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In this work we analyze the evolution of voluntary vaccination in networked populations by entangling

the spreading dynamics of an influenza-like disease with an evolutionary framework taking place at the end

of each influenza season so that individuals take or do not take the vaccine upon their previous experience.

Our framework thus puts in competition two well-known dynamical properties of scale-free networks: the fast

propagation of diseases and the promotion of cooperative behaviors. Our results show that when vaccine is

perfect, scale-free networks enhance the vaccination behavior with respect to random graphs with homogeneous

connectivity patterns. However, when imperfection appears we find a crossover effect so that the number of

infected (vaccinated) individuals increases (decreases) with respect to homogeneous networks, thus showing the

competition between the aforementioned properties of scale-free graphs.

DOI: 10.1103/PhysRevE.88.032803 PACS number(s): 89.75.Fb, 05.70.Fh

I. INTRODUCTION

The advent of network science [1,2] has provided an

important set of computational and statistical physics tools

for describing the problem of epidemic spreading by incor-

porating the realistic interaction patterns of the constituents

of social and technological systems [3]. Classical approaches

to epidemiology [4,5] rely on the use of the theory of phase

transitions and critical phenomena, so as to unveil the onset and

the macroscopic impact of epidemic outbreaks. Recently these

techniques have been pervasively adapted to study a variety of

critical phenomena on top of networks [6].

The main contribution of the former line of research to

epidemiology has been the development of a generalized

mean-field framework in which general patterns of interactions

can be included. In particular, it was shown [7–12] that

for scale-free networks [in which the probability distribution

of having a node with k neighbors follows a power law,

P (k) ∼ k−α] the epidemic onset was anticipated as compared

to substrates with more regular (or homogeneous) connectivity

patterns. Moreover, when α < 3 (as most of social and

technological networks show [13,14]) and for large enough

(thermodynamic limit) systems, the epidemic onset vanishes,

meaning that even a very small fraction of infected elements

with small infective power can spread a disease to a macro-

scopic part of the population by a sequence of contagions

between neighbors of the network, as happens in human

contacts [15–18].

Apart from the theoretical value of the above finding, its

direct implications on public health campaigns and the security

of technological networks such as the Internet demand a deeper

understanding about the influence that diverse contact patterns

have on disease dynamics, its co-evolution [19,20], and the

design of new algorithms for immunization and vaccination

policies. Typically, these studies aim at identifying the most

efficient way for reducing the impact of an epidemic by the

vaccination or immunization of the minimal number of nodes.

To this aim, different methods to identify the most important

nodes to be immunized have been proposed [21–24].

The former works concern the immunization of tech-

nological networks since in social contexts vaccination is

typically voluntary. Thus, the study of the immunization of

a population demands that we include the ways vaccination

and risky behaviors compete and spread across individuals.

To this aim, one may consider game theory to formulate a

social dilemma in terms of the benefits associated to each

of the behaviors: vaccination or not. Within this framework

individuals act rationally, i.e., by choosing their strategy after

an evaluation of their potential benefits. This evaluation is

done by considering their perception of the risk to con-

tract the disease. For well-mixed populations recent results

show [25–30] that voluntary vaccination is not efficient to

reach efficient immunization. However, this kind of approach

was generalized to networks [31], unveiling an enhancement

of voluntary vaccination.

The former game theoretical approach considers that agents

aim at maximizing their own benefits. However, the decisions

of individuals can evolve in time depending on the epidemic

incidence observed in the population. In this framework agents

are prone to adopt the strategies that are expected to perform

better based on the information available. This evolutionary

avenue has been recently adopted to the vaccination dilemma.

A first evolutionary avenue is presented in Refs. [32–34]

where both disease transmission and vaccinating behavior

evolve in time simultaneously. The evolution for the fraction

of vaccinated individuals is driven by the difference of payoffs

between vaccinated and nonvaccinated agents (as in the

case of the well-known replicator equation of evolutionary

games [35,36]), with the latter determined by the epidemic

incidence at that time. A second evolutionary approach is

proposed in Ref. [37]. In this case, inspired by seasonal

influenza, the number of vaccinated individuals remains

constant during the duration of the influenza season. After

each season, individuals evaluate the payoffs based on the

incidence of the disease in the last season and decide whether

to vaccinate or not for the next seasons.

