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Abstract

Over the past decade several studies have reported that the gut microbiomes of mammals with similar dietary niches exhibit

similar compositional and functional traits. However, these studies rely heavily on samples from captive individuals and

often confound host phylogeny, gut morphology, and diet. To more explicitly test the influence of host dietary niche on the

mammalian gut microbiome we use 16S rRNA gene amplicon sequencing and shotgun metagenomics to compare the gut

microbiota of 18 species of wild non-human primates classified as either folivores or closely related non-folivores, evenly

distributed throughout the primate order and representing a range of gut morphological specializations. While folivory

results in some convergent microbial traits, collectively we show that the influence of host phylogeny on both gut microbial

composition and function is much stronger than that of host dietary niche. This pattern does not result from differences in

host geographic location or actual dietary intake at the time of sampling, but instead appears to result from differences in host

physiology. These findings indicate that mammalian gut microbiome plasticity in response to dietary shifts over both the

lifespan of an individual host and the evolutionary history of a given host species is constrained by host physiological

evolution. Therefore, the gut microbiome cannot be considered separately from host physiology when describing host

nutritional strategies and the emergence of host dietary niches.

Introduction

The mammalian gut microbiota has a wide range of effects

on host physiology and behavior. Therefore, a key focus of

gut microbiota research over the past decade has been

determining what factors shape its composition and func-

tion. Several comparative papers report that host dietary

niches play a major role in determining the gut microbiota

of a given host species, with diet specializations, such as

carnivory, herbivory, and ant-eating resulting in similar gut

microbial traits across diverse host species [1–3]. These

findings coincide with studies of individual host species that

demonstrate the strong impact of diet on the gut microbiota

across days, months, and years, [4–6] and they support the

hypothesis that gut microbes contribute to host dietary

plasticity by providing specific metabolic services tailored

for the breakdown of certain foods [7, 8]. However, several

factors such as the inclusion of data from both wild and

captive animals, as well as confounds between host phy-

logeny, anatomical specializations, and dietary niche com-

plicate these comparative studies. Captivity has a strong

effect on the gut microbiota [9–11], making it unlikely that

all data from captive individuals are representative of the

true evolutionary relationship between host and microbe.

Additionally, gut morphology impacts the gut microbiota

[12], and the gut microbiota can co-diversify with hosts,

creating strong associations between host physiology, host
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phylogenetic similarity, and gut microbial similarity [13–

15]. Published data describing the microbial signals of

herbivory and carnivory rely heavily (albeit not exclusively)

on closely related mammal species to represent these diets

[2, 3], and a description of the impact of ant-eating on the

gut microbiota encompasses both dietary and physiological

factors since highly divergent myrmecophagus hosts share

convergent physiological adaptations, such as muscular

stomachs and short small intestines [1]. Therefore, the

associations between the gut microbiota and host dietary

niche reported by these studies may not be attributable only

to host dietary niche, and thus may be over-interpreted. In

fact, a recent study suggests that host phylogeny and phy-

siology impact microbiome divergence rates in mammals

more strongly than host diet [16]. Nevertheless, this study

relies on existing data that incorporate many of the same

biases described above. More robust tests of whether host

dietary niche shape the mammalian gut microbiota inde-

pendently of other host factors should focus exclusively on

wild hosts while controlling for both host phylogeny and

gut morphology.

Here, we capitalize on the remarkable dietary and ana-

tomical diversity of non-human primates (primates hereon)

to understand the effect of host dietary niche on the com-

position and function of the colonic gut microbiota. We use

16S rRNA gene amplicon and shotgun metagenomic

sequencing to analyze the colonic gut microbiota of nine

folivorous, wild primate species and nine closely related,

non-folivorous, wild primate species representing the four

major clades of the primate phylogeny, many of which

overlap in geographic range (Fig. 1).

Folivory—the ability to consume large amounts of

leaves either seasonally or year-round—has evolved

independently multiple times throughout the primate

Order (e.g., in Malagasy strepsirrhines: sifaka, indriids;

in platyrrhines, or New World monkeys: howler mon-

keys; in catarrhines, or Old World monkeys: colobines;

