always keep their routes apart from any

type of threat and restricted zone. Therefore, the best routes are

those that minimize the risk of destruction of the UAVs, optimize

some other planning criteria, and fulfill all the constraints that are

imposed by the proposed mission, the physical characteristics

of the UAVs, and the environment. The original routes that are

obtained offline by the planner are not always valid in dynamic

environments where the position of all the threats is not known

beforehand. Therefore, the planner must be able to also work

online in order to propose a new path during the UAVs mission

when a pop-up (i.e., unknown threat) appears.

Finding the optimal solution to the route-planning problem is

nondeterministic-polynomial-time complete (NP-complete) [4],

and therefore, the time required to solve it increases very quickly

as the size of the problem grows. The problem has been tackled

with different heuristics, such as mixed-integer linear program-

ming [5]–[8] and A* [9]–[12], and with nonlinear program-

ming [13]. The planners based on those techniques work with

a simplified version of the original problem, where the addi-

tion of new constraints or objective criteria is a difficult task.

They consider only point-mass dynamics, discretize the solu-

tion space, and, in some cases [5]–[8], linearize the models.

Although the majority solve the single-UAV case, Richards and

How [7] and Raghunathan et al. [13] tackle the multi-UAV

one.

Evolutionary algorithms (EAs) are versatile optimizers that

have already been used to solve different UAV path-planning

problems: Mittal and Deb [14], Nikolos et al. [15], [18],

Hasircioglu et al. [16], Pehlivanoglu et al. [17], and Nikolos
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and Tsourvelouds [19] optimized the paths of UAVs flying over

a terrain, and Zheng et al. [20] and Zhang et al. [21] searched

for optimal UAV paths in military missions. All formulated the

problem as finding the trajectory that minimizes and fulfills a

set of optimization indexes and constraints, and while Mittal

and Deb [14], Nikolos et al. [15], Hasircioglu et al. [16],

Pehlivanoglu et al. [17], and Zhang et al. [21] solved the single-

UAV problem, Nikolos et al. [18], Nikolos and Tsourvelouds

[19], and Zheng et al. [20] solved the multi-UAV one.

This paper presents our evolutionary planner to solve a

multi-UAV route-planning and cooperation problem. It extends

[14]–[21] and our previous works, which are presented in [22]

and [23], as follows.

1) Using complex models and new optimization criteria and

constraints for the military problem. To minimize the time

response of the planner, an extremely simple model of

the UAVs, terrain, and threats is used in [14]–[21], and

the performance of the planner is tested against the same

model instead of a realistic complex simulator. However,

in [22], [23], and in this paper, the routes are evaluated

according to the properties of a realistic aircraft for the

UAVs, real maps of the world for the terrain, and the

characteristics of the radars and missiles of the complex

simulator used to test the results of our planner. Besides

the UAVs position that is considered in [14]–[21], we also

use their velocity to calculate the minimum turning radius,

the fuel consumption, and the risk of the trajectories. Not

only do we check that the UAVs do not collide against

the terrain, as in [14]–[21], but we also use maps of any

part of the world to represent it, as in [17] and [20], and

to inhibit the radar detection’s capability when UAVs fly

hidden behind mountains. We calculate the probability to

detect and/or to destroy an UAV based on the range of

detection, the tracking probability, and the fire range of

the three types of radars and missiles considered in our

simulator. Our planner also supports the definition of pro-

hibited zones (i.e., no flying zones, NFZs), which UAVs

have to avoid due to mission restrictions. Finally, this is

the first of our papers that introduces the mathematical

models used in all our work.

2) Implementing a new codification for the trajectories. Al-

though 3-D trajectories can be defined pointwise as the

linear segments determined by a list of 3-D absolute Carte-

sian points (x, y, z), as in [20] and [21], smoother curves,

which are easier to follow by the UAVs, can be obtained

with other representations [24]. Therefore, the list of

3-D points determines the B-spline curve followed by

each UAV in [14]–[16], [18], and [19], a Bezier curve

in [17], and a cubic spline (which lets us include in the

trajectory all the fixed points that each UAV has to visit,

and not only one, as in [14]) in our study, i.e., in [22]

and [23]. Besides, the EAs in [14]–[17] codify the 3-D

points with absolute Cartesian coordinates, while the EAs

in [18], [19], [22], and [23] use relative polar coordi-

nates for (x, y). Using relative polar coordinates signif-

icantly reduces the search space; however, the mutation

and crossover steps produce global changes in the trajec-

tory instead of the local ones of the absolute Cartesian

codification. Our new codification takes advantage of all

the approaches: We use a list of 3-D absolute Cartesian

points, whose (x, y) values are generated using the relative

polar coordinates, to define cubic-spline trajectories.

3) Using a general multiobjective evaluation method based

on goals and priorities. The evaluation method that com-

bines the different objectives and constraints used in

[14]–[21] does not provide an easy support to modify

the priorities of the objectives and their goals for different

missions, and only in [14] is the concept of Pareto optimal-

ity [25] used. The planners of [22] and [23], and this paper

use the generic multiobjective Pareto-evaluation function

with goals and priorities presented in [26], which easily

permits to change the levels of priority of the different

objectives as well as to include new objectives and con-

straints. This way, our planners can be used for different

types of missions very easily.

4) Developing a general evolutionary framework to optimize

the behavior of multiple cooperating agents. The multiple

path-generation problem is solved using, for each UAV,

an EA that optimizes its path based on the objectives and

constraints associated with that UAV and some coopera-

tion objectives related with the others. As the evaluation

of the cooperation objectives requires some knowledge of

the optimal solutions of all the UAVs, all the EAs need to

run simultaneously and send some information of the op-

timal solution they have obtained so far to the remaining

EAs, i.e., coordination between the solutions (which, in the

particular case of this work, means coordination between

UAVs) is obtained by introducing coordination objectives

and sharing information between the EAs. The result of

this approach is a multiple coordinated agents coevolution

EA (MCACEA), which is a general evolutionary frame-

work to optimize some characteristics (i.e., the path in our

problem) of multiple cooperating agents. MCACEA can

obtain the path of a single UAV (as in [14]–[17], and [21])

or the paths of several cooperating UAVs that have to be

flying simultaneously without colliding (as in [18]–[20]).

Although the core idea of MCACEA is shortly described

in [22], this paper presents it in detail and includes new and

more challenging problems that illustrate its performance

better.

5) Speeding up the computation by combining some problem-

specific features with standard efficient EA operators,

whose parameters are tuned after a statistical perfor-

mance analysis. Following the ideas in [16], [17], and [20],

our EAs also include some special features, such as the

option of forcing the UAVs to fly at constant altitude and

the initialization of the algorithm with previous solutions.

The substitution method based on hypercubes [27], which

is used in [22] and [23], is replaced by the more efficient

one that is included in the second version of the Non-

dominated Sorting Genetic Algorithm (NSGA-II) [28].

Besides, some of the EA parameters are selected using

the statistical performance analysis based on dominance

ranking that is presented in [29]. The lack of a significative
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statistical difference between the results of the optimiza-

tions carried out with and without the local-search operator

that is used periodically over the best solutions in our pre-

vious work has made us eliminate it as well. Therefore,

the improved EAs that constitute our current multi-UAV

planner are computationally quicker and more standard.

Finally, we want to highlight that our EA planner works offline

and online. The offline paths are obtained by the multiple EAs

working inside the multiple-agent framework before the mission

starts based on the original information that the system has about

the environment. During the simulations, if an unexpected threat

suddenly pops up, the EAs of the affected UAVs start working

online to find a new path that avoids the threat.