Here we take a similar avenue to that of Ref. [37] regarding

the dynamical setup and the motivation: the vaccination for
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seasonal influenza. However, the way in which payoffs are

constructed and the way individuals choose their strategy

follow the typical setup of evolutionary games [35,36].

This setup, originally presented in Ref. [38] for the vac-

cination dilemma, considers that individuals are assigned

a payoff that is solely based on the personal experience

during the last season. In addition, the strategic choice

is based on the imitation of those individuals with better

payoffs. Thus, we do not consider that individuals follow

a rational derivation of the payoffs associated to vaccina-

tion and risky behavior based on the information available.

This allow us to connect the vaccination dilemma with

other studies on the evolutionary game dynamics of social

dilemmas [35,36].

In recent years, the study of the evolutionary

game dynamics of social dilemmas on structured popu-

lations [39–41] has shown that cooperation (here related

to vaccination) is favored when the interactions among

individuals take the form of scale-free networks [42,43].

Inspired by this result, in this work we explore the spread of

vaccination behavior across networks with homogeneous and

heterogeneous (scale-free) connectivity patterns. Our results

show that when vaccine is perfect, scale-free networks enhance

the vaccination behavior with respect to homogeneous graphs,

thus reducing the impact of the disease on the population. How-

ever, when vaccine is imperfect, we find a crossover effect, and

homogeneous networks outperform scale-free ones. This latter

scenario reveals an interesting competition between the rapid

spread of both diseases and cooperative behaviors in scale-free

graphs.

II. THE MODEL

As introduced above, to incorporate the competition be-

tween disease spreading and evolutionary dynamics on top

of a network we entangle these two dynamical frameworks

by producing an iterative sequence of a two-stage process.

In both stages the interaction pattern among individuals is

described by a complex network (keeping the same network for

both dynamical setups). This network is given by an (N × N )

adjacency matrix Aij so that when two individuals interact

Aij = 1, whereas Aij = 0 otherwise. In this way, the number

ki of neighbors (contacts) of a given node, say, i, is given by

ki =
∑N

j=1 Aij .

In this work we will consider two of the most paradigmatic

network models: Erdős-Rényi (ER) graphs [44] and Barabási-

Albert (BA) networks [45]. The former class of graphs are

described by a Poisson degree distribution P (k), so that most

of the nodes have a connectivity close to the mean value

〈k〉. On the other hand, BA networks display a power-law

degree distribution of the form,P (k) ∼ k−3, thus incorporating

the scale-free (SF) property of real-world networks. The

implementation of our dynamical setup aims at revealing

the differences between the heterogeneous degree pattern

displayed in SF and the rather homogeneous structure of ER

graphs. To this aim, for both ER and SF networks, the average

connectivity of the nodes is set to 〈k〉 = 6. Below we introduce

the rules governing the two-stage dynamics, also sketched in

Fig. 1.

FIG. 1. (Color online) Resuming sequence of the evolutionary

picture of our model. The top box describes the epidemic spreading

process. The bottom one displays the payoffs accumulated by the

agents according to their strategy. Arrows denote the causal order of

the evolutionary process.

A. Disease spreading

The first of the stages of our dynamical setup is based on the

evolution of a susceptible-exposed-infected-recovered (SEIR)

model [4,5]. This model captures the dynamics of influenza-

type infections. Susceptible nodes have not been infected and

are healthy. They catch the disease via direct contact with

exposed neighbors at a rate λ. Exposed nodes are supposed

to carry the virus although they still do not display symptoms

of the disease; thus these individuals are highly infectious

during this incubation period. Exposed nodes become infected

with some rate µ′ which typically is the inverse time of the

incubation period of the disease. Infected nodes, on the other

hand, although still carrying the virus are here assumed not to

be infectious. In particular, we consider that during this period

they remain isolated from the rest of the population. Finally,

infected nodes pass to the recovered state with rate µ that is

the inverse duration time of the convalescence period.

With the above rules we consider that each node i interacts

simultaneously with its ki neighbors per unit time. Thus, for

a network described by the adjacency matrix Aij the effective

probability that a susceptible node i gets the disease per unit

time is given by

P i
S→E = 1 − (1 − λ)

∑N
j=1 Aij xj , (1)

where xj = 1 when node j is exposed and xj = 0 otherwise.

Here, in order to mimic the transmission of ordinary influenza,

we have set µ′ = 0.33, since the time elapsed between

exposure to the virus and development of symptoms is two

to three days. In addition we take µ = 0.2 since the symptoms

of uncomplicated influenza illness resolve after a period of 3

to 7 days, so that the average permanence in the infected state

is µ−1 = 5 days.