and in hominoids, or apes: gorillas). Compared to other

food resources such as fruit and insects, leaves generally

have high amounts of structural carbohydrates and sec-

ondary metabolites, which make them difficult to digest

[17]. In addition to food selectivity, folivorous primates

are believed to rely heavily on the gut microbiota to

utilize this challenging diet [5, 18]. Additionally, in each

primate clade, unique anatomical specializations evolved

in parallel to folivory. Gorillas have a large body size

that maximizes gut volume and retention time, and

colobines have a sacculated foregut. Howler monkeys

have a slightly enlarged colon, and sifaka have an

enlarged caecum. Therefore, it is possible to directly test

whether all folivorous primates share gut microbial

taxonomic and functional characteristics independently

of host phylogenetic and morphological confounds. We

hypothesized that despite an effect of host phylogeny,

gut microbiota composition and function would be

shaped by host dietary niche. In particular, we predicted

that a subset of gut microbial taxa and functions related

to cellulose and secondary metabolite degradation (e.g.,

tannins, phenols, etc.) would be enriched among all

folivorous primates since some quantity of these com-

pounds is likely to reach the colon, regardless of host

physiology, and gut morphology.
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Fig. 1 Host dietary niche has a weak effect on primate gut microbiota

composition. Principal coordinates analysis (PCoA; a unweighted and

b weighted UniFrac distances) of 16S rRNA gene amplicon data

illustrates stronger clustering of non-human primate fecal samples by

host phylogenetic clade (unweighted UniFrac: PERMANOVA F3,153

= 26.4, r2= 0.29, p < 0.01; weighted UniFrac: PERMANOVA F3,153

= 21.7, r2= 0.27, p < 0.01) than diet (unweighted UniFrac:

PERMANOVA F1,153= 13.1, r2= 0.05, p < 0.01; weighted UniFrac:

PERMANOVA F1,153= 9.2, r2= 0.04, p < 0.01). Large spheres

represent folivorous primates and small spheres represent non-

folivorous primates. Folivores are shaded in the phylogenetic tree.

(Note that T. gelada consumes grass, which shares many nutritional

challenges with leaves.)
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Materials and methods

Sample collection

All samples were collected from wild non-human pri-

mates by collaborators at field sites around the world

(Table S1). In every case, bulk fecal samples were col-

lected immediately after defecation with a sterile utensil

(e.g., plastic spoon) and stored in a collection tube with

either 95% ethanol or RNALater. Samples were stored

and transported to the United States by collaborators.

Table S1 lists the responsible collaborator, sampling site,

sample size, and preservation method for each non-human

primate species. Appropriate government permits and

IACUC protocols were obtained by each collaborator

independently.

Sample processing for 16S rRNA gene amplicon
sequencing

We began our analyses by describing the microbial taxo-

nomic composition of all samples. To do this, we followed

the Earth Microbiome Project protocol [19]. We extracted

microbial DNA from all samples using the MO BIO Pow-

erSoil DNA extraction kit. PCR targeting the V4 region of

the 16S rRNA bacterial was performed with the 515F/806R

primers, utilizing the protocol described in Caporaso et al.

[20]. We barcoded and pooled amplicons in equal con-

centrations for sequencing. We then purified the amplicon

pool with the MO BIO UltraClean PCR Clean-up kit and

sequenced on the Illumina MiSeq sequencing platform

(MiSeq Control Software 2.0.5 and Real-Time Analysis

software 1.16.18) at the BioFrontiers Institute Next-

Generation Genomics Facility at the University of Color-

ado, Boulder, USA. Samples were pseudo-randomly

assigned to three different MiSeq runs as they were accu-

mulated so that samples representing a given host clade or

diet type were never all sequenced on the same run. In

several cases, samples from the same host species were

assigned to different runs.

Quality filtering and OTU-picking

The single-end sequencing reads from the 515f primer were

quality-checked using the default settings for the split_li-

braries_fastq.py function in QIIME v1.9.0 [21]. After

quality filtering we obtained 12,178,012 reads associated

with these samples with an average of 23,152 reads/sample

(range: 0–80,714 reads/sample).

Following common practice in microbiome research,

sequences were initially clustered into representative bac-

terial operational taxonomic units (OTUs) using the sort-

merna/sumaclust implementation of open-reference OTU-

picking at 97% sequence similarity [22]. Sequences were

aligned [23], and taxonomy was assigned using UCLUST

[24] and the Green Genes 13_8 database [25, 26].

Sequences representing chloroplasts and mitochondria were

filtered out, and any OTUs representing <0.00005% of the

total dataset were filtered out as recommended for Illumina-

generated sequencing data [27]. A subset of samples were

randomly selected for analysis for each host species

(Table S1). The data for these samples were rarefied to

15,012 reads/sample (single_rarefaction.py).