The rest of this paper is organized as follows. Section II de-

scribes the problem by means of the mathematical models used

to define the missions. Sections III–VI, which are, respectively,

related with points 2)–5) of this section, explain the different

parts of our EA planner. Section VII presents the results of our

planner in different scenarios, and Section VIII contains the fi-

nal discussion and conclusions. Finally, the Appendix contains

the most-used acronyms.

II. PROBLEM DESCRIPTION

The military missions of the optimization problem that are

solved by our EA planner are defined by a set of optimization

planning criteria and constraints, which include the minimiza-

tion of the risk of destruction of the UAVs as well as the restric-

tions imposed by the UAVs’ dynamics and the environment.

Currently, our problem considers 11 objectives. The first ten

measure the fitness of the trajectory of each UAV independently.

Six are constraints, while the other four are values that should

be minimized in order to optimize the solution. The last, i.e., the

eleventh one, is a cooperation constraint that checks the paths

feasibility when all the UAVs are flying simultaneously.

Their values are calculated over the UAV trajectories, which

are cubic-spline curves obtained from the list of 3-D Cartesian

waypoints used to codify the solutions of each EA; for more

details, see Section III. To be able to evaluate their values in

the computer, the continuous-spline curves are discretized in

N points, whose values in the absolute Cartesian-coordinate

system are (xi , yi , zi). The evaluation process uses the dis-

cretized curves, and the properties of the elements that appear in

the optimization scenarios: the terrain, prohibited flying zones,

radars, missiles, and UAVs. The characteristics of our radars

and missiles have been estimated after many simulations over

our final test bench. The properties of our UAVs are obtained

with a computationally efficient simplified version of their com-

plete nonlinear dynamic model. Therefore, they are only valid

in standard flight conditions, such as UAV velocity close to

250 m/s.

Their 11 mathematical models are presented next, with the

variables in the International System of Measurements.

1) Minimum turning radius: The UAV maneuverability is

constrained by its minimum turning radius Rmin
i , which

depends on the maximum load factor nmax
i , altitude zi ,

and velocity v. For each point of the trajectory, Rmin
i and

nmax
i are obtained as follows:

Rmin
i =

v2

g
√

(nmax
i )2 − 1

(1)

nmax
i = 5.3809 × 10−9z2

i − 4.4291 × 10−4zi + 6.1000

(2)

where g is the gravity. All the trajectory points, whose

turning radius Ri is smaller than the minimum permitted

one, are simultaneously penalized by the use of (3), whose

minimum value (i.e., zero) ensures the fulfillment of the

constraint. Ri is calculated as the radius of the circumfer-

ence that is defined by the points i − 1, i, and i + 1

N
∑

i=1

c1
i with c1

i =

{

1, Ri ≤ Rmin
i

0, otherwise.
(3)

2) Limited UAV slope: The UAV maneuverability is also con-

strained by its maximum climbing slope αi and its mini-

mum gliding slope βi , which, in our case, depend on its

altitude zi . These slope limits are calculated with

αi = −1.5377 × 10−10z2
i − 2.6997 × 10−5zi + 0.4211

(4)

βi = 2.5063 × 10−9z2
i − 6.3014 × 10−6zi − 0.3257.

(5)

The UAV slope at the ith point (i.e., Si) is obtained with

Si =
zi+1 − zi

√

(xi+1 − xi)
2 + (yi+1 − yi)

2
. (6)

Similarly to the previous constraint, all the trajectory

points, whose slope is out of the permitted range, are pe-

nalized using the following expression, whose minimum

value (i.e., zero) is the optimal for this constraint:

N
∑

i=1

c2
i with c2

i =

{

0, βi < Si < αi

1, otherwise.
(7)

3) Fuel: UAVs carry a limited quantity of fuel and they have

to reach their destination before consuming all of it.

The fuel consumption for each trajectory point is calcu-

lated based on the expressions of the following three basic

cases.

a) The fuel consumption when the UAV is flying hori-

zontally and straight (i.e., FCH
i ), which is dependent

on zi

FCH
i = 9.553× 10−8z2

i − 2.4524× 10−3zi + 29.5.
(8)

b) The fuel consumption when the UAV is flying at max-

imum slope (i.e., FMS
i ), which is also dependent on

zi

FMS
i = 1.6679 × 10−11z3

i − 2.4832 × 10−7z2
i

− 4.259 × 10−3zi + 87.881. (9)
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c) The fuel consumption when the UAV is flying with

maximum bank angle (i.e., FMT
i ), which is dependent

on nmax
i

FMT
i = −3.0435 × 10−1 (nmax

i )2

+ 16.552 × nmax
i + 0.3565. (10)

The real cases are considered as a combination of the

previous cases, where only the main contributions that

appear in each type of maneuver are taken into account.

a) When the UAV is ascending, the real consumption

(i.e., FCA
i ) depends basically on the fuel consumption

at constant height (i.e., FCH
i ) and at maximum slope

(i.e., FMS
i ), as well as on the discrepancy between the

actual and maximum slopes (i.e., Si and αi)

FCA
i = FCH

i +
Si

αi

(

FMS
i − FCH

i

)

. (11)

b) When the UAV is turning but not ascending, the fuel

consumption (i.e., FCT
i ) depends on the fuel consump-

tion at constant height (i.e., FCH
i ) and at maximum

turning angle (i.e., FMT
i ), as well as on the ratio be-

tween the actual and maximum load factors (i.e., ni

and nmax
i )

FCT
i = FCH

i +
ni

nmax
i

(

FMT
i − FCH

i

)

(12)

where ni can be obtained from (1), using Ri and ni

instead of Rmin
i and nmax

i .

c) Finally, when the UAV flies straight and descending,

the fuel consumption (i.e., FCCH
i ) is approximated by

the one for horizontal and straight-flight conditions

FCH
i . This assumption is conservative since in this

situation, the consumption is lower.

Considering that between two points of the trajectory, the

fuel consumption is constant, the total fuel consumption

is calculated as the summation of the product of the fuel

needed at point i (i.e., FC
case(i)
i ) and the time needed to

go from i to i + 1 (∆ti), which is estimated as follows:

∆ti =

√

(xi+1 − xi)
2 + (yi+1 − yi)

2 + (zi+1 − zi)
2

v
.

(13)

The total fuel consumption value is limited by the fuel

capacity of the UAV (i.e., Fuel). The following expres-

sion only penalizes the constraint when the consumption

exceeds the capacity. Its minimum value (i.e., zero) is ob-

tained when the fuel consumption is less than the fuel

capacity. A positive value implies that the consumption is

higher than the capacity. Therefore, the following expres-

sion calculates the extra fuel that is needed to follow the

trajectory:

max

(

N
∑

i=1

FC
case(i)
i ∆ti − Fuel, 0

)

with case(i) =











A, when UAV ascends

T, when UAV turns but

does not ascend

CH, otherwise.

(14)

4) Terrain: A feasible path cannot go through the terrain

and has to avoid collisions with mountains. To ensure this

behavior, the algorithm penalizes the solutions that have

at least one point of the spline trajectory inside the terrain.