The addition of vaccinated individuals to the formulation

of our SEIR model implies that initially there is subset of

susceptible individuals (representing a fraction NV of the

total population) that are less prone to catch the disease than

nonvaccinated susceptible ones. In particular, we consider that

a vaccinated individual is infected during a single contact with

an exposed one at a rate λ γ , where γ ∈ [0,1] is a parameter

that modulates the quality of the vaccine, being perfect when

γ = 0 and useless for γ = 1. In this way, the probability that
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a vaccinated individual i is infected per unit time reads

P i
S→E = 1 − (1 − γ λ)

∑N
j=1 Aij xj . (2)

Once the values of the epidemic parameters µ and µ′, the

quality γ of the vaccine, and the fraction NV of vaccinated

individuals are set, we leave λ as the relevant control parameter

of the SEIR model. In addition, the relevant order parameter of

the dynamics is the fraction R of nodes that got infected once

the epidemic process dies out, so that the macroscopic behavior

is captured by the curve R(λ). For a given value of λ one starts

from an initial state in which a small fraction (here 5%) of

the population is set as exposed. Then the SEIR dynamics

is iterated until no individuals remain either as exposed or

infected.

B. Evolutionary dynamics

Once the SEIR dynamics dies out we consider that the

seasonal influenza period has passed. Before the next SEIR

dynamics starts, individuals evaluate whether to vaccinate or

not for the next season. At this point evolutionary dynamics

takes place by assigning to each of the individuals a payoff πi

(i = 1, . . . ,N ) that depends on their experience accumulated

during the last SEIR propagation. As shown in Fig. 1, there

are four possibilities:

(1) Vaccinated individuals that remain healthy during the

last season have payoff π = −c (where c is a cost associated

to the vaccine).

(2) Vaccinated individuals that were infected during the last

season have payoff π = −c − TI (where TI is the time units

that the individual remain in the infected state).

(3) Individuals that did not vaccinated and remain healthy

during the season have payoff π = 0.

(4) Nonvaccinated individuals that were infected are as-

signed a payoff π = −TI .

The cost c associated to the vaccination is related to

different issues such as the time spent to get vaccinated (via

Public Health Services) or the probability that the vaccine

causes side effects. To illustrate the vaccination dilemma let

us show a very simple situation of a susceptible agent i in

contact with an exposed agent. In this situation the expected

payoff of i when having taken the vaccine is π
exp

V = −(1 −

γ λ)c − γ λ(c + 1/µ) (here we assume that TI ≃ 1/µ). On the

other hand, if agent i has adopted a risky behavior, its expected

payoff turns into π
exp

NV = −λ/µ. Thus, in this single pairwise

encounter, the rational choice is not to take the vaccine for any

costs c > λ(1 − γ )/µ. This simple situation clearly reveals the

Vaccination Dilemma. However, in a networked population the

situation is rather more complex, and, more importantly, here

we assume that individuals are not fully rational and, instead

of deciding their behavior on expectations, they evolve their

strategies based on their previous experience.

Evolutionary dynamics provides the framework to imple-

ment the dynamical evolution of strategies. In particular, as is

usually done in evolutionary social dilemmas on networks,

each individual, say, i, chooses at random one of its first

neighbors, say, j , and compares their payoffs πi and πj

respectively. Then the probability that agent i takes the strategy

of j , sj , for the next season increases with their payoff

difference, (πj − πi). One of the most used frameworks to

calculate this probability is that of the Fermi-like rule [46,47],

in which the probability that the strategy of the neighbor j is

adopted by i reads

Psj →si
=

1

1 + exp[−β(πj − πi)]
, (3)

where β is a parameter that allows us to span between random

(β ≪ 1) and strong selection (β ≫ 1). Here we adopted β = 1

and checked that our results are quite robust under changes of

β. The update of strategies takes place simultaneously for all

the agents. Once the new strategies are taken, the payoffs are

set to zero, and the SEIR dynamics starts again with a new

fraction NV of vaccinated susceptible individuals.

