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Abstract

The development and maintenance of today’s software systems is an increasingly
effort-consuming and error-prone task. A major cause of the effort and errors is the
lack of human-readable and formal documentation of software design. In practice,
software design is often informally documented, or not documented at all. There-
fore, (a) the design cannot be properly communicated between software engineers,
(b) it cannot be automatically analyzed for finding and removing faults, (c) the
conformance of an implementation to the design cannot be automatically verified,
and (d) source code maintenance tasks have to be manually performed, although
some of these tasks can be automated using formal documentation.

In this thesis, we address these problems for the design and documentation of the
behavior implemented in procedural programs. We present the following solutions
each addressing the respective problem stated above: (a) A graphical language called
VisuaL, which enables engineers to specify constraints on the possible sequences of
function calls from a given procedural program, (b) an algorithm called Check-
Design, which automatically verifies the consistency between multiple specifications
written in VisuaL, (c) an algorithm called CheckSource, which automatically verifies
the consistency between a given implementation and a corresponding specification
written in VisuaL, and (d) an algorithm called TransformSource, which uses VisuaL
specifications for automatically inserting additional source code at well-defined lo-
cations in existing source code.

Empirical evidence indicates that CheckSource is beneficial during some of the typi-
cal control-flow maintenance tasks: 60% effort reduction, and prevention of one error
per 250 lines of source code. These results are statistically significant at the level
0,05. Moreover, the combination of CheckSource and TransformSource is beneficial
during some of the typical control-flow maintenance tasks: 75% effort reduction, and
prevention of one error per 140 lines of source code. These results are statistically
significant at the level 0,01.

The main contribution of this thesis is the graphical language VisuaL with its for-
mal underpinning Deterministic Abstract Recognizers (DARs), which defines a new
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family of formal languages called Open Regular Languages (ORLs). The key feature
of VisuaL is the context-sensitive wildcard, which makes VisuaL specifications more
evolvable (i.e. less susceptible to changes), and more concise.
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Chapter 1

Introduction

1.1 Problem Summary

The development and maintenance of today’s software systems is an increasingly
effort-consuming and error-prone task. A major cause of the effort and errors is the
lack of precise, unambiguous, and human-readable documentation of software design.
In today’s industrial practice, software design is often imprecisely documented as
texts in a natural language, or as diagrams without a well-defined structure and
meaning. Consequently;

• Problem 1: The design cannot be properly communicated between software
engineers.

• Problem 2: The design cannot be automatically analyzed for finding and
removing faults.

• Problem 3: The conformance of an implementation to the design cannot be
verified.

• Problem 4: Source code maintenance tasks have to be manually performed,
although some of these tasks can be automated using formal documentation.

In this thesis, we address these problems for the design, documentation, and main-
tenance of algorithms [63] that are implemented in procedural programs such as C
[58] functions. We present a solution that consists of four parts, each addressing one
of the problems listed above. In addition, we report on the controlled experiments
that we conducted for evaluating the solution. 71 subjects (23 professional software
developers and 48 M.Sc. computer science students) participated in these experi-
ments. The results of these experiments indicate that the solution can reduce the
effort spent for some of the typical control-flow maintenance tasks by 75%, and pre-

1
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vent one error per 140 lines of source code. These results are statistically significant
at level 0,01.

The solution presented in this thesis is the outcome of our close collaboration with
industry. In this collaboration, we conducted joint research with ASML [4], which is
a company that produces semiconductor manufacturing machines. These machines
are large-scale embedded systems, each having approximately 400 sensors, 300 actu-
ators, 50 processors, and embedded software consisting of approximately 15 million
lines of source code mostly written in C. More than 500 software engineers maintain
and expand this software on a daily basis.

Our collaboration with ASML consisted of four phases: In the first phase, we sur-
veyed the long-standing challenges faced by the software and system engineers of
ASML. We interviewed the senior engineers, and collected nearly 30 challenges.
Based on these challenges we formulated the four problems listed above, and identi-
fied a number of effort-consuming and error-prone tasks in ASML’s software devel-
opment and maintenance processes. In the second phase, we developed the solution
to automate these tasks. In the third phase, we conducted controlled experiments
to evaluate the solution. In the fourth and the final phase, ASML committed to
conduct a transfer project to embed the solution into their software development
and maintenance processes. In Section 1.2, we report on the first phase of our col-
laboration. The four problems listed above are generalized from the results of this
phase.

1.2 Motivation

In the industrial practice, natural languages are frequently used for documenting the
design of software. For instance, at ASML we have seen several design documents
containing substantial text in English, written in a ‘story-telling’ style. Although the
unlimited expressive power is an advantage of using a natural language, this freedom
unfortunately allows for ambiguities and imprecision in the design documents.

In addition to the texts in a natural language, design documents frequently contain
diagrams that illustrate various facets of software design, such as the structure of
data, flow of control, decomposition into (sub)modules, etc. These diagrams provide
valuable intuition about the structure of software. However, typically such diagrams
cannot be used as precise specifications of the actual software, since they are ab-
stractions without a well-defined mapping to the final implementation in source code.
Many of such diagrams do not have well-defined and precise semantics, either.

As we discuss in Sections 1.2.1 and 1.2.2, ambiguous and informal design documents
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are a major cause of excessive manual effort and human errors during software
development and maintenance.

1.2.1 Some Obstacles in Software Development

In Fig. 1.1, we illustrate a part of the software development process of ASML,
showing four steps:

Figure 1.1: This figure shows part of the software development process at ASML.

In the first step, a software developer writes detailed design documents about the
new feature that she will implement. The detailed design documents are depicted
as a cloud to indicate that they are usually informal and potentially ambiguous.

In the second step, a software architect reviews the documents. If the architect
concludes that the design of the new feature ‘fits’ the architecture of software, then
she approves the design documents.

In the third step, a system engineer reviews the design documents. If the system
engineer concludes that the new feature ‘fits’ the electro-mechanical parts of the
system, and fulfills the requirements, then she approves the design documents.

In the fourth step, the developer implements the feature by writing source code. The
source code is depicted as a regular geometric shape (i.e. rectangle in this case);
this indicates that the source code is written in a formal language.

After the feature is implemented, it is not possible to conclude with a large cer-
tainty that the source code is consistent with the design documents, because the
design documents are informal and potentially ambiguous. Therefore, the following
problems may arise:

• The structure of the source code may be inconsistent with the structure ap-
proved by the software architect, because the architect may have interpreted
the design differently than the software developer.
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• The implemented feature may not ‘fit’ the electro-mechanical parts of the sys-
tem, because the system engineer may have interpreted the design differently
than the software developer. In such a case, the source code is defective.

1.2.2 Some Obstacles in Software Maintenance

In Fig. 1.2, we illustrate a part of the software maintenance process of ASML,
showing five steps: In the first step, a developer receives a change request (or a

Figure 1.2: This figure shows part of the software maintenance process at ASML.

problem report) related to the implementation of an existing feature. If the developer
concludes that the change request has an impact on the detailed design, then she
accordingly modifies the detailed design documents, in the second step. If the design
documents are modified, then a software architect and a system engineer review and
approve the modified design documents, in the third and the fourth steps. In the
fifth step, the developer implements the change by modifying the existing source
code.

In practice, developers may apply shortcuts in the maintenance process explained
above, because they are often urged to decrease the time-to-market of a product.
They can skip the second, third, or fourth steps, because the design documents are
not a part of the product that is shipped to customers. This shortcut leads to the
following problems:

• While modifying the existing source code, developers typically take new deci-
sions that has an impact on the design. These decisions remain undocumented.

• Since the new decisions remain undocumented, the source code eventually
‘drifts away’ from the design documents. More precisely, the design that is
implemented in the source code becomes substantially different from the design
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that is written in the documents. In such a case, the design documents become
useless, because the source code is the only artifact that ‘works’, and the design
documents contain incorrect, incomplete, or misleading information about the
source code.

• Since the design documents become useless, a developer has to directly read
and understand the source code, whenever she needs to modify software. Con-
sequently, maintenance becomes more effort-consuming and error-prone, be-
cause the developer is constantly exposed to the whole complexity and the
lowest level details of software.

• Since the design documents become useless, the software architect and the
system engineer cannot effectively control the quality of software during evo-
lution, which results in the same problems listed in Section 1.2.1.

• Since the design documents become useless, the initial effort spent by the
developer to write the design documents, and the effort spent by the soft-
ware architect and the system engineer to review them, are no longer utilized.
This suboptimal utilization also has a negative impact on the motivation for
investing the time and energy for producing high-quality design documents.

1.3 Scope of this Thesis

The scope of the problems that we explained so far is too broad to be effectively
addressed by a single solution. Therefore, we communicated with the engineers of
ASML to determine a sub-scope that is narrow enough to be effectively addressed,
general enough to be academically interesting, and important enough to have in-
dustrial relevance. As a result, we chose to restrict our scope to the design and
documentation of the control flow within C functions. In the remainder of this
section, we explain the motivation for this choice.

The manufacturing machines produced by ASML perform certain operations on
some input material. These operations must be performed in a sequence that satisfies
certain temporal constraints, otherwise the machines do not fulfill one or more of
their requirements. For example, a machine must clean the input material before
processing it, otherwise the required level of mechanical precision cannot be achieved
during processing; loss of precision results in defective output material. In software,
the possible sequences of operations are determined by the control flow structure of
a function that calls the functions corresponding to the operations. Thus, the flow
of control implemented in a function must satisfy the relevant temporal constraints.

During software maintenance, the engineers of ASML frequently change the con-
trol flow structure of functions, thereby unintentionally violating the temporal con-
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straints. These violations result in software defects. Finding and repairing these
defects is effort-consuming and error-prone, because (a) the constraints are either
not documented at all, or inadequately documented, as explained in Section 1.2,
and (b) there is no systematic way for engineers to tell whether the constraints are
violated and where the constraints are violated. We have also observed that some of
the control flow maintenance tasks could be automated if the temporal constraints
were formally documented. In Chapter 6, we discuss these tasks in detail.

Based on these observations, we decided to find a better way to document the
temporal constraints, and to develop algorithms that can help engineers in finding
and repairing the defects. As a result, we developed a solution that consists of
VisuaL, CheckDesign, CheckSource, and TransformSource.

1.4 Solution Approach

In this section, we explain how VisuaL, CheckDesign, and CheckSource can be used
during software development and maintenance. The approach for using Transform-
Source is explained in Chapter 6.

1.4.1 Adapting the Software Development Process

We present the software development process in which our solution is used, in two
steps: (1) the software design process, and (2) the software implementation process.

The Software Design Process

In Fig. 1.3, we illustrate the software design process, in which VisuaL and Check-
Design are used. This process consists of four steps: In the first step, a software
developer specifies the temporal constraints, using VisuaL. Therefore, the resulting
specifications are formal and unambiguous. A VisuaL specification is intended to
be a part of a detailed design document, and such a document may contain multiple
VisuaL specifications, as depicted in Fig. 1.3.

In the second step, CheckDesign automatically verifies the consistency between the
specifications that apply to the same function. If the specifications are not consis-
tent, CheckDesign outputs an error message that contains information for locating
and resolving the inconsistency. Note that in the original development process (see
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Figure 1.3: This figure shows the design process with VisuaL and CheckDesign.

Section 1.2.1), design level verification was not possible due to the informal and
potentially ambiguous documentation.

If CheckDesign outputs a success message, a software architect and a system engineer
review and approve the VisuaL specifications, in the third and fourth steps. Thus,
an important requirement is “The specifications written in VisuaL must be easily
read and understood by people”.

The Software Implementation Process

Fig. 1.4 shows the software implementation process in which the VisuaL specifica-
tions and CheckSource are used. This process consists of two steps: In the first step,
a software developer implements the feature by writing source code.

In the second step, CheckSource verifies the consistency between the source code
and the specifications. If the source code is inconsistent with the specifications,
CheckSource outputs an error message that contains information for locating and
resolving the inconsistency.

An inconsistency can be resolved through one of the following scenarios:

• The developer decides that the inconsistency is due to a defect in the source
code, so she repairs (i.e. modifies) the source code, and then reruns Check-
Source.

• The developer decides that the inconsistency is due to a defect in the specifi-
cations, so she repairs the specifications and then performs the second, third,
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Figure 1.4: The implementation process with formal design documents and Check-
Source.

and the fourth steps of the design process (see Fig. 1.3). After these steps,
she reruns CheckSource.

• The developer decides that the inconsistency is due to the defects in both the
specifications and the source code. So she repairs the specifications and then
performs the second, third, and the fourth steps of the design process (see Fig.
1.3). After these steps, she repairs the source code and reruns CheckSource.

The design and implementation processes presented above address the problems
listed in Section 1.2.1.

1.4.2 Adapting the Software Maintenance Process

Whenever a developer receives a change request (or a problem report) about the
implementation of an existing feature, she decides whether the change request has
an impact on the specifications (i.e. detailed design). If the developer decides that
there is no such impact, then she directly implements the request by following the
implementation process depicted in Fig. 1.4. If the developer decides that the
change request has an impact on the specifications, then she realizes the change
request by following the design process depicted in Fig. 1.3. Subsequently, she
implements the change by following the implementation process depicted in Fig. 1.4.
The maintenance process explained in this section addresses the problems listed in
Section 1.2.2. In Section 1.5, we present a summary of the solution presented in this
thesis. This summary is organized according to the structure of the thesis.
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1.5 Summary of the Proposed Solution

The solution presented in this thesis consists of VisuaL, CheckDesign, CheckSource,
and TransformSource. In this section, we summarize them one-by-one.

1.5.1 VisuaL

VisuaL is a graphical language that is intended for specifying design constraints on
the behavior of algorithms. Such a constraint is a logical or temporal property that
must be satisfied by each possible execution of the corresponding algorithm. Below,
we present some examples of such constraints, expressed in English. Each of these
constraints restrict the possible executions of an algorithm that is expressed as a C
function:

• In each possible sequence of function calls from any given C function, the first
function call must be a call to traceIn.

• In each possible sequence of function calls from f, there must eventually be a
call to g.

• In each possible sequence of function calls from f, there must not be any call
to h until a call to g is reached.

• In each possible sequence of function calls from any given function, the last
function call must be call to traceOut.

A VisuaL specification consists of labelled rectangles and labelled arrows that vi-
sualize a pattern. To see some examples of VisuaL specifications, the readers can
browse the figures in Section 2.2. Each VisuaL specification may contain context-
sensitive wildcards (denoted by the $ symbol). Context-sensitive wildcards are used
for making VisuaL specifications more evolvable (i.e. less susceptible to changes)
and more concise, as we explain in Section 2.8.

A VisuaL specification represents a deterministic abstract recognizer (DAR), which
is a variant of a deterministic finite-state automaton (DFA) [63]. The only difference
between a DAR and a DFA is as follows: A DFA accepts or rejects finite sequences
of symbols from a predefined and finite set of symbols, whereas a DAR accepts or
rejects finite sequences of symbols from the set of all symbols, which is obviously an
infinite and ‘open-ended’ set. Since DARs are not specific to a predefined and finite
set of symbols, DARs are ‘abstract ’. Due to this fundamental difference between
DARs and DFA, DARs define a new family of formal languages, which we call open
regular languages (ORLs):

• The set of regular languages [63] is a proper subset of the set of ORLs.
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• There are ORLs that are not in the set of context-free languages (CFL) [63].
• There are CFLs that are not in the set of ORLs.
• ORLs are closed under the basic set operations complement, union, and inter-

section.
• ORLs are closed under the computation-theoretic operations string concate-

nation and Kleene closure [63].

Using VisuaL, one can express any ORL, and nothing else:

• Each VisuaL specification represents a specific DAR, and the DAR can system-
atically be constructed in polynomial time, based on the VisuaL specification.

• Each DAR is represented by a particular VisuaL specification, and the VisuaL
specification can systematically be constructed in polynomial time, based on
the DAR.

New VisuaL specifications can be systematically constructed in polynomial time,
by composing existing specifications using boolean operators not, or, and and; and
temporal operators next, repeatedly, eventually, until, and release.

A VisuaL specification is more concise than the DAR represented by the specifi-
cation. Furthermore, a VisuaL specification can systematically be transformed in
polynomial time to a particular VisuaL specification that (a) has minimal number
of graphical elements, and (b) represents the same ORL as the original specification
represents.

Each of the example constraints presented at the beginning of this section contains
a temporal property that has to be satisfied by each possible path in the control-
flow [38] of a given C function. Since linear-time temporal logic (LTL) [23] is also
a language for expressing similar temporal properties, one may think that VisuaL
is indifferent than LTL. However, despite the similarity, VisuaL is fundamentally
different than both LTL and any other model checking formalism [23]. Using LTL
or any other model checking formalism, one specifies constraints (i.e. properties, re-
quirements) that are either satisfied or dissatisfied by infinite sequences (of function
calls, execution states, etc.). Therefore, LTL is not intended for specifying “In each
possible sequence of function calls from any function, the last function call must be
call to traceOut”. In contrast, using VisuaL, one specifies constraints (i.e. prop-
erties, requirements) that are either satisfied or dissatisfied by finite sequences of
function calls.

Graphical languages such as UML activity diagrams [8] or flowcharts [71] are fre-
quently used for designing the flow of control within procedural programs such as
C functions. Although VisuaL specifications are also graphical artifacts of behav-
ioral design, they are fundamentally different than activity diagrams. An activity
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diagram is a control-flow model [74] of a function (or procedure, method, subrou-
tine); different functions that implement the same activity diagram have the same
control-flow. Whereas, a VisuaL specification is a constraint (i.e. formally speci-
fied requirement) on the control-flow of a function; different implementations that
conform to a VisuaL specification may have different control-flow. Thus, VisuaL
specifications are typically more abstract than activity diagrams: a VisuaL specifi-
cation is a constraint on not only the implementation of a procedure but also the
activity diagram that is the control-flow model of the procedure.

VisuaL addresses the first problem stated in Section 1.1, and enables us to address
the remaining three problems, as we explain in the upcoming sections. In Chapter 2,
VisuaL is presented in detail. The composition operators over VisuaL specifications
are presented in Chapter 4.

1.5.2 CheckDesign

CheckDesign is an algorithm for checking the consistency of VisuaL specifications,
as we briefly explain below.

Using VisuaL, one can create multiple specifications each representing a different
constraint on the same function. When such specifications are created, it must be
ensured that the specifications are consistent : There is at least one possible control-
flow of the function, such that the control-flow satisfies each of the constraints. If
there is no possible control-flow of the function that satisfies each of the constraints,
then the VisuaL specifications are inconsistent.

Whenever VisuaL specifications are created or modified in the software life cycle, the
consistency between the specifications must be verified. Manually verifying the con-
sistency is an effort-consuming and error-prone task. If the specifications are incon-
sistent, then manually finding and resolving the inconsistency is an effort-consuming
and error-prone task, too. CheckDesign can reduce the effort and automatically de-
tect the errors: CheckDesign takes a set of VisuaL specifications as input, and au-
tomatically finds out, in polynomial time, whether the specifications are consistent
or not. If the specifications are inconsistent, then CheckDesign outputs an error
message that can help in understanding and resolving the inconsistency. Hence,
CheckDesign addresses the second problem stated in Section 1.1. In Chapter 3,
CheckDesign is presented in detail.
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1.5.3 CheckSource

CheckSource is an algorithm for checking the consistency between VisuaL specifica-
tions and source code, as we briefly explain below.

After creating consistent VisuaL specifications, a developer typically writes source
code to implement the function corresponding to the specifications. A function
and a corresponding specification may be inconsistent with each other. Manually
finding and resolving an inconsistency between a function and a specification is an
effort-consuming and error-prone task. CheckSource can reduce effort and detect
errors. CheckSource takes a function and a corresponding VisuaL specification as
the input, and automatically finds out, in polynomial time, whether the function and
specification are consistent or not. To determine if a specification and a function are
consistent, CheckSource first parses the function and creates an abstract syntax tree.
Second, CheckSource derives the control-flow graph of the function by traversing the
abstract syntax tree. Finally, CheckSource finds out whether each possible path in
the control flow graph satisfies the constraint expressed in the VisuaL specification.
If there is at least one possible path that does not satisfy the constraint, then
the function and the specification are inconsistent. If there is an inconsistency,
CheckSource outputs an error message containing an example path that does not
satisfy the constraint. This error message helps in understanding and resolving
the inconsistency. In this way, CheckSource addresses the third problem stated in
Section 1.1. In Chapter 5, we first present CheckSource, and then we report on the
controlled experiment that we conducted for evaluating CheckSource.

1.5.4 TransformSource

TransformSource is an algorithm for inserting additional source code at well-defined
locations in given source code. In this section, we briefly explain TransformSource.

Let us consider the following constraint: “In each possible sequence of function calls
from f, each call to g must be immediately followed by a call to h, and there must
be no call to h that is not preceded by a call to g”. According to this constraint,
whenever a new call to g is added to the body of f, it is necessary to insert a new call
to h as the next function call. If this constraint is formally specified, the insertion
of the calls to h can be automated.

To enable the automation, we extended VisuaL such that each VisuaL specification
represents a deterministic abstract transducer (DAT), which is a variant of a Moore
machine [54]. As a result of this extension, a VisuaL specification (e.g. the specifi-
cation of the example constraint above) is capable of translating an input sequence
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(e.g. <a, g, b, g> ) into an output sequence (e.g. <a, g, h, b, g, h>) that satisfies
the constraint represented by the specification. Based on such a VisuaL specifica-
tion, TransformSource automatically inserts the additional calls (e.g. the calls to h)
into the body of a function (e.g. f), so that the function satisfies the constraint.

Since the additional calls are automatically inserted by TransformSource, developers
can work with the functions that do not contain the additional calls. Whenever such
a function is modified due to maintenance, TransformSource can automatically rein-
sert the additional calls at the necessary places in the source code of the function,
in which case the consistency between the function and the specification is always
automatically ensured. In this way, TransformSource addresses the fourth and the
final problem stated in Section 1.1. In Chapter 6, we first present a real-life prob-
lem in an industrial context, and show how this problem is solved using VisuaL,
CheckSource, and TransformSource, in combination. In Chapter 7, we report on
the controlled experiment we conducted for evaluating the combination of Check-
Source and TransformSource. This combination exhibits some of the fundamental
characteristics of a weaver [39] in aspect-oriented programming.

1.6 An Overview of this Thesis

In Fig. 1.5, we present an overview of this thesis.

In Chapter 2, we first present an overview of VisuaL by examples, and then define
the notation, syntax, and semantics of VisuaL. In addition, we define both the
underlying formalism DARs, and the new family of formal languages ORLs that
DARs express. Finally, we discuss the expressive power of VisuaL, and provide
an algorithm for reducing the size of VisuaL specifications without changing their
semantics.

In Chapter 3, we explain how to detect possible inconsistencies among multiple
VisuaL specifications (i.e. CheckDesign). In addition, we explain how to locate and
report such inconsistencies.

In Chapter 4, we investigate some of the closure properties of ORLs, and based on
these properties we define operators for composing new VisuaL specifications from
existing ones.

In Chapter 5, we present CheckSource, and then we report on the controlled exper-
iments we conducted for evaluating CheckSource.

In Chapter 6, we first present a real-life problem in an industrial context, and show
how this problem is solved using VisuaL, CheckSource, and TransformSource, in
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Figure 1.5: An Overview of this thesis.

combination. In this chapter we present TransformSource, and an extended version
of VisuaL and CheckSource.

In Chapter 7, we report on the controlled experiments we conducted both with
professional developers and with M.Sc. students for evaluating the combination of
CheckSource and TransformSource.

Chapter 8 contains the related work, discussion, and conclusions.

1.7 Contributions of this Thesis

VisuaL, whose key feature is context-sensitive wildcard, is the key contribution of this
thesis. The purpose of context-sensitive wildcards is to make VisuaL specifications
more evolvable (i.e. less susceptible to changes), and more concise. VisuaL addresses
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the requirements specification problem stated by Hatcliff and Dwyer [51]:

• “The requirement specification problem: the difficulty of expressing
software requirements in the temporal specification languages of the exist-
ing model-checking tools. Although model-checker property specification lan-
guages are built on the theoretically elegant temporal logics, practitioners and
even researchers find it difficult to use them to accurately express complex
event-sequencing properties. Once written, the specifications are often hard
to read and debug.” [51]

The algorithms of CheckSource, CheckDesign, and TransformSource are additional
contributions of this thesis. CheckSource addresses the model construction problem
and the output interpretation problem stated by Hatcliff and Dwyer [51]:

• “The model construction problem: bridging the semantic gap between
the artifacts produced by current verification tools. Most development is done
using general-purpose programming languages (e.g. C, C++, Java, Ada), but
most verification tools accept specification languages designed for the simplic-
ity of their semantics (e.g. process algebras, state machines). In order to use a
verification tool on a real program, a developer must extract an abstract math-
ematical model of the program’s salient behavior and specify this model in the
input language of the verification tool. This process is both effort-consuming
and error-prone.” [51]

• “The output interpretation problem: When a property fails when check-
ing large models (and software systems typically produce very large models),
the counter example traces produced by the checker can be hundreds even
thousands of steps long. Manually matching up these counter examples is ex-
tremely tedious for several reasons. First, the length is quite long and it may
require hours to walk through the trace. Second, the error trace is expressed
in terms of the low-level, possibly highly optimized model representations ...
Typically, one step in the source program may correspond to as many as ten
steps in the low-level model representation.” [51]

In this thesis, we provide empirical evidence indicating that VisuaL can be used by
professional developers and M.Sc. students to debug source code, and CheckSource
and TransformSource can save effort and reduce errors during the debugging. These
empirical results are contributions of this thesis, too.
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Chapter 2

VisuaL

2.1 Introduction

New generations of large-scale and complex embedded systems such as wafer scan-
ners [4], medical MRI1 scanners, and electron microscopes are rarely developed from
scratch [81]. Instead, engineers continuously modify older generations to develop
new ones. Therefore, evolvability is one of the key quality factors that determine
the commercial success (or failure) of large-scale and complex embedded systems.

In the Ideals project [81], we investigated the evolvability of the wafer scanner soft-
ware, and discovered that engineers spend excessive effort to keep the behavior
specifications consistent with the evolving source code. We have seen that engineers
cannot express the behavioral design as abstractly as they intend to, because the
abstraction mechanisms offered by the commonly used graphical languages (e.g stat-
echarts [47]) are not always sufficient to achieve the intended level of abstraction.
Consequently, the specifications contain excessive details about the implementation,
and these details increase (a) the coupling between the specifications and source
code, and (b) the size and complexity of the specifications. Due to the high cou-
pling, the specifications need to be frequently updated during the evolution of the
source code; and due to large and complex specifications, excessive effort has to be
spent for each update.

According to a survey [84] of software specification methods and techniques, the
existing graphical languages support hierarchies (i.e. nested structures), so that one
can define different levels of abstraction. Using statecharts [47] for instance, one
can abstract from a set of states, by defining a super state that stands for this set.

1Magnetic Resonance Imaging
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In this chapter, we present an additional mechanism for abstraction, which we call
Context-Sensitive Wildcard (CSW ). Intuitively, a CSW is a transition that stands
for an infinite set of transitions, such that the elements of this set is determined by
the ‘context’ of the CSW. In this chapter, we define CSW as the key feature of a
simple graphical language, which we call VisuaL. We provide a detailed analysis of
VisuaL, such that this analysis reveals the theoretical and practical implications of
using CSWs, in the graphical specifications of software behavior.

VisuaL is intended for expressing constraints on the behavior of algorithms. Such a
constraint is a logical or temporal property that must be satisfied by each possible
execution of the corresponding algorithm. A VisuaL specification represents a de-
terministic abstract recognizer (DAR), which is a variant of a Deterministic Finite
Accepter (DFA) [63]. The key difference between a DFA and a DAR is as follows:
A DFA with an alphabet Σ either accepts or rejects a finite sequence of symbols,
provided that each symbol of the sequence is an element of Σ; whereas a DAR either
accepts or rejects any finite sequence of symbols. The difference between DFAs and
DARs is formally explained in Section 2.3.4.

Although VisuaL is a language for expressing the properties of algorithms, it is
possible to extend VisuaL for expressing the properties of reactive systems [46], too.
In Section 8.1.3, we discuss how VisuaL could be extended, such that a VisuaL
specification represents a variant of a Büchi automaton [23]. In Section 8.1.3, we
also explain why we think that a recent implementation of the LTSA model checker
[42] already has a suitable foundation for supporting an extended version of VisuaL.

Hatcliff and Dwyer [51] indicate that one of the major problems that are currently
preventing the successful application of model checking technology to software is
“the requirement specification problem: the difficulty of expressing software re-
quirements in the temporal specification languages of the existing model-checking
tools. Although model-checker property specification languages are built on the the-
oretically elegant temporal logics, practitioners and even researchers find it difficult
to use them to accurately express complex event-sequencing properties. Once writ-
ten, the specifications are often hard to read and debug” [51]. Empirical evidence
(Chapters 5 and 7) indicates that VisuaL has the potential to solve “the requirement
specification problem”. We conducted controlled experiments where 24 professional
software engineers and 49 M.Sc. computer science students used industrial VisuaL
specifications for finding and repairing realistic defects in industrial C code. Since
the participants did not have any previous experience with VisuaL, they were given a
15-minute tutorial of the VisuaL language. After this tutorial, the participants could
efficiently use the VisuaL specifications and a model checker tool (i.e. CheckSource)
for finding and successfully repairing the defects in the source code.

The idea of using wildcards in state-transition diagrams is not new, as we discuss in
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Section 8.1.4. To our best knowledge however, CSW has not been offered as a feature
of a graphical language, and the theoretical and practical implications of using
CSWs were not investigated. Therefore, the investigation we provide throughout
Sections 2.3-2.8, and the conclusions drawn from this investigation can be seen as
the contribution of this chapter.

In Section 2.2, we provide an intuitive overview of VisuaL. Next, we formally define
VisuaL, in Section 2.3. Throughout Sections 2.4-2.6, we analyze VisuaL from a
theoretical perspective; and in Sections 2.7 and 2.8, we analyze VisuaL from an
engineering perspective. The remaining sections contain the related work, future
work, and conclusions.

2.2 An Overview of VisuaL by Examples

In this section, we intuitively explain VisuaL, by presenting the specifications of
three example constraints. Each of these constraints restrict the possible executions
of an algorithm that is expressed as a C function. These constraints are simple
examples that demonstrate the basic features of VisuaL. The notation, syntax, and
semantics of VisuaL are provided in Section 2.3.