If map(xi , yi) is the function that returns the altitude of

the terrain at any point (xi , yi), the following expression,

which calculates the number of points that are inside the

terrain, is used to penalize this constraint:

N
∑

i=1

c4
i with c4

i =

{

1, zi ≤ map(xi , yi)

0, otherwise.
(15)

5) Map limits: To penalize the points of the trajectory that

are not inside the map limits, (16), shown below, is used,

where xm
l and xm

u are the map lower and upper limits

for the “x” coordinate, and ym
l and ym

u are the equiva-

lent for the “y” coordinate. Its minimum value (i.e., zero)

ensures the fulfillment of the following map constraint:

N
∑

i=1

c5
i

with c5
i =

{

0, InMap(xi , yi)

1, otherwise

InMap(xi , yi) = (xm
l ≤ xi ≤ xm

u ) ∧ (ym
l ≤ yi ≤ ym

u ).

(16)

6) Flight-prohibited zones (i.e., NFZs): The user can define

certain zones where UAVs must not enter because they are

considered high-risk zones, unknown zones, etc.

They are defined as M rectangular regions constrained

by their external limits (xNFZ,j
l , xNFZ,j

u , yNFZ,j
l and

yNFZ,j
u , with j = 1:M ). The N points of the trajectory

have to avoid them. To penalize this objective, for each of

the trajectory points that are inside a NFZ, we accumulate

the distance to the closest NFZ edge, with the purpose of

distinguishing between two solutions that have the same

number of points inside the NFZs, but at different distances

of their frontiers. The following expression imposes the

selected penalization and the constraint is fulfilled with its

minimal value (i.e., zero):

N
∑

i=1

M
∑

j=1

dj
i

with dj
i =

{

min
k,a

(dj,k ,a
i ), if InNFZ (i, j)

0, otherwise

dj,k ,a
i = |aNFZ,j

k < ai |, with k = l, u ∧ a = x, y

InNFZ(i, j) = (xNFZ,j
l ≤ xi ≤ xNFZ,j

u )

∧ (yNFZ,j
l ≤ yi ≤ yNFZ,j

u ). (17)

7) Minimum path length: For military applications, shorter

paths are better than longer ones (if all the other objectives

are equal) because they require less time of flight and
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Fig. 1. ADU model. (a) Eagle eye view. (b) Cross-section view.

usually have a lower chance of finding an unknown threat

in a dynamic environment.

Instead of minimizing the actual path length, we mini-

mize its value normalized by the minimum flight distance

lmin , because both values are equivalent and the values

of the second represent ratios that are considered admis-

sible. The path length ratio (PLR) is calculated with the

following expression:

PLR =

N −1
∑

i=1

√

(xi+1 −xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2

lmin
(18)

where lmin is calculated as the distance between the points

selected by the user to define the mission: the start, inter-

mediate, and ending points of each UAV.

8) Minimum probability of kill: Trajectories that accumulate

lower probability of destruction are safer than those with

higher accumulated probability values.

The probability-of-kill (PKill) function depends on the

model used for the Air Defense Units (ADUs) that are

groups of radars and missiles. For each ith point of

the trajectory, the jth ADU only has a certain possi-

bility to destroy the UAV if the UAV is inside the re-

gion defined by the ADU’s maximum-risk distance (i.e.,

Rj
PKmax ) and minimum- and maximum-risk altitudes

(i.e., Hj
min and Hj

max ). The shape of that region is pre-

sented in Fig. 1, which also shows the maximum detec-

tion distance (Rj
Dmax ) that will be defined in the ninth

objective. The three types of ADUs used in our scenar-

ios have different Rj
PKmax , Hj

min , and Hj
max . A tabular

representation of the probability of destruction inside that

region, which is dependent on the orientation (θj
i ) and al-

titude (Hj
i ) of the UAV relative to the ADU, is obtained

after many simulations against our test bench. Interpo-

lating their values with the function TabPK(θj
i ,H

j
i ), we

obtain the PKill of the ith point of the trajectory for the

jth ADU. The PKill accumulated along the trajectory due

to the different A active ADUs of the problem is calcu-

lated with the following expression, whose value has to be

minimized:

PKill = 1 −

N
∏

i=1

A
∏

j=1

(1 − PK
j
i ∆ti)

with PK
j
i =

{

TabPK(θj
i ,H

j
i ), if InPK(i, j)

0, otherwise

InPK(i, j) = (Rij ≤ Rj
PKmax) ∧ (Hj

min ≤ Hj
i ≤ Hj

max).

(19)

9) Minimum probability of radar detection: When the radars

do not detect the UAVs, not only the ADUs cannot destroy

them (and, therefore, trajectories that accumulate lower

probabilities of detection are safer), but also, the flight of

the UAV and its mission are kept secret.

The probability of radar detection (PRD) depends on the

model used for the ADU’s radars. For each ith point of the

trajectory and jth radar, the detection-probability model

considers the radar cross section RCSij of the UAV, the

distance Rij between the UAV and the radar, the existence

of a line of sight LoS(i, j) between the UAV and the radar,

and some properties of the radar.

The RCSij depends on the orientation of the UAV with

respect to the ADU and can be calculated by the following

expression [30] that considers the UAV as an ellipsoid with

semiaxis “a,” “b,” and “c”:

RCSij =
πa2b2c2

√

(aαzβφ)2 + (bαzαφ)2 + (cβz )
2

with αz = sin(aze
ij ) and βz = cos(aze

ij )

αφ = sin(φe
ij ) and βφ = cos(φe

ij ) (20)

where aze
ij is the angle between the velocity of the UAV

and the segment that joins the UAV and radar positions,

and φe
ij is given by

φe
ij = φij − arctan

(

tan(elij )

sin(azij )

)

(21)

with φij the roll, elij the elevation, and azij the azimuth

between the UAV at position i and the jth ADU.

The LoS between two points (i, j) of the space is calcu-

lated with the function LoS(i, j) that considers the terrain

elevation at the line that joins the two considered points.

Although this function significantly increments the com-

putation time of the algorithm, it lets it find solutions where

the terrain inhibits the radar effects.

The PRD accumulated along the trajectory due to the

radars of the different A active ADUs is calculated with

(22), whose value should be minimized. Rj
Dmax is the

maximum detection distance of the jth ADU, and ζj
1 and
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ζj
2 are parameters that are dependent on the model of its

radar. All the ADUs of the scenarios have the same Rj
Dmax

(i.e., 50 km)

PRD = 1 −

N
∏

i=1

A
∏

j=1

(1 − DP
j
i ∆ti)

with DP
j
i =















0, if Rij > Rj
Dmax ∨ ¬LoS(i, j)

1

1 + ζj
2

(

R4
ij/RCSij

)ζ j
1

, otherwise.

(22)

10) Minimum flight altitude: UAVs flying at low altitude can

benefit from the terrain-mask effect that will help them

to avoid unknown radars. Although this increases the fuel

consumption (which is optimal at cruise altitude), the com-

bination of objectives 3) and 10) makes the planner search

low-altitude trajectories whose fuel needs are within the

maximum permitted.

To achieve this objective, we calculate the accumulated

difference between zi and the altitude of the terrain at that

point (i.e., map(xi , yi)) and divide it by the number of

points in the trajectory, i.e., N . Therefore, the algorithm

minimizes the elevation of the UAV over the terrain and not

the elevation of the UAV over the sea level. The following

expression calculates this objective value:

∑N
i=1 c10

i

N

with c10
i =

{

0, if zi < map (xi , yi)

zi − map(xi , yi), otherwise.

(23)

11) Avoiding UAVs collisions: When generating paths for sev-

eral UAVs, it is important to check whether two UAVs are

getting too close while following their respective paths.

For that, the planner has to test if two paths coincide in

space and time.