Finally, let us note that we iterate the sequence of the two-

stage process (SEIR dynamics and evolutionary dynamics)

for a number of steps (generations) large enough to reach a

steady state for the relevant observables: the average fraction of

recovered, 〈R〉, and vaccinated individuals, 〈NV 〉. In addition,

at the beginning of each generation we randomly assign the in-

dividuals that are vaccinated (so that they constitute 25% of the

population) and those that are initially set as exposed (reaching

5% of the total population). It is worth mentioning that in

real cases a small fraction of the population gain permanent

immunity from exposure to the virus in the last generation. In

our case we do not consider such inherited immunity to the new

strain.

III. RESULTS

We start our discussion by briefly reporting the behavior

of the SEIR model without vaccinated individuals. In the top

panel of Fig. 2 we show the average fraction 〈R〉 of recovered

individuals at the end of the SEIR dynamics as a function of

the rate of infection per contact, λ, for ER and SF networks of

N = 1000. From this figure it becomes clear that SF networks

accelerates the onset λc of the epidemic regime as compared

to ER graphs.

Let us now focus on the case of SF networks to evaluate

the impact that voluntary vaccination (under an evolutionary

framework) has on the immunization of the system. In

the bottom panel of Fig. 2 we show the evolution of the

FIG. 2. (Color online) The top panel shows the epidemic diagram

〈R〉(λ) for ER and SF networks when vaccination is not allowed.

The bottom panel shows the evolution of the fraction of recovered

individuals, R, with the generations of the evolutionary dynamics.

The network is SF, and the rate of infection per contact is λ = 0.35,

whereas vaccination is perfect γ = 0 and it has a cost c = 0.1.
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FIG. 3. (Color online) The contour plots show the average fraction of recovered 〈R〉 (top) and vaccinated 〈NV 〉 (bottom) individuals as a

function of the infection rate λ and the vaccine quality γ for SF networks. From left to right the panels correspond to different vaccination

costs: c = 0.1 [panels (a) and (d)], c = 0.5 [panels (b) and (e)], and c = 1.0 [panels (c) and (f)]. As the cost increases we note that the overall

fraction of vaccinated individuals decreases while that of recovered nodes increases. Interestingly when c = 0.1 there is a range of low γ values

(γ < 0.1) for which the epidemic threshold disappears and the disease cannot spread for any value of λ.

fraction of recovered individuals R for a sequence of 2000

generations. The rate of infection used in this simulation

is set to λ = 0.35, which, as the top panel shows, corre-

sponds to a situation in which almost all the population

has been infected 〈R〉 ≃ 1 when no vaccination is allowed.

Instead, when individuals can decide whether to take the

vaccination (under the aforementioned evolutionary rules)

we show that the epidemic phase does not appear (R ≃ 0)

since the population has evolutionarily adopted the vaccination

strategy.

Remarkably, the transient regime (lasting around 500

generations) shows an interesting pattern of rise and falls for

the number of recovered individuals R. This behavior points

out that, before vaccination prevails, the population displays an

oscillating behavior between vaccination and risky behavior.

Obviously, when many people vaccinate (falls in R) the

epidemic falls, but vaccinated individuals are tempted not to

take the vaccine due to the higher benefits of risky individuals.

This leads to a progressive increase of the infections (denoted

by the increase of R) that reverse the balance of benefits

between risky and vaccinated individuals. This rise-and-fall

behavior together with the significant duration of this transient

regime reveal the importance of risk perception in voluntary

vaccination.

A. Macroscopic behavior of vaccine taking in SF networks

Now we analyze the behavior after the transient regime. To

this aim we compute the average fraction of vaccinated 〈NV 〉

and recovered 〈R〉 individual in the steady state as a function

of λ and the quality γ of the vaccine. For each couple of values

(λ, γ ) we have run 100 simulations (each of them comprising

2000 generations). In Fig. 3 we report these functions for

several vaccine costs c in SF networks. In particular, the panels

in the top show the diagrams 〈R〉(λ,γ ) and those in the bottom

show 〈NV 〉(λ,γ ). From left to right the panels correspond to

the following vaccine costs: c = 0.1, 0.5, and 1.0.

Let us focus on those diagrams corresponding to c = 0.1

[panels (a) and (d)]. The function R(λ,γ ) shows that for values

of γ ∈ [0,0.1] (roughly perfect vaccination) the epidemic

threshold disappears since 〈R〉 ≃ 0 for all the values of λ.

In its turn, we note from panel (d) that for this latter region

the fraction of vaccinated individuals is roughly 〈NV 〉 ≃ 1

except for very low values of λ for which the disease cannot

spread even when no immunization is present. If we increase

further the value of γ we recover the epidemic onset λc whose

values decrease as the vaccine get worse, i.e., as γ increases.