2.2.1 Example 1: “At Least One”

The VisuaL specification shown in Fig. 2.1 is a formal specification of the following
constraint:

C1: In each possible sequence of function calls from the function f, there must be
at least one call to the function g.

Figure 2.1: An example VisuaL specification demonstrating the usage of “at least
one”.

In this section, we first explain the syntactic elements of the VisuaL specification
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shown in Fig. 2.1, and the semantics of these elements. Subsequently, we discuss
why Fig. 2.1 is a specification of the constraint C1 stated above.

Syntactic Elements and Their Semantics

The rounded rectangle with the stereotype <<f>> is called container node, which
defines a view on the flow of control (to be) implemented within the body of the
function f. In the stereotype of a container node one can also write a regular
expression that matches the identifiers of multiple functions. In such a case, the
container node defines a common view on multiple functions.

The label S1 is the name (i.e. identifier) of both the container node and the spec-
ification. Inside the container node, there is a structure consisting of (a) arrows
called edges, and (b) rounded rectangles called nodes. Such a structure is called
pattern. The edges represent the function calls from f, and the nodes (e.g. the
rounded rectangle with the label q0) represent locations on the control flow of f.

The stereotype <<f>> means “each possible sequence of function calls from the
function f must be matched by the pattern2, otherwise f does not satisfy the con-
straint represented by the specification”.

The node q0 represents the beginning of a given sequence of function calls, because
it has the stereotype <<initial>>. Such a node is called initial node. There is
exactly one initial node in each VisuaL specification.

The $-labelled edge originating from q0 matches each function call from the begin-
ning of a sequence, until a call to g is reached. This “until” condition is due to the
existence of the g-labelled edge originating from the same node (i.e. q0). In VisuaL,
no two edges originating from the same node have the same label; therefore VisuaL
specifications are deterministic.

In general, a $-labelled edge matches a function call, if and only if this call cannot be
matched by the other edges originating from the same node. That is, the matching
of a $-labelled edge is ‘sensitive’ to the other edges originating from the same node.
Therefore, a $-labelled edge e is a Context-Sensitive Wildcard (CSW), where
the context is the set of labels of the other edges whose source node is the same as
the source node of e.

Note the difference between the CSW pointing to q0 and the CSW pointing to q1:
the former CSW can match a call to any function except g, whereas the latter CSW
can match a call to any function (i.e. including g), since q1 does not have any other

2We precisely define the matching later in this section.
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outgoing edge.

During the matching of a given sequence of function calls, if the first call to g is
reached, then this call is matched by the edge labelled with g. If there are no more
calls in the sequence, then the sequence terminates at q1, because the last call of
the sequence is matched by an edge that points to q1.

If there are additional calls after the first call to g, then each of these calls is matched
by the CSW pointing to q1, hence the sequence eventually terminates3 at q1.

A given sequence of function calls is matched by a pattern, if and only if the
sequence terminates at a node with the stereotype <<final>>. We call such a node
final node. There can be zero or more final nodes in a VisuaL specification.

S1 is a specification of C1

We can assert that S1 (Fig. 2.1) is a specification of C1 (see the beginning of
Section 2.2.1), if and only if the following two requirements are fulfilled: (1) If a
given sequence of function calls contains no call to g, then this sequence must not be
matched by the pattern shown in Fig. 2.1. (2) If a given sequence of function calls
contains at least one call to g, then this sequence must be matched by the pattern
shown in Fig. 2.1. Below, we show that these requirements are indeed fulfilled.

Let seq be a finite sequence of function calls, such that seq contains no call to g. In
this case, each call in seq is matched by the CSW originating from q0. Thus, seq
eventually terminates at q0. Since q0 is not a final node, seq is not matched by the
pattern shown in Fig. 2.1.

Let seq be a finite sequence of function calls, such that seq contains at least one call
to g. In this case, each function call from the beginning of seq until the first call to
g is matched by the CSW originating from q0. The first call to g is matched by the
g-labelled edge, upon which seq reaches q1. Now, there are two cases to consider:
(1) If seq does not contain any other call after the first call to g, then seq terminates
at the final node q1. Thus, seq is matched by the pattern shown in Fig. 2.1. (2)
If seq contains additional calls after the first call to g, then each of these calls is
matched by the CSW originating from q1. Consequently, seq eventually terminates
at the final node q1, which means seq is matched by the pattern shown in Fig. 2.1.

3Infinite sequences of function calls are out of the scope of this thesis, because VisuaL is not a
language for specifying constraints on the execution of possibly non-terminating programs.
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2.2.2 Example 2: “Immediately Followed By”

Fig. 2.2 shows a specification of the following constraint:

C2: In each possible sequence of function calls from f, if there is at least one call
to g, then the first call to g must be immediately followed by a call to h.

Figure 2.2: An example specification demonstrating the usage of “immediately fol-
lowed by”.

Syntactic Elements and Their Semantics

In Fig. 2.2, the stereotype <<initial-final>> means that q0 has both the <<initial>>

and <<final>> stereotypes. Therefore, q0 is both an initial and a final node. We
call such a node initial-final node. In Fig. 2.2, the node q1 does not have any
stereotype. Therefore, we call such a node plain node. A plain node is neither
the initial nor a final node. The other syntactic elements and their semantics are
already explained in Section 2.2.1.

S2 is a specification of C2

We can assert that S2 (Fig. 2.2) is a specification of C2 (see the beginning of
Section 2.2.2), if and only if the following three requirements are fulfilled: (1) If a
given sequence of function calls contains no call to g, then this sequence must be
matched by the pattern shown in Fig. 2.2. (2) If a given sequence of function calls
contains at least one call to g, and the first call to g is not immediately followed by
a call to h, then this sequence must not be matched by the pattern shown in Fig.
2.2. (3) If a given sequence of function calls contains at least one call to g, and
the first call to g is immediately followed by a call to h, then this sequence must be
matched by the pattern shown in Fig. 2.2. Below, we show that these requirements
are indeed fulfilled.
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Let seq be a finite sequence of function calls, such that there is no call to g in seq.
In this case, each call in seq is matched by the CSW originating from q0 (see Fig.
2.2); hence seq terminates at q0, and is matched by the pattern, because q0 is the
initial-final node, which is a final node.

Let seq be a finite sequence of function calls, such that there is at least one call to
g in seq, and the first call to g is not immediately followed by a call to h. In this
case, the first call to g is matched by the g-labelled edge (see Fig. 2.2), upon which
seq reaches q1. Now, seq cannot be matched by the pattern, because (a) q1 is a
non-final node, (b) the only outgoing edge from q1 is the h-labelled edge, and (c)
the first call to g is not immediately followed by a call to h.

Let seq be a finite sequence of function calls, such that there is at least one call to g
in seq, and the first call to g is immediately followed by a call to h. In this case, seq
reaches q2 upon encountering the call to h that immediately follows the first call to
g. Now, there are two cases to consider: (1) If this call to h is the last call in seq,
then seq is matched by the pattern, because q2 is a final node. (2) If this call to h
is not the last call in seq, then each of the subsequent calls is matched by the CSW
originating from q2. Hence, seq eventually terminates at the final node q2, in which
case seq is matched by the pattern.

2.2.3 Example 3: “Not”

Fig. 2.3 shows a specification of the following constraint:

C3: In each possible sequence of function calls from f, a call to g must not exist.

Figure 2.3: An example specification demonstrating the usage of “not”.



24 Chapter 2. VisuaL

Syntactic Elements and Their Semantics

In Fig. 2.3, q1 does not have the stereotype <<final>>, and no edge originates from
q1. We call such a node trap node. For a given sequence seq of function calls, if
a call c in seq is matched by an edge pointing to a trap node tr, then either of the
following scenarios occur:

• c is the last call in seq (i.e. seq terminates at tr). Since tr does not have the
stereotype <<final>>, seq is not matched by the pattern.

• c is not the last call in seq. In this case, there is no edge that can match the
remaining calls in seq. Therefore, seq is not matched by the pattern.

To sum up, if a sequence ‘visits’ a trap node, then the sequence is not matched by
the pattern. The other syntactic elements and their semantics are already explained
in Sections 2.2.1 and 2.2.2.

S3 is a specification of C3

We can assert that S3 (Fig. 2.3) is a specification of C3 (see the beginning of
Section 2.2.3), if and only if the following two requirements are fulfilled: (1) If a
given sequence of function calls does not contain any call to g, then this sequence
must be matched by the pattern shown in Fig. 2.3. (2) If a given sequence of function
calls contains at least one call to g, then this sequence must not be matched by the
pattern shown in Fig. 2.3. Below, we show that these requirements are indeed
fulfilled.

Let seq be a finite sequence of function calls, such that seq does not contain any
call to g. In this case, each call in seq is matched by the CSW originating from q0.
Thus, seq eventually terminates at q0. Since q0 is a final node, seq is matched by
the pattern shown in Fig. 2.3.

Let seq be a finite sequence of function calls, such that seq contains at least one call
to g. In this case, each function call from the beginning of seq until the first call
to g is matched by the CSW originating from q0. The first call to g is matched by
the g-labelled edge, upon which seq reaches q1. Since q1 is a trap node, seq is not
matched by the pattern shown in Fig. 2.3.

2.2.4 Example 4: “And”

Fig. 2.4 shows a specification of the following constraint:



Chapter 2. VisuaL 25

C4: In each possible sequence of function calls from f, there must be at least one
call to g, and the first call to g must be immediately followed by a call to h.

Figure 2.4: An example specification demonstrating the usage of “and”.

Syntactic Elements and Their Semantics

The syntactic elements shown in Fig. 2.4, and their semantics are already explained
in Section 2.2.1.

S4 is a specification of C4

Note that C4 (see the beginning of Section 2.2.4) is “C1 and C2”, i.e. an implemen-
tation of f satisfies C4, if and only if the implementation satisfies both C1 and C2.
We can assert that S4 (Fig. 2.4) is a specification of C4, if and only if the pattern
shown in Fig. 2.4 fulfills the following four requirements: the first and the second
requirements stated in Section 2.2.1, and the second and the third requirements
stated in Section 2.2.2. Due to the “and” in C4, the first requirement stated in
Section 2.2.2 is overridden by the first requirement stated in Section 2.2.1.

In Section 2.2.1, we explained that S1 fulfils the first and the second requirements
stated in that section, and in Section 2.2.2 we explained that S2 fulfils the second
and the third requirement stated in that section. These explanations can be reused
for showing that S4 indeed fulfils the four requirements.

C4 hints on the conjunction (i.e. “and”) operator over VisuaL specifications. There
are other operators, as well. The operators can be used for deriving new specifi-
cations from existing ones (e.g. deriving S4 from S1 and S2). In Section 4.3, we
precisely explain these operators, and how each operator can be applied to compose
VisuaL specifications.
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2.3 Notation, Syntax, and Semantics of VisuaL

In this section, we precisely define VisuaL, by presenting its notation, syntax, and
semantics.

2.3.1 Notation of VisuaL

In Fig. 2.5, the notational elements of VisuaL are depicted as numbered images.
The first five elements are nodes, and the last two elements are edges. To explain

Figure 2.5: The elements of the notation of VisuaL.

these elements, we use the terms “alphabet” and “string” defined in [63], as follows:
A finite and non-empty set of symbols is called alphabet. A finite sequence of
symbols from an alphabet is called string.

A VisuaL identifier is a string consisting of symbols from {c|c is an uppercase or
lowercase letter in the English alphabet} ∪ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

In Fig. 2.5, the first element is a rounded rectangle with the stereotype <<aRegular-

Expression>>. This element is called container node. aRegularExpression is the place
holder of a regular expression [63] that matches the identifiers of a set of C functions.
anIdentifier is the placeholder of a VisuaL identifier that is the name of the container
node. An example of a container node is S4 in Fig. 2.4.

The second element, which is a rounded rectangle with the stereotype <<initial>>,
is called initial node. anIdentifier is the placeholder of a VisuaL identifier that is
the name of the initial node. An example of an initial node is q0 in Fig. 2.4.
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The third element, which is a rounded rectangle with the stereotype <<final>>, is
called final node. anIdentifier is the placeholder of a VisuaL identifier that is the
name of the final node. An example of a final node is q2 in Fig. 2.4.

The fourth element, which is a rounded rectangle with the stereotype <<initial-

final>>, is called initial-final node. anIdentifier is the placeholder of a VisuaL
identifier that is the name of the initial-final node. An example of an initial-final
node is q0 in Fig. 2.3.

The fifth element, which is a rounded rectangle without any stereotype, is called
plain node. anIdentifier is the placeholder of a VisuaL identifier that is the name of
the plain node. An example of a plain node is q1 in Fig. 2.4.

If a given node n is an initial node, initial-final node, final node, or plain node, then
n is generally called inner node (i.e. a node that is inside a container node).

The sixth element, which is an arrow with the label aSymbol, is called edge. aSymbol

is the placeholder of a symbol. In Fig. 2.4, an example of an edge is the arrow with
the label g.

The seventh element is called Context-Sensitive Wildcard (CSW): A CSW is
an edge whose label is the $ symbol. In Fig. 2.4, there are two CSWs.

initial, initial-final, final, and $ are the reserved words [79] of VisuaL. Each of these
reserved words has a mathematical meaning defined in Section 2.3.5.

2.3.2 Syntax of VisuaL

A VisuaL specification has one container node. Inside the container node, (a) there
is either one initial node or one initial-final node, (b) there are zero or more final
nodes, and (c) there are zero or more plain nodes.

Inside a container node, there are zero or more edges. Each edge has a source and
target, which are inner nodes. Each edge has a label, and no two edges have both
the same source node and the same label.

2.3.3 Deterministic Finite Accepter (DFA)

To precisely define the semantics of VisuaL, we introduce a new formalism called
deterministic abstract recognizer (DAR), in Section 2.3.4. A DAR is a variant of a
deterministic finite accepter (DFA) defined in [63]. In this section, we provide this
definition of DFA, which we use in this thesis.
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A DFA M is a quintuple 〈Q, Σ, δ, q0, F 〉, where

• Q is a finite set of states.
• Σ is a finite and non-empty set of symbols called input alphabet.
• δ : Q × Σ → Q is a total function called the transition function.
• q0 ∈ Q is the initial state.
• F ⊆ Q is a set of final states.

To explain how M accepts or rejects a given string, we use the following terms: λ
denotes the empty string (i.e. the string that contains no symbol). If w and x are
strings, then wx denotes the string obtained by concatenating w and x. Σ∗ denotes
the set of strings obtained by concatenating zero or more symbols from Σ.

Let q ∈ Q, a ∈ Σ, and w ∈ Σ∗. The function δ∗ : Q × Σ∗ → Q is called extended
transition function, which is recursively defined as follows: δ∗(q, λ) = q, and
δ∗(q, wa) = δ(δ∗(q, w), a). M accepts w if and only if δ∗(q0, w) ∈ F . M rejects w
if and only if δ∗(q0, w) /∈ F .

L(M) = {w ∈ Σ∗|δ∗(q0, w) ∈ F} is the language of M . A set L of strings is a
Regular Language (RL), if and only if there is a DFA M such that L(M) = L.

2.3.4 Deterministic Abstract Recognizer (DAR)

In this section, we introduce a new formalism called deterministic abstract recognizer
(DAR), which we use for defining the semantics of VisuaL, in Section 2.3.5. A DAR
is a variant of a DFA. The key difference between a DFA and a DAR is the following:
A DFA with an alphabet Σ either accepts or rejects a finite sequence of symbols,
provided that the sequence is an element of Σ∗; whereas a DAR either accepts or
rejects any finite sequence of symbols. To precisely explain this difference, we first
need to formally define DAR:

A DAR M is a septuple 〈Q, Σa, δ, q0, F, Ξ, η〉, where

• Q = Ω ∪ {qt} is a finite set of states, where Ω is the set of user-defined
states, qt is the default trap state, and qt /∈ Ω.

• Σa = Σb ∪ {#} is the abstract input alphabet, where Σb is a finite set of
symbols such that # /∈ Σb. Σb is called the base input alphabet. # is a
reserved symbol that will be explained in this section.

• δ : Q × Σa → Q is a total function called transition function. ∀a ∈
Σa(δ(qt, a) = qt).

• q0 ∈ Ω is the initial state.
• F ⊆ Ω is a set of final states.
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• Ξ is a regular expression called scope expression that matches a set of strings.
This set is the scope of M .

• η is the name of M . The name of M is a VisuaL identifier.

To explain how M accepts or rejects a given sequence of symbols, we use the following
terms: The set of all possible symbols is called the universal set of symbols, and
this set is denoted by Υ. A finite sequence of symbols from Υ is called strand4. ǫ
denotes the empty strand (i.e. the strand that contains no symbol). If w and x
are strands, then wx denotes the strand obtained by concatenating w and x. Υ∗

denotes the set of strands obtained by concatenating zero or more symbols from Υ.
Note that any alphabet is a proper subset of Υ, and Υ∗ is the set of all possible
finite sequence of symbols.

Let q ∈ Q, a ∈ Υ, and w ∈ Υ∗. The function δ∗ : Q × Υ∗ → Q is called extended
transition function, which is recursively defined as follows: δ∗(q, ǫ) = q, and

δ∗(q, wa) =

{

δ(δ∗(q, w), a) if a ∈ Σb

δ(δ∗(q, w), #) if a /∈ Σb

M accepts w if and only if δ∗(q0, w) ∈ F . M rejects w if and only if δ∗(q0, w) /∈ F .
The asymptotic time complexity of the extended transition function is O(|w|), where
|w| denotes the number of symbols in w. Note that the definition of the extended
transition function provides the semantics of the # symbol. We call the # symbol
wildcard, because it matches any symbol in Υ \ Σb.

L(M) = {w ∈ Υ∗|δ∗(q0, w) ∈ F} is the language of M . A set L of strands is an
Open Regular Language (ORL), if and only if there is a DAR M such that
L(M) = L.

If L is an ORL, then the strands in L consist of symbols from Υ; i.e. not from an
alphabet, which is a non-empty and finite set of symbols. Since Υ is an ‘open-ended’
set, we chose the name “open regular language”. In Section 2.4, we compare ORLs
with regular languages and context-free languages [63].

“Strand” and “string” are different but related terms: First of all, both a string
and a strand are finite sequences of symbols. A string consists of symbols from an
alphabet. Since any alphabet is a subset of Υ, a string is a strand. Since a strand
w consists of finite number of symbols, the set Σ of symbols in w is also finite.
Therefore, Σ is an alphabet, and w can be interpreted as a string that consists of
symbols from Σ. The empty string can be interpreted as the empty strand, and vice

4“Strand” and “string” are different but related terms. We will explain the relation, in this
section.
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versa.

We conclude this section by revisiting the key difference between a DFA and a DAR:
A DFA with an alphabet Σ either accepts or rejects a finite sequence of symbols,
provided that the sequence is an element of Σ∗; whereas a DAR either accepts or
rejects a finite sequence of symbols, provided that the sequence is an element of Υ∗.
Since Υ∗ is the set of all possible finite sequences of symbols, a DAR either accepts
or rejects any finite sequence of symbols.

2.3.5 Semantics of VisuaL

The semantics of VisuaL is defined by the total function getDARof : V → D, where
V is the set of VisuaL specifications, and D is the set of DARs. Let S be a VisuaL
specification, and M be a DAR, such that getDARof(S) = M . In this section, we
step-by-step explain how getDARof constructs M , based on S.

Step 1: Initialization of M

At this step, getDARof initializes M = 〈Q, Σa, δ, q0, F, Ξ, η〉, such that

• Q = Ω ∪ {qt} and Ω = {q0},
• Σa = Σb ∪ {#} and Σb = ∅,
• δ is not defined yet,
• F = ∅,
• Ξ = exp, where exp is the regular expression on the container node of S, and
• η = name, where name is the name of the container node of S.

Now, let us see an example. Fig. 2.6 shows an example VisuaL specification that we
denote using Se. We use the superscript e for distinguishing the example specification

Figure 2.6: An example specification in VisuaL.

from the general specification S (see above). In the remainder of Section 2.3.5, we
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will consistently use the superscript e for distinguishing an example entity from its
general counterpart.

If Se is given to getDARof as the input, then getDARof initializes a DAR M e =
〈Qe, Σa

e, δe, q0, F
e, Ξe, ηe〉, such that

• Qe = Ωe ∪ {qt} and Ωe = {q0},
• Σa

e = Σb
e ∪ {#} and Σb

e = ∅,
• δe is not defined yet,
• F e = ∅,
• Ξe = foo, and
• ηe = mySpecification.

Step 2: Adding the User-Defined States

At this step, getDARof adds new states to Ω and F , as follows: Let n0, n1, ..., nm

be the inner nodes of S, such that n0 is either the initial or the initial-final node.
Given n0, n1, ..., nm, getDARof performs the following steps:

1. Define new states q1, q2, ..., qm, and add them to Ω.
2. For each ni where 0 ≤ i ≤ m, map ni to qi. We denote this mapping with the

total, one-to-one, and onto function getStateOf : IN → Ω, where IN is the
set of inner nodes of S.

3. If n0 is the initial-final node, then add q0 to F .
4. For each final node nf of S, add getStateOf(nf ) to F .

Now, let us revisit the example. The inner nodes of Se (see Fig. 2.6) are q0, q1, q2,
and q3. Accordingly, getDARof

1. Defines new states q1, q2, and q3; and adds them to Ωe.
2. Maps q0 to q0, q1 to q1, q2 to q2, and q3 to q3.
3. Does not add q0 to F e.
4. Adds q3 to F e.

Consequently, Ωe becomes {q0, q1, q2, q3}, F e becomes {q3}, and Qe becomes {q0, q1, q2, q3, qt}.
In Fig. 2.7, the states of M e are depicted. The initial state is depicted as the cir-
cle that is the target of the only arrow without any source, each non-final state is
depicted as a single circle, and each final state is depicted as a double circle.
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Figure 2.7: The states of M e, after step 2.

Step 3: Adding the Symbols

At this step, getDARof adds new symbols to Σb, as follows: Let LBL be the set of
the labels of the edges of S. For each lbl ∈ (LBL \ {$}), getDARof defines a new
symbol a, maps lbl to a, and adds a to Σb. The mapping between the labels and
the symbols is denoted by the total, one-to-one, and onto function getSymbolOf :
(LBL \ {$}) → Σb.

Now, let us revisit the example. The set of the labels of the edges of Se (see Fig.
2.6) is { a, b, $ }. Accordingly, getDARof defines new symbols, say, a and b.
Subsequently, getDARof maps a to a, and b to b. Finally, getDARof adds a and b
to Σb

e. Thus, Σb
e becomes {a, b}, and Σa

e becomes {a, b, #}.

Step 4: Partially Defining the Transition Function

At this step, getDARof partially defines δ, as follows: For each edge e (of S) with
the source node sn, target node tn, and label lbl, getDARof does the following:
If lbl = $, then getDARof defines that δ(getStateOf(sr), #) = getStateOf(tr).
If lbl 6= $ then getDARof defines that δ(getStateOf(sr), getSymbolOf(lbl)) =
getStateOf(tr).

Now, let us revisit the example. In Se (see Fig. 2.6), there is a $-labelled edge from
q0 to q0; thus, getDARof defines that δe(q0, #) = q0. There is a $-labelled edge
from q2 to q3, thus getDARof defines that δe(q2, #) = q3. There is an a-labelled
edge from q0 to q1; thus getDARof defines that δe(q0, a) = q1. There is a b-labelled
edge from q1 to q2; thus, getDARof defines that δe(q1, b) = q2. These transitions
are depicted as labelled arrows in Fig. 2.8.



Chapter 2. VisuaL 33

Figure 2.8: The states and some of the transitions of M e, after step 4.

Step 5: Defining the Remaining Transitions with #

At this step, getDARof defines the remaining transitions performed by M upon
encountering the symbol #, as follows: For each state q ∈ Q, if δ(q, #) is not
defined yet, then getDARof defines that δ(q, #) = qt.

Now let us revisit the example. The transitions δe(q1, #), δe(q3, #), and δe(qt, #)
are not defined yet (see Fig. 2.8). Therefore, getDARof defines that δe(q1, #) = qt,
δe(q3, #) = qt, and δe(qt, #) = qt, as depicted in Fig. 2.9.

Figure 2.9: The states and some of the transitions of M e, after step 5.

Step 6: Defining the Remaining Transitions

At this step, getDARof defines the remaining transitions of M , as follows: For
each state q ∈ Q, and for each symbol a ∈ Σb, if δ(q, a) is not defined yet, then
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getDARof defines that δ(q, a) = δ(q, #).

Now, let us revisit the example. The transitions δe(q0, b), δe(q1, a), δe(q2, a), δe(q2, b),
δe(q3, a), δe(q3, b), δe(qt, a), and δe(qt, b) are not defined yet (see Fig. 2.9). There-
fore, getDARof defines that δe(q0, b) = δe(q0, #) = q0, δe(q1, a) = δe(q1, #) = qt,
δe(q2, a) = δe(q2, #) = q3, δe(q2, b) = δe(q2, #) = q3, δe(q3, a) = δe(q3, #) = qt,
δe(q3, b) = δe(q3, #) = qt, δe(qt, a) = δe(qt, #) = qt, and δe(qt, b) = δe(qt, #) = qt, as
visible in Fig. 2.10, which is the transition graph of M e. The transition graph of a

Figure 2.10: The transition graph of M e, after step 6.

DAR is a graph where nodes represent the states, and edges represent the transitions
of the DAR.

Upon the completion of this step, the construction of M and M e are also completed.
This six-step construction (i.e. getDARof : V → D) defines the semantics of
VisuaL. The asymptotic time complexity of getDARof is O(|Q| × |Σb|), which is
determined by the sixth step.

In Figures 2.11, 2.12, 2.13, and 2.14, we provide the transition graphs of the DARs
corresponding to the example VisuaL specifications shown in Figures 2.1, 2.2, 2.3,
and 2.4, respectively.
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Figure 2.11: The transition graph of the DAR corresponding to the VisuaL specifi-
cation shown in Fig. 2.1.

Figure 2.12: The transition graph of the DAR corresponding to the VisuaL specifi-
cation shown in Fig. 2.2.

Figure 2.13: The transition graph of the DAR corresponding to the VisuaL specifi-
cation shown in Fig. 2.3.

2.4 Open Regular Languages versus other Lan-

guage Families

In Section 2.3.4, we have already defined the Open Regular Languages (ORLs). In
this section, we compare ORLs with the Regular Languages (RLs) [63] and Context-
Free Languages (CFLs) [63].
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Figure 2.14: The transition graph of the DAR corresponding to the VisuaL specifi-
cation shown in Fig. 2.4.

2.4.1 Open Regular Languages versus Regular Languages

In this section, we compare ORLs with RLs. In particular, we answer the following
two questions: Is any RL also an ORL? Is any ORL also an RL?. To answer the
first question, we use the following theorem:

Theorem 2.4.1 For any given RL L, there is a DAR Mdar, such that L(Mdar) = L.

Proof: Let L be an arbitrary RL. By the definition of RL (Section 2.3.3), there
is a DFA Mdfa = 〈Qdfa, Σdfa, δdfa, q0

dfa, F dfa〉, such that L(Mdfa) = L. Based on
Mdfa, we can step-by-step construct a DAR Mdar = 〈Qdar = Qdfa ∪ {qdar

t }, Σa =
Σdfa ∪ {#dar}, δdar, q0

dfa, F dfa, Ξ, η〉, such that L(Mdar) = L(Mdfa) = L. The steps
of this construction are as follows:

1. For each state q ∈ Qdfa and for each symbol a ∈ Σdfa, define δdar(q, a) =
δdfa(q, a).

2. For each symbol a ∈ Σdfa, define δdar(qt
dar, a) = qt

dar.
3. For each q ∈ Qdar, define δdar(q, #dar) = qt

dar.
4. Define Ξ and η arbitrarily. ¥

Based on Theorem 2.4.1 and the definition of ORL (Section 2.3.4), we conclude
that any RL is also an ORL. Consequently, the answer to the first question stated
at the beginning of this section is “yes”. This also entails that DFAs are not more
expressive than DARs. To answer the second question, we use the following theorem:

Theorem 2.4.2 For any given ORL L, it is not guaranteed that there is a DFA
Mdfa, such that L(Mdfa) = L.

Proof: For any given ORL L, assume that there is a DFA Mdfa, such that L(Mdfa) =
L (i.e. assume that Theorem 2.4.2 is false). Let Mdar denote a DAR whose transition
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graph is shown in Fig. 2.13. Observe that L(Mdar) = (Υ \ {g})∗, which is the set
of all possible strands that do not contain the symbol g. By the definition of ORL
(Section 2.3.4), (Υ \ {g})∗ is an ORL. Based on the assumption above, there is a
DFA Mdfa such that L(Mdfa) = (Υ \ {g})∗. Hence, the input alphabet of Mdfa is
Υ \ {g}. Since the set Υ \ {g} is infinite, this set is not an alphabet (Section 2.3.1).
Note that the previous two sentences contradict with each other.¥

Based on Theorem 2.4.2 and the definition of RL (Section 2.3.4), we can conclude
that a given ORL is not necessarily an RL. Consequently, the answer to the second
question stated at the beginning of this section is “no”. This also entails that DARs
have different expressive power than DFAs.

Since (a) any RL is also an ORL, and (b) a given ORL is not necessarily an RL, we
conclude that the set RLs of regular languages is a proper subset of the set ORLs
of open regular languages, as depicted in Fig. 2.15.

Figure 2.15: The set RLs of regular languages is a proper subset of the set ORLs
of open regular languages.

Since (a) DFAs are not more expressive than DARs, and (b) DARs have different
expressive power than DFAs, we conclude that DARs are more expressive than
DFAs.

2.4.2 Open Regular Languages versus Context-Free Lan-
guages

A given set L of strings is a Context-Free Language (CFL), if and only if there
is a Non-deterministic Pushdown Automaton (NPDA) that exclusively accepts the
strings in L [63]. The set of RLs is a proper subset of the set of CFLs [63]. Since
the set of RLs is a proper subset of both the set of CFLs and the set of ORLs,
the relation between ORLs and CFLs is an interesting topic to investigate. In this
section, we study this relation. In particular, we answer the following two questions:
Is any ORL also a CFL? Is any CFL also an ORL?.

In the Venn diagram depicted in Fig. 2.16, CFLs denotes the set of context-free
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languages, and each number denotes the distinct set represented by the closed region
where the number is placed. By discovering whether each of these four sets is empty

Figure 2.16: Each number in this Venn diagram denotes a distinct set represented
by the region where the number is placed.

or not, we can understand the relation between CFLs and ORLs.