With this purpose, given the trajectory of the u UAV

and the v trajectory for the remaining UAVs, every spline-

curve point of the first trajectory is compared with every

point of the others. If the distance duv
ij between the ith

point of the trajectory of the uth UAV and the jth point of

the trajectory of the vth UAV is smaller than a minimum

critical value dmin , it is checked if the arrival times to

those points (i.e., tui and tvj ) are too close to constitute a

risk, which happens if their differences are lower than the

minimum permitted time tmin . The parameters dmin and

tmin , which are chosen by the user, specify the requested

safety level. Each dangerous pair of points is penalized

by (24), whose minimum value ensures that the trajectory

of the u UAV does not collide against any of the other v
UAVs trajectories. The indices in Nk , tkl , xk

l , yk
l , and zk

l

are related with the the kth UAV and l trajectory point

∑

∀v �=u

N u
∑

i=1

N v
∑

j=1

c11
ij

with c11
ij =

{

1, if duv
ij < dmin ∧ |tui − tvj | < tmin

0, otherwise

duv
ij =

√

(xu
i − xv

j )2 + (yu
i − yv

j )2 + (zu
i − zv

j )2 . (24)

III. SOLUTION CODIFICATION FOR THE EVOLUTIONARY

ALGORITHM PLANNER

EAs work with populations of possible solutions that, in this

problem, codify the possible 3-D trajectories of each UAV.

Our codification is a list of 3-D points that are used to define

the cubic-spline curve [24] that each UAV has to follow. This

list, whose points are floating-point coded, contains some fixed

points (i.e., start, end, and intermediate) that the UAVs are forced

to visit and some undetermined points (i.e., waypoints) that the

EA planner calculates to find the feasible and optimal cubic-

spline trajectory for each UAV. The cubic-spline curve, which is

only used in our works, automatically ensures that the trajectory

visits all the points in the list.

The offline planner sets the number of waypoints that exists

between each pair of fixed points, which is based on their dis-

tance, and calculates their values. When the UAVs are flying, the

online planner adds some new waypoints to those lists whose

paths are affected by the pop-ups and recalculates the values of

all the waypoints placed after the UAVs current positions.

Each waypoint in the 3-D space is defined by three coor-

dinates, whose values can have different meaning depending

on the selected codification. For example, in [14]–[17], [20],

and [21], these coordinates are the absolute Cartesian “x,” “y,”

and “z,” while in [18] and [19], and ours, i.e., [22] and [23],

they belong to a relative polar-coordinate system, with absolute

“z” (i.e., the altitude) and polar coordinates “r” (i.e., radius) and

“θ” (i.e., angle) relative to the previous point in the list. Fig. 2

shows both codifications for the same cubic-spline curve.

The absolute Cartesian codification generates a huge search

space in real scenarios since any point of the space can be

reached from the previous point of the list. The relative polar-

coordinate system dramatically reduces the search space, be-

cause it forces the EA to have a predefined order of points.

However, any change of the values of the waypoints in the rel-

ative polar codification modifies the whole shape of the part of

the spline curve that comes after it. In the absolute Cartesian

codification, the changes only modify the spline curve locally.

Our current codification takes advantage of both approaches.

We maintain a cubic-spline representation to force the visit of

all the points of the list while the waypoints are codified in

absolute Cartesian coordinates to ensure only local changes in

the crossover and mutation steps. Also, to dramatically reduce

the search space, the initial values of the absolute Cartesian co-

ordinates are obtained from a random process that creates the

radios, angles, and altitudes of the waypoints in relative polar

representation, i.e., the waypoints of a trajectory are created
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Fig. 2. Absolute Cartesian and relative polar codifications for the same (solid
line) cubic-spline curve defined by the fixed points S , IF, and E and the
waypoints W1 , W2 , and W3 . Although only the “x” and “y” values are presented
in the curves, the codification also includes the absolute “z” value. (a) (Absolute
Cartesian coordinates) Each waypoint is represented with its (xW i

, yW i
, zW i

)
values. (b) (Relative polar coordinates) Each waypoint is represented with its
(rW i

, θW i
, zW i

) values. rW i
is the distance from the previous list point to the

ith waypoint. θW i
is the angle change with respect to the angle defined by the

segment that joins the two previous list points (i.e., dashed lines and vectors).
The rW i

and θW i
values to any fixed point are fixed by that point and the

previous waypoint.

from scratch by the offline planner within the polar relative

representation and translated into its absolute Cartesian repre-

sentation, the absolute Cartesian waypoints are manipulated by

the EA operators, and the discretized spline, which is defined

by the fixed points and waypoints, is only used to determine

the goodness of each trajectory. The initialization in the po-

lar relative representation is carried out using uniform random

distributions for the floating-point-coded (r, θ, z) values. The

“z” limits constitute the minimal and maximal altitude that the

UAV can reach, the “r” limits represent the original permit-

ted separation between two consecutive waypoints, and the “θ”

limits are related with the UAV maneuverability. The absolute

Cartesian values that they are translated into are codified as

real floating-point-coded numbers. Finally, the objective values

are obtained with the expressions given in Section II, using the

N (xi , yi , zi) points in which the cubic spline is discretized.

N = p ∗ (NIF + NW + 1) + 1, where NIF is the number of in-

termediate fixed points, NW the number of waypoints, and p a

user-selected parameter (which is 40 in this paper).

The process of initializing the lists of waypoints of the online

planner, which we will explain using the example presented in

Fig. 3, is different. When a flying UAV following the offline

optimal trajectory identifies a new pop-up, the online planner

starts working. First, the planner finds the points of the list (W3 ,

W4 , W5 , W6 , E) of the offline trajectory situated after the UAV

position (black filled circle). It also finds the segment (limited

by asterisks) of the UAV-discretized spline trajectory that falls

inside the new pop-up maximum-risk-distance region (dashed

circle) and identifies the waypoints (i.e., W3) it bypasses. Then,

it creates four waypoint sublists (such as the one defined by A,

B, C, and D), whose values, which are generated in the polar

relative representation, define, when translated into the absolute

Cartesian one, a random U-shape around the pop-up Rj
PKmax

area. Next, it creates the new lists combining in the appropriate

order an origin fixed point (i.e., O) close to the UAV position,

the U-shaped waypoint sublists, and the set of offline waypoints

located after the UAV current location that is not bypassed by the

intersected segments. This way of proceeding gives the online

Fig. 3. Waypoint list online initialization process. (a) (Final optimal offline
waypoints) (W# ), and start (S) and end (E) points that define the optimal
trajectory obtained by the offline planner, the areas defined by the (dotted
circle) maximum-radar-detection distance and by the (dashed circle) maximum-

risk distance (i.e., Rj
PKm ax ) of a pop-up ADU, (black filled circle) the UAV

position when the online planner starts working, and the (asterisks) intersection
of the discretized spline trajectory with the region defined by the maximum-risk

distance (i.e., Rj
PKm ax ). (b) (Initial online waypoints) Original fixed point (O)

of the online trajectory and a U-shaped four waypoint sublist (A, B , C, and D)

created randomly by the online planner to avoid the pop-up Rj
PKm ax area. A

new online 3-D list is defined by (O, A, B , C , D, W4 , W5 , W6 , and E).

planner a high chance of creating lists (O, A, B, C, D, W4 ,

W5 , W6 , and E) that usually avoid the pop-ups to start with.

Finally, their not-fixed-point values are optimized to ensure that

the new 3-D lists fulfill all the optimization criteria (for instance,

avoiding that the UAV collides against others).

IV. EVALUATION FUNCTION

Our problem has the 11 objectives presented in Section II.