In addition, the vaccination behavior decreases so that for a

given value of γ the advantage provided by vaccines is not

useful anymore for λ > λc. Obviously, for γ = 1 we recover

the usual diagram R(λ), shown in the top panel of Fig. 1, for

SF networks since the vaccine provides no advantage, and,

as shown in panel (d), almost no individual in the network

holds the vaccination strategy giving 〈NV 〉 ≃ 0 for all λ

values.

As we increase the cost of the vaccine to c = 0.5 [panels

(b) and (e)] and c = 1.0 [panels (c) and (f)] we observe that the

overall fraction of recovered (vaccinated) individuals increases

(decreases). Remarkably, the maximum value of γ for which

there is no epidemic threshold decreases with c, and for c = 1.0

we cannot appreciate this effect. It is interesting to note that the

usual epidemic diagram of SF networks without immunization
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is recovered for lower values of γ . For instance, in panel (b) we

note that for γ > 0.6 the curve R(λ) does not change, whereas

from panel (e) we note that, within this region, individuals do

not vaccinate anymore (〈NV 〉 = 0).

B. SF versus ER networks: The importance of vaccine quality

Having reported the macroscopic behavior in SF networks

as concerns the influence of the vaccine quality and its cost,

we now focus on the dependence on the networked substrate in

which both the disease and the vaccination strategies spread.

To this aim, we compare the behavior in SF and ER networks

in order to measure the role of degree heterogeneity on the

vaccination behavior. Importantly, we have considered SF

networks as obtained from the Barabási-Albert model [45]

after a complete randomization preserving the degree sequence

of the nodes. In this way, we obtain SF networks with

P (k) ∼ k−3 without any kind of degree-degree correlations

that could influence the dynamical behavior. In addition, we

have increased the size of the networks considered (in order

to fully exploit the heterogeneous property of SF networks) to

N = 104 nodes.

We first explore the case of perfect vaccination, γ = 0.

In Fig. 4 we show the diagrams 〈R〉(λ) (top) and 〈NV 〉(λ)

(bottom) for two different vaccination costs: c = 0.5 [panels

(a) and (c)] and c = 1.0 [panels (b) and (d)]. In these panels

we also show the standard deviations around the average

values reported. From the panels we observe that SF networks

outperform ER graphs since the overall average number of

recovered (vaccinated) individuals is smaller (higher) in SF

networks. In particular, the epidemic diagrams 〈R〉(λ) display a

clear peak around the respective epidemic thresholds, λc, of the

original (without vaccination) graphs. Up to this point λ < λc,

the epidemic does not spread, and thus vaccination behavior

is not observed either as shown in the diagrams 〈NV 〉(λ). The

peak thus points out that the risk is so small that vaccination

behavior does not show up, leading to a burst of infections,

which reaches higher values in ER graphs. This result seems

counterintuitive, since from the literature on epidemics on

networks, SF graphs are always more prone to the spread

of diseases than ER ones. Furthermore, from the diagrams

〈NV 〉(λ) we note that the vaccination onset starts earlier for SF

graphs, as their natural epidemic threshold is smaller than that

of ER ones.

For values of λ above the natural epidemic threshold, the

number of recovered nodes decreases dramatically in both

networks. Here the risk of infection becomes larger, and

individuals start to adopt the vaccination strategy as diagrams

〈NV 〉(λ) in panels (c) and (d) show. However, vaccination

behavior spreads more easily in SF networks than in ER

graphs, and it is quite remarkable that, for this regime, the

number of recovered nodes in ER graphs is always (for any

value of λ) higher than in SF networks. Thus cooperative

behavior, by taking the vaccine, spreads better in SF networks,

in agreement with those studies about cooperation and social

dilemmas in complex networks [42,43].