Set 3 contains RLs, so it is non-empty. Since an RL is both a CFL and an ORL,
CFLs ∩ ORLs 6= ∅.

Let anbn denote the set of strings, where a string consists of n number of a’s followed
by n number of b’s, such that n ≥ 0. For example, aaabbb is in anbn, but abb not.
anbn is known to be a CFL that is not an RL [63]. Now, the question is, whether
anbn is in Set 2 or 4 (see Fig. 2.16).

anbn is not an RL, due to the following facts: Any DFA has a finite memory (i.e. a
finite set of states), thus for a sufficiently large value of n, a DFA cannot ‘remember’
how many a’s it encountered. Therefore, the DFA cannot ‘know’ how many b’s
the string should have. This means that it is impossible to construct a DFA that
exclusively accepts the strings in anbn. Since a set of strings is an RL if an only if
there is a DFA that exclusively accepts these strings, anbn is not an RL.

Similar to a DFA, a DAR also has a finite memory (i.e. a finite set of states). Hence,
it is not possible to construct a DAR that exclusively accepts the strings in anbn.
As a result, anbn is in Set 4 (Fig. 2.16), so Set 4 is non-empty.

In Section 2.4.1, we have shown that (Υ\{g})∗ is an ORL but not an RL. (Υ\{g})∗

is not an RL, because the sequences in an RL (i.e. the sequences accepted by a DFA)
consist of symbols from a finite set of symbols, whereas the sequences in (Υ \ {g})∗

consist of symbols from Υ \ {g}, which is infinite. Since, the sequences in a CFL
(i.e. the sequences accepted by an NPDA) also consist of symbols from a finite set
of symbols, we can conclude that (Υ \ {g})∗ is not a CFL, either. Consequently,
(Υ \ {g})∗ is an element of Set 1, that is, Set 1 is non-empty.

Based on what we discussed in this section, we conclude the following:

• Since Set 1 is non-empty, a given ORL is not necessarily a CFL. Hence, the
answer to the first question stated at the beginning of this section is “no”.
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• Since Set 4 is non-empty, a given CFL is not necessarily an ORL. Hence, the
answer to the second question stated at the beginning of this section is “no”.

• Based on (a) the definition of ORL (Section 2.3.4), (b) the definition of CFL
(see the beginning of this section), and (c) the fact that Set 1 and Set 4
are non-empty, we conclude that DARs and NPDAs have different expressive
power; i.e. NPDAs are not more expressive than DARs, and vice versa.

Currently, we do not know whether Set 2 is empty or not. We are going to investigate
this in the future.

2.5 Added Value of DARs

In Section 2.4.1, we concluded that DARs are more expressive than DFAs, and
in Section 2.4.2 we concluded that NPDAs and DARs have different expressive
power. Hence, we showed that the DAR formalism has an added value from a
theoretical point of view. In this section, we explain the added value of DARs from
an engineering point of view.

Let the C function f, which is shown in Listing 2.1, be an implementation of an
algorithm.

1 void f()

2 {

3 g(); h(); x();

4 }

Listing 2.1: An implementation of an algorithm in C.

In Section 2.2.2, we have stated the constraint C2 as follows: “In each possible
sequence of function calls from f, if there is at least one call to g, then the first call
to g must be immediately followed by a call to h”. Note that f (i.e. Listing 2.1)
satisfies this constraint.

In Fig. 2.12, we have shown the transition graph of the DAR that is a formal
specification of C2. In this section, we will use Mdar to denote this DAR.

Based on the implementation of f (i.e. Listing 2.1), we can formally specify C2
using the DFA formalism, too. The transition graph of such a DFA is shown in Fig.
2.17. In this section, we will use Mdfa to denote this DFA.

Now, let us compare the evolvability of Mdar with the evolvability of Mdfa, based on
the following evolution scenario: Assume that the source code in Listing 2.1 evolves
into the source code in Listing 2.2, which also satisfies C2.
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Figure 2.17: The transition graph of the DFA representing the constraint C2, based
on the implementation in Listing 2.1.

1 void f()

2 {

3 g(); h(); x(); y();

4 }

Listing 2.2: The next version of the source code in 5.1.

Considering the definition of C2 (i.e. the English text), one would expect that
a formal specification of C2 must not need to be modified due to this evolution,
because the definition of C2 is oblivious to the existence or non-existence of a call to
y in the implementation of f. This expectation is fulfilled by Mdar, because Mdar

(see Fig. 2.12) has a #-labelled transition from q2 to q2, and this transition matches
the newly added call to y. However, Mdfa does not fulfill the expectation mentioned
above, because one has to add the following four transitions to Mdfa (Fig. 2.17),
so that Mdfa remains in sync with the implementation of f: a y-labelled transition
from (a) q0 to q0, (b) q1 to qt, (c) q2 to q2, and (d) qt to qt.

As we have exemplified above, the wildcard symbol # enables us to abstract away
from the unnecessary details, such as the call to y in Listing 2.2. Due to such abstrac-
tions, a DAR is always in sync with the subsequent versions of the corresponding
algorithm, as long as the constraint represented by the DAR remains correct and
unchanged. To sum up, DARs are more evolvable than DFAs. This is the added
value of DARs, from an engineering point of view.

2.6 Expressive Power of VisuaL

In Section 2.3.5, we have seen that each VisuaL specification represents a DAR,
hence expresses an ORL. However, we do not yet know the answer to the following
question: For any ORL L, is there a VisuaL specification that can express L? To
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answer this question, we state the following theorem:

Theorem 2.6.1 For any DAR M , there is a VisuaL specification S such that
L(getDARof(S)) = L(M).

Proof: For any DAR M = 〈Q = Ω∪{qt}, Σa = Σb ∪{#}, δ, q0, F, Ξ, η〉, it is possible
to construct a VisuaL specification S such that L(getDARof(S)) = L(M). This
construction is denoted by the total function getV isuaLof : D → V , where D is the
set of DARs, and V is the set of VisuaL specifications. If M is given to getV isuaLof
as the input, then getV isuaLof performs the following steps to construct S:

Step1: Initialization of S

At this step, getV isuaLof initializes S, such that

• The name of the container node of S is equal to η, which is the name of M .
• The regular expression on the container node of S is equal to Ξ, which is the

scope expression of M .

Now, let us see an example. In Section 2.3.5, we constructed the DAR M e, whose
transition graph is shown in Fig. 2.10. If M e is given to getV isuaLof as the input,
then getV isuaLof initializes a new VisuaL specification shown in Fig. 2.18. We
denote this new specification using Se.

Figure 2.18: The VisuaL specification Se, after step 1.

The name of the container node of Se is mySpecification (see Fig. 2.18), because the
name ηe of M e is mySpecification (see Section 2.3.5). The regular expression on
the container node of Se is foo, because the scope expression Ξe of M e is foo (see
Section 2.3.5).
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Step 2: Adding the Inner Nodes

At this step, getV isuaLof adds inner nodes to S, as follows: For each state q ∈ Q,
getV isuaLof creates a distinct inner node n, such that

• q is mapped to n.
• If q = q0 and q ∈ F , then n is the initial-final node.
• If q = q0 and q /∈ F , then n is the initial node.
• If q 6= q0 and q ∈ F , then n is a final node.
• If q 6= q0 and q /∈ F , then n is a plain node.

We denote the mapping from the states of M to the inner nodes of S using the total,
one-to-one, and onto function getV isuaLnodeOf : Q → IN , where IN is the set of
inner nodes of S.

Now, let us revisit the example. As visible in Fig. 2.10, the states of M e are q0,
q1, q2, q3, and qt. q0 is the initial state, and q3 is the only final state. Accordingly,
getV isuaLof creates the inner nodes, say, q0, q1, q2, q3, and qt of Se, such that

• getV isuaLnodeOf(q0) = q0, and q0 is the initial node.
• getV isuaLnodeOf(q1) = q1, and q1 is a plain node.
• getV isuaLnodeOf(q2) = q2, and q2 is a plain node.
• getV isuaLnodeOf(q3) = q3, and q3 is the final node.
• getV isuaLnodeOf(qt) = qt, and qt is a plain node.

Fig. 2.19 shows the VisuaL specification Se, upon the creation of the inner nodes.

Figure 2.19: The VisuaL specification Se, after step 2.
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Step 3: Adding the Edges

At this step, for each transition δ(qi, aj) = qk of M , getV isuaLof adds an edge
e to S, such that the source of e is getV isuaLnodeOf(qi), and the target of e is
getV isuaLnodeOf(qk). If aj = #, then the label of e is $, else the label of e is the
symbol denoted by aj.

Now, let us revisit the example. Fig. 2.20 shows the specification Se, upon the
addition of the edges according to the transitions of M e (see Fig. 2.10).

Figure 2.20: The VisuaL specification Se, after step 3.

Upon the completion of this step, the construction of S and Se are also completed.
L(getDARof(S)) = L(M), because the only difference between getDARof(S) and
M is as follows: getDARof(S) has one extra state qt

new, which is the unreach-
able default trap state of getDARof(S). Since this is the only difference between
getDARof(S) and M , we conclude that L(getDARof(S)) = L(M).

Now, let us revisit the example. Fig. 2.21 shows the transition graph of getDARof(Se),
where Se is shown in Fig. 2.20. By comparing the Figures 2.21 and 2.10, the readers
can notice that L(getDARof(Se)) = L(M e). ¥

Based on (a) Theorem 2.6.1, and (b) the semantics of VisuaL (Section 2.3.5), we
conclude the following: Using VisuaL, one can express any ORL and nothing else.
Hence, VisuaL and DARs have the same expressive power. Upon this conclusion,
it is natural to ask the following question: Since VisuaL and DARs have the same
expressive power, then what is the added value of using VisuaL? In Section 2.8, we
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Figure 2.21: The transition graph of getDARof(Se), after step 3

answer this question. To precisely answer this question, we first need to explain how
to construct minimal VisuaL specifications, in Section 2.7.

2.7 Constructing Minimal VisuaL Specifications

A given VisuaL specification expresses a unique ORL, whereas a given ORL can
be expressed by more than one VisuaL specification. If there are multiple VisuaL
specifications each expressing the same ORL, then the number of edges and inner
nodes of these specifications may be different. For example, the specifications shown
in Figures 2.6 and 2.20 express the same ORL, but the former specification has 4
edges and 4 inner nodes, whereas the latter specification has 15 edges and 5 inner
nodes. Thus, the latter specification is unnecessarily large.

In this section, we explain how to construct VisuaL specifications that are not un-
necessarily large. To precisely explain this construction, we use the following terms:
Let S1 and S2 be VisuaL specifications. S1 and S2 are equivalent, if and only if
L(getDARof(S1)) = L(getDARof(S2)). A VisuaL specification S1 is minimal, if
and only if there is no other VisuaL specification S2, such that (a) S1 and S2 are
equivalent, and (b) S2 has less number of edges or inner nodes.

For a given VisuaL specification S, it is possible to construct the minimal VisuaL
specification Smin that is equivalent to S. We denote this construction using the
total and many-to-one function minimizeV isuaL : V → V , where V is the set of



Chapter 2. VisuaL 45

VisuaL specifications. In the remainder of this section, we step-by-step explain how
minimizeV isuaL constructs Smin based on S.

2.7.1 Step 1: Constructing the DAR

At this step, minimizeV isuaL constructs the DAR M , where M = getDARof(S) =
〈Q, Σa, δ, q0, F, Ξ, η〉. This construction is already explained in Section 2.3.5.

Now, let us see an example. In Fig. 2.22, a specification of the following constraint
is shown:

C5: In each possible sequence of function calls from f, there must be at least two
function calls, and the second function call must be a call to g.

Figure 2.22: A VisuaL specification with unnecessary edges and inner nodes.

Let Se denote the specification shown in Fig. 2.22. At this step, minimizeV isuaL
constructs the DAR getDARof(Se), whose transition graph is shown in Fig. 2.23.
In the remainder of Section 2.7, we use M e for denoting the DAR whose transition
graph is shown in Fig. 2.23.

2.7.2 Step 2: Constructing the Minimal DAR

To precisely explain this step, we first need to define the following terms: Let M1

and M2 be DARs. M1 and M2 are equivalent, if and only if L(M1) = L(M2). A
DAR M1 is minimal, if and only if there is no other DAR M2 such that (a) M1 and
M2 are equivalent, and (b) M2 has less number of states. These definitions of the
equivalence and minimality apply to DFAs, too.

At this step, minimizeV isuaL constructs the minimal DAR Mmin that is equiv-
alent to M . This construction is denoted by the total and many-to-one function



46 Chapter 2. VisuaL

Figure 2.23: The transition graph of the DAR corresponding to the VisuaL specifi-
cation shown in Fig. 2.22.

minimizeDAR : D → D, where D is the set of DARs. In the remainder of this
section, we step-by-step explain how minimizeDAR constructs Mmin based on M .

Step 2.1: Finding the Pairs of Distinguishable States

Let q1 and q2 be two different states of M . These states are distinguishable, if
there is at least one strand w ∈ Υ∗ such that (a) δ∗(q1, w) ∈ F and δ∗(q2, w) /∈ F ,
or (b) δ∗(q1, w) /∈ F and δ∗(q2, w) ∈ F . We say q1 and q2 are indistinguishable, if
and only if they are not distinguishable.

At this step, minimzeDAR finds the distinguishable states of M , by performing
the following three-step procedure called mark:

1. Remove all unreachable states. This can be done by enumerating all simple
paths starting at the initial state in the transition graph of M . If a state does
not appear in such a path, then this state is unreachable.

2. For each pair (q1, q2) of states, if (a) q1 ∈ F and q2 /∈ F , or (b) q1 /∈ F and
q2 ∈ F , then mark the pair (q1, q2) as distinguishable.

3. Repeat the following step until none of the unmarked pairs can be marked:
For each pair (q1, q2), if there is an a ∈ Σa such that the pair (δ(q1, a), δ(q2, a))
is marked as distinguishable, then mark (q1, q2) as distinguishable.

The procedure mark is originally presented in [63], for finding the distinguishable
states of a DFA. In [63], it is proven that mark terminates and determines all pairs
of distinguishable states.
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mark can be implemented by partitioning the states into equivalence classes. When-
ever two states are found to be distinguishable, they are immediately put into sep-
arate equivalence classes.

Now, let us revisit the example. If M e (see Fig. 2.23) is given to mark as input,
then mark first removes the state q4, since this state is unreachable. Next, mark
partitions Q into two equivalence classes {q0, q1, q2, qt} and {q3}. Finally, the execu-
tion of the last step of mark results in four equivalence classes: {q0}, {q1, q2}, {q3},
and {qt}.

Step 2.2: Reducing the States of M

After the equivalence classes are found, the construction of Mmin consists of the
following six-step procedure called reduce: Given M = 〈Q, Σa, δ, q0, F, Ξ, η〉, reduce
constructs the minimal DAR Mmin = 〈Qmin, Σa, δmin, q0min, Fmin, Ξ, η〉, as follows:

1. Use the procedure mark to generate the equivalence classes of the states in Q.
2. For each equivalence class {qi, qj, ..., qk} of indistinguishable states, add a state

labelled ij...k to Qmin.
3. For each transition δ(qr, a) = qp of M , find the equivalence classes to which qr

and qp belong. If qr ∈ {qi, qj, ..., qk} and qp ∈ {ql, qm, ..., qn}, then define that
δmin(ij...k, a) = lm...n.

4. The initial state q0min is the state whose label includes 0.
5. Fmin is the set of all states whose label contains i such that qi ∈ F .
6. Since M has at least one trap state, Mmin has exactly one trap state. Designate

the trap state of Mmin as the default trap state.

The first five steps of the procedure reduce are originally presented in [63], for
constructing a minimal DFA. In [63], it is proven that reduce terminates, and the
resulting DFA is both equivalent to the original DFA and minimal. We added the
sixth step, because a DAR must have a default trap state.

Now, let us revisit the example. If M e (Fig. 2.23) is given to reduce as the input,
then the output is the DAR M e

min, whose transition graph is shown in Fig. 2.24.

2.7.3 Step 3: Constructing the Intermediate Specification

At this step, minimizeV isuaL constructs the VisuaL specification getV isuaLof(Mmin).
The function getV isuaLof is already explained in Section 2.6.

Now, let us revisit the example. The VisuaL specification getV isuaLof(M e
min) is
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Figure 2.24: The transition graph of a minimal DAR that is equivalent to the DAR
whose transition graph is shown in Fig. 2.23.

shown in Fig. 2.25. Note that this specification is equivalent to Se (Fig. 2.22).

Figure 2.25: The non-minimal VisuaL specification getV isuaLof(M e
min).

2.7.4 Step 4: Removing the Trap Node and Unnecessary
Edges

The VisuaL specification getV isuaLof(Mmin) has a trap node and some edges that
are unnecessary. At this step, minimizeV isuaL removes these unnecessary ele-
ments, which results in the minimal specification Smin. The steps of the removal are
as follows:
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1. Let n denote the trap node of getV isuaLof(Mmin) (i.e. an inner node n, such
that (a) n is not a final or the initial-final node, and (b) the target of each
outgoing edge from n is n). Since minimizeDAR (Section 2.7.2) guarantees
the existence of exactly one trap state in Mmin, there is exactly one trap node in
getV isuaLof(Mmin). At this step, minimizeV isuaL removes the edges whose
source or target is n. If n is not the initial node of getV isuaLof(Mmin), then
minimizeV isuaL removes n, too.

2. For each edge e whose label is different than $, minimizeV isuaL does the
following: If there is a $-labelled edge (i.e. a context-sensitive wildcard) with
the same source and target as e has, then minimizeV isuaL removes e.

Upon removal of the trap node and the unnecessary edges as explained above, the
resulting VisuaL specification is the minimal specification Smin that is equivalent to
S. Smin is minimal, because (a) Mmin is a minimal DAR, (b) getDARof(Smin) =
Mmin, and (c) there is no node or edge that can be removed without breaking this
equality.

Now, let us revisit the example. If the unnecessary edges and inner nodes of
getV isuaLof(M e

min) (Fig. 2.25) are removed, then the resulting specification is the
specification Se

min, which is shown in Fig. 2.26. Note that (a) getDARof(Se
min) =

Figure 2.26: A minimal VisuaL specification that is equivalent to the specification
shown in Fig 2.22.

M e
min (Fig. 2.24), (b) Se

min is equivalent to both getV isuaLof(M e
min) (Fig. 2.25)

and Se (Fig. 2.22), and (c) Se
min is minimal.

2.8 Added Value of VisuaL

In Section 2.6, we concluded that the VisuaL language and the DAR formalism have
the same expressive power. Thus, from a theoretical point of view, the added value
of the VisuaL language is the same as the added value of the DAR formalism. From



50 Chapter 2. VisuaL

an engineering point of view however, VisuaL specifications can be preferred over
DARs, due to the reasons explained in the remainder of this section.

A VisuaL specification S has fewer edges and inner nodes than the states and tran-
sitions of the corresponding DAR M (i.e. M = getDARof(S)); because (a) there is
no inner node in S, such that this node corresponds to the default trap state of M ,
and (b) there are no edges in S, such that these edges correspond to the transitions
from- or to the default trap state of M . Hence, S is by default more concise than
M .

Context-Sensitive Wildcards (CSWs) (see Section 2.2.1) enable us to reduce the
number of edges in VisuaL specifications: In a given VisuaL specification, if there
is a CSW with the source node sn and the target node tn, then all the other edges
whose source and target nodes are respectively sn and tn can be removed; in which
case the resulting specification is equivalent to the original one.

Since VisuaL specifications are more concise than the corresponding DARs, VisuaL
specifications are more evolvable than the corresponding DARs. For example, let
us imagine that the constraint C5, which is stated at the beginning of Section 2.7.1,
evolves into the following constraint: “In each possible sequence of function calls
from f, there must be at least two function calls, such that the first function call must
be a call to h, and the second function call must be a call to g”. To implement this
change in the VisuaL specification Se

min (Fig. 2.26), it is necessary and sufficient to
replace the CSW originating from q0 with an h-labelled edge. Whereas, to implement
this change in the DAR M e

min (Fig. 2.24), one has to (a) change the target state of
the two transitions from q0, and (b) add four new transitions with the symbol h, such
that the transition graph of M e

min (Fig. 2.24) is transformed into the transition
graph shown in Fig. 2.27.

Currently, we know two alternative ways to formally express a given open regular
language L5: (1) To create a DAR M , such that L(M) = L; or (2) to create a
VisuaL specification S, such that L(getDARof(S)) = L. Among these alternatives,
the most concise (hence evolvable) artifact that expresses L is the minimal VisuaL
specification Smin, such that L(getDARof(Smin)) = L. This is the added value of
VisuaL, from an engineering point of view.

5If L is finite, then the third alternative is to enumerate the strands in L.
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Figure 2.27: The transition graph of a minimal DAR that is the result of an evolu-
tion.

2.9 Conclusions

The commonly used graphical languages such as statecharts support hierarchies
(i.e. nested structures), so that one can define different levels of abstraction in
software specifications. In this chapter, we presented an additional mechanism for
abstraction, which we call Context-Sensitive Wildcard (CSW). We defined CSW
as the key feature of VisuaL, which is a simple graphical language for expressing
the logical and temporal properties of the possible executions of an algorithm. We
provided a detailed analysis of VisuaL, such that this analysis reveals the theoretical
and practical implications of using CSWs, in the graphical specifications of software
behavior.

The theoretical findings presented in this chapter are as follows: a VisuaL speci-
fication represents an automaton called Deterministic Abstract Recognizer (DAR)
(Section 2.3.5), which is a variant of a Deterministic Finite Accepter (DFA) [63].
DARs express a new family of formal languages called Open Regular Languages
(ORLs) (Section 2.3.4). The set of ORLs is a proper superset of the set of regu-
lar languages [63]; but the set of context-free languages [63] is neither a superset
nor a subset of the set of ORLs (Section 2.4). Using VisuaL, one can express any
ORL and nothing else; thus the VisuaL language and the DAR formalism have the
same expressive power (Section 2.6). These theoretical findings can be reused for
extending the existing graphical languages with CSW.

The practical findings presented in this chapter are as follows: DARs have a wildcard
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symbol in their alphabet. Due to this symbol, DARs are more evolvable than DFAs
(Section 2.5). The key feature of VisuaL is CSW. Due to this feature, it is possible
to create VisuaL specifications that are more concise, hence more evolvable than the
corresponding DARs (Section 2.8).

The state-of-the-art verification tools such as Bandera [25, 51, 34] and LTSA [65, 42]
support temporal logics (e.g. LTL [23], FLTL [42, 61]) for expressing the properties
of software systems. Temporal logics are textual formalisms. In today’s indus-
trial practice however, there is a large group of practitioners who prefer graphical
formalisms (e.g. statecharts) for specifying their software. Hence, there is a gap
between the preferences of these practitioners and the specification languages sup-
ported by the state-of-the art model checking tools. Empirical evidence (Chapters 5
and 7) indicates that VisuaL, whose key feature is CSW, has the potential to bridge
this gap. Hence, VisuaL addresses the “requirements specification problem” stated
by Hatcliff and Dwyer [51]. Last but not the least, VisuaL addresses the first prob-
lem stated in Section 1.1, and enables us to address the remaining three problems,
as we explain in the remainder of this thesis.



Chapter 3

Checking the Consistency between
VisuaL Specifications

3.1 Introduction

Using VisuaL, one can create multiple specifications each representing a different
constraint on the same function. For example, each of the specifications presented
in Section 2.2 represents a different constraint on the same function: f.

When creating multiple VisuaL specifications to express different constraints on the
same function, it must be ensured that the specifications are consistent: There
is at least one possible implementation of the function, such that the implementa-
tion satisfies each of the constraints. If there is no possible implementation of the
function that satisfies each of the constraints, then the VisuaL specifications are
inconsistent.

For example, the specifications S1 (Fig. 2.1) and S3 (Fig. 2.3) are inconsistent: If
an implementation of the function f satisfies the constraint C1: “In each possible
sequence of function calls from the function f, there must be at least one call to the
function g.” (reprinted from Section 2.2.1), then this implementation cannot satisfy
the constraint C3: “In each possible sequence of function calls from f, a call to g

must not exist.” (reprinted from Section 2.2.3). Conversely, if an implementation of
the function f satisfies C3, then this implementation cannot satisfy C1. Hence, it is
impossible to implement f, such that the implementation satisfies both C1 and C3.

Whenever VisuaL specifications are created or modified in the software life cycle,
the consistency between the specifications must be verified. Manually verifying
the consistency is an effort-consuming and error-prone task. If the specifications

53
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are inconsistent, then manually finding and resolving the inconsistency is an effort-
consuming and error-prone task, too. CheckDesign can reduce the effort and prevent
the errors: CheckDesign takes a set of VisuaL specifications, and automatically finds
out whether the specifications are consistent or not. If the specifications are incon-
sistent, then CheckDesign outputs an error message that can help in understanding
and resolving the inconsistency. In this chapter, we explain how CheckDesign works,
in four steps: In the first step, CheckDesign determines the clusters of specifications
that may be inconsistent. In the second step, CheckDesign derives the DARs of the
specifications using which it performs the consistency analysis. In the third step,
CheckDesign aligns the DARs within a given cluster, so that these DARs can be
composed for constructing the cluster DAR, in the fourth step. The cluster DAR
contains the necessary and sufficient information for concluding whether the VisuaL
specifications are consistent or not.

3.2 Step1: Clustering the Specifications

If CheckDesign is provided with multiple specifications, then it clusters the speci-
fications according to the functions for which they are written. More precisely, if
there are one or more specifications that are created for expressing constraints on
the same function, then these specifications are put into the same cluster.

For example, let us assume that CheckDesign is provided with the specifications S1
(Fig. 2.1) and S2 (Fig.2.2). In this case, CheckDesign creates only one cluster, say
CLS, and puts S1 and S2 into CLS, because both S1 and S2 are written for the
same function: f.

As explained in Section 2.2.1, one can write a VisuaL specification for multiple
functions, by writing a regular expression in the stereotype of the container node of
the specification. Such a specification may appear in multiple clusters.

The reason for the clustering is to determine the group of specifications for which
the consistency analysis is relevant. If each specification in a given group is written
for the same function, then a consistency analysis of these specifications is relevant,
since the specifications may be inconsistent. If specifications are written for different
functions, then a consistency analysis of these specifications is irrelevant, since the
specifications cannot be inconsistent.

Once the specifications are clustered, for each cluster that contains more than one
specification, CheckDesign performs the steps explained in the remainder of Chapter
3.
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3.3 Step 2: Deriving DARs from Specifications

For each specification within a given cluster, CheckDesign derives the corresponding
DAR. For example, let us reconsider the cluster CLS (see Section 3.2) that contains
the specifications S1 and S2. CheckDesign would perform this step by deriving

1. the DAR of S1. The transition graph of this DAR is depicted in Fig. 2.11.
We will use MS1 to denote this DAR.

2. the DAR of S2. The transition graph of this DAR is depicted in Fig. 2.12.
We will use MS2 to denote this DAR.

If a specification appears in multiple clusters, then one instance of the DAR of the
specification is created for each cluster.

The DAR of a specification provides the semantics of the specification. There-
fore, CheckDesign uses DARs for performing the remaining steps of the consistency
analysis.

After the DAR of each specification is derived, the next step is the alignment of
each DAR with respect to its cluster, which we explain in Section 3.4.

3.4 Step 3: Aligning the DARs of a Cluster

Before we start explaining this step, we need to define the following set: Υ denotes
the set of all symbols.

The set of symbols represented by the # (i.e. wildcard symbol) of a given DAR of
a given cluster may be different than the set of symbols represented by the # of
another DAR of the same cluster. For example, the set of symbols represented by
the # of MS1 (Fig. 2.11) is {sym|sym ∈ (Υ \ {g})}, whereas the set of symbols
represented by the # of MS2 (Fig. 2.12) is {sym|sym ∈ (Υ\{g, h})}. Elimination of
such differences without altering the sets of strands (see Section 2.3.4) accepted by
the DARs is called alignment of DARs with respect to their cluster. An alignment
is necessary for the unification explained in Section 3.5.2, and consists of two steps
explained below.

3.4.1 Step 3.1: Constructing the Cluster Alphabet

To precisely explain this step we first need to revisit the following term, which is
already defined in Section 2.3.4:
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Definition: If Σ is the abstract input alphabet of a DAR, then Σ \ {#} is the base
input alphabet of the DAR.

At this step, CheckDesign constructs the cluster alphabet, which is the union of
the base input alphabets of the DARs within the cluster. For example, the base input
alphabet of MS1 is ΣS1 = {g}, and the base input alphabet of MS2 is ΣS2 = {g, h}.
Hence, the cluster alphabet is ΣCLS = ΣS1 ∪ ΣS2 = {g, h}.

3.4.2 Step 3.2: Transforming the DARs

To precisely explain this step, we need to revisit the following term, which is already
defined in Section 2.7.2:

Let M1 and M2 be DARs. L(M1) denotes the set of strands accepted by M1.

Definition: M1 and M2 are equivalent, if and only if L(M1) = L(M2).

At this step, CheckDesign transforms each DAR to an equivalent DAR whose base
alphabet is equal to the cluster alphabet. For a given DAR, this transformation is
performed as follows:

For each symbol sym that is in the cluster alphabet but not in the base alphabet of
the DAR, CheckDesign does the following: For each state s of the DAR, CheckDesign
identifies the target state ts of the #-labelled transition whose source state is s,
and then adds a new sym-labelled transition whose source and target states are
respectively s and ts.

Note that each newly added transition is an ‘implicit’ part of a #-labelled transition
of the original DAR, and the only thing this transformation does is to make these
‘implicit’ transitions ‘explicit’. Consequently, the transformation explained above
preserves the set of strands accepted by the original DAR.

For example, MS1 (Fig. 2.11) and MS2 (Fig. 2.12) are transformed as follows: Since
ΣCLS \ ΣS1 = {h}, CheckDesign transforms MS1 to an equivalent DAR M ′

S1 (Fig.
3.1) by adding three transitions that are labelled with h: An h-labelled transition
from q0 to q0, from q1 to q1, and from qt to qt. Since ΣCLS \ ΣS2 = ∅, CheckDesign
transforms MS2 to an equivalent DAR M ′

S2 without adding any transition to MS2;
i.e. MS2 is already aligned, and MS2 and M ′

S2 are identical.