To increase our ability to describe patterns of microbial

community structure at finer taxonomic resolution, we also

processed sequences using Deblur [28], which bypasses the

OTU clustering algorithm described above. Briefly, this

algorithm uses Illumina error profiles to obtain putative

error-free sequences that describe microbial community

composition at the sub-OTU (sOTU) level. To place

deblurred sequences into a phylogenetic context, we used

SEPP [29] to insert unique deblurred V4 fragments into the

most recent available Greengenes phylogeny of repre-

sentative 97% clustered full-length 16S sequences

(Greengenes v. 13_8). SEPP was run with an alignment

subset of 100 and placement subset set of 500. Reference

sequences were then trimmed from the tree, leaving the

subsequent phylogeny for downstream applications,

including alpha- and beta-diversity calculations and bal-

ance tree analysis. Taxonomy was also inferred from the

SEPP insertions. For each deblurred sequence, SEPP

returns a set of (at most) seven highest-likelihood candidate

placements in the reference phylogeny, each of which

includes an attaching branch from the reference tree along

with a probability. For each branch in the reference tree, a

taxonomic label was assigned at each rank if and only if at

least 95% of the leaves below that branch share the same

label. The root of the tree was located on a branch that

splits the kingdoms Bacteria and Archaea perfectly, so

every rank of the taxonomy is well contained on one side of

the root or the other. For a given deblurred sequence at a

given taxonomic rank, each candidate placement inherits

the label of its attaching branch and a label is assigned to

the sequence if candidate placements representing at least

80% cumulative probability share that label. Effectively,

labels were assigned to internal branches of the Greengenes

tree by a de-facto voting of child leaves with a quorum of

95%, and query sequences were labeled by SEPP if it

assigned at least 80% probability to branches with a com-

mon label.

All subsequent statistical analyses were performed on

both the OTU-clustered dataset and the deblurred dataset,

and results were consistent across methods. The analyses of

microbial community taxonomic composition presented in

the main text utilize the deblurred data unless otherwise

noted.
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Analysis of sample taxonomic composition

Once processed, we used sequence data to compare rich-

ness, diversity, and microbial community composition

among samples. We generated beta diversity distance

matrices using QIIME (beta_diversity_through_plots.py),

and we visualized clustering patterns among samples using

principal coordinates analysis (PCoA, Emperor v 0.9.51

[30] and non-metric multi-dimensional scaling (vegan

package, R software, version 3.0.2)). We calculated pair-

wise distances between samples using unweighted UniFrac

and weighted UniFrac similarity indices [31]. We tested for

significant differences in sample clustering patterns and

microbial community composition across host clades (Old

World monkey, New World monkey, ape, lemur) and diet

type (folivore, non-folivore, controlling for host clade) for

each species using permutational analysis of variance

(PERMANOVA, adonis function in the vegan package, R

software, version 3.0.2). Because PERMANOVA is sensi-

tive to differences in dispersion between groups, we also

tested for these differences. Host phylogenetic groups

exhibited significantly different dispersion (F3,150= 13.4, p

< 0.01) while host diet groups did not (F3,150= 3.5, p=

0.06). However, visual inspection of clustering plots sug-

gests that differing dispersion is not driving patterns of

significance across host phylogenetic groups. We calculated

the number of observed sOTUs and the Faith’s phylogenetic

diversity [32] to describe the alpha diversity in each sample

using QIIME (alpha_rarefaction.py). We then identified

core sOTUs shared by 90% of the samples for each host

clade and in 80% of the samples for each host diet type

(compute_core.py).

To detect sOTUs that were significantly different in

relative abundance among the four clades of primates we

utilized a linear discriminant analysis of effect size (LEfSe;

[33]). We assigned primate families as the class vector and

kept features with a logarithmic LDA score of >3 using

default parameters. We reran this analysis using diet as the

class vector and primate family as the subclass vector to

detect sOTUs different in abundance between folivores non-

folivores; however, no features were detected even with a

low LDA score cutoff of 0.8.

Because, we observed high levels of variation in the

distribution of bacterial taxa among primate clades, we also

used a more sensitive method for detecting differences in

microbial community composition using a concept known

as balance trees [34]. These balances are the log-ratios of

phylogenetic clades and analyzing these balances alleviates

the common problems associated with compositionality in

microbial sequence data [35]. The specific methodology

used for constructing and analyzing can be found at https://

github.com/biocore/gneiss. Briefly, a pseudocount of 1 was

added to all of the values in the deblurred sequence table to

account for zeroes and then transformed using the isometric

log-ratio calculation [36]. Using the microbial phylogenetic

tree built during processing, balances were calculated by

computing the log-ratio of proportions between adjacent

phylogenetic clades at each internal node of the tree. A

linear mixed effects model was then run on each balance, to

test for significant differences in the ratios of bacterial taxa

among folivorous and non-folivorous lineages while

accounting for phylogeny and variability among individuals

as random effects.