Therefore, the planner needs a function that combines their

values to obtain the fitness of each solution of the population.

For this purpose, we use the generic-evaluation multiobjective

method based on goals, priorities, and Pareto sets proposed

in [26], where the objectives are placed in levels of priority and

where limits (goals) can be imposed on each of them. With this

method, which is already used successfully in other complex

multicriteria constrained problems [31], [32], the EA compares

all pairs of solutions in the population, decides if one Pareto

dominates the other, and ranks them with the technique proposed

by Goldberg [33].

To be able to set the priority levels of the 11 objective values,

we divide them in two groups: (I) the ones related with each UAV

(i.e., single-UAV objectives) and (II) the cooperation objectives

(multi-UAV objectives). Furthermore, both groups are divided

in two different types: a) constraints that the path of the UAV

has to satisfy completely due to its physical restrictions, the

terrain, or mission considerations and b) optimization indexes

that must be minimized according to the selected mission. The

rows Name and Eq. of Table I show this classification and the

equations that calculate them.

Based on this classification, the objective values used to mea-

sure when the constraints are satisfied are placed as high-priority

objectives whose values must be zero. The objective indexes

to be minimized are located at lower priority levels organized

according to the goal of the mission. With this organization,

solutions that fulfill the constraints are better than the ones that

do not, and the latter are basically organized according to how

far the constraints have been optimized. The rows of Table I

Level, Min, and Max, show a typical election of priority levels

and limits for the objectives. The limits establish the accepted
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TABLE I
USUAL EVALUATION FUNCTION PRIORITIES AND LIMITS

interval of values for each objective and are tuned by the user

considering the mission goals.

Furthermore, as we are using a general method to evaluate

the fitness of the function given the constraints and objective in-

dexes, we can easily add or remove constraints or optimization

indexes as needed. For instance, we could consider other co-

ordinating constraints, such as the timing restrictions proposed

in [34] and [35], which are the simultaneous arrivals of two or

more aircrafts to a selected point, and tight/loose sequencing

(especially important if the mission considers on-air UAV re-

fueling). The autonomous aerial-refueling problem could also

be formulated here in terms of the four parameters presented

in [36]: maximum waiting time, refueling time, return-to-field

priority, and refueling sequence number. Besides, a cooperation-

optimization index (none is currently considered in our prob-

lem), such as the minimization of the distance between two

different UAVs in order to carry out a tracking mission, could

easily be included.

Although the missions presented in [14]–[21] are also de-

fined as multiobjective problems, their evaluation functions are

significantly less flexible than ours.

Finally, it is important to highlight that the time needed to

evaluate the solutions is especially problematic when the online

planner starts running due to the presence of a sudden pop-up.

In order to speed up the algorithm, the online planner uses a

simpler model of the problem and less optimization indexes.

This difference is justified because the critical objective of the

online planner is to avoid the threat. Therefore, minimizing the

PRD or altitude is no longer important. To sum up, both planners

use the same evaluation function, the seven constraints, and

different objective values. The differences in this respect are the

following:

1) The offline planner uses the four optimization indexes

that we want to minimize. Table I shows the configuration

used in the offline planner in all the scenarios presented in

Section VII, except in scenario B1.

2) The online planner uses only two optimization indexes: the

PKill and the PLR. PKill is more important than the PLR

when replanning due to the appearance of an unexpected

ADU and, therefore, in the online planner, PLR priority

level is reduced (i.e., set to 3).

V. MULTIPLE UNMANNED-AERIAL-VEHICLES

OPTIMIZATION FRAMEWORK

The previous sections show how to codify the solutions and

evaluate them. However, they do not explain how the planner

solves the single and multiple-UAV trajectory problem. This

section and the following contain that information.

Calculating the paths of several UAVs that are flying simul-

taneously is a complex task due to the space constraints that

one path imposes on the others and the cooperative objectives

of the set of UAVs that the planner has to optimize. The prob-

lem has already been tackled by nonlinear-programming and

mixed-integer linear-programming methods, and the results of

both techniques have been compared in [37].

Our approach, i.e., MCACEA, uses multiple EAs (one per

each UAV) that evolve their own populations to find the best

path for its associated UAV according to their individual and

cooperation constraints and objective indexes. Each EA is a

single-UAV planner that runs in parallel and that exchanges

some information with the others during its evaluation step. This

information is needed to let each EA measure the coordination

objectives of the paths encoded in its own population for its UAV,

taking into account the possible optimal paths of the remaining

UAVs. Therefore, each single planner has to receive information

related to the best solutions of the remaining single planners

before evaluating the cooperative objectives of each possible

solution of its own population.

As the cooperation objective values depend on the best solu-

tions of the other populations and the optimality of a solution

depends both on the individual and cooperation objectives, it

is not really possible to select and send the best solution of

each planner to the others. However, we can divide the evalu-

ation step inside each EA in three parts: In the first part, the

EA identifies the best solution considering only the individual

objective values and sends it to the others; in the second part,

the cooperation objective values of all the paths are calculated

taking into account the received information; and in the third

part, the EA calculates the fitness of the solutions considering all

the individual and cooperation objective values. However, there

is another problem that also needs to be solved. Although each

UAV can only follow a unique optimal path, each EA maintains

a Pareto set of optimal paths and selects the unique optimal path

at the end, when the last population has already been obtained

(see Section VI). Therefore, to be able to determine a unique

optimal path according with the individual objectives in each

generation, the step in charge of selecting the final optimal path

is included in the evaluation step of each EA.
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TABLE II
EVALUATION STEP IN THE COOPERATING PLANNERS

Table II shows the complete evaluation step of the individual

cooperating planners, including references to the sections where

each function is explained in detail. When the planner calculates

the path of a single UAV, it only uses the first two steps of this

new evaluation process.

Note that in our evaluation process, the trajectory that is con-

sidered the best in accordance with the individual objectives

is not necessary the best after evaluating the coordination ob-

jectives. In other words, the EAs may sometimes evaluate the

coordination objectives against the “wrong” trajectories. This

could make the EAs have some initial difficulties to converge

to collision-free trajectories, although the results presented in

Section VII show that this problem is usually solved after a few

generations. Another possibility, which is considered in [20],

is to send the best completely evaluated trajectory of the pre-

vious generation to the other EAs instead of our current best-

only individual objective evaluated one. Nevertheless, not only

does the approach in [20] not solve the problem, but, we be-

lieve, it worsens it because it introduces a bias toward outdated

completely evaluated trajectories, while our approach does it to-

ward currently good individual objective evaluated ones. Finally,

Nikolos et al. [18], and Nikolos and Tsourvelouds [19] optimize

the path of multiple UAVs without considering interdependent

objectives.

To reduce the bandwidth of the distributed planner, the in-

formation exchanged by the EAs are the 3-D point lists instead

of the pointwise discretized cubic splines. The time used to ex-

change this information among the UAVs’ onboard computers

depends on the UAVs position, environment, and/or commu-

nication technology. The communication delays affect every

EA generation, and therefore, they are especially problematic

for the online planner since it needs to obtain the alternative

routes before the pop-ups destroy the UAVs. To minimize their

effects, when the UAVs are flying, the replanning process is

done sequentially: Only the EA of an UAV is run until it fin-

ishes to optimize its own trajectory considering the trajectories

of the other UAVs constant because their associated EAs are

not working. Therefore, only the final 3-D list of the u UAV is

broadcasted to the others when the u EA has finished after T u
r s.