The alignment presented above is correct, because (a) M ′

S1 is equivalent to MS1, (b)
M ′

S2 is equivalent to MS2, and (c) the set of symbols represented by the # of M ′

S1

is equal to the set of symbols represented by the # of M ′

S2.
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Figure 3.1: The transition graph of a DAR that is equivalent to the DAR whose
transition graph is shown in Fig. 2.11.

3.5 Step 4: Constructing the Cluster DAR

For a given cluster cluster of aligned DARs M ′

1, ..., M
′

n, CheckDesign constructs the
cluster DAR Mcluster, such that L(Mcluster) = L(M ′

1)∩ ...∩L(M ′

n). If L(Mcluster) 6=
∅, then there is at least one strand (i.e. sequence of function calls) that is matched by
the patterns of the VisuaL specifications whose DARs are M1, ..., Mn. Hence, there
is at least one possible implementation of the function, such that the implementation
satisfies the constraints represented by the specifications. Thus, if L(Mcluster) 6= ∅,
then the specifications are consistent, else inconsistent.

Note that cluster and CLS are different clusters: cluster is a general cluster con-
taining general DARs M1, ..., Mn, whereas CLS is an example cluster introduced in
Section 3.2. CLS contains the example DARs MS1 and MS2 introduced in Section
3.3.

The construction of a cluster DAR is based on the DeMorgan’s law:

L(M ′

1) ∩ ... ∩ L(M ′

n) = L(M ′

1) ∪ ... ∪ L(M ′

n)

Instead of constructing Mcluster such that L(Mcluster) = L(M ′

1) ∩ ... ∩ L(M ′

n), we

construct Mcluster such that L(Mcluster) = L(M ′

1) ∪ ... ∪ L(M ′

n), because this enables
us to decompose the construction into five simple steps explained in the remainder of
this section. To perform these steps, we benefit from the proven algorithms available
in almost every introductory textbook on the theory of computation (e.g. [63]). If
we would construct the cluster DAR without using the DeMorgan’s law, then we
would have to invent our own algorithm for the construction.
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3.5.1 Step 4.1: Complementing the Aligned DARs

At this step, CheckDesign performs the following operation for each of the aligned
DARs M ′

1, ..., M
′

n:

Let M ′ be an aligned DAR, Q′ denote the set of states of M ′, and F ′ denote the set
of final states such that F ′ ⊆ Q′. Given M ′, CheckDesign creates another DAR M ′′

whose alphabet, transitions, and the set of states are identical to those of M ′, but
the set of final states is Q′ \ F ′.

We call M ′′ the complement of M ′ (and vice versa), because L(M ′′) = L(M ′). In
[63], this claim is already proven for DFA. The same proof applies to DARs as well,
because the complement operation preserves the set of symbols represented by the
# symbol of a given DAR.

For example, the complements of the aligned DARs M ′

S1 (Fig. 3.1) and M ′

S2 (Fig.
2.12) are respectively M ′′

S1 (Fig. 3.2), and M ′′

S2 (Fig. 3.3).

Figure 3.2: The transition graph of the DAR that is the complement of the DAR
whose transition graph is shown in Fig. 3.1.

Figure 3.3: The transition graph of the DAR that is the complement of the DAR
whose transition graph is shown in Fig. 2.12.

The automaton resulting from a complement operation may not have any trap state.
In such a case, we assume that the automaton has a default trap state that is not
reachable. This assumption enables us to treat the automaton as an official DAR,
according to the definition of DARs in Section 2.3.4.
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3.5.2 Step 4.2: Unifying the Complemented DARs

To explain this step, we use the following well-known concepts: ǫ denotes the empty
strand (Section 2.3.4), which does not contain any symbol. A key difference of
non-deterministic finite-state automata with λ-transitions (NFA-λ) [63] from de-
terministic finite state automata (DFA) [63] is as follows: an NFA-λ may contain
λ-labelled transitions that are performed without consuming the ‘current’ symbol of
the input string, whereas a DFA consumes exactly one symbol from the input string
to perform a transition.

To perform the unification explained in this section, we use non-deterministic ab-
stract recognizers with ǫ transitions (NAR-ǫ), which is defined as follows:

Definition: Let P (Q) denote the power set of a given set Q. Non-Deterministic
Abstract Recognizers with ǫ Transitions (NAR-ǫ) are defined exactly the
same as DARs (Section 2.3.4), except the transition function. The transition func-
tion of a NAR-ǫ is defined as δ : Q × (Σa ∪ {ǫ}) → P (Q).

The difference between a NAR-ǫ and a DAR is the same as the difference between
a NFA-λ and a DFA. To understand the remainder of this section, knowing the
difference explained at the beginning of this section is necessary and sufficient.

CheckDesign unifies the complemented DARs M ′′

1 , ..., M ′′

n by constructing a NAR-
ǫ M ′′′

cluster
1, such that L(M ′′′

cluster) = L(M ′′

1 ) ∪ ... ∪ L(M ′′

n). To construct M ′′′

cluster,
CheckDesign first defines a new initial state q0

nar, and then for each M ′′

i where
1 ≤ i ≤ n, CheckDesign adds an ǫ-labelled transition whose source and target
states are respectively q0

nar and the initial state of M ′′

i . As a result, L(M ′′′

cluster) =
L(M ′′

1 ) ∪ ... ∪ L(M ′′

n). In [63], the same construction is used for unifying DFAs.
Although the upper bound of the asymptotic time complexity of this construction is
exponential, the complexity remains polynomial while unifying the complemented
DARs. This is due to the fact that DARs are deterministic. In fact, the unification
is similar to taking the product of deterministic automata, and this operation has a
polynomial time complexity.

For example, the complemented DARs M ′′

S1 (Fig. 3.2) and M ′′

S2 (Fig. 3.3) are unified
by constructing the NAR-ǫ M ′′′

CLS whose transition graph is shown in Fig. 3.4. In
this figure, we superscripted the name of each non-initial state with the name of
the related specification, so that the states can be uniquely identified. In addition,
we have drawn dashed rectangles to indicate which part of M ′′′

CLS represents which
DAR.

1The construction of Mcluster starts with M
′′′

cluster
. Each step of the construction removes one

prime (i.e. ′), hence after three steps M
′′′

cluster
is transformed into Mcluster.
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Figure 3.4: The transition graph of the NAR-ǫ resulting from the unification of the
DARs whose transition graphs are shown in Fig. 3.2 and 3.3.

Thanks to the alignment (Section 3.4), each # in Fig. 3.4 represents the same set
of symbols: {sym|sym ∈ (Υ \ {g, h})}.

The NAR-ǫ resulting from a unification contains multiple trap states. One of the
trap states is considered to be the default trap state of the NAR-ǫ. For example,
M ′′′

CLS (Fig. 3.4) has two trap states: (qt
S1 and qt

S2). One of these trap states, say
qt

S1, is considered to be the default trap state.

3.5.3 Step 4.3: Constructing a DAR equivalent to NAR-ǫ

At this step, CheckDesign constructs a DAR M ′′

cluster that is equivalent to the NAR-ǫ
M ′′′

cluster constructed in Section 3.5.2. For the construction of M ′′

cluster, CheckDesign
uses the existing algorithm [63] that constructs a DFA that is equivalent to a given
NFA-λ. Since this algorithm preserves the set of symbols represented by the #
symbol of a given NAR-ǫ, the resulting DAR is equivalent to NAR-ǫ.

For example, CheckDesign constructs the DAR M ′′

CLS (Fig. 3.5), which is equivalent
to the NAR-ǫ M ′′′

CLS (Fig. 3.4), as follows: In M ′′′

CLS (Fig. 3.4), q0
S1 and q0

S2 are
reachable from the initial state q0

nar, without consuming any symbol. Therefore,
the initial state of M ′′

CLS (Fig. 3.5) is defined as {q0
nar, q0

S1, q0
S2}. Since this initial

state contains a final state (i.e. q0
S1), the initial state is designated as a final state,

too.



Chapter 3. Checking the Consistency between VisuaL Specifications 61

Figure 3.5: The transition graph of the DAR that is equivalent to the NAR-ǫ whose
transition graph is shown in Fig. 3.4.

When the current state of M ′′′

CLS is the initial state (i.e. q0
nar), if the incoming

symbol is anything else than g, then M ′′′

CLS performs a transition to q0
S1 and q0

S2.
This defines the two transitions whose source and target is {q0

nar, q0
S1, q0

S2} in
M ′′

CLS, because {q0
nar, q0

S1, q0
S2} contains q0

S1 and q0
S2.

When the current state of M ′′′

CLS is the initial state, if the incoming symbol is g, then
M ′′′

CLS performs a transition to q1
S1 and q1

S2. This defines (a) the state {q1
S1, q1

S2}
of M ′′

CLS, and (b) the g-labelled transition from {q0
nar, q0

S1, q0
S2} to {q1

S1, q1
S2}.

Since q1
S2 is a final state, {q1

S1, q1
S2} is also designated as a final state.

We do not explain the construction of M ′′

CLS any further, because the explanation
above should be sufficient to provide the intuition about the construction. Interested
readers can continue the construction to verify that M ′′

CLS and M ′′′

CLS are indeed
equivalent. The algorithm of the construction is available in [63].

The deterministic automaton that is derived from a NAR-ǫ may not have any trap
state. In such a case, we assume that the automaton has a default trap state that
is not reachable. This assumption enables us to treat the automaton as an official
DAR in the next step.

3.5.4 Step 4.4: Minimizing the Number of States and Tran-
sitions of DAR

At this step, CheckDesign constructs the DAR M ′

cluster that (a) is equivalent to the
DAR M ′′

cluster, and (b) has the minimum number of states and transitions. This
construction is already explained in Section 2.7.2.
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For example, the DAR M ′

CLS resulting from the minimization of M ′′

CLS (Fig. 3.5)
is identical to M ′′

CLS, because the number of states of M ′′

CLS is already minimal.
Interested readers can verify that there is no other DAR that is both equivalent to
M ′′

CLS and has less number of states, by using the minimization algorithm explained
in Section 2.7.2.

3.5.5 Step 4.5: Complementing the Minimized DAR

At this step, CheckDesign derives the cluster DAR Mcluster by complementing the
DAR M ′

cluster. The complement operation is already explained in Section 3.5.1.

Thanks to the DeMorgan’s law (see the beginning of Section 3.5), the set of strands
accepted by the cluster DAR Mcluster is equal to the intersection of the sets of strands
accepted by the aligned DARs (i.e. L(Mcluster) = L(M ′

1) ∩ ... ∩ L(M ′

n)).

In the transition graph of Mcluster, if there is at least one final state that is reachable,
then this indicates that L(Mcluster) 6= ∅, i.e. there is at least one possible implemen-
tation of the function that satisfies each constraint in the cluster; the specifications
of the cluster are consistent. If there is not any final state that is reachable, then
the specifications are inconsistent.

For example, M ′

CLS (Fig. 3.5) is complemented to obtain the cluster DAR MCLS

(Fig. 3.6). Note that there is a final state in Fig. 3.6, and this state is reachable.

Figure 3.6: The transition graph of the DAR that is the complement of the DAR
whose transition graph is shown in Fig. 3.5.

Therefore, S1 (Fig. 2.1) and S2 (Fig. 2.2) are consistent.

Note that MCLS (Fig. 3.6) is equivalent to the DAR whose transition graph shown
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in Fig. 2.14. If this equivalence did not exist, then the steps performed so far in
Section 3 would be incorrect.

3.6 Deriving the Cluster Specification

For a given cluster DAR Mcluster, CheckDesign can derive and output the corre-
sponding VisuaL specification Scluster. Such a specification can be useful for docu-
mentation and debugging purposes. For example, if the cluster DAR MCLS (Fig.
3.6) is given to CheckDesign, then CheckDesign can output the cluster specifica-
tion that is identical to the specification shown in Fig. 2.4, except the name would
be SCLS. To create Scluster based on Mcluster, CheckDesign first performs the steps
explained in Section 2.6, and then the steps explained in Section 2.7.

3.7 Analysis Report

After the construction of a cluster DAR (e.g. Fig. 3.6), CheckDesign outputs
an analysis report, which contains the result of the consistency analysis. If the
specifications are consistent, then the analysis report can be used for generating
source code, as we discuss in Section 8.2.2. If the specifications are inconsistent,
then the report can be used for understanding and resolving the inconsistency.

The analysis report is derived from the not-minimized version of a cluster DAR,
which is constructed by skipping the minimization step explained in Section 3.5.4.
In this section, we explain how CheckDesign constructs an example analysis report
from an example not-minimized cluster DAR, and discuss how an analysis report is
constructed in general.

Imagine that we provide CheckDesign with the specifications shown in Fig. 2.1,
2.2, and 2.3, whose corresponding DARs MS1, MS2, and MS3 are respectively shown
as transition graphs in Fig. 2.11, 2.12, and 2.13. In this case, CheckDesign would
construct the not-minimized cluster DAR whose transition graph is shown in Fig
3.7. Note that there is no reachable final state in Fig. 3.7, because the specifications
are inconsistent.

CheckDesign outputs an analysis report, which consists of multiple parts; each part
is formulated based on the states of the not-minimized cluster DAR, and the elements
of one of the eight sets visualized in the Venn diagram in Fig. 3.8. Any number
shown in the diagram denotes a distinct set represented by the region where the
number is placed; i.e. the numbers are not elements. Elements are not visible in the
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Figure 3.7: The transition graph of a not-minimized cluster DAR that does not have
any reachable final state.

diagram, we provide them later in this section. U denotes the universal set.

Figure 3.8: Any number in this Venn diagram denotes a distinct set represented by
the region where the number is placed. CheckDesign uses this Venn diagram while
constructing an analysis report.

Since there is no reachable final state in Fig. 3.7, L(MS1) ∩ L(MS2) ∩ L(MS3) = ∅.
That is, Set 1 (see Fig. 3.8) is empty. Consequently, the first part of the report is
“There is no possible implementation of f, such that the implementation satisfies
the constraints represented by the specifications S1, S2, and S3.”

Before we present the remaining parts of the report, we need to provide the following
preliminary information: As visible in Fig. 3.7, each state of the cluster DAR
is a set of states. For example, the initial state of the cluster DAR is the set
{q0

nar, q0
S1, q0

S2, q0
S3}. In such a set, each state other than q0

nar represents either
a non-final or a final state of the DAR that is derived from a VisuaL specification.
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For example, q0
S1 represents the non-final state q0 of MS1 (Fig. 2.11) that is derived

from the VisuaL specification shown in Fig. 2.1, whereas q0
S2 represents the final

state q0 of MS2 (Fig. 2.12) that is derived from the VisuaL specification shown in
Fig. 2.2.

The state {q0
nar, q0

S1, q0
S2, q0

S3} (see Fig. 3.7) contains two states each representing
a final state: q0

S2 and q0
S3. These final states respectively belong to MS2 and MS3,

and there is no state in {q0
nar, q0

S1, q0
S2, q0

S3} that represents a final state belonging
to MS1. This indicates that there is at least one strand str ∈ ((L(MS2)∩L(MS3)) \
L(MS1)). That is, Set 2 (see Fig. 3.8) has at least one element. This element can be
identified by following the shortest path to {q0

nar, q0
S1, q0

S2, q0
S3}. Hence, ǫ (i.e. the

empty strand) is an element of Set 2. Consequently, the second part of the report is
“There is at least one possible implementation of f, such that the implementation
satisfies the constraints represented by the specifications S2 and S3, but not S1.
Example sequence: the empty sequence.”

The state {q1
S1, q2

S2, qt
S3} (see Fig. 3.7) contains two states each representing a final

state: q1
S1 and q2

S2. These final states respectively belong to MS1 and MS2, and
there is no state in {q1

S1, q2
S2, qt

S3} that represents a final state belonging to MS3.
This indicates that there is at least one strand str ∈ ((L(MS1)∩L(MS2))\L(MS3)).
That is, Set 3 (see Fig. 3.8) has at least one element. This element can be identified
by following the shortest path to {q1

S1, q2
S2, qt

S3}. Hence, the strand gh is an
element of Set 3. Consequently, the third part of the report is “There is at least one
possible implementation of f, such that the implementation satisfies the constraints
represented by the specifications S1 and S2, but not S3. Example sequence: <g,
h>.”

The state {q1
S1, q1

S2, q1
S3} (see Fig. 3.7) contains one state representing a final state:

q1
S1. This final state belongs to MS1, and there is no state in {q1

S1, q1
S2, q1

S3} that
represents a final state belonging to MS2 or MS3. This indicates that there is at least
one strand str ∈ (L(MS1) \ (L(MS2) ∪ L(MS3))). That is, Set 4 (see Fig. 3.8) has
at least one element. This element can be identified by following the shortest path
to {q1

S1, q1
S2, q1

S3}. Hence, the strand g is an element of Set 4. Consequently, the
fourth part of the report is “There is at least one possible implementation of f, such
that the implementation satisfies the constraint represented by the specification S1,
but not S2 or S3. Example sequence: <g>.”

The state {q1
S1, qt

S2, qt
S3} (see Fig. 3.7) contains one state representing a final state:

q1
S1. This final state belongs to MS1, and there is no state in {q1

S1, qt
S2, qt

S3} that
represents a final state belonging to MS2 or MS3. This indicates that there is at least
one strand str ∈ (L(MS1)\ (L(MS2)∪L(MS3))). That is, Set 4 (see Fig. 3.8) has at
least one element. Since this fact is already discovered during the formulation of the
fourth part of the report (see above), CheckDesign skips the state {q1

S1, qt
S2, qt

S3}.
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At this point, despite each state (in Fig. 3.7) has already been utilized for construct-
ing the report, the contents of Sets 5, 6, 7, and 8 (see Fig. 3.8) are still unknown, i.e.
the states of the cluster DAR do not contain sufficient information for discovering
the contents of Sets 5, 6, 7, and 8. Therefore, CheckDesign performs additional
analysis to discover the contents of these sets, as explained below.

To discover the contents of Set 5, CheckDesign constructs a new not-minimized
cluster DAR M , such that

L(M) = L(MS1) ∩ L(MS2) ∩ L(MS3)

If M has at least one reachable final state (i.e. L(M) 6= ∅), then Set 5 has at least
one element, else Set 5 is empty. Accordingly, CheckDesign constructs the fifth part
of the report.

If the states of M provide enough information for discovering the contents of the
remaining sets (i.e. Sets 6, 7, and 8), then CheckDesign does not construct any other
not-minimized cluster DAR; it uses the states of M for constructing the remaining
parts of the report. Otherwise, CheckDesign constructs additional not-minimized
cluster DARs as necessary, and eventually outputs the report that consists of 8
parts.

So far in this section, we have seen how the analysis report corresponding to three
specifications is constructed. For three specifications, the complete analysis report
has eight parts. In general, if there are n number of VisuaL specifications written
for the same function, then there are 2n number of sets (i.e. regions) in the venn
diagram; hence a complete report has 2n parts. Thus, the construction of a complete
report does not scale up: Θ(2n) time needs to be spent for constructing a complete
report. In practice however, a partial report that is constructed based on the initial
cluster DAR should usually be sufficient for understanding and resolving an incon-
sistency. Furthermore, after the partial report is constructed, software engineers can
explicitly indicate which unknown region(s) in the Venn diagram they are interested
in, so that CheckDesign can construct only the relevant missing part(s) of the report.
In this way, the scalability problem of the report construction can be avoided. If the
VisuaL specifications are consistent, then the partial report is already sufficient for
generating the skeleton code of the function for which the specifications are written.
The code generation is discussed in Section 8.2.2.

In addition to the parts explained above, an analysis report also contains the fol-
lowing information in a tabular form: the VisuaL specifications, the DARs corre-
sponding to the specifications, the cluster specification, and the not-minimized and
minimized cluster DARs resulting from the analysis. Hence, the analysis report
can be used as a design document, and it can be archived for keeping track of the
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subsequent versions of the VisuaL specifications.

3.8 Conclusions

Using VisuaL, one can create multiple specifications each representing a different
constraint on the same function. When such specifications are created, it must be
ensured that the specifications are consistent : There is at least one possible control-
flow of the function, such that the control-flow satisfies each of the constraints. If
there is no possible control-flow of the function that satisfies each of the constraints,
then the VisuaL specifications are inconsistent.

Whenever VisuaL specifications are created or modified in the software life cycle, the
consistency between the specifications must be verified. Manually verifying the con-
sistency is an effort-consuming and error-prone task. If the specifications are incon-
sistent, then manually finding and resolving the inconsistency is an effort-consuming
and error-prone task, too. CheckDesign can reduce the effort and automatically de-
tect the errors: CheckDesign takes a set of VisuaL specifications as input, and au-
tomatically finds out, in polynomial time, whether the specifications are consistent
or not. If the specifications are inconsistent, then CheckDesign outputs an error
message that can help in understanding and resolving the inconsistency. Hence,
CheckDesign addresses the second problem stated in Section 1.1.
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Chapter 4

Operators over VisuaL
Specifications

4.1 Introduction

In this chapter, we define operators for composing new VisuaL specifications from
existing ones. Some of these operators are unary, whereas the others are binary. In
mathematical terms, a unary operator is a function that takes a VisuaL specification
as the input and outputs a VisuaL specification; whereas a binary operator takes
two VisuaL specifications as the input, and outputs a VisuaL specification.

To be able to precisely define the operators, we first have to investigate some of
the closure properties of ORLs. In particular, we need to answer questions such as
“Is the family of ORLs closed under union? (i.e. given two ORLs L1 and L2, is
L1∪L2 also an ORL?)”. The answers to such questions enable us to precisely define
the operators over VisuaL specifications. Therefore, we first investigate the closure
properties of ORLs, in Section 4.2. Subsequently, we define a collection of operators
over VisuaL specifications, in Section 4.3.

4.2 Closure Properties of ORLs

In this section, we investigate some of the closure properties of ORLs. These prop-
erties are organized under two sections: In Section 4.2.1, we investigate whether
ORLs are closed under the basic set-theoretic operations: complement, union, and
intersection. In Section 4.2.2 we investigate whether ORLs are closed under the
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basic computation-theoretic operations: concatenation and Kleene [63].

4.2.1 Closure Under Set-Theoretic Operations

Closure Under the Complement Operation

In this section, we answer the following question: “Is the family of ORLs closed
under the complement operation?” (i.e. For any given ORL L, is L also an ORL?).
To answer this question, we prove the following theorem:

Theorem 4.2.1 If L is an ORL, then L is also an ORL.

Proof : If L is an ORL, then there is a DAR M such that L(M) = L. Using
the construction explained in Section 3.5.1, we can construct a DAR M ′ such that
L(M ′) = L(M). Since, (a) L(M ′) = L(M), and (b)L(M) = L, we can conclude
that L(M ′) = L. Since (a) L(M ′) = L, and (b) L(M ′) is an ORL, we can conclude
that L is an ORL. ¥

The construction of M ′ based on M is denoted by the function notDAR : D → D,
where D is the set of DARs. This function is bijective. We will use this function
later in this chapter.

Closure Under the Union Operation

In this section, we find the answer to the following question: “Is the family of ORLs
closed under union?” (i.e. For any two ORLs L1 and L2, is L1 ∪ L2 also an ORL?).
To answer this question, we prove the following theorem:

Theorem 4.2.2 If L1 and L2 are ORLs, then L1 ∪ L2 is also an ORL.

Proof : If L1 and L2 are ORLs, then there are DARs M1 and M2 such that L(M1) =
L1 and L(M2) = L2. Using the construction explained in Sections 3.4 and 3.5, we
can construct a DAR M such that L(M) = L(M1) ∪ L(M2). Since (a) L(M) =
L(M1) ∪ L(M2), (b) L(M1) = L1, and (c) L(M2) = L2, we can conclude that
L(M) = L1 ∪ L2. Since (a)L(M) = L1 ∪ L2, and (b) L(M) is an ORL, we can
conclude that L1 ∪ L2 is an ORL. ¥

The construction of M based on M1 and M2 is denoted by the function orDAR :
D × D → D, where D is the set of DARs. This function is total. We will use this
function later in this chapter.
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Closure Under the Intersection Operation

In this section, we answer the following question: “Is the family of ORLs closed
under intersection?” (i.e. For any two ORLs L1 and L2, is L1 ∩ L2 also an ORL?).
To answer this question, we prove the following theorem:

Theorem 4.2.3 If L1 and L2 are ORLs, then L1 ∩ L2 is also an ORL.

Proof : To prove this theorem, we use the equation L1 ∩ L2 = L1 ∪ L2, which is
known as DeMorgan’s law, and the functions notDAR and orDAR defined earlier
in Section 4.2.1.

If L1 and L2 are ORLs, then there are DARs M1 and M2 such that L(M1) = L1

and L(M2) = L2. Based on M1 and M2, we can construct a DAR M such that

L(M) = L(M1) ∩ L(M2) = L(M1) ∪ L(M2). This construction is denoted by the
function andDAR : D×D → D, where D is the set of DARs. This function is total
and one-to-one, and defined as follows:

M = andDAR(M1,M2) =

notDAR(

orDAR(

notDAR(M1),

notDAR(M2)))

Since (a) L(M) = L1 ∩ L2, and (b) L(M) is an ORL, we can conclude that L1 ∩ L2

is also an ORL. ¥

4.2.2 Closure Under Computation-Theoretic Operations

Closure Under the Concatenation Operation

In this section, we answer the following question: “Is the family of ORLs closed
under the strand concatenation operation?” (i.e. For any two ORLs L1 and L2, is
the set of strands obtained by concatenating a strand from L1 with a strand from
L2 also an ORL?). To answer this question we prove the Theorem 4.2.4, which uses
the following definition:

Definition: Let L1 and L2 be two sets of strands. L1 · L2 denotes the set of strands
obtained by concatenating a strand from L1 and a strand from L2.
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Theorem 4.2.4 If L1 and L2 are ORLs, then L1 · L2 is also an ORL.

Before we start proving this theorem, we need to remember that in Section 3.5.3,
we have seen the construction of a DAR that is equivalent to a given NAR-ǫ. We
denote this construction with the function getDARofNARǫ : N → D, where N is
the set of NAR-ǫs, and D is the set of DARs. This function is total.

Proof : If L1 and L2 are ORLs, then there are DARs M1 and M2 such that L(M1) =
L1 and L(M2) = L2. Based on the transition graphs of M1 and M2, we can step-by-
step construct the transition graph of a DAR M such that L(M) = L(M1) ·L(M2):

1. Create a state q0
nar.

2. Designate q0
nar as the initial state of a NAR-ǫ M ′.

3. Designate q0
nar as a non-final state.

4. Create an ǫ-labelled transition from q0
nar to the initial state of M1.

5. From each final state of M1, create an ǫ-labelled transition to the initial state
of M2.

6. For each final state q of M1, designate q as a non-final state of M ′.
7. Create the final state qf of M ′.
8. From each final state of M2, create an ǫ-labelled transition to qf .
9. For each final state q of M2, designate q as a non-final state of M ′.

10. M = getDARofNARǫ(M ′).

Since (a) L(M1) = L1, (b) L(M2) = L2, and (c) L(M1) · L(M2) = L(M), we can
conclude that L1 · L2 is an ORL. ¥

The construction of M based on M1 and M2 is denoted by the function concatDAR :
D × D → D, where D is the set of DARs. This function is total. We will use this
function later in this chapter.

Closure under the Kleene Operation

In this section, we answer the following question: “Is the family of ORLs closed under
the Kleene operation [63]?” (i.e. For any ORL L, is the set of strands obtained by
concatenating zero or more strands from L also an ORL?). To answer this question
we prove the Theorem 4.2.5, which is based on the following definition:

Definition: Let L be a set of strands. L∗ denotes the set of strands obtained by
concatenating zero or more strands from L.

Theorem 4.2.5 If L is an ORL, then L∗ is also an ORL.
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Proof : If L is an ORL, then there is a DAR M such that L(M) = L. Based on the
transition graph of M , we can step-by-step construct the transition graph of a DAR
M ′′ such that L(M ′′) = L(M)∗:

1. Create a state q0
nar.

2. Designate q0
nar as the initial state of a NAR-ǫ M ′.

3. Designate q0
nar as a non-final state.

4. Create the final state qf of M ′.
5. Create an ǫ-labelled transition from q0

nar to the initial state of M .
6. Create an ǫ-labelled transition from q0

nar to qf .
7. From each final state of M , create an ǫ-labelled transition to qf .
8. For each final state q of M , designate q as a non-final state of M ′.
9. Create an ǫ-labelled transition from qf to q0

nar.
10. M ′′ = getDARofNARǫ(M ′).

Since (a) L(M) = L, and (b) L(M ′′) = L(M)∗, we can conclude that L∗ is an ORL.
¥

The construction of M ′′ based on M , is denoted by the function kleeneDAR : D →
D, where D is the set of DARs. This function is total and one-to-one. We will use
this function later in this chapter.

4.3 Composition Operators over VisuaL Specifi-

cations

In this section, we define operators for composing new VisuaL specifications from
existing ones. We organized these operators under two sections: In Section 4.3.1,
we define the boolean operators not, or, and and. In Section 4.3.2, we define the
temporal operators next, repeatedly, eventually, until, and release. These tempo-
ral operators are analogous to the temporal operators used in temporal logic [23].
The key difference of our temporal operators stem from the fact that VisuaL spec-
ifications represent properties of finite sequences, whereas temporal logic formulas
represent properties of infinite sequences.

To define the operators over Visual Specifications, we use the functions defined in
Section 4.2, and the functions getDARof : V → D, getV isuaLof : D → V , and
minimizeV isuaL : V → V , which are respectively defined in Sections 2.3.5, 2.6, and
2.7. Let S1 and S2 be two VisuaL specifications, such that the regular expression
written on the container node of S1 is equal to the regular expression written on the
container node of S2. In the remainder of this section, we define the operators using
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S1 and S2.