Testing the effect of host geography

Because host phylogeny, geographic location, and local diet

are often confounded, we wanted to more closely explore

the potential influence of host geography and local diet on

our dataset. Therefore, we created two additional sets of

PCoA plots (based on 97% OTUs) with new samples

included. First, we examined only New World monkeys but

utilized additional howler monkey samples collected from

different sites with different forest types [37]. Specifically,

we included Alouatta pigra samples from a semi-deciduous

forest (El Tormento, Mexico) and Alouatta palliata samples

from an evergreen rainforest (La Suerte, Costa Rica), which

represent markedly distinct environments and diets. Addi-

tionally, because the Alouatta diet varies in leaf intake

seasonally, we also included samples collected in the same

forest during both periods of high fruit intake and high leaf

intake when possible.

We also examined the effect of host geography on a

larger scale by comparing the gut microbiota of African

and Asian colobines. While all of these colobines have

similar gut morphology and dietary niches, they inhabit

distinct continents with different environments and local

diets. To perform this comparison, we integrated published

data from twelve wild Asian colobines (red-shanked doucs,

Pygathrix nemaeus) with our original data [38]. In both

cases, open-reference OTUs were re-picked for the entire

dataset using the same methods described above. The

resulting data were filtered, rarefied, and analyzed the same

way as well.

Cophylogenetic analyses

Given that codiversification of hosts and gut microbes has

been emphasized as an important process contributing to the

composition of the primate gut microbiome [13, 14], we

wanted to explicitly explore the relationship between the

host phylogeny and diversity of microbial 16S sequences in

this dataset. Therefore, we performed two analyses: one, a

reimplementation of the beta-diversity clustering sensitivity

analysis in Sanders et al. [39] to assess whether patterns of

microbial community similarity that are correlated with host
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phylogeny are likely to indicate codiversification; and two,

an application of the permutation test of cophylogeny from

Hommola et al. [40] to sequence diversity within OTUs to

test for codiversification in individual bacterial lineages.

Both analyses were implemented in a Snakemake [41]

workflow available at https://github.com/tanaes/snakema

ke_codiversification. Briefly, deblurred 16S sequences

were clustered using the USEARCH [24] pipeline in QIIME

1.8.1 at similarity thresholds of 85, 88, 91, 94, 97, and 99%

identity. For beta-diversity clustering sensitivity analysis,

beta-diversity distances among four randomly selected

samples per species were calculated from 100 OTU tables

jackknifed to 7200 sequences. Each jackknifed distance

matrix was UPGMA-clustered, and the resulting similarity

dendrogram compared against the actual host phylogeny. A

summary figure was then created to illustrate the number of

times each actual host clade was recovered from each

parameter combination.

For per-lineage codiversification analysis, the deblurred

16S rRNA sequences composing each 97% OTU were

realigned using MUSCLE, a phylogeny estimated with

FastTree [42], and the pairwise distances among unique

bacterial sequences compared to the pairwise patristic dis-

tances of their host taxa using an adaptation of the Hom-

mola et al. [40] permutation test of cospeciation, with

10,000 permutations. This test is an extension of the Mantel

test of distance matrix correlation, modified to allow mul-

tiple symbionts per host (and vice versa). p-values were

corrected using the Benjamini–Hochberg False Discovery

Rate, and OTUs estimated to be significantly codiversifying

with their hosts illustrated by mapping host information

onto the intra-OTU phylogeny.

Sample processing for shotgun metagenomic
sequencing

In addition to describing the taxonomic composition of the

sampled primate gut microbiomes, we also wanted to assess

the functional capacity of these microbiomes. To do this, a

subset of 95 samples was randomly selected for shotgun

metagenomic sequencing (Table S1). Sequencing libraries

were robotically prepared with the Kapa Hyper Library

Preparation kit (Kapa Biosystems) at the Roy J. Carver

Biotechnology Center at the University of Illinois at

Champaign-Urbana. Library insert sizes ranged from 80 to

700 bp. Libraries were combined into four pools, each of

which was sequenced on one lane of the Illumina

HiSeq2500 using TruSeq SBS sequencing chemistry ver-

sion 4. A total of 160-nt paired-end reads were generated

using 161 cycles for each end of the fragment. Fastq files

were generated and demultiplexed using the bcl2fastq

v1.8.4 Conversion Software (Illumina). The run produced a

total of 1,472,869,654 reads (average: 7,671,196 ±

2,966,770 reads/sample) with average quality scores of 32

and above.