Which EAs need to be started is determined whenever a new

pop-up is identified, and their initialization order is calculated

based on the time, T u
i , needed by each u UAV to intersect the

RPKmax regions of the identified pop-ups that affect the remain-

ing part of its current cubic spline. All the UAVs survive, when

the started EAs are able to find feasible trajectories with PKill =
0 on time, i.e, when T v

i >
∑

k∈previous(order,v ) T k
r . Therefore,

it is extremely important to minimize T u
r . To achieve it, we use

the U-shaped inclusion of waypoints in the 3-D lists described

in Section III and the stop criterion presented in Section VI-F.

Section VII shows an illustrative example, where we analyze

real T u
r and T u

i times.

Finally, MCACEA is not only valid for the UAV problem, but

can also be applied to other optimization problems with cooper-

ating agents. Although this way of proceeding may look similar

to the habitual parallelization of EAs (which is used in [38]

and [39] to solve UAV problems), in this case, instead of dis-

tributing the solutions of the whole problem between different

EAs that share their solutions periodically, we are dividing the

problem into smaller problems that are solved simultaneously

by each EA taking into account the solutions of the part of the

problems that the other EAs are obtaining.

VI. EVOLUTIONARY OPERATORS AND OTHER RELEVANT

CHARACTERISTICS OF THE EVOLUTIONARY ALGORITHM

The basic characteristics of each EA, which are given by

the type of operators and functions implemented inside it, are

presented in this section. The selection, recombination, and mu-

tation methods differ from the ones used in our previous work:

the first two to make it closer to NSGA-II and the last to take

into account the new codification. Besides, the previously used

local-search procedure has been disabled.

A. Selection

The binary tournament method [40] is used to select Ns pairs

of elements from the current population of Np solutions.

B. Crossover

A uniform distribution with crossover probability Pc is used

to decide if each pair of selected solutions (lists with NW way-

points) is mated to create two new solutions or left without

change. The crossing point Cp of each pair of mating solutions

is selected from the interval [1, NW ], and the first new solution

is formed with the 1 : Cp waypoints of the first parent and the

Cp + 1 : NW of the second, while the second new solution has

the 1 : Cp waypoints of the second parent and the Cp + 1 : NW

of the first.

C. Mutation

We increment the values of each of the 3 ∗ NW elements of

each solution (list with NW 3-D (xW i
, yW i

, zW i
) waypoints)

with the values obtained from a zero-mean normal distribution

with a small Cms covariance. Besides, some of the elements,

which are selected according to an uniform distribution with

probability Pm , are incremented with the values of another zero-

mean normal distribution with bigger Cmb covariance. This two-

level incremental mutation lets the EA explore any region of the
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space and escape from the confined region associated with the

relative polar-representation initialization.

D. Immigration

To increment gene’s diversity, a fixed number of new solutions

(i.e., immigrants) is created using the random relative polar-

representation initialization.

E. Recombination

The NSGA-II recombination method [28] is used to create

the new population selecting a total of Np solutions from the

current population, the pairs of solutions that have been selected

and undergone the crossover and mutation processes, and the

immigrants. The population size Np is maintained by means

of preserving all the Pareto sets that fit into Np , with a good

Pareto-front distribution of the elements of the last fitted set.

F. Stop Criterium

Offline EAs stop when the generation limit is reached. On-

line EAs stop after 1) the routes are feasible (i.e., constraints

fulfilled), safe (PKill �= 0), and short enough, or 2) the genera-

tion limit is reached.

G. Selection of the Final Solution

We also need a criterion to select at the end, among the

solutions belonging to the first Pareto set, the trajectory that the

UAV will follow. We implement a method based on the priorities

of the evaluation function and some additional rules.

For example, for the offline planner and priority levels pre-

sented in Table I, we consider following two cases.

1) There is a feasible solution with PKill = 0. Therefore,

there is only one element in the first Pareto set because

from the two objectives in the secondary priority level

PKill has reached the minimum and PLR determines

which solution is the best.

2) For all the feasible solutions, PKill > 0. We first obtain

the relative PKilli of each ith solution in the first Pareto

set as PKreli = PKilli/mini(PKilli). Then, we discard the

solutions with PKreli ≥ V (for example, with V = 1.05),

which makes the nondiscarded jth solutions have a PKillj
that is not significantly higher than the minimum. Finally,

we select the solution with minj (PLRj ). Therefore, the

final solution has a PKill that is a bit higher than the

minimum, as well as a reasonable PLR.

H. Reuse of Solutions

When an offline EA returns the final solution, the planner

copies the waypoints that codify it to be able to use them for

future optimizations. This lets us reduce the computational time

when we want to find a trajectory over a scenario slightly differ-

ent from another one that the planner has already solved. We can

also include the results of any algorithm that finds a suboptimal

solution of the problem in the first generation of the EA, as long

as it is codified as described in Section III.

VII. RESULTS

Our planner is part of a complex system that tests the perfor-

mance of UAV planners in hostile environments. This system

lets us 1) set the known and pop-up ADUs positions and the

UAVs fixed points, 2) obtain their routes with a planner (in-

cluding ours), and 3) test them against a simulator that uses

real-world maps and complex UAV and ADU models.

We have successfully tested our planner in multiple scenarios,

and in this paper, we present some examples that reflect its more

important characteristics. Fig. 4 shows the scenarios (identifi-

able by a capital letter followed by the number of UAVs they

contain) and the final trajectories returned by the planner. The

big dashed gray circles mark each ADU’s maximum distance

of detection (i.e., Rj
Dmax ), while the small red solid circles rep-

resent their maximum-risk distance (i.e., Rj
PKmax). Although

each circle, respectively, represents the areas that can increment

PRD and PKill, they do not have to do it necessarily because

those values also depend on other factors (see Section II). The

label ADUi identifies the ith known ADU, and POPi the ith

pop-up ADU. Unlabeled ADUs are always known. The brown

rectangles show the NFZs. Labels S, E, and IF identify the

start, end, and intermediate fixed points of the UAVs. The of-

fline planner trajectories are the solid lines that are not black or

red. Sometimes they are labeled close to its S point as UAVi .

The thick black and red lines in Fig. 4(i) show the alternative

routes calculated, during a simulation where pop-ups are iden-

tified, by the online planner. Note that some paths cover tens of

kilometers, while others hundreds, and therefore, the examples

show the good scalability of our planner. Besides, although we

only show the isometric view of E2 in Fig. 4(h), the planner is

always searching for 3-D routes.

We also present how some tunable parameters of the planner

affect the quality of the trajectories in the different scenarios. To

compare the results obtained by the planner for two different sets

of parameter values, each planner is run Nr times with the same

set of values, because the EAs stochastic foundation makes them

obtain different trajectories in each execution. The comparison

is carried out using the statistical front-dominance-ranking pro-

cedure (SFDRP) presented in [29], which measures if the results

of algorithms A and B are statistically significantly different ap-

plying the nonparametric Mann–Whitney rank tests [41] to the

number of times that each of the Nr final best Pareto fronts ob-

tained by algorithm A is dominated by each of the Nr final best

Pareto fronts obtained by algorithm B, and vice versa. We pick

SFDRP because it can be directly applied to the single-UAV

problem using the generic multiobjective evaluation method

based on goals, priorities, and Pareto sets (see Section IV) when

calculating the number of times the Pareto fronts are domi-

nated. To use it in the multi-UAV problem, we have to consider

the existence of a different best Pareto front for each UAV. To

overcome this difficulty, the Pareto fronts used by SFDRP are

created from the Cartesian product of the UAVs Pareto fronts.