4.3.1 Boolean Operators

Not

The VisuaL specification that represents “not S1” is defined as follows:

not(S1) =

minimizeV isuaL(

getV isuaLof(

notDAR(

getDARof(S1))))

Or

The VisuaL specification that represents “S1 or S2” is defined as follows:

or(S1, S2) =

minimizeV isuaL(

getV isuaLof(

orDAR(

getDARof(S1),

getDARof(S2))))

And

The VisuaL specification that represents “S1 and S2” is defined as follows:

and(S1, S2) =

minimizeV isuaL(

getV isuaLof(

andDAR(

getDARof(S1),

getDARof(S2))))
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4.3.2 Temporal Operators

Next

The VisuaL specification that represents “S1 next S2” is defined as follows:

next(S1, S2) =

minimizeV isuaL(

getV isuaLof(

concatDAR(

getDARof(S1),

getDARof(S2))))

Repeatedly

The VisuaL specification that represents “repeatedly S1” is defined as follows:

repeatedly(S1) =

minimizeV isuaL(

getV isuaLof(

kleeneDAR(

getDARof(S1))))

Eventually

To define the eventually operator, we first define the function addPrefix : D → N ,
where D is the set of DARs, and N is the set of NAR-ǫs. Let M be a DAR with the
abstract input alphabet Σa and initial state q0. If M is given to addPrefix as the
input, then addPrefix does the following: For each symbol a ∈ Σa, if there is no
transition from q0 to q0 with the symbol a, then addPrefix adds a new transition
from q0 to q0 with the symbol a. The resulting NAR-ǫ is the output of addPrefix.
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The VisuaL specification that represents “eventually S1” is defined as follows:

eventually(S1) =

getV isuaLof(

getDARofNARǫ(

addPrefix(

getDARof(S1))))

Until

The VisuaL specification that represents “S1 until S2” is defined as follows:

until(S1, S2) =

minimizeV isuaL(

getV isuaLof(

concatDAR(

kleeneDAR(

getDARof(S1)),

getDARof(S2))))

Release

The VisuaL specification that represents “S1 release S2” is defined as follows:

release(S1, S2) =

not(

until(

not(S1),

not(S2)))

4.4 Conclusions

In this chapter, we have investigated some of the closure properties of ORLs, and
defined operators for composing new VisuaL specifications from existing ones.
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In Section 4.2.1, we have shown that ORLs are closed under the set-theoretic opera-
tions complement, union, and intersection; and in Section 4.2.2, we have shown that
ORLs are closed under the computation-theoretic operations concatenation and the
Kleene operation [63].

Based on the closure properties of ORLs, we defined operators over VisuaL speci-
fications. The operators we defined in Section 4.3.1 are the boolean operators not,
or, and and; and the operators we defined in Section 4.3.2 are the temporal oper-
ators next, repeatedly, eventually, until, and release. These temporal operators
are analogous to the temporal operators used in temporal logic. The key difference
of our temporal operators stem from the fact that VisuaL specifications represent
properties of finite sequences, whereas temporal logic formulas represent properties
of infinite sequences.
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Chapter 5

Checking the Consistency between
Source Code and Design

5.1 Introduction

After creating consistent VisuaL specifications during the software design process
explained in Section 1.4.1, a developer typically writes source code to implement
the specifications, during the software implementation process explained in Section
1.4.1. For example, after creating the specification S4 (Fig. 2.4), a developer may
implement the function f as shown in Listing 5.1.

1 void f(int i)

2 {

3 g();

4 if(i)

5 {

6 h();

7 }

8 }

Listing 5.1: An example implementation of the function f in C.

A function and a corresponding specification may be inconsistent with each other.
For example, the function shown in Listing 5.1 is inconsistent with the specification
S4 (Fig. 2.4): There are two possible sequences of function calls from f, and these
sequences are seq1 =<g, h> and seq2 =<g>. Although seq1 is matched by the pat-
tern of S4, seq2 cannot be matched by this pattern. Therefore, this implementation
(Listing 5.1) is inconsistent with S4, which indicates that the implementation does
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not satisfy the constraint C4.

Manually finding and resolving an inconsistency between a function and a specifica-
tion is an effort-consuming and error-prone task. In this Chapter, we present a tool
called CheckSource that can reduce the effort and prevent the errors. CheckSource
takes a function and a corresponding VisuaL specification as the input, and finds out
whether they are consistent or not. If they are inconsistent, CheckSource outputs
an error message that helps in understanding and resolving the inconsistency. In
this chapter, we explain how CheckSource works, in three steps, and then present
the experiment we conducted for evaluating CheckSource.

Hatcliff and Dwyer [51] indicate that two of the major problems that are currently
preventing the successful application of model checking technology to software are

• “The model construction problem: bridging the semantic gap between
the artifacts produced by current verification tools. Most development is done
using general-purpose programming languages (e.g. C, C++, Java, Ada), but
most verification tools accept specification languages designed for the simplic-
ity of their semantics (e.g. process algebras, state machines). In order to use a
verification tool on a real program, a developer must extract an abstract math-
ematical model of the program’s salient behavior and specify this model in the
input language of the verification tool. This process is both effort-consuming
and error-prone.” [51]

• “The output interpretation problem: When a property fails when check-
ing large models (and software systems typically produce very large models),
the counter example traces produced by the checker can be hundreds even
thousands of steps long. Manually matching up these counter examples is ex-
tremely tedious for several reasons. First, the length is quite long and it may
require hours to walk through the trace. Second, the error trace is expressed
in terms of the low-level, possibly highly optimized model representations ...
Typically, one step in the source program may correspond to as many as ten
steps in the low-level model representation.” [51]

The empirical evidence we provide in this chapter and Chapter 7 indicates that
CheckSource prevented these problems for the maintenance tasks performed by the
participants of the experiments.
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5.2 Step 1: Creation of Abstract Syntax Tree

(AST)

If the function f (Listing 5.1) is given to CheckSource as input, then CheckSource
parses f, and constructs an abstract syntax tree [9] ASTf shown at the top of Fig.
5.1. The rectangles labelled with FDef or FCall are the abstract nodes denoting a

Figure 5.1: The abstract syntax tree (ASTf ) and the simplified control flow graph
(SCFGf ) of the function f in Listing 5.1.

function definition or a function call, respectively.
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5.3 Step 2: Derivation of Simplified Control Flow

Graph

Using VisuaL, one can specify constraints only on the possible sequences of function
calls from C functions. Therefore, only a part of the information that is in the AST
is needed during the consistency analysis. Thus, CheckSource constructs a model
(of the AST) that contains only the function calls and the possible flow of control
between them. We call this model simplified control flow graph (SCFG), which
is a ‘lightweight’ version of the traditional control flow graph. A formal definition
of a SCFG and its relation to source code are provided in Section 5.3.1.

A SCFG decouples the analysis algorithm (explained in Section 6.7.3) from the
implementation language of the programs, which is C in this case. Consequently,
the implementation of the analysis algorithm does not need to be adapted if the
implementation language of the programs is changed to another language in which
the flow of control is explicit (i.e. imperative languages). Furthermore, the use of
a SCFG enables a simpler implementation of the analysis algorithm, and a higher
performance during analysis.

CheckSource traverses ASTf in the depth-first [26] manner to create SCFGf de-
picted at the bottom of Fig. 5.1. The black dot on the left represents the initial
node, which denotes the beginning of f. The g-labelled circle represents an inter-
nal node that denotes the call to g. The h-labelled circle represents an internal
node that denotes the call to h. The circled black dot represents the final node,
which denotes the end of f, and the arrows between these shapes represent the
possible flow of control between the entities denoted by the nodes. As visualized by
the dashed arrows, CheckSource maintains a one-to-one mapping from the nodes of
SCFGf to the related nodes of ASTf .

5.3.1 Simplified Control Flow Graph

Let f be a function definition in the C programming language.

callsFrom(f) denotes the set of function calls whose static scope [79] is the definition
of f . For example, let g and f respectively denote the calls to the functions g and
h in Listing 5.1, then callsFrom(f) = {g, h}.

Let G be the control flow graph [38] derived from the definition of f . firstCall(c, f)
denotes that c is a first function call according to G. For example, firstCall(g,f)
is true.
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nextCall(c1, c2, f) denotes that c2 is a next function call after function call c1, ac-
cording to G. For example, nextCall(g, h,f) is true.

lastCall(c, f) denotes that c is a last function call according to G. For example,
lastCall(h,f) is true.

noCall(f) denotes that there is at least one path [38] p in G such that ∄c(c ∈
callsFrom(f) ∧ c ∈ p).

name(c) denotes the identifier [79] of the C function one of whose call is c. For
example, name(g) = g

SCFGf denotes the simplified control flow graph of f , which is a tuple 〈V =
{ν0} ∪ VI ∪ {νF}, E = E0 ∪ EI ∪ EF 〉, where

ν0 is the initial node.

VI is a finite set of internal nodes such that ν0 /∈ VI , and a bijection nodeOfCall :
callsFrom(f) → VI exists. The label of any ν ∈ VI is name(nodeOfCall−1(ν)).

νF is the final node such that νF 6= ν0 and νF /∈ VI .

E0 ⊆ {ν0} × (VI ∪ {νF}) is the set of initial edges such that ∀c(firstCall(c, f) ⇒
(ν0, nodeOfCall(c)) ∈ E0), and noCall(f) ⇒ (ν0, νf ) ∈ E0.

EI ⊆ VI × VI is a set of internal edges such that ∀ν1, ν2, c1, c2(nodeOfCall(c1) =
ν1 ∧ nodeOfCall(c2) = ν2 ∧ nextCall(c1, c2, f) ⇒ (ν1, ν2) ∈ EI).

EF ⊆ (VI ∪ {ν0}) × {νF} is the set of final edges such that ∀c(lastCall(c) ⇒
(nodeOfCall(c), νF ) ∈ EF ), and noCall(f) ⇒ (ν0, νf ) ∈ EF .

SCFGf can be constructed by traversing the abstract syntax tree (AST) [9] rooted
at the signature of f .

A simplified control flow path (SCFP) p of f is a finite path in SCFGf such
that ν0 is the first node lying on p, and νf is the last node lying on p.

5.4 Step 3: Analysis of Simplified Control Flow

Graph with respect to VisuaL Specification

To verify that the function f is consistent with the specification S4 (Fig. 2.4),
CheckSource has to find out whether all possible sequences of function calls from
f are matched by the pattern depicted in Fig. 2.4. To generate the function call
sequences, CheckSource traverses SCFGf in a depth-first manner. As understand-
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able from SCFGf , there are two possible sequences of function calls: seq1 and seq2,
both of which are already presented at the beginning of Section 5. The analysis of
seq1 reveals that seq1 terminates at q2 (see Fig. 2.4). Since this node has the stereo-
type <<final>>, seq1 is matched by the pattern. The analysis of seq2 reveals that
seq2 terminates at q1 (see Fig. 2.4). Since this node does not have the stereotype
<<final>>, seq2 is not matched by the pattern, which means f is inconsistent with
S4, and f does not satisfy the constraint C4. Consequently, CheckSource outputs
seq2, which is useful for understanding and resolving the inconsistency. If there were
no inconsistency, CheckSource would output a success message.

In this chapter, we are assuming that functions terminate upon execution. Hence,
the possible sequences of function calls from a given function must be finite. Given
this fact, the verification algorithm can be explained as follows: Let ptrn denote a
pattern that represents a constraint cns. ptrn can be interpreted as a determinis-
tic finite state automaton [63] that accepts a set Sptrn of finite sequences. Let Sf

denote the set of possible sequences of function calls from f . Note that Sf can be
computed by traversing SCFGf . f satisfies cns if and only if Sf ⊆ Sptrn. A math-
ematical explanation of the analysis algorithm and its asymptotic time complexity
(polynomial) are provided in Section 5.4.1.

5.4.1 The Analysis Algorithm of CheckSource

Sections 2.3.4 and 5.3.1 are the prerequisites for this section.

The algorithm of CheckSource is denoted by the function checkSource : SG×D →
{true, false} × Υ∗, where SG denotes the set of simplified control flow graphs, D
denotes the set of DARs, and Υ∗ denotes the set of strands.

Let SCFG = 〈V = {ν0} ∪ VI ∪ {νF}, E〉 be a simplified control flow graph, and
M = 〈Q, Σa = Σb ∪ {#}, δ, q0, F, Ξ, η〉 be a DAR. If SCFG and M are given to
checkSource as the input, then checkSource performs the following steps:

1. Define a boolean variable result whose value is true.
2. Define a strand variable counterExample whose value is ǫ.
3. Evaluate result ← analyze(q0, ν0, &counterExample). The function analyze

is defined later in this section. &counterExample denotes the pointer of
counterExample.

4. Return (result, counterExample).

The analysis algorithm is denoted by the function analyze : Q × V × SP →
{true, false}, where SP denotes the set of strand pointers. If q ∈ Q, ν ∈ V ,
and sp ∈ SP are given as the input to analyze, then analyze performs the following
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steps:

1. Define a boolean variable result whose value is true.
2. If q has not been already mapped to ν, then perform the following steps:

(a) append name(nodeOfCall−1(ν)) to ∗sp, where ∗sp denotes the strand
variable whose pointer is sp.

(b) map q to ν.
(c) If q = qt, then assign false to result.
(d) If ν = νF and q /∈ F , then assign false to result.
(e) While result is true, iterate over the outgoing edges (ν, νi) ∈ E of ν, and

perform the following steps at each iteration:
i. Create a clone c of ∗sp.
ii. If name(nodeOfCall−1(νi)) ∈ Σb, then assign

analyze(νi, δ(q, name(nodeOfCall−1(νi))), &c) to result,
else assign analyze(νi, δ(q, #), &c) to result.

iii. If result is true, then destroy c, else first destroy ∗sp, and next assign
&c to sp.

3. Return result.

If the value of checkSource(SCFG,M) = (false, str), then str is a counter-example
showing that the SCFG does not satisfy M . Otherwise, SCFG satisfies M .

The asymptotic time complexity of checkSource is O(|E| × (|Q| × |Σa|)), which is
determined by the Step 1.e of the analyze function.

5.5 Experiment Definition and Planning

In this section, we present the definition and planning of the experiment we con-
ducted for evaluating CheckSource. For preparing, conducting, and documenting
the experiment, we followed the guidelines proposed by Kitchenham et. al. [59] and
Wohlin et. al. [86].

5.5.1 Background Information

In the controlled experiment, we decided to use real-life C functions and real-life
VisuaL specifications. Therefore, we trained a software engineer of ASML, so that
he can create some VisuaL specifications corresponding to some of the functions
of the software component that he maintains. After the training, the developer
selected three functions, and created one VisuaL specification per selected function.
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He was motivated to create the specifications, because he needed to understand and
document the possible sequences of function calls from these three functions, so that
he can maintain these functions.

5.5.2 Motivation and Overview

The purpose of this experiment is to evaluate the effect of CheckSource on the cost
of maintaining source code to eliminate inconsistencies between source code and
VisuaL specifications. 27 M.Sc. computer science students from the University
of Twente participated in this experiment. The participants worked with three C
functions selected by the domain expert (see Section 5.5.1), and the corresponding
specifications that were created by the expert using VisuaL. We injected an incon-
sistency defect into each of the selected functions, by removing a function call from
each of the selected functions. We requested the participants to repair these defects
by modifying the functions, such that each function would become consistent with
the corresponding VisuaL specification.

5.5.3 Hypotheses

We formulated the following hypotheses to be tested in this experiment:

• H0
1: The tool CheckSource does not have any effect on the amount of effort

spent by M.Sc. students.
• H0

2: The tool CheckSource does not have any effect on the number of errors
made by M.Sc. students.

We chose 0,05 as the significance level for rejecting the hypothesis above.

5.5.4 The Variables of the Experiment

Factors

• Tool support (i.e. existence of CheckSource) is the only factor of this exper-
iment. This factor is measured in the nominal scale, at two levels: exists, not
exists.
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Non-factor Independent Variables

There are two independent variables that we kept at fixed levels in this experiment.
The first one is the function-specification pair, and the second one is the injected
defect. Below, we explain these variables in detail.

• Function-Specification Pair is an independent variable kept at a fixed level:

Each participant was treated with the same set of three C functions and the corre-
sponding VisuaL specifications. We measured the size and cyclomatic complexity
[67] of both the functions and the specifications.

For a given function, the size is measured by counting the physical lines of code, and
the complexity is measured by calculating the cyclomatic complexity number. In
Table 5.1, the size and complexity of the three functions are listed. These functions

Table 5.1: The size and complexity of the C functions.
Functions # Lines of Code Cyclomatic Complexity

Function1 88 20
Function2 127 27
Function3 280 51

are originally located in a file that has 55 functions. This file is one of the several files
in the software component mentioned in Section 5.5.1. For a better understanding
of the characteristics of the functions in this file, the descriptive statistics about the
55 functions can be found in Table 5.2. Based on these statistics, one can realize the

Table 5.2: Descriptive statistics of the 55 functions in the file.
Avg. Min. Max. Std. Dev.

Lines of Code 133 24 390 89
Cyclomatic Complexity 28 4 114 20

following: Compared to the other functions in the file, Function1 is relatively small
and simple; Function2 has average size and complexity; and Function3 is relatively
large and complex.

For a given VisuaL specification, the size is measured by counting the nodes and
the edges, and the complexity is measured by calculating the cyclomatic complexity
number. In Table 5.3, the size and complexity of the three specifications are listed.
These specifications were created by the domain expert at ASML. Specification1,
Specification2, and Specification3 respectively corresponds to Function1, Function2,
and Function3.
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Table 5.3: The size and complexity of the VisuaL specifications.
Specifications # Nodes # Edges Cyclomatic Complexity

Specification1 11 19 10
Specification2 11 23 14
Specification3 10 20 12

• Injected defect is an independent variable kept at a fixed level:

We injected the same kind of defect into each of the three functions: We removed
the first possible function call to inject an inconsistency between the function and
the corresponding VisuaL specification.

Dependent Variables

There are two dependent variables in this experiment:

• Amount of effort is a dependent variable measured in the ratio scale. We
measure this variable in terms of minutes.

• Number of errors is a dependent variable measured in the absolute scale.

5.5.5 Selection of Participants

This experiment was an integral part of the 2007 spring semester Software Man-
agement course at the University of Twente. Hence, the students of this course
participated in the experiment. These students were M.Sc. computer science stu-
dents.

To collect some information about the software development experience of these
students, we asked them the size of the largest computer program they have written
using one of the imperative languages (e.g. C, Java). The students had to select
one of the following answers:

1. Less than 100 lines of source code
2. More than 100, less than 1000 lines of source code
3. More than 1000, less than 5000 lines of source code
4. More than 5000, less than 10000 lines of source code
5. More than 10000 lines of source code

No student selected 1, no student selected 2, eight students selected 3, eight students
selected 4, and eleven students selected 5. None of the students had any previous
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experience about the instruments listed in Section 5.5.7.

5.5.6 Experiment Design

As visible in Fig. 5.2, we designed an experiment that has one factor and two levels.
The factor and its levels are already explained in Section 5.5.4. Each level of the

Figure 5.2: The experiment has one factor with two levels each of which is one
of the two treatments. The number of participants per treatment in each of the
experiments is also shown in this figure.

factor is a treatment in this experiment.

The participants were randomly assigned to one of the two treatments (i.e. there
were two independent groups of participants). We balanced the design by assign-
ing (almost) equal number of participants per treatment. In the remainder of this
chapter, we will use tool-supported participant for referring to a participant
treated with the tool support, and manual participant for referring to a partici-
pant treated without tool support.

5.5.7 Instrumentation

The instruments of this experiment are

• the C functions into which we injected defects,
• the VisuaL specifications,
• the tool using which the participants repaired the defects (i.e. CheckSource),
• the tutorial slides that we presented to the participants to train them for

repairing the defects,
• the documents containing the stepwise instructions for the participants to

repair the defects, and
• the facilitating software that we developed for automatic data collection.

Interested readers can request the instruments from us by providing personal details
and affiliation. If ASML approves the request, then we can send a non-disclosure
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agreement (NDA). After the NDA is signed and returned, we can provide the in-
struments.

5.6 Experiment Operation

The operation phase of the experiment consisted of three steps: preparation, execu-
tion, and data validation. In this section, we explain these steps in detail.

5.6.1 Preparation

We prepared a tutorial for teaching the participants how to (a) interpret the speci-
fications, (b) relate the specifications to the source code, and (c) repair the defects
in the source code using the specifications. For the tool-supported participants,
the tutorial also included how to use the tools. We presented this tutorial before
the experiment as a slide show, and we distributed hard copies of the slides to the
participants, after the presentation.

We prepared step-wise instructions for the participants. By following these instruc-
tions, a participant could find the source code in the directory structure of the
computer, run the tools, etc.

We implemented facilitating software that puts a time stamp on the source code
modified by a participant, and logs the source code in a file. The manual participants
ran this software twice: once at the beginning of the treatment, and once at the end
of the treatment. The facilitating software was integrated with the tool support (i.e.
CheckSource). Consequently, the tool-supported participants ran the facilitating
software at least twice: once at the beginning of the treatment (i.e. when they
initially used the tool to find and understand the defects), once at the end of the
treatment (i.e. after they modified the source code), and zero or more times during
the treatment (i.e. each additional time they used the tool to see whether they could
successfully repair the defects).

We prepared an example treatment for the participants, so that they get used to the
tasks they are required to perform. In this way, we aimed at improving the accuracy
of our measurements, by decreasing the learning overhead in the actual treatments.
The example treatment was the first treatment of each participant.

We conducted preliminary runs of the experiment to test the artifacts explained
above. These runs enabled us to improve the instruments of the experiment. The
four participants of these preliminary runs were different than the participants of
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the actual experiment. During the analysis presented in Section 5.7, we excluded
the data of the preliminary runs.

To motivate the students for performing the tasks as carefully and quickly as they
can, we rewarded the first, second, and the third best performers in each of the tool-
supported and manual groups with 50 EUR, 40 EUR, and 30 EUR, respectively.
The ranking criteria was performing the tasks with least number of errors in least
amount of time, where the number of errors had priority over the amount of time.
Besides the top three prizes, each student received 10 EUR for his participation.
Before the students started the experiment, we informed them about the prizes and
the ranking criteria. The results of the students were kept anonymous, and these
results did not have any impact on their course grade.

5.6.2 Execution

During the experiment, the students worked at the computer laboratories of the
university, and they used the computers in the laboratories to modify source code,
and to run the tools.

To ensure the independence of the observations, each student participated in the
experiment at the same time. This required an instructor to give the tutorial for
the tool-supported group in a laboratory, and another instructor to give the tutorial
for the manual group in another laboratory. Moreover, the instructors and two
additional assistants were present at the laboratories.

5.6.3 Data Validation

As explained in Section 5.6.1, each participant ran a facilitating software that logs
the source code with a time stamp. The participants were not authorized to modify
the clock of the operating system.

To validate the data contained in the files, we compared the latest time stamp in a
file with the last modified time of the file. If they were different, this would indicate
that the participant had manually modified the file, hence the data is invalid. In
this way, we found four invalid log files, and we did not include their data in the
analysis.

We informed each participant about his result, and asked whether the result is as he
expected; each participant informed us that his result is as he expected. This sup-
ports the claim that the participants have understood the instructions, and followed
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them properly (i.e. this is a positive indication about the validity of data).

5.7 Data Analysis

By investigating the log files created during the experiment, we realized that each
tool-supported participant worked until the CheckSource gave no more error mes-
sages. Therefore, after a tool-supported participant finished a treatment, the result-
ing source code was consistent with the corresponding VisuaL specifications. On the
other hand, the manual participants made errors while repairing the inconsistencies.
To calculate the number of errors, we counted the minimum number of function
calls that has to be added or removed for repairing the inconsistency.

The raw data of the experiment is provided in Appendix B.1. In the remainder of
this section, we analyze the data in three steps: First, we discuss the screening and
cleaning of the raw data, second we present the descriptive statistics of the clean
data, and third we present the statistical tests we applied to the hypotheses stated
in Section 5.5.3.

We used SPSS Version 12.0.1 for Windows [7] for analyzing our data, and testing
the hypotheses.

5.7.1 Screening and Cleaning the Data

Our investigations on the log files revealed that the logged data of two tool-supported
and two manual student were manually modified (i.e. corrupted). We understood
this by comparing the time stamps in the files with the last modified time of the
files. Therefore, we excluded their data from our calculations.

5.7.2 Descriptive Statistics

In Fig. 5.3, the descriptive statistics of the data collected from the experiment is
presented. Since each tool-supported student worked until the CheckSource gave
no more error messages, the descriptive statistics of the number of errors in the
existence of tool support is omitted in Fig. 5.3.

The mean amount of effort spent by the tool-supported students is 14 minutes1,

1Wherever it is appropriate, we present rounded numbers for increasing the readability of the
text. More accurate numbers are presented in the figures. For example, this number (i.e. 14) is



Chapter 5. Checking the Consistency between Source Code and Design 93

Figure 5.3: The descriptive statistics of the data collected from the experiment. The
data consists of effort measured in minutes, and the number of errors. Since the
number of errors is constant when the tool support exists, the related statistics is
omitted in this figure.

whereas the mean amount of effort spent by the manual students is 34 minutes.

presented as 14,17 in Fig. 5.3.
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Figure 5.4: The results of the normality tests for the data collected from the ex-
periment. Since the number of errors is constant when the tool support exists, the
related statistics is omitted in this figure.

Hence, we can conclude that the tools reduced the effort spent by an average student
approximately by 60% in this experiment.

The mean number of errors made by the tool-supported students is 0, whereas the
mean number of errors made by the manual students is 2. Since each participant
worked with 500 lines of source code in total (see Table 5.1), we can conclude that
the tools prevented approximately one error per 500 ÷ 2 = 250 lines of source code
in this experiment.

Note that the 5% trimmed means (i.e. the means calculated upon excluding 5%
of the data at the extremes) are very close to the original means. For instance,
the original mean of the amount of effort in the existence of tool support is 14
minutes, and the corresponding trimmed mean is 13 minutes. Due to the closeness
of each trimmed mean to the corresponding original mean, we can conclude that
the extreme values of the dependent variables do not have a strong influence on the
original means.

The positive skewness of the effort in the existence of tool support (1,144) indicates
that the majority of the tool-supported students spent less than 14 minutes during
the experiment. The negative skewness of the effort in the lack of tool support
(-0,230) indicates that the majority of the manual students spent more than 34
minutes during the experiment.

The positive value of Kurtosis of the effort in the existence of tool support indicates
that the distributions of the values are relatively peaked (i.e. clustered in the center),
with long thin tails. The negative values of Kurtosis of the errors indicate that the
distributions of the values are relatively flat (i.e. too many values at the extremes).

In Fig. 5.4, the results of the normality tests for the data collected from the exper-
iment is shown. The values of the effort in both the existence and non-existence of
the tool support are very likely to be normally distributed, because the significance
values are greater than 0,05. The values of the errors are less but still likely to be
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normally distributed, because the significance values are less than 0,05 but greater
than 0,01.

In Figures 5.5 and 5.6, the box plots of the amount of effort versus tool support,
and the number of errors versus tool support are respectively shown. The grey

Figure 5.5: Box plot of effort vs. tool support in the experiment.

Figure 5.6: Box plot of errors vs. tool support in the experiment.
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Figure 5.7: The results of the independent samples t-test for assessing the differences
between the tool-supported and manual students.

rectangles represent 50% of the values, with the whiskers (i.e. the lines below and
above the rectangles) going to the minimum and the maximum values. As visible in
Fig. 5.5, SPSS detected only one outlier. This outlier, which is 33 minutes, is the
amount of effort spent by the student number nine (see Table B.3).

5.7.3 Hypothesis Testing

For testing the hypotheses stated in Section 5.5.3, we used the independent-samples
t-test provided by SPSS. The assumptions for using the t-test hold in our experiment:
each dependent variable is measured in the ratio scale (see Section 5.5.4); each
participant is randomly assigned to either the tool-supported or the manual group
(see Section 5.5.6); the observations made during the experiment are independent of
each other (see Section 5.6.2); it is likely that the dependent variables (i.e. amount
of effort and the number of errors) have a normal distribution (see Section 5.7.2).

Testing H0
1

An independent-samples t-test was conducted to compare the amount of effort spent
by the tool-supported students versus the manual students (see Fig. 5.7). Since
the significance value of Levene’s test (0,125) is greater than 0,05, the equality of
variances is assumed (i.e. the first row in Fig. 5.7 is considered). There was a
significant difference in the amount of effort spent by the tool-supported students
(Mean = 14; Std. Dev. = 8) and the manual students (Mean = 34; Std. Dev = 12;
t(21) = -4,67; p = 0,01). Therefore, we can reject H0

1.
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Testing H0
2

An independent-samples t-test was conducted to compare the number of errors made
by the tool-supported students versus the manual students (see Fig. 5.7). Since the
significance value of Levene’s test (0,000) is less than 0,05, the equality of variances
is not assumed (i.e. the fourth row in Fig. 5.7 is considered). There was a significant
difference in the number of errors made by the tool-supported students (Mean = 0;
Std. Dev. = 0) and the manual students (Mean = 1,64; Std. Dev = 1,8; t(10) =
-3; p = 0,05). Therefore, we can reject H0

2.

5.8 Validity Evaluation

In this section, we discuss the threats to the validity of the experiment. We organized
these threats using the categorization proposed in [24]; each title in this section is a
category of validity threats. For each category, we first provide a short explanation,
and then discuss how we addressed this category of threats in our experiment. Most
of the short explanations are adopted from [86].

5.8.1 Conclusion Validity

This category of threats effect the ability to draw correct conclusion about the
relation between the treatment and the outcome of the experiment.

In our experiment, we identified two categories of threats to the conclusion validity:
low statistical power, and reliability of treatment implementation [24].

Low Statistical Power

The power of a statistical test is the ability of the test to reveal a true pattern in
the data. If the power is low, then there is a high risk that an erroneous conclusion
is drawn. Therefore, we performed a post-hoc analysis to find the actual power we
achieved in our statistical tests. We used G*Power [37] for calculating the power.
For each hypothesis, the input and output parameters of the power analysis are
listed in Fig. 7.12.

As visible in the last row, second column of Fig. 7.12, the power we achieved for the
first hypothesis is more than 0,80. Since 0,80 is the commonly accepted minimum
level of power, we can conclude that the power level of our analysis is not a major
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Figure 5.8: The input and output parameters of the post-hoc power analysis for
independent-samples and two-tailed t-tests (per hypothesis). In this analysis, the
equality of the sample sizes is assumed. µ1 and µ2 denote the means of the first and
second samples. σ1 and σ2 denote the standard deviations of the first and second
samples. d denotes the effect size calculated by G*Power based on the means and
standard deviations. α denotes the significance level we have chosen for rejecting
the null hypotheses. n1 and n2 denote the sizes of the samples. δ denotes the non-
centrality parameter calculated by G*Power. Critical t denotes the critical t-value
calculated by G*Power. Df denotes the degree of freedom. 1−β denotes the power
we achieved in our statistical analysis.

threat to the validity of our conclusions related to the first hypothesis. The power
we achieved also indicates that the number of participants was quite sufficient for
testing the first hypothesis.