Gene ortholog group and pathway relative
abundance

Shotgun metagenomic data were quality filtered with

Trimmomatic v.0.32 with parameters ILLUMINACLIP:

TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3 SLI-

DINGWINDOW:4:15 MINLEN:36. This yielded 94 meta-

genomes with sufficient sequencing depth for quantitative

analysis, which were subsampled to the size of smallest one

(3,589,870 reads) using seqtk v.1.0. Forward and reverse

reads were concatenated (seqtk was run with the same seed

for both to maintain read pairs). The 94 metagenomes were

analyzed for the relative abundance of gene ortholog groups

and biochemical pathways using HUMAnN2 v.0.2.2 with

the following workflow to ensure comparable results across

samples: MetaPhlAn2 was run on each metagenome using

MetaPhlAn2 database v.20. Lists of matched strains in 94

results were merged to a single ‘bugs list’. A single

HUMAnN2 run was done using this bugs list with the sole

purpose of generating a custom Bowtie2 database from the

subset of the ChocoPhlAn v.0.1.1 centroid genomes corre-

sponding to the bugs list. HUMAnN2 (http://huttenhower.

sph.harvard.edu/humann2) was then run on all 94 samples

using this pre-compiled database (first step: Bowtie 2 on all

reads) and then with the default UniRef50 database (second

step: DIAMOND translated search on leftover reads) with

options--bypass-prescreen--bypass-nucleotide-index. Each

of the three types of HUMAnN2 output tables (genefami-

lies, pathabundance, pathcoverage) were then merged

across the 94 samples (humann2_join_tables), then nor-

malized to counts per million (cpm) and relative abundance

(relab) (humann2_renorm_table). The genefamilies tables

were regrouped (humann2_regroup_table) from UniRef50

families to KEGG Orthology (KO), Gene Ontology (GO),

MetaCyc reaction (rxn), and Enzyme Classification number

(EC). Finally, tables were split into two versions: stratified

by taxonomy, and unstratified (sum of all strains).

Analysis of sample functional composition

Once sequence data were processed, we used them to

compare richness, diversity, and gene composition among

samples. Beta diversity distance matrices were generated

using QIIME (beta_diversity_through_plots.py), and clus-

tering patterns among samples were visualized using prin-

cipal coordinates analysis (PCoA, Emperor v 0.9.51 [30])

and non-metric multi-dimensional scaling (vegan package,

R software, version 3.0.2). Pairwise distances between

samples were calculated using Bray-Curtis similarity indi-

ces. We tested for significant differences in sample
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clustering patterns and microbial community composition

across host clades (Old World monkey, New World mon-

key, ape, lemur) and diet type (folivore, non-folivore,

controlling for host clade) for each species using permuta-

tional analysis of variance (PERMANOVA, adonis function

in the vegan package, R software, version 3.0.2).

To investigate whether taxonomic and gene abundance

patterns were similar in our samples, we compared beta-

diversity patterns between 16S rRNA (unweighted UniFrac)

and shotgun metagenomics Metacyc reaction pathway

(Bray-Curtis) datasets. We used a Procrustes analysis (least-

squares orthogonal mapping) to transform the first three

principal coordinates for each dataset (QIIME, transform_-

coordinate_matrices.py) and estimate m2 value (sum of the

squared deviations). We then shuffled sample identifiers and

recalculated m2 999 times and reported the p-value as the

proportion of m2 values lower than the actual m2 value. We

also directly compared the distance matrices using a mantel

test with 999 permutations.

In addition to assessing overall functional capacity, we

also wanted to examine differences in the relative abun-

dances of specific enzymes associated with functions such

as cellulose degradation and plant secondary metabolite

degradation. To do this, we extracted information about

CAZyme relative abundances from the metagenomic data-

set. The HUMAnN2 analyses described above were reim-

plemented, but using the dbCAN [43] version of the

CAZyDB [44] as a custom translated alignment database,

skipping the Bowtie2 nucleotide alignment step. Substrate

specificities of particular CAZyme families used to produce

Figure S8 were derived from Table S1 of [45] (Cantarel

et al. 2012). Summed counts for CAZymes in each of these

categories were compared using a 2-way ANOVA in R,

with diet category and host phylogenetic group modeled as

additive effects. p-values for an effect of diet were corrected

for multiple hypothesis tests using the Bonferroni method.

We also examined whether other microbial metabolic

pathways differed in relative abundance among samples.