In Fig. 5 we explore the scenario of imperfect vaccination

considering γ = 0.12. This regime shows the competition be-

tween two well-known effects: the aforementioned prevalence

of cooperative behaviors in SF networks (with respect to ER

FIG. 4. (Color online) Epidemic 〈R〉(λ) (top panels) and vacci-

nation 〈NV 〉(λ) (bottom panels) diagrams for ER and SF networks

(N = 104, 〈k〉 = 6) when the vaccine is perfect (γ = 0). The cost

associated to the vaccine are c = 0.5 (left panels) and c = 1.0 (right

panels).

graphs) and their weakness to the spread of diseases (again

with respect to ER graphs). This competition appears as a

crossover between the behavior of both 〈R〉(λ) and 〈NV 〉(λ)

in SF and ER networks. In panels (a) and (b) we show that

the curves 〈R〉(λ) (after the peak close to the natural epidemic

thresholds of both networks) cross at some λ∗ values, which

decreases with the cost of the vaccine c. Panels (c) and (d) show

also a crossover behavior for 〈NV 〉(λ), which appears with

some delay with respect to that occurring at λ∗ for 〈R〉(λ). Note

that this crossover is well defined since the standard deviations

around the average values 〈R〉 and 〈NV 〉 are extremely low.

The behavior for λ < λ∗ shows the same trend as for the

perfect vaccination case. SF networks outperform ER graphs

showing a larger number of vaccinated individuals and a

smaller number of infections. However, for the imperfect

vaccine (γ > 0) the growth of λ affects both nonvaccinated and

vaccinated individuals. Under such conditions, the virus finds

in the SF networks a better backbone to propagate. In this way,

panels (a) and (b) show that the failure of vaccination starts

to become evident in SF networks at λ∗. The smaller benefits

provided by the imperfection of the vaccine cause the number

of vaccinated individuals to start to decrease after λ∗. Being

larger the number of infections due to the imperfect vaccine

in SF networks, as shown for λ > λ∗, the fall of vaccinated

individuals occurs in SF networks at smaller values of λ than

in ER graphs, giving rise to the crossover for 〈NV 〉 shown in

panels (c) and (d).

It is quite remarkable that for large λ values and for c = 1.0

[panels (b) and (d)] the number of vaccinated individuals

vanishes and the values of 〈R〉 goes close to one in a

similar way as in the original network (without vaccination).

Obviously, as the vaccine cost c increases, the solution 〈R〉 ≃ 1

spans across a larger interval of λ values so that for large
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FIG. 5. (Color online) Epidemic 〈R〉(λ) (top panels) and vacci-

nation 〈NV 〉(λ) (bottom panels) diagrams for ER and SF networks

(N = 104, 〈k〉 = 6) when the vaccine is not perfect (γ = 0.12). The

cost associated to the vaccine are c = 0.5 (left panels) and c = 1.0

(right panels). The imperfection of the vaccine causes two crossovers,

one for 〈R〉 and the other one for 〈NV 〉, between the performance of

SF networks and ER graphs.

enough c there is no vaccinated individual in the population

and one finally recovers the typical 〈R〉(λ) diagram of Fig. 2(a).

IV. CONCLUSIONS

In this work we have analyzed the evolution of voluntary

vaccination in networked populations. At variance with classi-

cal approaches we have considered an evolutionary framework

so that individuals facing the vaccination dilemma do not

take the most rational strategy by considering the benefits

associated to each choice. On the contrary, they are considered

as replicating agents that imitate the strategies based on

their previous experience. To this aim we have entangled

the spreading dynamics of an influenza-like disease with

an evolutionary framework taking place at the end of each

season. Our results show that when vaccine is perfect (so

that vaccinated individuals do not get infected) scale-free

networks enhance both the vaccination behavior and the

effective immunization of the population as compared with

random graphs with homogeneous connectivity patterns.

By considering vaccine imperfection we obtain two re-

markable results. First, we have shown that, for scale-free

networks and low vaccine costs, there is a threshold value for

the vaccine imperfection so that, for values lower than this

threshold, vaccination behavior spans across the population,

and it is possible to suppress the disease for all the infection

probabilities. Instead, when vaccine imperfection becomes

large, agents are less prone to take it, and the disease takes

advantage of this risky behavior to spread more efficiently

across the population.

The other interesting result concerns the comparison be-

tween scale-free and homogeneous networks. We have shown

that when imperfection appears the better performance of

scale-free network is broken and there is a crossover effect so

that the number of infected (vaccinated) individuals increases

(decreases) with respect to homogeneous networks when λ is

large enough. This crossover results from the competition of

two well-known dynamical properties of scale-free networks:

the fast propagation of diseases and the promotion of coop-

erative behaviors. Thus, the ability of scale-free networks in

promoting cooperative behaviors (here represented as paying

the cost of taking vaccine) is threatened when payoffs are

dependent on a related dynamical process (here the spreading

of a disease) whose evolution is also affected (here enhanced)

by the heterogeneity of the network.
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