As visible in the last row, third column of Fig. 7.12, the power we achieved for
the second hypothesis is less than 0,80. Therefore, the lack of sufficient power is a
threat to the validity of our conclusions related to the second hypothesis. In the
power calculation, G*Power required us to provide non-zero and positive values for
the means and standard deviations. We could not give the real values of (a) the
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mean number of errors (i.e. µ2 of H0
2) and (b) the standard deviation of the errors

(i.e. σ2 of H0
2) of the tool-supported participants; because these values are all 0.

Nevertheless, we approximated these values by giving the lowest possible values for
the mean number of errors (i.e. 0,000001) and the standard deviation of errors (i.e.
1), regarding the tool-supported participants. This approximation can be considered
as a threat to the validity of the conclusions drawn from the hypotheses H0

2.

Note that, the threat mentioned above does not arise from the preparation, design,
or operation of the experiments; it arises from the outcome of the experiments.
Therefore, this threat could not be predicted and avoided before the experiment
was conducted. In principle, the manual participants could have repaired all the
defects, in which case the number of errors of manual participants would have been
0; or the tool-supported participants could have made some errors, in which case
the number of errors of tool-supported participants would have been non-zero. The
fact that the tool-supported participants did not make any errors is the outcome of
the experiment.

Reliability of Treatment Implementation

The implementation of a treatment means the application of the treatment to a
subject. To improve the reliability of treatment implementation, the implementation
must be as standard as possible over different participants and occasions.

In the experiment with the students, each student participated in the experiment
at the same time. This was important to avoid information exchange between the
students, hence to prevent the threat explained in Section 5.8.2. Consequently,
this required an instructor to give the tutorial for the tool-supported group in a
laboratory, and another instructor to give the tutorial for the manual group in
another laboratory. Since different instructors gave the tutorial, there may be a
threat to the reliability of treatment implementation.

5.8.2 Internal Validity

Internal validity threats are issues that can affect the measurements of the indepen-
dent variable, without the researcher’s knowledge. Therefore, these kinds of threats
may influence the validity of conclusions about a possible causal relationship between
a treatment and the corresponding outcome.

In our experiment, we identified and addressed three types of threats to the internal
validity: maturation, instrumentation, and diffusion or imitation of treatments [24].
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Maturation

The maturation threat arises when subjects are affected negatively (e.g. tired or
bored), or positively (unintended learning) during the experiment.

To reduce the unintended learning effect in our experiment, we prepared an example
(i.e. preliminary) treatment for the participants, so that they got used to the tasks
they were required to perform. In this way, we aimed at improving the accuracy
of our measurements. The example treatment was the first treatment of each par-
ticipant, and the related data is excluded during the analysis presented in Section
5.7.

Instrumentation

This type of threat arises from an improper design of instruments such as data
collection forms, document to be inspected in an inspection experiment, etc.

We conducted preliminary runs of the experiment to test the quality of the instru-
ments listed in Section 5.5.7. These runs enabled us to improve the quality of these
instruments. The four participants of these preliminary runs were different than the
participants of the actual experiment. During the analysis presented in Section 5.7,
we excluded the data of the preliminary runs.

Diffusion or Imitation of Treatments

This threat arises if participants are prematurely informed about the treatments,
and behave differently due to this information. As explained in Section 5.6.2, we
avoided this threat in the experiment.

5.8.3 Construct Validity

Threats to construct validity influence the ability to draw correct conclusions about
the relation between the results of the experiment and the hypotheses that are being
tested using these results. Some of such threats are related to the experimental
design, and others are related to social factors.

In our experiment, we identified and addressed two types of threats to the con-
struct validity: confounding constructs and levels of constructs, and experimenter
expectancy [24].
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Confounding Constructs and Levels of Constructs

These kinds of threats arise from the fact that there are confounding constructs (e.g.
experience of subjects) that are not taken into account in an experiment.

As explained in Section 5.5.5, we measured the programming experience of the
students to understand their background. However, we did not balance the tool
supported v.s. manual groups according to the experience of the students, because
we did not have any means to validate their programming experience. Instead, we
divided them randomly. As a result, in the tool supported group there were six
students with experience level 5 (see Section 5.5.5), five students with experience
level 4, and three students with experience level 3. Whereas, in the manual group
there were five students with experience level 5, three students with experience level
4, five students with experience level 3. The lack of balance in the experience may
be a threat to the validity of the results related to the students. However, we do not
think that this threat is severe, because the weighted average of the experience in
the tool-supported and manual groups were not too different (i.e. respectively 4,2
and 4).

Experimenter Expectancy

The experimenters may bias the result of an experiment based on what they expect
from the experiment. This is a threat to the construct validity.

The purpose of our experiment was to evaluate the tools developed by the author
of this thesis. Hence, the experimenter expected that the tools are beneficial. To
eliminate this threat, we planned, conducted, and analyzed this experiment together
with Klaas van den Berg, who did not have any specific expectations from this
experiment.

5.8.4 External Validity

The threats to external validity limit the ability to generalize the results of the
experiment.

Interaction of Selection and Treatment

This threat arises if the selection of subjects do not adequately represent the popu-
lation for which the results need to be generalized.
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The participants of this experiment are not randomly selected from a large popula-
tion of students. The students were the participants of a course at the university.
Therefore, the results of this experiment cannot be generalized for a larger pop-
ulation of students or professional developers. However, this does not devaluate
the results of this experiment, because our purpose was to evaluate the tools, and
we have empirical evidence that the tools are beneficial for a homogenous set of
students.

Interaction of Setting and Treatment

This threat arises if the experimental setting or the instruments are not representa-
tive of, for example, industrial practice.

In our experiments, we used real-life source code and real-life VisuaL specifications,
but we injected relatively simple defects. Below, we explain why we could not use
real-life evolution scenarios instead of injecting simple defects.

At ASML, developers maintain source code upon receiving a “change request / prob-
lem report (CRPR)”. Implementing a CRPR typically involves several modifications
to the existing source code. Hence, a real evolution scenario typically consists of
several additions, deletions, and modifications of function calls, control statements,
variables etc. Using a real CRPR in our experiments was infeasible, because

• A CRPR is informally written in English. Therefore, different participants
might have (mis)interpreted the CRPR differently. Consequently, we would
have lost the control in the experiment, and the results would have been in-
conclusive.

• No matter there is tool support or not, domain expertise is necessary for
implementing a CRPR. Hence, the students could not have implemented the
CRPRs.

• The implementation of a CRPR involves multiple changes to the source code.
The changes that were not due to the inconsistencies between source code and
VisuaL specifications would have been confounding factors in our experiment.
In other words, we would have lost control in the experiment, and the results
would have been inconclusive.

• Due to the domain expertise required for implementing a CRPR, we cannot
estimate how much time is necessary for an average person to implement a
given CRPR. Since we could not occupy the participants for more than 3
hours during the experiment, we could not have used a real CRPR.

Due to the reasons listed above, we had to inject relatively simple defects that can
be repaired without having any domain expertise. This may be a threat to the
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generalization of our results to the industrial practice. Frankl et. al. [40] discuss the
challenges in creating defect models that enable systematic investigation of reliability
in software systems.

The functions that were used during our experiments were chosen by the domain
expert of the component in which the functions were placed. The expert chose these
functions, because on that day he had to maintain them. Hence, the functions were
not randomly chosen. This is a threat to the generality of our results to arbitrary
functions.

5.9 Conclusions

A function and a corresponding specification may be inconsistent with each other.
Manually finding and resolving such an inconsistency is an effort-consuming and
error-prone task. CheckSource can reduce effort and detect errors. CheckSource
takes a function and a corresponding VisuaL specification as the input, and au-
tomatically finds out, in polynomial time, whether the function and specification
are consistent or not. To determine if a specification and a function are consistent,
CheckSource first parses the function and creates an abstract syntax tree. Second,
CheckSource derives the simplified control-flow graph of the function by traversing
the abstract syntax tree. Finally, CheckSource finds out whether each possible path
in the control flow graph satisfies the constraint expressed in the VisuaL specifi-
cation. If there is at least one possible path that does not satisfy the constraint,
then the function and the specification are inconsistent. If there is an inconsistency,
CheckSource outputs an error message containing an example path that does not
satisfy the constraint. This error message helps in understanding and resolving
the inconsistency. In this way, CheckSource addresses the third problem stated in
Section 1.1. The results of the controlled experiment we conducted for evaluating
CheckSource indicate that CheckSource can reduce the effort spent for some of the
typical control-flow maintenance tasks by 60%, and prevent one error per 250 lines
of source code. These results are statistically significant at level 0.05. The exper-
iment show that the use of CheckSource makes it easier to detect and fix certain
types of defects in certain types of functions. Compared to a manual approach,
the experiments show less effort, and a reduced likelihood of introducing new errors
while fixing others.
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Chapter 6

Improving the Evolvability of
Event-Driven Software

6.1 Introduction

In event-driven systems, separating the reactive part of software (i.e. event-driven
control) from the non-reactive part is a common design practice; the reactive part
is typically structured according to the states and transitions of a system [46, 50,
48, 47, 49, 60], whereas the non-reactive part is typically structured according to
the concepts of the application domain (e.g. system services, hardware components,
etc.).

The reactive part of software responds to occurrences of events [47]; it regulates the
execution of the non-reactive part through control calls (see Fig. 6.1). Some events
occur due to execution of the non-reactive part. To transmit these occurrences to
the reactive part, event calls are inserted into (the source code of) the non-reactive
part. Hence, the control- and event calls connect the two parts of software.

An event-driven software system may evolve several times during its lifetime. Possi-
ble mistakes during an evolution result in various defects in the system. Whenever
the non-reactive part of software evolves1, the following defects may emerge:

• There is an event call, but no corresponding occurrence of the event. Thus,
the event call is invalid.

• There is an occurrence of an event, but no corresponding event call. Thus, a
new event call is necessary.

1The evolution of the reactive part of software is outside the scope of this thesis.
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Figure 6.1: A conceptual model of event-driven software systems.

• The reactive part waits for an event call, but the call never happens. Thus,
the two parts of software are incompatible with each other.

• The target (function, method, procedure) of a control call is missing. Thus
the control call is invalid.

• The non-reactive part does not provide a required service.

Manually repairing these defects is effort-consuming and error-prone. In this chap-
ter, we present a solution that substantially reduces the effort, and prevents errors
while repairing the first three types of defects; the last two types of defects are outside
the scope of this thesis. The solution consists of (a) an extended version of VisuaL,
which can be used for specifying event calls and compatibility constraints, (b) an
extended version of CheckSource for automatically verifying that the compatibility
constraints are satisfied, and (c) a source-to-source transformer called Transform-
Source, for automatically generating event calls.

To quantify the benefits of the solution, we conducted a controlled experiment with
23 professional software developers and 21 M.Sc. students. In this experiment, the
solution reduced the effort by 75%, and prevented one error per 140 lines of source
code. The experiments show that the use of CheckSource and TransformSource
makes it easier to detect and fix the first three types of defects listed above, in
certain types of C functions. Compared to a manual approach, the experiments
show less effort, and a reduced likelihood of introducing new errors while fixing
others.

The solution is related to multiple fields of software engineering: The graphical
language enables concern-shy programming [62]; the analyzer can be considered as
a source code verification tool; and the combination of CheckSource and Trans-
formSource exhibits some of the fundamental characteristics of a weaver [39] in
aspect-oriented programming.

In Section 6.2, an industrial application is presented and several terms are defined.
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In Section 6.3, we discuss the first three defects listed above. In Section 6.4, an
overview of our solution approach is provided. Throughout Sections 6.5-6.8, the
solution is presented in detail. Section 6.9 contains conclusions. The experiments
are presented in Chapter 7.

6.2 An Example Application

A silicon wafer is a circular slice of silicon that is used for producing integrated
circuits (ICs). A wafer scanner is a semiconductor manufacturing machine that
exposes IC images onto silicon wafers. ASML [4] is a company that produces wafer
scanners, and an ASML wafer scanner is a large-scale embedded system that has
approximately 400 sensors, 300 actuators, 50 processors, and event-driven software
containing around 15 million lines of source code written in C [58].

The reactive part of the wafer scanner software is structured according to the states
and transitions of the system, using statecharts [47]. The non-reactive part is struc-
tured according to the activities [47] (i.e. the services) of the system, using a pro-
cedural decomposition. Both parts are implemented in C.

In Section 6.2.1, we present a simplified version of an ASML wafer scanner and its
event-driven software. We explain the activities that the simplified wafer scanner
can perform, and describe how these activities are controlled by a statechart, which
represents the reactive part of the event-driven software.

6.2.1 Simplified Wafer Scanner

A wafer scanner (Fig. 6.2) exposes an IC image on rectangular segments of a wafer.
Such a segment is called die. During an exposure, the wafer scanner uses a laser
beam to scan the image, and uses a lens to project the laser beam onto the die.

Processing (An Activity of the Wafer Scanner)

A reticle is the material that contains the IC image to be exposed on dies. Before
scanning, a reticle must be loaded onto a platform called reticle stage, and a wafer
must be loaded onto a platform called wafer stage. Fig. 6.2 shows a snapshot
of the wafer scanner during scanning: the lens and the laser source are fixed, the
laser source is emitting a laser beam, and the wafer stage and the reticle stage are
moving in opposite directions. Consequently, the IC image is being exposed on a die.
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Figure 6.2: A snapshot of the wafer scanner during scanning.

When the IC image is completely exposed on the die, the wafer stage will be moved
to align the next die with the lens. This activity is called advancing. The wafer
processing activity consists of advancing to a die, then scanning it, and repeating
this (i.e. advancing and scanning) for each die on the wafer.

Preprocessing (An Activity of the Wafer Scanner)

To produce faultless ICs, the wafer scanner’s actuators need to operate at a level
of precision that is measured in terms of nanometers. To attain this precision level,
two issues must be resolved: (a) The reticle must be clean, and (b) the wafer scanner
must know the shape imperfections of the wafer, so that it can compensate accord-
ingly during processing. Therefore, before processing, the wafer scanner must carry
out the preprocessing activity, which consists of cleaning the reticle if it is dirty,
and then measuring the shape imperfections of the wafer.

Requirements of the Wafer Scanner

R1: The wafer scanner must start upon an external signal.
R2: The wafer scanner must process the wafer.
R3: After processing, all ICs on the wafer must be faultless.
R4: The wafer scanner must stop after the wafer is processed.
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Reactive Part of the Event-Driven Software

Considering the requirements, the reactive part of the wafer scanner software can
be structured as the statechart in Fig. 6.3. This statechart can be interpreted as

Figure 6.3: The wafer scanner’s reactive behavior.

follows: When the scanner is in the READY state, if the start event occurs (e.g. an
operator presses the start button), then the scanner enters the PREPROCESSING

state, where it starts the preprocessing activity (i.e. calls the preprocess function,
which will be defined later). If the scanner is in the PREPROCESSING state, and if the
preprocessed event occurs, then the scanner enters the PROCESSING state, where it
starts the processing activity (i.e. calls the process function, which will be defined
later). If the scanner is in the PROCESSING state, and if the processed event occurs,
then the scanner enters the final state (i.e. stops).

Based on a specific formal semantics of statecharts (e.g. [49]), one can manually
implement the statecharts, or an implementation can be generated by a tool (e.g.
[48]). Since the implementation details of the statechart in Fig. 6.3 are not impor-
tant in this chapter, we assume that there is an implementation in C, which operates
as explained above.

Non-Reactive Part of the Event-Driven Software

The preprocessing activity (Section 6.2.1), can be implemented as the C function in
Listing 6.1.

1 void preprocess()

2 {

3 if(!reticleIsClean)

4 {

5 cleanReticle();

6 }
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7 measureWafer();

8 }

Listing 6.1: An implementation of the preprocessing activity in C.

The processing activity (Section 6.2.1) can be implemented as the C function in
Listing 6.2.

1 void process()

2 {

3 int i;

4 for(i = 0; i < numberOfDies; i++)

5 {

6 advance();

7 scan();

8 }

9 }

Listing 6.2: An implementation of the processing activity in C.

The definitions of the global variables reticleIsClean and numberOfDies, and
the definitions of the functions cleanReticle, measureWafer, advance, and scan

are not provided in the listings, because they are not important in the context of
this chapter.

The event-driven software resulting from the implementation of the statechart and
the activities fulfils R1, but not R2, R3 and R4; because the connection between the
statechart and the activities is currently incomplete. This connection is completed
in Section 6.2.2.

6.2.2 Connecting the Statechart and the Activities

Connecting the statechart and the activities consists of two steps: The first step
is creating the control calls (see Fig. 6.1). In [47], this step is referred as “linking
activities to states”, which can be explained as follows: Upon entrance to a state,
calling a function realizing an activity. Control calls are usually specified while
creating the statecharts (e.g. see Fig. 6.3). The second step is creating the event calls
(see Fig. 6.1): Stimulating the implementation of the statecharts with the events
that occur due to execution of the non-reactive part. In the remainder of this section,
we present the details of the second step, which is necessary for understanding the
remainder of this chapter.

The second step requires identifying all the points (i.e. locations) in the source code
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where the events occur during execution. To explain this more precisely, we need to
define the following terms:

Definition: An event e is mapped to a source code point pnt, if and only if e occurs
when an execution reaches pnt.

Definition: A source code point pnt is an event point, if and only if an event is
mapped to pnt.

Using the definitions of the preprocessing and processing activities (see Section
6.2.1), we can identify the event points: The preprocessed event is mapped to the
point located after ‘;’ in Line 7, Listing 6.1. The processed event is mapped to the
point located after ‘}’ in Line 8, Listing 6.2.

After the identification of the event points, the implementation of the statechart
must be stimulated with the occurrences of events. For this reason, a function that
transmits the occurrence of an event to the statecharts is called at each event point.
Hence, we term such functions event functions. Listings 6.3 and 6.4 show the
implementations of the preprocessing and processing activities after inserting calls
to the event functions preprocessed and processed at the event points.

The definitions of the event functions are typically located in the reactive-part of
event-driven software (see Fig. 6.1). They can be considered as the interface pro-
vided by the reactive part to the non-reactive part; event calls (see Fig. 6.1) are
the calls to the event functions. The implementation details of the event functions
are not important in this chapter.

1 void preprocess()

2 {

3 if(!reticleIsClean)

4 {

5 cleanReticle();

6 }

7 measureWafer();

8 preprocessed();

9 }

Listing 6.3: The implementation of the preprocessing activity after the connection
with the statechart.

1 void process()

2 {

3 int i;

4 for(i = 0; i < numberOfDies; i++)

5 {

6 advance();
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7 scan();

8 }

9 processed();

10 }

Listing 6.4: The implementation of the processing activity after the connection with
the statechart.

The insertion of the event calls concludes the connection of the statechart and the
activities. Consequently, each requirement in Section 6.2.1 is fulfilled by the event-
driven software resulting from the connection explained in this section.

Note that the event points of the simplified wafer scanner are at the end of the
functions. In the software of the actual wafer scanner, however, there are usually
several other function calls between an event point and the end of a function. There
are several reasons for this. For instance, at an intermediate step during an execution
of a function, say f , an event e occurs; e stimulates a statechart s; s performs a
transition to a next state, and calls another function g (i.e. the implementation
of another activity), in which case f and g are executed concurrently. We do not
illustrate such a case in this chapter, because it would unnecessarily complicate our
example application.

In the software of the actual wafer scanner, the following cases exist, too: An event
is mapped to multiple points in one function; An event is mapped to multiple points
in multiple functions; Multiple events are mapped to multiple points in one function.
Although we do not illustrate such cases, our solution addresses them, as well.

6.3 Defects During Activity Evolution

An event-driven software system may evolve several times during its lifetime. Possi-
ble mistakes during an evolution result in various defects in the system. Whenever
the activities evolve, event call- and compatibility defects may occur. Manually find-
ing and repairing these defects is effort-consuming and error-prone. In this section,
we explain these defects, and show how they are manually found and repaired. To
precisely explain the defects, we first need to define the following terms:

Definition: The event transmitting behavior (ETB) of a system is the behavior
that is implemented by the event calls.

Definition: Let ep be an event point, and ec be an event call that transmits an
occurrence of a specific event e. ep and ec are related, if and only if e is mapped
to ep.
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Definition: The ETB of a system is sound, if and only if each event call is located
at a related event point.

Definition: The ETB of a system is complete, if and only if at each event point a
related event call is located2.

Note that the ETB presented in Section 6.2.2 is both sound and complete.

6.3.1 ETB Becomes Defective

If the activities evolve, then the ETB may become unsound or incomplete (i.e.
defective), as we exemplify in this section.

ETB Becomes Unsound

Imagine that we remove the call to the measureWafer function from Line 7, Listing
6.3. As a result, the call to preprocessed is located at a point to which the
preprocessed event is no longer mapped, because the wafer is not measured at that
point. Hence, the ETB is no longer sound, and the requirement R3 is no longer
fulfilled: the processing activity starts before the wafer is measured, which results
in defective ICs. Therefore, we must remove the call to preprocessed to restore
the soundness of the ETB.3

ETB Becomes Incomplete

Adding a new function call to the source code may result in a new event point (i.e.
a new mapping of an existing type of event to a source code point). In such a
case, the ETB becomes incomplete. To restore the completeness, adding a related
event call at the new event point is necessary. Otherwise, the system cannot sense
some occurrences of the event, and react to them. Consequently, (some of) the
requirements may not be fulfilled.

2If multiple events are mapped to a point, then an ordering among the event calls is necessary.
3In this particular case, removing the call to measureWafer introduces, next to the unsound-

ness, an additional defect explained in Section 6.3.2.
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ETB Becomes both Unsound and Incomplete

Consider a new requirement stating “the wafer must be measured only if the reticle
is clean”, because the reticle cleaning activity may fail. To fulfill the requirement,
we can ‘wrap’ the call to measureWafer (Line 7, Listing 6.3) with an if block, as
shown in Listing 6.5.

1 void preprocess()

2 {

3 if(!reticleIsClean)

4 {

5 cleanReticle();

6 }

7 if(reticleIsClean)

8 {

9 measureWafer();

10 }

11 preprocessed();

12 }

Listing 6.5: The preprocessing activity after adding a new control statement.

In this case, the preprocessed event is mapped to the point located after ; in Line
9 where a call to preprocessed does not exist. Hence, the ETB is incomplete.
In addition, the call to preprocessed (Line 11) is located at a point to which
preprocessed is not mapped. Thus, the ETB is unsound. To restore the soundness
and the completeness, we must move4 the call to preprocessed from Line 11 to the
point located after ; in Line 9. Otherwise, the requirement R3 may not be fulfilled,
because the wafer may not be measured, and the reticle may be dirty.

Considering the execution semantics of the source code in Listing 6.5, one may
argue that the ETB is complete; because, whenever the preprocessed event occurs,
the preprocessed function is executed. However, our definition of completeness is
based on the syntactic structure of source code, not on execution semantics. The
rationale for this choice will become clear in the upcoming case.

Now, let us consider an extract-function restructuring [45] that involves moving
Lines 3-7 in Listing 6.3 to a new function newPreprocess, as shown in Listing 6.6.

1 void preprocess()

2 {

3 newPreprocess();

4Doing this conflicts with the requirement R2, but we ignore this fact for the sake of illustration
in this chapter.
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4 preprocessed();

5 return;

6 }

7 void newPreprocess()

8 {

9 if(!reticleIsClean)

10 {

11 cleanReticle();

12 }

13 measureWafer();

14 }

Listing 6.6: An extract-function restructuring.

In this case, the ETB is both unsound and incomplete, similar to the previous case
explained in this section. Nevertheless, all the requirements are still fulfilled. This
is certainly what is expected from a restructuring. However, if the system evolves
further, and the newPreprocess function is called from an additional place different
than Line 3, then the new occurrences of the preprocessed event are not transmitted.
Clearly, the current location of the event call is not ‘future-proof’. If the call to
preprocessed in Line 4 is moved to the point located after ; in Line 13, then the
ETB will become sound and complete.

If our definition of completeness were based on execution semantics, then we could
not recognize the fact that the location of the event call (i.e. Line 4) is not ‘future-
proof’.

Another case in which the ETB becomes both unsound and incomplete is as follows:
If a new statement (e.g. a function call) is inserted after ; in Line 7 in Listing 6.3,
then the ETB becomes both unsound and incomplete.

Throughout Section 6.3.1, we discussed some of the evolution cases in which the
ETB of a system becomes defective. In contrast, one can imagine other cases in
which the ETB remains defect-free. For instance, if one or more statements are
inserted after ; in Line 5 in Listing 6.3, then the ETB is still sound and complete.
In any case, manually verifying that the ETB is defect-free is effort-consuming and
error-prone in large-scale software.

6.3.2 Activity Becomes Incompatible

Let us reconsider the case in Section 6.3.1, where we remove the calls to measureWafer
and preprocessed in Listing 6.3. After removing the call to preprocessed, the
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statechart is no longer stimulated with an occurrence of the preprocessed event. Con-
sequently, the wafer scanner cannot perform the transitions from the PREPROCESS-

ING state to the PROCESSING state, and from the PROCESSING state to the final
state. Hence, the requirements R2 and R4 cannot be fulfilled despite the sound and
complete ETB. Thus, we can conclude that an occurrence of the preprocessed event
is mandatory whenever the preprocess function is executed. Therefore, the call
to measureWafer must not be removed, as ‘dictated’ by the requirements and the
statechart in Fig. 6.3. Otherwise, the preprocessing activity becomes incompatible
with the statechart.

In general, if the activities of a given system are not compatible with the statecharts
of the system, then the system may not behave as intended (i.e. requirements may
not be fulfilled), despite a sound and complete ETB. The scenario explained above
illustrates a typical incompatibility arising from possible mistakes during evolution
of activities.

Based on the discussion in this section, one can imagine certain constraints on the
implementation of activities, such that the constraints are satisfied, if and only if
the activities are compatible with the statecharts. For example, the constraint in
this case would be “the preprocessed event must occur whenever the preprocess

function is executed”. We call such constraints compatibility constraints. In
Section 6.5, we explain these constraints in detail.

In contrast to the case presented in this section, one can imagine other cases in
which the activities remain compatible with the statecharts. For instance, if one or
more statements are inserted after ; in Line 5 in Listing 6.3, then the activity is still
compatible with the statechart. In any case, manual verification of compatibility is
effort-consuming and error-prone in large-scale software.

6.3.3 Other Defects

Possible mistakes during the evolution of activities may cause other defects than
those we discussed so far in Section 6.3. For example, a mistake during the evolution
of the measureWafer function, which is the implementation of the wafer measuring
activity, may lead to incorrect measurements, hence defective ICs. Furthermore,
due to evolution of activities, the existing control calls (see Fig. 6.1) may become
invalid. Addressing these kinds of defects is beyond the scope of this chapter.
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6.3.4 Our Goal

Whenever the activities (i.e. the non-reactive part) evolve, the compatibility be-
tween the activities and the statecharts (i.e. the reactive part) has to be verified. If
this verification fails, then the incompatibility has to be repaired. Next, the sound-
ness and completeness of the ETB has to be verified. If this verification fails, then
the ETB has to be maintained such that it remains sound and complete. Our goal is
(a) to automate the compatibility verification, and (b) to eliminate the necessity of
the ETB verification and maintenance; so that effort is reduced, and human errors
are prevented. Our approach to reach this goal is presented in Section 6.4.

6.4 A 4-Stage Approach

As depicted in Fig. 6.4, we developed a 4-stage approach to automate the com-
patibility verification, and to eliminate the necessity of the ETB verification and
maintenance. In Section 6.4.1, we provide an overview of this approach by explain-
ing Fig. 6.4. In Section 6.4.2, we explain why this approach brings us to the goal
stated in Section 6.3.4.

Figure 6.4: A 4-stage approach to automate the compatibility verification, and to
eliminate the necessity of the ETB maintenance.
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6.4.1 An Overview of the Stages

Stage1: Deriving and Specifying Compatibility Constraints

At this stage, a developer (or multiple developers) who knows the requirements
(Section 6.2.1), the statecharts (Fig. 6.3), and the implementations of the activities
(Listing 6.1 and 6.2), derives and specifies the compatibility constraints. To specify
the constraints, the developer uses an extended version of VisuaL. Although the
syntax and formal semantics of the extended version of VisuaL are provided in
Appendix A.2, the reader can follow the remainder of this chapter without reading
the appendix. In Section 6.5, Stage 1 is explained in detail.

Stage 2: Specifying Events and Binding Event Calls

At this stage, using VisuaL, the developer specifies the events, and binds the event
calls to the event specifications. In Section 6.6, Stage 2 is explained in detail.

Stage 3: Analysis

At this stage, CheckSource is provided with the compatibility constraints from Stage
1, the event specifications and the bindings from Stage 2, and the ETB-free imple-
mentations of the activities. If the compatibility constraints are not satisfied (e.g.
the case in Section 6.3.2), then CheckSource outputs a compatibility error that is
valuable for understanding the incompatibility and repairing it. Here, the “repair-
ing” means “either modifying the activities, or the statecharts and compatibility
constraints, such that the compatibility error disappears”. If there is no error, then
CheckSource outputs each event point together with a related event call. In Section
6.7, Stage 3 is explained in detail.

Stage 4: Transformation

At this stage, a TransformSource, which is a source-to-source transformer, is pro-
vided with the ETB-free implementations of the activities and the output of the
analyzer from Stage 3. At each event point, TransformSource inserts the related
event call, which results in sound and complete ETB. In Section 6.8, Stage 4 is
explained in detail.
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6.4.2 The Benefit of our Approach (i.e. How the goal is
reached)

Whenever the activities evolve, then the Stages 3 and 4 can be automatically re-
peated to verify that the compatibility constraints are satisfied, and to re-insert
valid event calls, so that sound and complete ETB is re-generated. Consequently,
effort can be reduced, and human errors can be prevented.

6.5 Stage 1: Deriving and Specifying Compatibil-

ity Constraints

At Stage 1, a developer (or multiple developers) derives and specifies the compat-
ibility constraints. In this section, we explain Stage 1 in detail: First, we present
a systematic way to collect hints for deriving compatibility constraints. Next, we
explain how the hints can be used for deriving compatibility constraints from require-
ments, statecharts, and source code. Finally, we explain how the derived constraints
can be specified using VisuaL.