We used a linear mixed effects model to assess the abun-

dance of specific MetaCyc pathways in folivorous versus

non-folivorous lineages. Model comparisons were per-

formed between one that simply accounted for the random

effects of each species nested within the four phylogenetic

groups and a second which incorporated diet as an addi-

tional fixed effect. Pathways were identified as associated

with diet category when inclusion significantly improved

the fit of the second model over the first with a p-value of

<0.01.

For similar reasons, we also utilized a linear discriminant

analysis of effect size (LEfSe; [33]) to detect pathways that

were significantly different in relative abundance among

clades of primates. We assigned primate phylogenetic group

as the class vector and diet as the subclass vector. Features

with a logarithmic LDA score of >3.0 using default para-

meters were kept.

Results

Gut microbial composition

Using deblurred 16S rRNA amplicon data [28] and con-

trolling for host phylogeny by comparing folivorous and

non-folivorous primates across the entire primate order, we

found that folivory had a small but significant effect on gut

microbiota composition at the sub-OTU level (sOTU;

Fig. 1, S1; unweighted UniFrac: PERMANOVA F1,153=

13.1, r2= 0.05, p < 0.01; weighted UniFrac: PERMA-

NOVA F1,153= 9.2, r2= 0.04, p < 0.01). However, it was

difficult to clearly define a characteristic ‘folivorous primate

gut microbiota.’ There were no consistent differences in gut

microbial richness or diversity between diet types at the

sOTU level (Fig. S2). Additionally, neither diet type was

associated with a core gut microbiota, and LefSe analysis

did not indicate strong differences in the relative abun-

dances of sOTUs between diet types across the primate

phylogeny. Given the possibility that existing taxonomic

labels do not correspond to the specific bacterial clades

most associated with folivory, we also performed a balance

tree analysis to find nodes of the bacterial phylogeny for

which daughter lineages were present in different ratios in

folivorous and non-folivorous primates after controlling for

host phylogenetic group [34]. This analysis revealed several

such bacterial groups within the Clostridia, for which a

significant effect of folivory could be observed in the

aggregate; although, to some extent, these patterns were still

specific to a subset of primate clades (Fig. 2).

Given that we detected a weak effect of host dietary

niche on the composition and function of the primate gut

microbiota, we set out to determine whether other host traits

are more important for shaping the primate gut microbiota.

Our analysis indicated that host phylogenetic relationships

were the strongest determinants of primate gut microbiota

composition at the sOTU level (Fig. 1, S1; unweighted

UniFrac: PERMANOVA- F3,153= 26.4, r2= 0.29, p < 0.01,

weighted UniFrac: PERMANOVA F3,153= 21.7, r2= 0.27,

p < 0.01). Microbial community richness and diversity dif-

fered significantly across the four primate clades, with

lemurs exhibiting significantly lower sOTU richness and

diversity than all other primates (Fig. S2). Each primate

clade exhibited a distinct core gut microbiota (Table S2),

and LDA Effect Size analysis (LEfSe) [33] indicated that

several sOTUs, particularly in the bacterial class Clostridia,

significantly differed in relative abundance across the pri-

mate clades (Table S3). Additionally, 56% of the sequence

reads generated did not match the GreenGenes database at
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97%, and an average of 15% of the reads in each sample

could not be classified past the kingdom level (range

2–44%; Table S4). While there was a trend for more

unclassified reads associated with folivorous primates

(Table S5), stronger patterns were observed in relation to

host clades. The majority of unclassified reads were detec-

ted in lemurs, both in terms of total proportion of reads and

fraction of observed sOTUs (Figs. S3, S4).

Notably, the observed effect of host phylogeny on gut

microbiota composition did not appear to reflect codi-

versification of host and gut microbiome (a pattern of

concordant phylogenetic histories, potentially resulting

from cospeciation over time [46]), as is sometimes assumed.

Patterns of phylosymbiosis, or congruence between host

phylogeny and whole gut microbial community similarity

patterns, were maintained regardless of OTU clustering

widths (Fig. S5). This observation suggests that these pat-

terns did not arise from recent microbial evolutionary pro-

cesses, as would have been the case if the patterns arose via

microbial lineage splitting concurrent with host lineage

splitting [39]. Furthermore, within individual OTUs picked

at 97% similarity, 16S rRNA gene sequence variation was

not associated with hosts in a way that indicated strong

codiversification; the strongest, most consistent pattern was

a division between Old World monkeys and New World

monkeys (Fig. S6). Patterns of codiversification may indeed

be present in these communities, but if so the majority of the

signal is likely found at a finer resolution than can be

resolved using the short portion of 16S rRNA gene

sequenced here [13].