Therefore, the multi-UAV statistical tests are carried out over

the space of all the possible trajectories for all the UAVs in the

scenario. Finally, it is important to highlight that although our

EAs incorporate a final step that selects a single best trajectory
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Fig. 4. UAV scenarios and solutions. (a) Scenario A1. (b) Scenario B1 (the priority level of PRD is 2). (c) Scenario C1. (d) Scenario D4. (e) Scenario E2.
(f) Scenario F3 (intermediate solutions). (g) Scenario D8. (h) Scenario E2 (isometric view). (i) Scenario F3 (final solution + pop-up alternative route).

for each UAV, SFDRP is carried out over the final best fronts,

because the EAs evolve its own population according to the

fronts and select the best at the end.

The EA parameters and number of waypoints used to obtain

the offline trajectories of Fig. 4 are shown in Tables1 III–V. The

mean execution time (i.e., Time) of the planner in a Pentium

IV at 3.0 GHz is also included,2 although it is highly dependent

on the scenario and trajectories that the EAs are evaluating. For

instance, evaluating only one point of a trajectory that passes

inside an ADU’s Rj
Dmax region is 100 times slower than when

it is not due to the use of the LoS function. Therefore, the LoS

function is disabled in the online planner, which prevents the

1The meaning of the acronyms in the tables is summarized in the Appendix.
2The code has been serialized to be run over a single computer and account

only for the total processing time without measuring communication delays.

UAVs from using the masking effect in the replanned part of the

trajectory, but evicts this costly time consumption.

Finally, our EAs use a conservative model to obtain PKill (see

Section II), which ensures that when PKill = 0 and there are

no pop-up ADUs, the UAV always reaches its final destination.

When PKill > 0, the UAV is assuming some risk, and depending

on the simulation, it will succeed or fail with a probability close

to the value obtained by the EA.

A. Results in Single Unmanned-Aerial-Vehicle Scenarios

These scenarios, which are presented in the top row of Fig. 4,

show the planner’s ability to find no risky paths in static envi-

ronments with different number of ADUs. In scenario A1 [see

Fig. 4(a)], there is a little corridor (of 8 km) between ADU1 and

ADU2 , where PKill = 0, which the planner always finds. How-

ever, the UAV is detected, because PRD is in the third priority
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TABLE III
PLANNER-TUNABLE PARAMETERS UNDER TEST

level, while PLR is in the second, and therefore, the planner

primes shorter paths to nondetectable ones. Scenario B1 [see

Fig. 4(b)] minimizes PRD as well, as we increment the priority

level of this objective before running the planner. Therefore, the

planner now finds paths adjacent to the dashed gray circles. Fi-

nally, scenario C1 [see Fig. 4(c)] shows the planner’s ability to

find trajectories in areas with many ADUs, where the PKill = 0
area has a complex shape.

We use SFDRP in these scenarios to see how the values

of some tunable parameters of the EAs affect the solutions.

Table III shows the parameters under test (first row), which are

changed one at a time, their nominal value during all the op-

timizations except when they are being changed (second row),

their minimum value (third row), their maximum (fourth row),

the increment used to change them (fifth row), and the range of

values that are considered better after analyzing the results of

SFDRP (sixth row). For each scenario and set of parameter val-

ues, we run the planner Nr = 30 times during 800 generations

and save the best Pareto fronts obtained by the EA every 50 gen-

erations to be able to perform SFDRP at different stages of the

algorithm. The results of the test show, with a 5% confidence,

that there is no systematic statistical significant difference on

the solutions obtained by the algorithm at the same generation,

when we change Np . Therefore, we pick the smaller value. The

same happens when we change Pm , and therefore, we main-

tain the value used in our previous works. However, SFDRP

shows that using a Pc = 0.7 or Pc = 0.75, or a Ns ≥ 12, lets

the EAs obtain fronts less times Pareto-dominated by the fronts

obtained with the other Pc or Ns values, and therefore, we pick

Pc = 0.75 (the EA has more crossing opportunities with big-

ger values) and Ns = 12 (smaller values reduce computational

cost).

SFDRP is also used to see how the scenario influence the

number of needed generations. In this test, the planner main-

tains the nominal tunable parameters and SFDRP compares the

Nr = 30 best fronts obtained at a given X generation with the

Nr = 30 best fronts obtained at another Y. Therefore, this test

[whose results for scenario A1 are presented in Fig. 5(a)] tells

us if we can (white) or cannot (gray) expect to obtain an overall

better solution when we run the planner once up to generation

Y than when we run it once up to generation X. As one expects,

Fig. 5(a) shows that incrementing the X-generation number pro-

duces better results up to a given point, which is identified as

GS hereafter, after which, no better results should be expected.3

3For lack of space, we can include neither the SPDRP generation graphics
for all scenarios nor the SPDRP-tunable parameter graphics. However, we use
them to obtain the GS of Tables IV and V and the conclusions of Table III.

However, SFDRP cannot quantify the improvements. There-

fore, for each execution of the planner, we measure, in some

generations, the improvement of the PLR4 with respect to an-

other generation 50 steps earlier, calculate its mean over the

Nr = 30 executions, and represent it, for the three scenarios, in

Fig. 5(b). These graphics let us identify a generation number,

i.e., GI , after which the planner cannot significantly improve its

actual solution. Therefore, GI is associated with improvements

smaller than a threshold inside one execution of the planner,

while GS is related with overall improvements, but does not

account for their size. Finally, to analyze the convergency of the

planner, we also represent the PLR mean and standard deviation

(Std) values of all the solutions that appear in the best Pareto

fronts of the Nr = 30 optimizations in Fig. 5(c). The amplitude

of values of the ordinate axis is maintained; therefore, all PLR

Std values are presented in the same scale. Table IV also con-

tains the generation in which the constraints are fulfilled, i.e.,

GC ; the mean execution time for 50 generations, i.e., Time; the

number of waypoints, i.e., NW ; and the number of points of the

discretized spline curve, i.e., N .

Finally, we want to point out that we also use SFDRP to

decide if our new codification is better than the previous and to

disable the local-search procedure used in our previous works.

The results show that the new codification is usually better and

only punctually worst at generation 50, while the local-search

procedure rarely and punctually improves the results.

B. Results in Multiple Unmanned-Aerial-Vehicle Scenarios

The scenarios of the second and third rows of Fig. 4 show

the planner’s ability to find no risky paths in dynamic environ-

ments with multiple UAVs. We use Nr = 30 planner executions

per scenario, with the nominal values of the tunable parameters

of Table III, and perform the same generation tests as in the

single-UAV case. The second row of Fig. 5 presents their mean

improvement and mean PLR graphics. Table V collects the of-

fline planner GS , GI , GC , and Time numbers, and the NW and

N of each UAV trajectories.

Scenarios D2, D4 [see Fig. 4(d)], D6, and D8 [see Fig. 4(g)]

are specially designed to analyze the difficulties of our planner

to converge initially to collision-free trajectories. They consist

of several pairs of UAVs with opposite starting and final points

that are confined in a small region and have to bypass the same

intermediate point flying at constant altitude.5 In all cases, the

planner converges to free-collision (and completely feasible)

trajectories before generation 50. It also optimizes them consid-

ering the restriction that one trajectory imposes on the others: At

least one path is straight, and the others bend as little as possible

to avoid collisions.