6.5.1 Hints for Deriving Compatibility Constraints

The hints for deriving the compatibility constraints are the events whose lack of
occurrence indicates an incompatibility exemplified in Section 6.3.2. We call such
events mandatory events, because if such an event does not occur, then some of
the requirements are not fulfilled. After the identification of mandatory events, the
compatibility constraints can be derived in such a way that the satisfaction of the
constraints guarantees the occurrences of the mandatory events.

The developer (see Fig. 6.4), who knows the requirements, the statecharts, and the
implementations of the activities, can identify the mandatory events: she picks an
event, say preprocessed, from the statechart in Fig. 6.3, and imagines what would
happen if this event would not occur: the wafer scanner could not perform the
transitions from the PREPROCESSING state to the PROCESSING state, and from
the PROCESSING state to the final state. Hence, the system could not fulfill the
requirements R2 and R4. With this line of reasoning, the developer realizes that the
preprocessed event is mandatory. Note that the processed event (see Section 6.2.1) is
a mandatory event, too.

If the requirements are formally specified and ‘linked’ to the states and transitions,
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then automating the identification of the mandatory events becomes possible. How-
ever, this automation falls outside our scope; requirements engineering is extensively
discussed in [83].

Identifying mandatory events should be considered as a heuristic for deriving com-
patibility constraints.

6.5.2 Deriving Compatibility Constraints

In this section, we explain how a developer can derive the compatibility constraints
whose satisfaction guarantees the occurrence of the mandatory event preprocessed.

These constraints can be derived from the following facts: (a) the preprocessed event
occurs when the preprocessing activity is carried out, (b) the preprocessing activity
is “cleaning the reticle if it is dirty, and then measuring the shape imperfections
of the wafer” (Section 6.2.1), (c) the reticle cleaning activity, the wafer measuring
activity, and the preprocessing activity are respectively implemented within the
cleanReticle, measureWafer, and preprocess functions. Using these facts, the
developer can derive the following compatibility constraints:

C1: In each possible sequence of function calls from preprocess, there must be at
least one call to measureWafer.

C2: In each possible sequence of function calls from preprocess, a call to
cleanReticle must not come later than a call to measureWafer.

There are two possible sequences of function calls from the preprocess function in
Listing 6.1: seq1 = <cleanReticle, measureWafer>, and
seq2 =<measureWafer>. With these sequences in mind, note that the preprocess
function satisfies both C1 and C2. As a result, the mandatory event preprocessed

occurs each time the preprocess function is executed.

In fact, C1 and C2 are stricter than necessary: they enforce that the preprocessed

event is mapped to the source code point(s) within the definition of the preprocess
function. However, it would equally be fine if the preprocessed event were mapped to
the source code point(s) in the definition of another function, say f , such that the
event occurs each time f is executed, and f is called each time the preprocess func-
tion is executed. In this chapter, we only present stricter-than-necessary constraints
due to a limitation of the current implementation of CheckSource: CheckSource can
reason about function definitions as a single block, but it cannot reason about the
nesting of function calls. This is not a fundamental limitation; some of the existing
program analysis tools (e.g. [2]) are already capable of reasoning about the nest-
ing of function calls. The current implementation of CheckSource has proven to be
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useful despite this limitation, as indicated by the empirical evidence (Section 5.7).

The compatibility constraints related to the mandatory event processed (i.e. the
other event in Fig. 6.3) are in Appendix A.3.

6.5.3 Specifying Compatibility Constraints

After the developer derives the compatibility constraints, she needs to specify them
in VisuaL, so that CheckSource (see Fig. 6.4) can verify the implementations of the
activities. Below, we provide the VisuaL specifications that express C1 and C2.

Specifying C1

The specification of the compatibility constraint C1 is shown in Fig. 6.5.

Figure 6.5: The specification of the compatibility constraint C1 in VisuaL.

Specifying C2

The specification of the compatibility constraint C2 is shown in Fig. 6.6. q0 and

Figure 6.6: The specification of the compatibility constraint C2 in VisuaL.
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q1 in this figure are different nodes than q0 and q1 in Fig. 6.5, because they are in
different specifications.

The specifications of the compatibility constraints related to the mandatory event
processed (i.e. the other event in Fig. 6.3) are provided in Appendix A.3.

6.6 Stage 2: Specifying Events and Binding Event

Calls

At Stage 2, a developer (or multiple developers) formally specifies the events, and
binds the event calls to the event specifications. In this section, we explain the details
of Stage 2, by specifying the preprocessed event, and binding the preprocessed();
event call, using VisuaL.

The preprocessed event occurs when the preprocessing activity is completed; and
the preprocessing activity is defined as “cleaning the reticle if it is dirty, and then
measuring the shape imperfections of the wafer” (Section 6.2.1). With this definition
in mind, the preprocessed event can be specified as the pattern shown in Fig. 6.7.

Figure 6.7: The specification of the preprocessed event and the binding of the event
call preprocessed();, in VisuaL.

This pattern matches any sequence of function calls, because (a) all inner nodes have
the <<final>> label, and (b) a $-labelled edge originates from each inner node. This
unconstrained matching is intentional, because the pattern is created for specifying
an event, which may or may not occur; in both cases there is no error. In contrast,
a compatibility constraint must be satisfied, otherwise there is an error.

Each time measureWafer is executed during an execution of preprocess, the
preprocessed event occurs. To detect such an occurrence, a measureWafer-labelled
edge originates from each node; each measureWafer-labelled edge points to the same



Chapter 6. Improving the Evolvability of Event-Driven Software 123

node (i.e. q1); and no edge with a different label points to this node. Thus, q1 is
the ‘hook’ for binding preprocessed();. The binding is done by placing an ellipse
containing the text preprocessed();, inside q1. If there is at least one such ellipse in
a VisuaL specification, then the DFA denoted by the specification is a variant of
Moore machine [54]. This is an extension to VisuaL, which is originally defined in
Section 2. The details about the formal semantics of the extended VisuaL can be
found in Appendix A.1.

Although an occurrence of the preprocessed event involves possible execution of the
cleanReticle function, we do not need to include any cleanReticle-labelled edge in
the pattern, because the satisfaction of the constraint C2, which is specified in Fig.
6.6, guarantees that any call to cleanReticle, if exists, comes before any call to
measureWafer.

Throughout Section 6.5, and so far in this section, we explained that the infor-
mation about a mandatory event consists of (a) specifications of the compatibility
constraints, (b) the specification of the event, and (c) the binding of the event call
to the event specification. Note that the information about the preprocessed event is
currently distributed over three specifications: Figures 6.5, 6.6, and 6.7. To benefit
from the advantages of the locality of information, one may prefer to capture the
whole information about a mandatory event in one concise specification, using a
single language. To our best knowledge, VisuaL is the only language that is suitable
for this purpose. For example, the whole information about the preprocessed event
(i.e. the information captured in Figures 6.5, 6.6, and 6.7) can also be captured in
one concise specification, as shown in Fig. 6.8. This specification is concise, because
(a) it has less number of nodes and edges than the total number of nodes and edges
in Figures 6.5, 6.6, and 6.7; and (b) none of the nodes and edges in Fig. 6.8 is
redundant.

In general, if a specification in VisuaL consists of at least one compatibility constraint
and event call binding, then the specification is a composite specification (e.g.
Fig. 6.8). A systematic way to compose multiple specifications to create a single
composite specification is already discussed in Chapter 4.

Using the current version of VisuaL one cannot specify the processed event (i.e. the
other event in Fig. 6.3), which is mapped to the point located after ’}’ in Line 8,
Listing 6.2. The current version of VisuaL is not expressive enough for identifying
this point. We revisit this limitation in Section 8.2.1.
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Figure 6.8: The composite specification in which the compatibility constraints C1
and C2 are specified, preprocessed is specified, and preprocessed(); is bound.

6.7 Stage 3: Analysis

At Stage 3, the ETB-free implementations of the activities are analyzed with respect
to the compatibility constraints from Stage 1 (Section 6.5), and the event points are
identified based on the event specifications from Stage 2 (Section 6.6). In this
section, we provide the details of Stage 3, which consists of three steps. The details
of these steps are already presented in Chapter 5. For the sake of conciseness in this
section, we are going to use the composite specification (Fig. 6.8), instead of the
other specifications (Figures 6.5, 6.6, and 6.7).

6.7.1 Step 1: Creation of Abstract Syntax Tree (AST)

If the preprocess function (Listing 6.1) is given to the CheckSource as an in-
put, then CheckSource parses the preprocess function, and constructs an abstract
syntax tree [9] ASTpreprocess shown at the top of Fig. 6.9.

6.7.2 Step 2: Derivation of Simplified Control Flow Graph

We assume that the compatibility constraints and the events can be specified in
terms of function calls and the possible flow of control [38] between the function
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Figure 6.9: The abstract syntax tree (ASTpreprocess) and the simplified control flow
graph (SCFGpreprocess) of the preprocess function in Listing 6.1.

calls. Based on this assumption, only a part of the information that is in the AST is
needed during the analysis. Therefore, CheckSource constructs the simplified control
flow graph SCFGpreprocess depicted at the bottom of Fig. 6.9. This construction
is already explained in Chapter 5. As visualized by the dashed edges, CheckSource
maintains a one-to-one mapping from the nodes of SCFGpreprocess to the related
nodes of ASTpreprocess.

6.7.3 Step 3: Analysis of Simplified Control Flow Graph
with respect to VisuaL Specification

To verify that the preprocess function satisfies the compatibility constraints C1
and C2 presented in Section 6.5.2, CheckSource has to check whether all possible se-
quences of function calls from the preprocess function are matched by the pattern
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depicted in Fig. 6.8. To generate the function call sequences, CheckSource traverses
SCFGpreprocess in a depth-first manner. As understandable from SCFGpreprocess,
there are two possible sequences of function calls: seq1 and seq2, both of which are
already presented in Section 6.5.2. The analysis of these sequences reveals that each
sequence ‘ends in’ q1 (see Fig. 6.8). Since this node has the <<final>> label, each
sequence is matched by the pattern, which means the preprocess function satisfies
both C1 and C2. If the constraints were not satisfied, then CheckSource would out-
put a compatibility error containing a sequence that violates the constraint. Such
an error is valuable for finding and repairing an inconsistency.

During the analysis of seq1, q0 (see Fig. 6.8) is mapped to the cleanReticle-
labelled internal node of SCFGpreprocess, and q1 is mapped to the measureWafer-
labelled internal node. During the analysis of seq2, q1 is once more mapped to the
measureWafer-labelled internal node. Other nodes (i.e. q2 and q3) are not mapped
to any node of SCFGpreprocess. This partial5 mapping from the set of the nodes of
the specification to the set of the internal nodes of SCFGpreprocess is the output of
the analysis (i.e. Stage 3). As depicted in Fig. 6.4, this output is the input for the
transformation (i.e. Stage 4), which is explained in Section 6.8.

Statecharts are proposed for expressing the event-driven and continuous behavior of
reactive systems [47, 48, 49, 46, 50]. According to this proposal, the activities must
terminate upon execution. Hence, the possible sequences of function calls from a
function realizing an activity must be finite. The verification algorithm is already
explained in Section 5.4.1.

6.8 Stage 4: Transformation

At Stage 4, TransformSource inserts the event calls at the event points identified at
Stage 3. In this section, we explain the details of Stage 4 using the output of the
example analysis presented in Section 6.7.3.

First, TransformSource is provided with the partial mapping created during the
analysis (Section 6.7.3). Second, TransformSource selects q1 (see Fig. 6.8), be-
cause q1 contains the event call to be inserted (i.e. preprocessed();). Third,
TransformSource parses preprocessed(); and creates ASTpreprocessed(); shown in
Fig. 6.10. Fourth, TransformSource inserts ASTpreprocessed(); as a sibling next to the
upper FCall node in Fig. 6.9, because during the analysis (Section 6.7.3), q1 was
mapped to the measureWafer-labelled ellipse in Fig. 6.9, and this ellipse is mapped
to the upper FCall node (see the dotted arrow between the measureWafer-labelled

5In a general case, such a mapping is not necessarily partial.
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Figure 6.10: The abstract syntax tree ASTpreprocessed(); of the preprocessed();

event call.

ellipse and the upper FCall node). Finally, TransformSource traverses the modi-
fied ASTpreprocess to output the source code shown in Listing 6.3. A mathematical
explanation of the transformation algorithm is provided in Appendix A.4.

Whenever the activities evolve, then the Stages 3 and 4 can be automatically re-
peated to verify that the compatibility constraints are satisfied, and to re-insert
valid event calls, so that sound and complete ETB is re-generated. Consequently,
effort can be reduced, and human errors can be prevented. In Section 7.3, the effort
reduction and the error prevention are quantified.

IMPLEMENTATION: We implemented both CheckSource and TransformSource
in Java. We used the open source parser generator ANTLR [3] together with the
open source grammar cgram [6] to generate a parser for C. In addition, we imple-
mented a plug-in to Borland Together [5], so that the VisuaL specifications can be
drawn in the activity diagram editor of Borland Together, and they can be recognized
by CheckSource as input. The source code of CheckSource and TransformSource is
available upon request.

We tested the analyzer using an Intel(R) Pentium(R) M 1700 MHz processor with
1 GB of RAM. With an industrial specification in VisuaL, which has 11 nodes and
23 edges, CheckSource can process industrial functions containing 280, 127, and 83
lines of code, in 70, 40, and 32 milliseconds, respectively. The cyclomatic complexity
number [67] of these functions is 51, 27, and 20, respectively.

6.9 Conclusions

In this chapter, we studied the evolution of event-driven software. We analyzed
the problems arising from the evolution of the non-reactive part of software, and
presented a novel solution that combines source code verification and aspect-oriented
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programming techniques.

The solution consists of (a) a simple heuristic for deriving compatibility constraints
from requirements, statecharts, and source code; (b) usage of VisuaL for specifying
event calls and compatibility constraints; (c) usage of CheckSource for automatically
verifying that the compatibility constraints are satisfied, and for identifying event
points; and (d) usage of TransformSource for automatically inserting event calls.

To quantify the benefits of the solution, we conducted a controlled experiment with
23 professional software developers and 21 M.Sc. students. In this experiment,
the solution reduced the effort by 75%, and prevented one error per 140 lines of
source code. The benefits of the solution are statistically significant at level 0,01.
In Chapter 7, we present the details of these experiments.



Chapter 7

Experimental Evaluation of
CheckSource and TransformSource

This chapter has a lot in common with Chapter 5. However, there are many small
variations scattered over the entire chapter. To avoid excessive cross-references to
Chapter 5. We decided to repeat the contents of Chapter 5, in this chapter.

7.1 Experiment Definition and Planning

In Section 6.4.2, we claimed that CheckSource and TransformSource can reduce hu-
man effort and prevent errors. To test this claim, we conducted formal experiments.
In this section, we present the definition and planning of these experiments. For
preparing, conducting, and documenting the experiments, we followed the guide-
lines proposed by Kitchenham et. al. [59] and Wohlin et. al. [86].

7.1.1 Background Information

The software of the actual wafer scanner consists of around 200 software components,
most of which are designed and implemented in the way explained in Section 6.2. In
the past, one of the software teams developing and maintaining such a component
have informed us about the excessive maintenance effort they spend due to the
defects explained in Section 6.3. Therefore, we conducted this research.

The solutions presented in Chapter 6 were tested within the context of the compo-
nent mentioned above. This component has 15 statecharts, each having on average

129
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10 states and 15 transitions. The component contains 55.000 lines of source code,
and 55 events mapped to 102 source code points distributed over 81 function defini-
tions. Hence, the component has 55 event functions, and 102 event calls distributed
over 81 functions. Among the 200 components of the actual wafer scanner, this
component is a mid-sized one.

In the controlled experiments, we decided to use real-life functions and real-life
VisuaL specifications. Therefore, we trained the domain expert of the component, so
that he can create some VisuaL specifications corresponding to some of the functions
in the component. After the training, the developer selected a statechart that has
18 states and 22 transitions, and identified the part of the software component
in which the corresponding activities are implemented. Next, using the heuristic
presented in Section 6.5, the developer identified three mandatory events. Then, the
developer created three composite specifications in VisuaL, each of which consists
of one compatibility constraint and the specification of one mandatory event.

7.1.2 Motivation and Overview

The purpose of this experiment is to test the claimed benefits of CheckSource and
TransformSource while removing the incompatibilities and repairing the ETB defects
in industrial software.

We conducted this experiment twice. In the first experiment, 21 M.Sc. computer
science students from the University of Twente participated. In the second experi-
ment, 23 professional software developers from ASML participated.

During both experiments, the participants worked with three C functions (i.e. imple-
mentations of three activities) selected by the domain expert from the component of
the wafer scanner software (see Section 7.1.1), and the corresponding specifications
that were created by the expert using VisuaL.

We injected an incompatibility defect, an unsoundness defect, and an incompleteness
defect into each function, and then we requested the participants to repair these
defects by modifying the functions, such that each function would conform to the
corresponding specification.

7.1.3 Hypotheses

We formulated the following hypotheses to be tested in the first experiment:

• H0
1: The tools (i.e. CheckSource and TransformSource) do not have any effect
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on the amount of effort spent by M.Sc. students.
• H0

2: The tools do not have any effect on the number of errors made by M.Sc.
students.

We formulated the following hypotheses to be tested in the second experiment:

• H0
3: The tools do not have any effect on the amount of effort spent by pro-

fessional developers.
• H0

4: The tools do not have any effect on the number of errors made by pro-
fessional developers.

We chose 0,01 as the significance level for rejecting the hypothesis above.

7.1.4 The Variables of the Experiment

Factors

• Tool support is the only factor of this experiment. This factor is measured
in the nominal scale, at two levels: exists, not exists.

Non-factor Independent Variables

There are two independent variables that we kept at fixed levels in this experiment.
The first one is the function-specification pair, and the second one is the injected
defect. Below, we explain these variables in detail.

• Function-Specification Pair is an independent variable kept at a fixed level:

Each participant was treated with the same set of three C functions and the corre-
sponding VisuaL specifications. We measured the size and cyclomatic complexity
[67] of both the functions and the specifications.

For a given function, the size is measured by counting the physical lines of code, and
the complexity is measured by calculating the cyclomatic complexity number. In
Table 7.1, the size and complexity of the three functions are listed. These functions
are originally located in a file that has 55 functions. This file is one of the several files
in the software component mentioned in Section 7.1.1. For a better understanding
of the file, the descriptive statistics about the 55 functions can be found in Table
7.2.

For a given VisuaL specification, the size is measured by counting the nodes and
the edges, and the complexity is measured by calculating the cyclomatic complexity
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Table 7.1: The size and complexity of the C functions.
Functions # Lines of Code Cyclomatic Complexity

Function1 88 20
Function2 127 27
Function3 280 51

Table 7.2: Descriptive statistics of the 55 functions in the file.
Avg. Min. Max. Std. Dev.

Lines of Code 133 24 390 89
Cyclomatic Complexity 28 4 114 20

number. In Table 7.3, the size and complexity of the three specifications are listed.
These specifications were created by the domain expert at ASML. Specification1,

Table 7.3: The size and complexity of the VisuaL specifications.
Specifications # Nodes # Edges Cyclomatic Complexity

Specification1 11 19 10
Specification2 11 23 14
Specification3 10 20 12

Specification2, and Specification3 respectively corresponds to Function1, Function2,
and Function3.

• Injected defect is an independent variable kept at a fixed level:

We injected the same kind of defect into each of the three functions: We removed the
first possible function call to inject an incompatibility (e.g. the case in Section 6.3.2),
and we added one control statement to inject unsoundness and incompleteness (e.g.
the case in Section 6.3.1).

Dependent Variables

There are two dependent variables in this experiment:

• Amount of effort is a dependent variable measured in the ratio scale. We
measure this variable in terms of minutes.

• Number of errors is a dependent variable measured in the absolute scale.
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7.1.5 Selection of Participants

Selection of Students

This experiment was an integral part of the 2006 spring semester Software Man-
agement course at the University of Twente. Hence, the students of this course
participated in the experiment. These students were M.Sc. computers science stu-
dents.

To collect some information about the software development experience of these
students, we asked them the size of the largest computer program they have written
using one of the imperative languages (e.g. C, Java). The students had to select
one of the following answers:

1. Less than 100 lines of source code
2. More than 100, less than 1000 lines of source code
3. More than 1000, less than 5000 lines of source code
4. More than 5000, less than 10000 lines of source code
5. More than 10000 lines of source code

No student selected 1, four students selected 2, six students selected 3, seven students
selected 4, four students selected 5.

None of the students had any previous experience about the instruments listed in
Section 7.1.7.

Selection of Developers

After we conducted the first experiment with the students, we presented the results
of this experiment together with the solution summarized in Section 6.4 to the soft-
ware developers of ASML. Out of approximately 500 software developers of ASML,
around 130 developers attended this presentation. After the presentation, we in-
vited these developers to participate in this experiment. 23 developers (voluntarily)
participated in the experiment. At the beginning of the experiment, we requested
the developers to indicate their professional software development experience with
the imperative programming languages (e.g. C, Java), in terms of years. It turned
out that each developer has at least four years of professional experience.

None of the developers had any previous experience about the instruments listed
in Section 7.1.7, except two of the developers have previously seen the C functions
used in the experiment.
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7.1.6 Experiment Design

As visible in Fig. 7.1, we designed an experiment that has one factor and two
treatments. The factor and its levels are already explained in Section 7.1.4. Each

Figure 7.1: The experiment has one factor with two levels each of which is one
of the two treatments. The number of participants per treatment in each of the
experiments is also shown in this figure.

level of the factor is a treatment in this experiment.

The participants were randomly assigned to one of the two treatments (i.e. there
were two independent groups of participants). We balanced the design by assign-
ing (almost) equal number of participants per treatment. In the remainder of this
chapter, we will use tool-supported participant for referring to a participant
treated with the tool support, and manual participant for referring to a partici-
pant treated without tool support.

7.1.7 Instrumentation

The instruments of this experiment are

• the C functions into which we injected defects,
• the VisuaL specifications,
• the tools using which the participants repaired the defects (i.e. CheckSource

and TransformSource),
• the tutorial slides that we presented to the participants to train them for

repairing the defects,
• the documents containing the stepwise instructions for the participants to

repair the defects, and
• the facilitating software that we developed for automatic data collection.

Interested readers can request the instruments from us by providing personal details
and affiliation. If ASML approves the request, then we can send a non-disclosure
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agreement (NDA). After the NDA is signed and returned, we can provide the in-
struments.

7.2 Experiment Operation

The operation phase of the experiment consisted of three steps: preparation, execu-
tion, and data validation. In this section, we explain these steps in detail.

7.2.1 Preparation

We prepared a tutorial for teaching the participants how to (a) interpret the speci-
fications, (b) relate the specifications to the source code, and (c) repair the defects
in the source code using the specifications. For the tool-supported participants,
the tutorial also included how to use the tools. We presented this tutorial before
the experiment as a slide show, and we distributed hard copies of the slides to the
participants, after the presentation.

We prepared step-wise instructions for the participants. By following these instruc-
tions, a participant could find the source code in the directory structure of the
computer, run the tools, etc.

We implemented facilitating software that puts a time stamp on the source code
modified by a participant, and logs the source code in a file. The manual participants
ran this software twice: once at the beginning of the treatment, and once at the end
of the treatment. The facilitating software was integrated with the tool support (i.e.
CheckSource and TransformSource). Consequently, the tool-supported participants
ran the facilitating software at least twice: once at the beginning of the treatment
(i.e. when they initially used the tool to find and understand the defects), once
at the end of the treatment (i.e. after they modified the source code), and zero or
more times during the treatment (i.e. each additional time they used the tool to see
whether they could successfully repair the defects).

We prepared an example treatment for the participants, so that they get used to the
tasks they are required to perform. In this way, we aimed at improving the accuracy
of our measurements, by decreasing the learning overhead in the actual treatments.
The example treatment was the first treatment of each participant.

We conducted preliminary runs of the experiment to test the artifacts explained
above. These runs enabled us to improve the instruments of the experiment. The
four participants of these preliminary runs were different than the participants of
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the actual experiment. During the analysis presented in Section 7.3, we excluded
the data of the preliminary runs.

To motivate the students for performing the tasks as carefully and quickly as they
can, we rewarded the first, second, and the third best performers in each of the tool-
supported and manual groups with 50 EUR, 40 EUR, and 30 EUR, respectively.
The ranking criteria was performing the tasks with least number of errors in least
amount of time, where the number of errors had priority over the amount of time.
Besides the top three prizes, each student received 10 EUR for his participation.
Before the students started the experiment, we informed them about the prizes and
the ranking criteria. The results of the students were kept anonymous, and these
results did not have any impact on their course grade.

We assumed that the developers were self-motivated, because they volunteered.
Therefore, we did not reward them with a prize.

7.2.2 Execution

During the experiment, the students worked at the computer laboratories of the
university, and they used the computers in the laboratories to modify source code,
and to run the tools.

To ensure the independence of the observations, each student participated in the
experiment at the same time. This required an instructor to give the tutorial for
the tool-supported group in a laboratory, and another instructor to give the tutorial
for the manual group in another laboratory. Moreover, the instructors and two
additional assistants were present at the laboratories.

The developers participated in the experiment at their offices at ASML, and they
participated in the experiment not at the same time but at various dates and times.
We could not avoid this due to the busy agendas of the developers. We ensured
the independence of observations as good as possible: We kept the participant list
secret (note that 23 out of 500 developers participated), and collected the material
of the experiment after the participation of each developer. During the experiment,
the developers used a computer whose setting was identical to the setting of the
computers used by the students in the laboratories.
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7.2.3 Data Validation

As explained in Section 7.2.1, each participant ran a facilitating software that logs
the source code with a time stamp. The participants were not authorized to modify
the clock of the operating system.

To validate the data contained in the files, we compared the latest time stamp in a
file with the last modified time of the file. If they were different, this would indicate
that the participant had manually modified the file, hence the data is invalid. In
this way, we found two invalid log files, and we did not include their data in the
analysis.

We informed each participant about his result, and asked whether the result is as he
expected; each participant informed us that his result is as he expected. This sup-
ports the claim that the participants have understood the instructions, and followed
them properly (i.e. this is a positive indication about the validity of data).

7.3 Data Analysis

By investigating the log files created during the experiment, we realized that each
tool-supported participant worked until CheckSource gave no more error messages.
Therefore, after a tool-supported participant finished a treatment, the resulting
source code was free of incompatibility, unsoundness, and incompleteness defects.
On the other hand, the manual participants made errors while repairing the defects
(see Section 6.3). To calculate the number of errors, we used the following criteria:
For each unsoundness situation (e.g. Section 6.3.1), we counted one error. For
each incompleteness situation (e.g. Section 6.3.1), we counted one error. For each
incompatibility situation (e.g. Section 6.3.2), we counted one error.

The raw data of the experiment is provided in Appendix B.2. In the remainder of
this section, we analyze the data in three steps: First, we discuss the screening and
cleaning of the raw data, second we present the descriptive statistics of the clean
data, and third we present the statistical tests we applied to the hypotheses stated
in Section 7.1.3.

We used SPSS Version 12.0.1 for Windows [7] for analyzing our data, and testing
the hypotheses.
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7.3.1 Screening and Cleaning the Data

Our investigations on the log files revealed that the logged data of one tool-supported
and one manual student were manually modified (i.e. corrupted). We understood
this by comparing the time stamps in the files with the last modified time of the
files. Consequently, we excluded their data from our calculations.

One of the tool-supported students could not finish the treatment within the given
amount of time, which was three hours. Therefore, we excluded his data, too.

7.3.2 Descriptive Statistics

The experiment with the students

In Fig. 7.2, the descriptive statistics of the data collected from the experiment with
the students is presented.

Since each tool-supported student worked until CheckSource gave no more error
messages, the descriptive statistics of the number of errors in the existence of tool
support is omitted in Fig. 7.2.

The mean amount of effort spent by the tool-supported students is 32 minutes1,
whereas the mean amount of effort spent by the manual students is 64 minutes.
Hence, we can conclude that the tools reduced the effort spent by an average student
approximately by 50% in this experiment.

The mean number of errors made by the tool-supported students is 0, whereas the
mean number of errors made by the manual students is 5. Since each participant
worked with 500 lines of source code in total (see Table 7.1), we can conclude that
the tools prevented approximately one error per 500 ÷ 5 = 100 lines of source code
in this experiment.

Note that the 5% trimmed means (i.e. the means calculated upon excluding 5%
of the data at the extremes) are very close to the original means. For instance,
the original mean of the amount of effort in the existence of tool support is 32
minutes, and the corresponding trimmed mean is 33 minutes. Due to the closeness
of each trimmed mean to the corresponding original mean, we can conclude that
the extreme values of the dependent variables do not have a strong influence on the
original means.

1Wherever it is appropriate, we present rounded numbers for increasing the readability of the
text. More accurate numbers are presented in the figures. For example, this number (i.e. 32) is
presented as 32,44 in Fig. 7.2.
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Figure 7.2: The descriptive statistics of the data collected from the experiment with
the students. The data consists of effort measured in minutes, and the number of
errors. Since the number of errors is constant when the tool support exists, the
related statistics is omitted in this figure.

The positive skewness of the effort in the existence of tool support (1,005) indicates
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that the majority of the tool-supported students spent less than 32 minutes during
the experiment. The negative skewness of the effort in the lack of tool support
(-0,268) indicates that the majority of the manual students spent more than 64
minutes during the experiment.

The negative values of Kurtosis indicate that the distributions of the values are
relatively flat (i.e. too many values at the extremes).

In Fig. 7.3, the results of the normality tests for the data collected from the exper-
iment with the students are shown. It is very likely for the amount of effort and
the number of errors to have a normal distribution, because the significance values
(shown as “Sig.” in Fig. 7.3) are greater than 0,05.

In Figures 7.4 and 7.5, the box plots of the amount of effort versus tool support, and
the number of errors versus tool support are respectively shown. The grey rectangles
represent 50% of the values, with the whiskers (i.e. the lines below and above the
rectangles) going to the minimum and the maximum values. SPSS did not detect
any outliers (i.e. there is no data point outside the minimum and maximum ranges).

The experiment with the developers

In Fig. 7.6, the descriptive statistics of the data collected from the experiment
with the developers is presented. Since each tool-supported developer worked until
CheckSource gave no more error messages, the descriptive statistics of the number
of errors in the existence of tool support is omitted in Fig. 7.6.

The mean amount of effort spent by the tool-supported developers is 12 minutes,
whereas the mean amount of effort spent by the manual developers is 50 minutes.
Hence, we can conclude that the tools reduced the effort spent by an average devel-
oper approximately by 75% in this experiment.