After controlling for host phylogeny, host geography

explained a substantial proportion of variation in gut

microbiota composition, especially at narrow clustering

widths (Fig. S7). Because host geography is often con-

founded with host phylogeny, we closely examined the

New World monkeys at the OTU level using additional

samples (Materials and methods). Our findings revealed that

neither host geographic location nor the proportion of fruits

Fig. 2 Folivorous primates share few gut microbiota traits at the

taxonomic level. A phylogenetic tree summarizes the results of the

linear mixed effects analysis applied to balances. The circular heat-

maps surrounding the tree plot the proportions of microbes across all

of the samples, with the outmost ring containing samples from

folivorous species and the inner ring containing samples from non-

folivorous species. Three significant balances (p-value <0.01) differ-

entiate the gut microbiota of folivorous primates from non-folivorous

primates. Darker shades represent enrichment of that particular

microbial clade
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and leaves in the diet at the time of sampling drove the

observed patterns (Fig. S8). Samples clustered by host

genus and species independently of both intra-specific dif-

ferences in sampling location or percent folivory of the diet

(Fig. S8). Integrating previously published Asian colobine

data (Pygathrix nemaeus) [38] with our larger dataset also

indicated stronger clustering of African colobines with

Asian colobines compared to other African primates (Fig.

S9), suggesting an important role for host physiology in

shaping the gut microbiota given the specialized gut mor-

phology of colobines.

Gut microbial function

Compared to gut microbial taxonomic composition, we

detected a slightly more robust signal of gut microbial

functional similarity (measured using shotgun metage-

nomics) among folivorous primates (Fig. 3a, MetaCyc

reactions, Bray-Curtis: PERMANOVA F1,93= 8.7, r2=

0.07, p < 0.01). Nevertheless, Procrustes analysis demon-

strated strong concordance between patterns in gut micro-

biota composition and function (Fig. 3b, S10), as previously

demonstrated for other mammals on a much broader phy-

logenetic scale [3], and again, there were few specific

microbial characteristics driving overall patterns. Control-

ling for host phylogeny, folivorous primates were enriched

for microbial biosynthesis of arginine and chorismate (a

precursor to tryptophan), as well as aminoimidazole ribo-

nucleotide biosynthesis (precursor to adenine; Fig. 4). Non-

folivorous primates were enriched for purine degradation

and for multiple pathways involved in aerobic energy pro-

duction and sugar degradation (Fig. 4). There was no dif-

ference in pathways for cellulose degradation or plant

secondary metabolite degradation between the two diet

groups. However, non-folivorous primates were enriched

for CAZymes involved in starch and sucrose degradation

(Fig. S11).

Similar to taxonomic composition, the functional profile

of the primate gut microbiota was most strongly influenced

by host phylogeny and physiology (Fig. 3b, S5; Bray-

Curtis: PERMANOVA F3,93= 11.5, r2= 0.28, p < 0.01).

The richness of MetaCyc reaction pathways associated with

each primate clade was similar, but LefSe analysis revealed

differences in the relative abundance of several pathways

across clades (Table S6). Furthermore, CAZyme analysis

highlighted an increased relative abundance of enzymes

for degrading peptidoglycans and plant cell walls in

New World monkeys (Fig. S11). These findings suggest

that physiological similarities between closely related pri-

mate species result in requirements for similar microbial

services regardless of recent divergence in host dietary

niches.

Discussion

Collectively, our results demonstrate that the influence of

host phylogeny and physiology on the primate gut micro-

biota is substantially greater than that of host dietary niche.

While some shared traits in microbial taxonomy and func-

tion are apparent among folivorous primates, the evolution

of folivory in each primate clade seems to have been more

strongly characterized by unique changes in the distal gut

microbiome. For example, at the taxonomic level, even

when gut microbial changes in response to folivory appear

to involve the same clades of bacteria, different members of

those clades fill what we predict are similar niches in dif-

ferent host lineages. These results are consistent with the

W

W

(10) Ape

(15) Lemur

(40) New orld Monkey

(29) Old orld Monkey

Phylogenetic Group

(49) Folivore

(45) Non-folivore

Diet Group

a b

Fig. 3 Host dietary niche has a weak effect on primate gut microbiota

functional potential. a Principal coordinates analysis (PCoA; Bray-

Curtis dissimilarity) of MetaCyc reaction pathway data illustrates weak

clustering of non-human primate fecal samples by diet (PERMA-

NOVA F1,93= 8.7, r2= 0.07, p < 0.01). b PCoA illustrating Procrustes

analysis of 16S rrNA gene amplicon data (unweighted UniFrac dis-

tance) and Metacyc reaction pathway data (Bray-Curtis dissimilarity).