In scenario E2 [see Fig. 4(e) and (h)], we illustrate the ad-

vantage of using the terrain inhibition to find free risky paths

4We use PLR only because the constraints are fulfilled in the three scenarios
before generation 50, and PKill=0 in A1 and B1 before the generation 50 and
in C1 before the generation 100.

5We impose this restriction because it increments the challenge as the UAVs
cannot avoid each other using different altitudes. Each setup is the same as the
previous with two extra UAVs. Therefore, D2 and D6, which are not represented
for lack of space, are special cases of D4 and D8.
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Fig. 5. UAV scenarios graphic results. (a) SFDRP generation graphic for scenario A1. (b) Mean values of the PLR improvements. (c) Mean PLR values of the
best pareto solutions. (d) Mean values of the PLR improvements. (e) Mean PLR values of the best pareto solutions. (f) Mean improvements and Mean PLR.

TABLE IV
PLANNER AND SOLUTIONS PROPERTIES FOR THE SINGLE-UAV SCENARIOS

TABLE V
PLANNER AND SOLUTIONS PROPERTIES FOR THE MULTI-UAV SCENARIOS

among the mountains. ADU1 is placed between mountains, and

the UAVs find free risky paths inside the Rj
PKmax region (red

solid circle), where PKill=0 due to the mountains.

In scenario F3 [see Fig. 4(f) and (i)], the UAVs have to visit

several IF points, avoid NFZs, and three pop-ups. Fig. 4(f) repre-

sents the offline planner results after only 100 generations (as a

first try). A visual inspection shows that the UAV1 trajectory can

be improved. Therefore, we restart the planner with the previous

solution (see Section VI-H) and run it during 400 extra gener-

ations [see Fig. 4(i)]. Therefore, we run the planner during 500

generations, i.e., 100 initially and 400 later. The offline trajec-

tories of UAV1 , UAV2 , and UAV3 , respectively, overfly POP2

and POP1 , POP3 , and POP1 . The UAVs start flying and UAV1

detects POP2 as soon as it enters the RDmax area, and as its

RPKill area pop-up only intersects UAV1 path, only UAV1 EA

is run to obtain the UAV1 black trajectory in 11.8 s. Later on,

the same happens with UAV2 and POP3 , and the UAV2 black

trajectory is obtained in 1.8 s. Finally, UAV3 detects POP1 ,

whose RPKill area intersects first with UAV3 trajectory and,

later, with UAV1 . Therefore, UAV3 EA runs for 0.3 s to obtain

UAV3 black trajectory, and once it is finished, UAV1 EA runs

for 2.5 s to obtain UAV1 red trajectory. We run the online EA

several times in this scenario, and observe that max(T v
r ) = 24 s

when the online EA run for the limited number of 100 gener-

ations. Considering that RDmax − RPKill = 30 000 m and that

UAVs are flying at 250m/s, in the worst case, only five UAVs

could be entering pop-up detection regions simultaneously and

still be able to have their routes recalculated sequentially. How-

ever, the mean value of T v
r is 5 s, and therefore, up to 24 UAVs

will not be a problem for our sequential approach.6

C. General Remarks

The results of Fig. 5, and the GS and GI values of

Tables IV and V show that although the number of needed

6As max(T v
r ), RDm ax , and RPK ill depend on the scenario, these numbers,

which illustrate the range of applicability of our sequential approach in this
scenario, are only orientative.
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generations depends on the scenario (as one could expect), with

the correct number of generations the planner is able to find a

solution really close to the optimum in all the cases.7 Although

the correct generation number for a specific scenario cannot be

known beforehand, additional generations can be added, restart-

ing the planner with a previous solution.

Besides, Gc shows that the constraints are always fulfilled in

a small number of generations. Moreover, the planner quickly

overcomes the initial instability free-collision issue (Gc < 50
in the multi-UAV problem), even in really crowed scenarios

with multiple UAVs. Additionally, the analysis of the scenario

with pop-ups shows that the sequential online approach is valid

for multiple UAVs entering pop-up detection regions simulta-

neously, although it can fail when the number of UAVs grows

and the online EAs need too much time.

Finally, our compact trajectory representation lets the planner

identify appropriate solutions within a few generations with only

a few waypoints NW .

VIII. CONCLUSION

Our current work solves the problem of finding the paths of a

set of cooperating UAVs in military missions. For this purpose,

we have created the MCACEA for cooperating agents, which

consists of a set of EAs that obtain the optimal behavior of each

agent. EAs run in parallel offline and in serial online, and com-

municate each other information about their optimal solution

(i.e., every iteration, offline; at the end, online). Each EA finds

the optimal path of its associated UAV, and the optimality of

the path for each UAV is measured, considering 1) each UAV

mission and 2) the cooperation of the UAVs.

The flexibility of this planner is based on the evaluation

method used to calculate the fitness of the solutions, which

easily permits adding new optimization indexes and changing

their goals and priorities. This characteristic is used to achieve

different behaviors of the planner when it searches offline for the

initial paths and when it works online to avoid pop-up threats.

In both cases, the EAs consider their UAV physical constraints,

the terrain, the properties of the known ADUs, the exclusion

zones, and the obligatory intermediate points. Speedups can be

obtained using a constant flight altitude and/or previously found

solutions.

The results of the planner have been statistically analyzed to

see its ability to converge to the optimal regions of the space

and the influence of the scenarios in a set of parameters. The

analysis shows that our planner behaves consistently in different

7The small improvements and PLR Std of scenario A1 are due to the fact that
at generation 50, the planner finds a solution inside the corridor that is really
close to the optimum. In scenario B1, the solutions are improved longer, because
the planner is trying to fit them around the dashed gray circle. In scenario C1,
the big initial improvement and Std are due to the fact that at generation 50, the
solution of the planner in 20% of all executions are passing through PKill �= 0
regions. After generation 100, the planner improves the solutions around the
optimum. Scenarios D# get harder as the number of UAVs grows, and therefore,
the improvements [see Fig. 5(d)] and mean PLR values [see Fig. 5(e)] decrease
slowly. In scenario E2, the bigger PLR Std of UAV1 [see Fig. 5(f)] is originated
by the high variety of free risky paths that UAV finds among the mountains.
Finally, the high PLR Std of UAV2 in scenario F3 is due to the fact that in 10%
of the execution, the trajectory after IF1 surrounds its closer NFZ by its left
side.

TABLE VI

scenarios and that the number of generations highly depends on

the problem. It is also able to find feasible and nearly optimal

solutions with small population sizes.

Our current work focuses on including the velocities of the

UAVs in the problem codification, incrementing the number of

cooperation objectives, and making the online planners work

in parallel or serial in spite of the communication delays. The

first idea will bring important improvements and support new

ways to solve collisions problems [42]. It will also increment

the survival possibilities of the UAVs because the planner will

be able to raise the velocity near the ADUs to stay the shortest

time possible inside the dangerous areas. The planner will also

be able to slow down an UAV to save fuel or to facilitate its

maneuvers. The second idea will consider new ways of coordi-

nating the missions, such as making different UAVs to arrive at

the same (or different) point at similar times or using bait UAVs

to increment the survival possibilities of others. The third idea

will permit testing of the distributed planner in scenarios that

include communication delays.

Other UAV-planning tasks, such as target recognition [43],

[44], tracking [45], cooperative search [46], and vehicle-routing

problem [47], are also being solved with EAs. Although our

research is currently focused in the problem of finding the best

path that avoids the risk, we are analyzing the possibilities of

widening the types of tasks that the EA planner can optimize.

APPENDIX

Table VI contains the acronyms that were most used in this

paper.
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