For both datasets, host phylogenetic clade is the strongest driver of

sample clustering patterns. Sample sizes indicated in parentheses
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observation that very ancient splits in bacterial evolution are

associated with microbial signatures observed in much more

recently evolved mammalian dietary specializations [47].

Whether host gut morphology, immune system function,

or other physiological factors are most important in shaping

the gut microbiota in the context of host phylogeny remains

to be seen, but we speculate that a combination of these

physiological factors interact to determine the gut micro-

biota. For example, in addition to influencing the volume

and surface area of different parts of the gut occupied by

microbes, anatomical specializations such as a sacculated

foregut or an enlarged caecum may alter signaling mole-

cules such as toll-like receptors that act as selective filters

on gut microbiota composition. These changes could

encourage the acquisition or evolution of new microbial

taxa that contribute important metabolic functions to hosts.

Shifts in dietary substrates provided to gut microbes as a

result of host diet changes could result in the same pro-

cesses, explaining the dual impact of host phylogeny and

dietary niche that we observed. Our discovery of novel

microbial taxa in each primate clade, many of which were

associated with folivory, provides evidence for this process,

as well as expanding our understanding of the gut microbial

diversity contained within the primate order [14].

These evolutionary and ecological processes also likely

feed back positively among diet, the gut microbiota, and

host physiology, intensifying the microbial signal of diet

over time. In fact, our data clearly demonstrate a stronger

signal of folivory in the gut microbiota of those primate

clades in which folivory has been established for longer

(e.g. lemurs: ~40 mya; compared to Old World monkeys:

~20 mya; New World monkeys: ~17 mya; apes: ~10 mya)

[48]) (Fig. 4). This pattern parallels the pattern reported in a

study of 24 animal species in which the effect of host

phylogeny on the gut microbiota increased in accordance

with the time since host species divergence [15]. It may also

explain why diet-associated signals of microbial con-

vergence have been more difficult to detect in host clades

with more recent evolutionary diet shifts (e.g., bears, ~5

mya; [2]).

Finally, although, we report a weak influence of host diet

on the gut microbiota, given the range of habitats, beha-

viors, and physiological adaptations represented by these

primate species, and the fact that primates have been

Fig. 4 Folivorous primates share few gut microbiota traits at the

functional level. MetaCyc reaction pathways with differential relative

abundances between folivorous and non-folivorous primates according

to linear mixed effects models show few patterns. Positive values

illustrate enrichment in folivorous primates while negative values

illustrate enrichment in non-folivorous primates
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diverging for ~65 million years (with folivory emerging

at different points during this period) [48], our ability to

detect any similarities in the gut microbiota of folivorous

primates is striking. Future studies targeting the microbial

taxa and functions associated with folivory in primates

are therefore warranted. A folivorous primate microbiome

enriched in pathways for the production of essential

or conditionally essential amino acids, such as tryptophan

and arginine [49], and a non-folivorous primate microbiome

enriched in pathways for starch and sucrose degradation,

suggest that microbial services such as vitamin and

nutrient biosynthesis and energy metabolism may be

especially important to understanding adaptations to

folivory.

It is also important to note that this study relied solely on

fecal samples despite a range of gut morphological spe-

cializations being represented by the sampled primates. A

recent study of sloths indicates that microbial signals of diet

between species are greater in the foregut compared to the

hindgut [50]. Therefore, a comparison of the microbiota of

gut chambers where most leaf degradation occurs in each

primate clade could reveal more marked patterns than those

reported here. However, these data require invasive sam-

pling and are vastly more difficult to obtain from wild

individuals.

This analysis provides important insight into the pro-

cesses behind the evolution of both hosts and their gut

microbes. While the flexibility of the mammalian gut

microbiota in response to host diet has been a dominant

theme in the field, by utilizing independent contrasts of

dietary niche across multiple primate clades with distinct

gut morphologies, we demonstrate clear limits to the ability

of the mammalian gut microbiota to shift in response to

changes in host diet. While differences in diet across space

and time have a strong effect on the gut microbiome of any

given host species when considered in isolation [4, 5, 51–

56], their effect is much smaller than that of host phylogeny

and physiology and is difficult to detect in the context of

cross-host species comparisons. In this sense, the impor-

tance of diet in shaping the gut microbiome is influenced by

study design and scale. Although, gut microbes likely play a

critical role in supporting host dietary specializations and

facilitating individual host dietary plasticity, our data indi-

cate that the bidirectional interactions of host physiology

and gut microbiota over evolutionary time ultimately dictate

the host nutritional outcomes resulting from a given dietary

strategy.
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