Figure 7.3: The results of the normality tests for the data collected from the ex-
periment with the students. Since the number of errors is constant when the tool
support exists, the related statistics is omitted in this figure.
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Figure 7.4: Box plot of effort vs. tool support in the experiment with the students.

Figure 7.5: Box plot of errors vs. tool support in the experiment with the students.

The mean number of errors introduced by the tool-supported developers is 0, whereas
the mean number of errors introduced by the manual developers is 3,5. Hence, we
can conclude that the tools prevented approximately one error per 500÷ 3, 5 = 140
lines of source code in this experiment.
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Figure 7.6: The descriptive statistics of the data collected from the experiment with
the developers. The data consists of effort measured in minutes, and the number
of errors. Since the number of errors is constant when the tool support exists, the
related statistics is omitted in this figure.

Note that the 5% trimmed means are very close to the original means. For instance,
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the original mean of the amount of effort in the existence of tool support is 11,75
minutes, and the corresponding trimmed mean is 11,67 minutes. Due to the closeness
of each trimmed mean to the corresponding original mean, we can conclude that the
extreme values of the dependent variables do not have a strong influence on the
original means.

Figure 7.7: Box plot of effort vs. tool support in the experiment with developers.

Figure 7.8: Box plot of errors vs. tool support in the experiment with developers.
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Figure 7.9: The results of the normality tests for the data collected from the ex-
periment with the developers. Since the number of errors is constant when the tool
support exists, the related statistics is omitted in this figure.

The positive skewness of the effort in the existence of tool support (0,573) indicates
that the majority of the tool-supported developers spent less than 12 minutes during
the experiment. The negative skewness of the effort in the lack of tool support (-
0,542) indicates that the majority of the manual developers spent more than 50
minutes during the experiment.

The negative values of Kurtosis indicate that the distributions of the values are
relatively flat (i.e. too many values at the extremes).

In Fig. 7.9, the results of the normality tests for the data collected from the ex-
periment with the developers are shown. According to the Shapiro-Wilk test, it is
likely that the amount of effort and the number of errors have a normal distribution,
because the significance values are greater than 0,05.

According to the Kolmogorov-Simmov test, it is not likely that the amount of effort
has a normal distribution in the existence of tool support, because the significance
value 0,004 is less than 0,05. However, it is very likely that the amount of effort
in the lack of tool support and the number of errors have a normal distribution,
because the significance value 0,2 is greater than 0,05.

In Figures 7.7 and 7.8, the box plots of the amount of effort versus tool support,
and the number of errors versus tool support are respectively shown. SPSS did not
detect any outliers (i.e. there is no data point outside the minimum and maximum
ranges in the box plots).

7.3.3 Hypothesis Testing

For testing the hypotheses stated in Section 7.1.3, we used the independent-samples
t-test provided by SPSS. The assumptions for using the t-test hold in our experiment:
each dependent variable is measured in the ratio scale (see Section 7.1.4); each
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Figure 7.10: The results of the independent samples t-test for assessing the differ-
ences between the tool-supported and manual students.

participant is randomly assigned to either the tool-supported or the manual group
(see Section 7.1.6); the observations made during the experiment are independent of
each other (see Section 7.2.2); it is likely that the dependent variables have a normal
distribution (see Section 7.3.2).

Testing H0
1

An independent-samples t-test was conducted to compare the amount of effort spent
by the tool-supported students versus the manual students (see Fig. 7.10). Since
the significance value of Levene’s test (0,81) is greater than 0,05, the equality of
variances is assumed (i.e. the first row in Fig. 7.10 is considered). There was a
significant difference in the amount of effort spent by the tool-supported students
(Mean = 32; Std. Dev. = 14) and the manual students (Mean = 64; Std. Dev =
15; t(16) = -4,66; p = 0,01). Therefore, we can reject H0

1.

Testing H0
2

An independent-samples t-test was conducted to compare the number of errors made
by the tool-supported students versus the manual students (see Fig. 7.10). Since the
significance value of Levene’s test (0,00) is less than 0,05, the equality of variances is
not assumed (i.e. the fourth row in Fig. 7.10 is considered). There was a significant
difference in the number of errors made by the tool-supported students (Mean = 0;
Std. Dev. = 0) and the manual students (Mean = 5; Std. Dev = 3; t(8) = -4,54; p
= 0,01). Therefore, we can reject H0

2.
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Figure 7.11: The results of the independent samples t-test for assessing the differ-
ences between the tool-supported and manual developers.

Testing H0
3

An independent-samples t-test was conducted to compare the amount of effort spent
by the tool-supported developers versus the manual developers (see Fig. 7.11).
Since the significance value of Levene’s test (0,00) is less than 0,05, the equality of
variances is not assumed (i.e. the second row in Fig. 7.11 is considered). There was a
significant difference in the amount of effort spent by the tool-supported developers
(Mean = 12; Std. Dev. = 3) and the manual developers (Mean = 50; Std. Dev =
14; t(10,89) = -8,84; p = 0,01). Therefore, we can reject H0

3.

Testing H0
4

An independent-samples t-test was conducted to compare the number of errors made
by the tool-supported developers versus the manual developers (see Fig. 7.11). Since
the significance value of Levene’s test (0,00) is less than 0,05, equality of variances is
not assumed (i.e. the fourth row in Fig. 7.11 is considered). There was a significant
difference in the number of errors made by the tool-supported developers (Mean =
0; Std. Dev. = 0) and the manual developers (Mean = 3,6; Std. Dev = 2,3; t(10)
= -5,16; p = 0,01). Therefore, we can reject H0

4.

7.4 Validity Evaluation

In this section, we discuss the threats to the validity of the experiment. We organized
these threats using the categorization proposed in [24]; each title in this section is a
category of validity threats. For each category, we first provide a short explanation,
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and then discuss how we addressed this category of threats in our experiment. Most
of the short explanations are adopted from [86].

7.4.1 Conclusion Validity

This category of threats effect the ability to draw correct conclusion about the
relation between the treatment and the outcome of the experiment.

In our experiment, we identified two categories of threats to the conclusion validity:
low statistical power, and reliability of treatment implementation [24].

Low Statistical Power

The power of a statistical test is the ability of the test to reveal a true pattern in
the data. If the power is low, then there is a high risk that an erroneous conclusion
is drawn. Therefore, we performed a post-hoc analysis to find the actual power we
achieved in our statistical tests. We used G*Power [37] for calculating the power.
For each hypothesis, the input and output parameters of the power analysis are
listed in Fig. 7.12.

As visible in the last row of Fig. 7.12, the power we achieved is either very close to
or more than 0,80. Since 0,80 is the commonly accepted minimum level of power,
we can conclude that the power level of our analysis is not a major threat to the
validity of our conclusions. The power we achieved also indicates that the number
of participants was quite sufficient for our experiments.

In the power calculation, G*Power required us to provide non-zero and positive
values for the means and standard deviations. We could not give the real values
of (a) the mean number of errors (i.e. µ2 of H0

2 and H0
4) and (b) the standard

deviations of the errors (i.e. σ2 of H0
2 and H0

4) of the tool-supported participants;
because these values are all 0. Nevertheless, we approximated these values by giving
the lowest possible values for the mean number of errors (i.e. 0,000001) and the
standard deviation of errors (i.e. 1), regarding the tool-supported participants.
This approximation can be considered as a threat to the validity of the conclusions
drawn from the hypotheses H0

2 and H0
4.

Note that, the threat mentioned above does not arise from the preparation, design,
or operation of the experiments; it arises from the outcome of the experiments.
Therefore, this threat could not be predicted and avoided before the experiment
was conducted. In principle, the manual participants could have repaired all the
defects, in which case the number of errors of manual participants would have been
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Figure 7.12: The input and output parameters of the post-hoc power analysis for
independent-samples and two-tailed t-tests (per hypothesis). In this analysis, the
equality of the sample sizes is assumed. µ1 and µ2 denote the means of the first and
second samples. σ1 and σ2 denote the standard deviations of the first and second
samples. d denotes the effect size calculated by G*Power based on the means and
standard deviations. α denotes the significance level we have chosen for rejecting
the null hypotheses. n1 and n2 denote the sizes of the samples. δ denotes the non-
centrality parameter calculated by G*Power. Critical t denotes the critical t-value
calculated by G*Power. Df denotes the degree of freedom. 1−β denotes the power
we achieved in our statistical analysis.

0; or the tool-supported participants could have made some errors, in which case
the number of errors of tool-supported participants would have been non-zero. The
fact that the tool-supported participants did not make any errors is the outcome of
the experiment.

Reliability of Treatment Implementation

The implementation of a treatment means the application of the treatment to a
subject. To improve the reliability of treatment implementation, the implementation
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must be as standard as possible over different participants and occasions.

In the experiment with the students, each student participated in the experiment
at the same time. This was important to avoid information exchange between the
students, hence to prevent the threat explained in Section 7.4.2. Consequently,
this required an instructor to give the tutorial for the tool-supported group in a
laboratory, and another instructor to give the tutorial for the manual group in
another laboratory. Since different instructors gave the tutorial, there may be a
threat to the reliability of treatment implementation.

7.4.2 Internal Validity

Internal validity threats are issues that can affect the measurements of the indepen-
dent variable, without the researcher’s knowledge. Therefore, these kinds of threats
may influence the validity of conclusions about a possible causal relationship between
a treatment and the corresponding outcome.

In our experiment, we identified and addressed three types of threats to the internal
validity: maturation, instrumentation, and diffusion or imitation of treatments [24].

Maturation

The maturation threat arises when subjects are affected negatively (e.g. tired or
bored), or positively (unintended learning) during the experiment.

To reduce the unintended learning effect in our experiment, we prepared an example
(i.e. preliminary) treatment for the participants, so that they got used to the tasks
they were required to perform. In this way, we aimed at improving the accuracy
of our measurements. The example treatment was the first treatment of each par-
ticipant, and the related data is excluded during the analysis presented in Section
7.3.

Instrumentation

This type of threat arises from an improper design of instruments such as data
collection forms, document to be inspected in an inspection experiment, etc.

We conducted preliminary runs of the experiment to test the quality of the instru-
ments listed in Section 7.1.7. These runs enabled us to improve the quality of these
instruments. The four participants of these preliminary runs were different than the
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participants of the actual experiment. During the analysis presented in Section 7.3,
we excluded the data of the preliminary runs.

Diffusion or Imitation of Treatments

This threat arises if participants are prematurely informed about the treatments,
and behave differently due to this information.

As explained in Section 7.2.2, we avoided this threat in the experiment with the
students, and we took effective precautions in the experiment with the developers.

7.4.3 Construct Validity

Threats to construct validity influence the ability to draw correct conclusions about
the relation between the results of the experiment and the hypotheses that are being
tested using these results. Some of such threats are related to the experimental
design, and others are related to social factors.

In our experiment, we identified and addressed two types of threats to the con-
struct validity: confounding constructs and levels of constructs, and experimenter
expectancy [24].

Confounding Constructs and Levels of Constructs

These kinds of threats arise from the fact that there are confounding constructs (e.g.
experience of subjects) that are not taken into account in an experiment.

As explained in Section 7.1.5, we measured the programming experience of the
students to understand their background. However, we did not balance the tool
supported v.s. manual groups according to the experience of the students, because
we did not have any means to validate their programming experience. Instead, we
divided them randomly. As a result, in the tool supported group there were three
students with experience level 2 (see Section 7.1.5), three students with experience
level 3, three students with experience level 4, and three students with experience
level 5. Whereas, in the manual group there were two students with experience level
2, three students with experience level 3, four students with experience level 4, and
one student with experience level 5. The lack of balance in the experience may be
a threat to the validity of the results related to the students. However, we do not
think that this threat is severe, because the weighted average of the experience in
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the tool-supported and manual groups were not too different (i.e. respectively 3,5
and 3).

We do not think that there is an important lack of balance due to the differences
in the programming experience of developers. In section 7.1.5, we indicated that
each developer had at least 4 years of professional software development experience.
Considering the nature of the tasks in the experiment, we think that a developer
with 4 years of experience can perform as well as a developer with more than 4 years
of experience.

Experimenter Expectancy

The experimenters may bias the result of an experiment based on what they expect
from the experiment. This is a threat to the construct validity.

The purpose of our experiment was to evaluate the tools developed by the author
of this thesis. Hence, the experimenter expected that the tools are beneficial. To
eliminate this threat, we planned, conducted, and analyzed this experiment together
with Klaas van den Berg, who did not have any specific expectations from this
experiment.

7.4.4 External Validity

The threats to external validity limit the ability to generalize the results of the
experiment.

Interaction of Selection and Treatment

This threat arises if the selection of subjects do not adequately represent the popu-
lation for which the results need to be generalized.

The participants of this experiment are not randomly selected from a large popu-
lation of developers and students. The developers were the volunteers at ASML,
and the students were the participants of a course at the university. Therefore, the
results of this experiment cannot be generalized for a larger population of students
and developers. However, this does not devaluate the results of this experiment,
because our purpose was to evaluate the tools, and we have empirical evidence in-
dicating that the tools are beneficial both for a homogenous set of students, and a
homogenous set of developers.
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Interaction of Setting and Treatment

This threat arises if the experimental setting or the instruments are not representa-
tive of, for example, industrial practice.

In our experiments, we used real-life source code and real-life VisuaL specifications,
but we injected relatively simple defects. Below, we explain why we could not use
real-life evolution scenarios instead of injecting simple defects.

At ASML, developers maintain source code upon receiving a “change request / prob-
lem report (CRPR)”. Implementing a CRPR typically involves several modifications
to the existing source code. Hence, a real evolution scenario typically consists of
several additions, deletions, and modifications of function calls, control statements,
variables etc. Using a real CRPR in our experiments was infeasible, because

• A CRPR is informally written in English. Therefore, different participants
might have (mis)interpreted the CRPR differently. Consequently, we would
have lost the control in the experiment, and the results would have been in-
conclusive.

• No matter there is tool support or not, domain expertise is necessary for
implementing a CRPR. Hence, the students could not have implemented the
CRPRs. Moreover, only 2 out of 23 developers were in the team that was
developing the software component we investigated. Hence, the remaining 21
developers were not domain experts, either.

• The implementation of a CRPR involves multiple changes to the source code.
The changes that were not due to the ETB defects or incompatibilities would
have been confounding factors in our experiment. In other words, we would
have lost control in the experiment, and the results would have been inconclu-
sive.

• Due to the domain expertise required for implementing a CRPR, we cannot
estimate how much time is necessary for an average person to implement a
given CRPR. Since we could not occupy the participants for more than 3
hours during the experiment, we could not have used a real CRPR.

Due to the reasons listed above, we had to inject relatively simple defects that can be
repaired without any domain knowledge. This may be a threat to the generalization
of our results to the industrial practice. Frankl et. al. [40] discuss the challenges in
creating defect models that enable systematic investigation of reliability in software
systems.

The functions that were used during our experiments were chosen by the domain
expert of the component in which the functions were placed. The expert chose these
functions, because on that day he had to maintain them. Hence, the functions were
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not randomly chosen. This is a threat to the generality of our results to arbitrary
functions.

Background of Participants

The background of the student participants is classified based on the size of the
largest program they have written using one of the imperative languages, whereas the
background of the developer participants is classified based on the number of years
of programming experience. Using a uniform criteria to classify the background of
both the students and the developers would not make sense, since students typically
do not have professional experience, and the professional developers typically write
programs on a daily basis over multiple years.

The non-uniform criteria for classifying the background of students and developers
would be a threat to the validity of any conclusion that would compare the perfor-
mance of students with the performance of the developers. In this thesis, we did
not present such a conclusion; i.e. any conclusion that is presented in this thesis is
either about the students or the developers, but not the combination.

Intuitively, the use of tool support should reduce the difference between developers
and students. However, this is not the case according to the results of the experi-
ments. The results suggest that the difference between the students and the develop-
ers is smaller if there is no tool support: The manual students spent 128% (=64/50)
of the effort spent by manual developers, whereas the tool-supported students spent
267% (=32/12) of the effort that is spent by the tool-supported developers. This
counter-intuitive result would be a threat to the validity of any conclusion that com-
pares the performance of the students with the developers. In this thesis, we do not
present such a conclusion, because comparing the students with developers was not
our goal. If this were our goal, then we would have stated additional hypotheses
about the difference between students and developers, and we would have designed
the experiment differently. The existing design and execution of the experiments is
not suitable for comparing students and developers.
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Chapter 8

Related and Future Work,
Discussion, and Conclusions

8.1 Related and Future Work

8.1.1 Software Documentation

A software system is by nature an abstract, mathematical product, which is de-
scribed, specified, and implemented in documents (i.e. text, diagrams, etc.). Parnas
[74] provides the following definitions for different types of software documents:

• A description is a statement of some of the actual attributes of a product.
• A specification is a statement of some of the properties required of a product.
• A model is a simplified or reduced sized version of a product.
• A prototype is an early, full-scale version of a product.

According to these definitions, the documents created using VisuaL are specifica-
tions. Each VisuaL specification contains a constraint (i.e. requirement) on the
possible sequences of function calls from a given function.

Parnas [74] states that different notations are necessary for documenting different
types of software products. He distinguishes four types of software products: Real-
time and interactive systems, terminating programs, modules, and objects. VisuaL
is best suited for specifying some of the properties of the behavior of terminating
programs.

Since VisuaL is a language for specifying constraints on the possible sequences of
function calls from a given function, it is related to the trace assertion method

155
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(TAM) [16, 82, 53, 55], and sequence-based software specification [75]. Using TAM,
one can specify the legal traces (e.g. function calls) of a system, together with the
values of the legal traces. The notation of TAM is textual, hence it is different than
the notation of VisuaL, which is graphical. Furthermore, VisuaL does not have any
language construct for specifying the values of the traces yet. Our intention is to
keep VisuaL as simple as possible, hoping that it can be more easily adopted by the
software engineers at ASML. Upon possible demand in the future, we may consider
extending VisuaL for handling data.

The documents created using VisuaL are fundamentally different than the tradi-
tional flowcharts [20, 71] and UML activity diagrams [8]. For a given specification
in VisuaL, there can be multiple different implementations of a function, where each
implementation embodies a different flow of control (i.e. a flowchart or an activity
diagram). Hence, VisuaL specifications are more abstract than flowcharts and ac-
tivity diagrams. This higher level of abstraction is enabled by the context-sensitive
wildcards explained in Section 2.2.1.

It is possible to semi-automatically construct VisuaL specifications based on existing
source code. This is explained in [77].

8.1.2 Temporal Logics and Model Checkers

VisuaL is a graphical language for specifying design constraints on the behavior of
algorithms. Such a constraint is a logical or temporal property that must be satisfied
by each possible execution of the corresponding algorithm.

Since an algorithm does not execute indefinitely (otherwise it would not be an
algorithm by definition [63]), each possible execution of an algorithm is finite. Thus,
VisuaL is a language that is suitable for expressing properties of finite executions.
For example, the following constraint can be expressed using VisuaL, as shown in
Fig. 8.1.

C6: In each possible sequence of function calls from the function f, there must be
at least one call, and the last call must be a call to the function traceOut.

In contrast to the executions of algorithms, the executions of finite-state concurrent
systems [65] or reactive systems [46] are often infinite. Therefore, we call such
systems non-terminating systems. To express the logical and temporal properties
of non-terminating systems, several model checking formalisms are available: FLTL
[42], LTL [23], CTL [23]. To be able to specify the constraint C6 (see above)
using one of these model checking formalisms, one has to first translate the finite
executions of the algorithm to infinite executions. For example, if seq =<g, h,
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Figure 8.1: A VisuaL specification indicating that the last call from the function f

must be a call to traceOut.

traceOut> is a finite sequence of function calls representing an execution of the
function f, then seq can be translated into the infinite sequence seq′ =< g, h,
traceOut,⊙,⊙,⊙, ... >, where ⊙ is a special symbol marking the end of seq. Upon
this translation, the infinite sequence seq′ can be checked against the LTL formula
eventually(traceOut and (next ⊙)). This LTL formula is semantically different
than the VisuaL specification shown in Fig. 8.1. However, the formula ‘mimics’ the
specification, provided that the finite sequences are extended to infinite sequences
as explained above. FLTL and CTL can also be used for creating formulas similar
to the LTL formula stated above.

The semantics of a temporal logic formula is defined with respect to a model of
the underlying system [23]. For example, the semantics of an LTL formula is often
defined with respect to a Büchi automaton that represents the underlying system
[23]. Therefore, if the underlying system evolves, then the semantics of the formula
also evolves ‘automatically’ (i.e. one does not need to manually update the formula
for this evolution). Hence, the evolvability that is exhibited by DARs (see Section
2.5) is also exhibited by temporal logic formulas.

FLTL is a formalism for specifying state-based LTL properties of event-based sys-
tems. An atomic proposition of an FLTL formula is called fluent [42], which is a
property that holds after it is initiated by an action, and no longer holds when
terminated by another action. “A well-formed FLTL formula is an LTL formula
whose atomic propositions are fluents” [61]. If a property of an event-based system
is specified as an FLTL formula, and the system is modelled as a labelled transition
system (LTS) [65], then the LTSA tool [65] can check whether the LTS satisfies the
FLTL formula.

Fluent model checking using FLTL and the LTSA tool is primarily intended for
verifying the properties of systems at the architecture level. The LTSA tool takes
an LTS [65] as the architectural model of the system, and verifies whether the model
satisfies the given properties that are expressed in FLTL. CheckSource however is
a source code verification tool. It automatically extracts the model from C code,
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and verifies whether the model (hence the C code) satisfies the given properties
expressed in VisuaL.

The nodes of a Simplified Control-Flow Graph (SCFG) are labelled with the iden-
tifiers of functions, and the edges are not labelled. One can transform a SCFG to
an LTS [65], by labelling each edge with the label of the target node. Upon this
transformation, one can also perform the verification using the LTSA tool and the
FLTL language.

Bandera is an integrated collection of analysis tools for the verification of Java
programs. Bandera has a slicer component that compresses the paths in a program
by removing control points, variables, and data structures that are irrelevant for
checking a given property. CheckSource performs a similar compression, too. It
extracts the SCFGs of C functions, where the nodes represent function calls, and
the edges represent the possible flow of control between the function calls. Hence,
a path through a SCFG does not contain any control points, variables, and data
structures. Bandera has an abstraction engine that allows the users to configure
the level of abstraction in the extracted models. CheckSource does not have such
a feature; the level of abstraction of a SCFG cannot be configured. Bandera can
automatically map counter-examples to Java code. CheckSource also maps counter
examples to C code. This mapping is done by reporting a path through a function,
such that this path violates the constraint expressed by the VisuaL specification.
Bandera has a graphical user interface. CheckSource is a command prompt tool,
but it is integrated with Borland Together [5], which is used for creating the VisuaL
specifications.

CheckSource performs static program analysis to verify source code. There is a
substantial body of research in static analysis (e.g. [15, 22, 27, 36, 13, 35]). This
line of research is mainly focused on finding general types of bugs (e.g. deadlocks,
memory leaks) in source code. In contrast, we provide a language for defining the
desired properties of software behavior, and CheckSource finds the bugs based on
the desired behavior specified by software engineers.

As we explained in Section 6.1, embedded software is usually a combination of re-
active and non-reactive (i.e. algorithmic) parts. If it is necessary to verify the
properties of both parts, then one can use the existing model checking formalisms
(e.g. FLTL, LTL) for specifying the properties, and let the state-of-the-art model
checkers such as LTSA [65, 42] and Bandera [25, 51, 34] perform the automatic ver-
ification. Since we are interested in verifying the properties of only the non-reactive
part (i.e. finite executions), we perform the model checking using the language
inclusion algorithms of finite-word automata theory [63].

The problems presented Section 6.3.1 cannot be satisfactorily solved only by source
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code verification techniques; it is necessary to perform source code transformation,
too. Therefore, we integrated a source code transformer to our analyzer. This
integration enables the combination of verification and transformation.

Using VisuaL, one can express both the properties to be verified and the rules for
transformations. To our best knowledge, there is no obvious way to express the
transformation rules using the existing temporal logic formalisms.

The state-of-the-art model checking tools such as Bandera and LTSA support tem-
poral logics (e.g. LTL, FLTL) for expressing the properties of software systems.
Temporal logics are textual formalisms. In today’s industrial practice however,
there is a large group of practitioners who prefer graphical formalisms (e.g. state-
charts) for specifying their software. Hence, there is a gap between the preferences
of these practitioners and the specification languages supported by the state-of-the
art model checking tools. VisuaL can be considered as an initial effort to bridge this
gap, as we explain in Section 8.1.3.

8.1.3 Extending the VisuaL Language for Expressing the
Logical and Temporal Properties of Non-Terminating
Systems

In Section 8.1.2, we mentioned some of the existing formalisms for expressing the
logical and temporal properties of non-terminating systems. Yet another formalism
for expressing such properties is Büchi automata [23, 12]. There are three differences
between a Büchi automaton and a DFA:

1. A Büchi automaton with an input alphabet Σ either accepts or rejects any
infinite sequence of symbols from Σ; whereas a DFA with an input alphabet
Σ either accepts or rejects any finite sequence of symbols from Σ.

2. A Büchi automaton can perform transitions non-deterministically; whereas a
DFA performs transitions deterministically.

3. A Büchi automaton has multiple initial states; whereas a DFA has exactly one
initial state.

The set of infinite sequences of symbols accepted by a Büchi automaton is called
ω-regular language [23].

Based on the contents of this chapter, one can define a new type of automata,
say Non-deterministic Abstract Infinite-sequence Recognizer (NAIR), such that the
differences between a NAIR and a DAR is the same as the differences between a
Büchi automaton and a DFA:
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1. A NAIR either accepts or rejects any infinite sequence of symbols, whereas a
DAR either accepts or rejects any finite sequence of symbols.

2. A NAIR can perform transitions non-deterministically; whereas a DAR per-
forms transitions deterministically.

3. A NAIR has multiple initial states; whereas a DAR has exactly one initial
state.

Since a NAIR would accept or reject any infinite sequence of symbols, it could
be used for expressing logical or temporal properties of non-terminating systems.
Accordingly, the syntax of VisuaL could be extended, such that each VisuaL spec-
ification represents a NAIR, and each NAIR can be represented by a VisuaL spec-
ification. Hence, the extended VisuaL could be used for expressing the logical and
temporal properties of non-terminating systems.

If the extended VisuaL would be integrated as a front-end to the state-of-the-art
verification tools such as Bandera [25, 51, 34] and LTSA [65, 42], then we believe
that these tools would become more accessible to the large audience of practitioners
who prefer graphical formalisms for specifying their software.

The recent implementation of LTSA [42] translates FLTL formulas to “tester au-
tomata with * transitions”. These automata are already very similar to, if not the
same as, NAIRs. Hence, LTSA already has a suitable foundation for supporting a
graphical formalism similar to the extended VisuaL.

In Section 2.4.1, we have shown that the set of ORLs is a proper superset of the set
of RLs. The key reason for this was as follows: Since a DAR either accepts or rejects
any finite sequence of symbols (i.e. without any restriction to a specific alphabet),
the set of sequences symbols accepted by a DAR cannot be a regular language.
This line of reasoning could be reused for showing that the set of sequences symbols
accepted by a NAIR is not necessarily an ω-regular language. Hence, one could show
that NAIRs define a new family of formal languages, say open ω-regular languages,
such that the set of open ω-regular languages is a proper superset of the set of
ω-regular languages.

Büchi automata are known to be more expressive than LTL [87]. That is, there is at
least one ω-regular language that cannot be expressed by an LTL formula, whereas
any LTL formula expresses an ω-regular language. Since NAIRs would express open
ω-regular languages, NAIRs would also be more expressive than LTL. Consequently,
if the extended VisuaL would be integrated with the existing verification tools such
as Bandera, then the users of these tools could (a) express all the properties that
can also be expressed using LTL, (b) express additional properties that cannot be
expressed using LTL, (c) enjoy a familiar (statechart-like) diagrammatic notation for
expressing the properties, and (d) benefit from the improved evolvability explained
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in Sections 2.5 and 2.8.

8.1.4 Wildcards in Automata-Based Testing and Verifica-
tion

The idea of using wildcard transitions in automata is not new. The * transitions [42]
facilitate partial order reduction for the properties that are closed under stuttering.
These transitions are similar to the # transitions of DARs (Section 2.3.4). Hence,
* transitions enable the evolvability explained in Section 2.5. This evolvability is
also mentioned by Giannakopoulou and Magee [42], as follows: “An advantage of
tester automata that use * transitions is that they are independent of the system,
and can be reused across systems with the same set of fluents”. The * transitions
are wildcards, but they are not context-sensitive.

The “*”-transitions [56], and the other-transitions [21] seem to be similar to CSWs.
However, the semantics of the “*”-transitions and the other-transitions are not
formally defined in the respective literature. Therefore, it is not clear whether the
symbols matched by such transitions are from a given alphabet or from the universal
set of symbols. We have formally defined the semantics of CSWs, and according
to this definition, the symbols matched by a CSW are from the universal set of
symbols. The fact that CSWs can match symbols from the universal set of symbols
has both theoretical and practical implications, which are explained in this chapter.

8.1.5 Adding CSW to Existing Graphical Languages

There are several graphical languages for expressing the behavioral design of software
systems: statecharts [47], activity diagrams [8], sequence diagrams [8], collaboration
diagrams [8], etc. Wieringa [84] surveys such graphical languages.

In this chapter, we provided theoretical and practical insights about CSW. We
believe that these insights can be reused for adding CSW to the existing graphical
languages. For example, the set of abstraction mechanisms offered by statecharts
could be extended with CSW. This extension would enable the users of statecharts
to selectively abstract from the events responded by a reactive system.
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8.1.6 Defining a Hierarchy of Open Languages

In section 2.4.2, we have explained that (Υ \ {g})∗ is an ORL but not a CFL. We
think that it is possible to generalize this explanation for showing that (Υ \ {g})∗ is
not an element of any language family in the Chomsky hierarchy [63]. Subsequently,
it is possible to show that the set of ORLs is not a subset of any language family in
the Chomsky hierarchy.

In this chapter, we introduced the open regular languages. We think that it is also
possible to define ‘open context-free languages’, ‘open context-sensitive languages’,
etc.; and discover the relation between these ‘open languages’. One could also
discover the relation between ‘open languages’ and the language families in the
Chomsky hierarchy. Based on our current intuition, we imagine a hierarchy of ‘open
languages’, such that this hierarchy includes the Chomsky hierarchy.

8.1.7 Automata for Strings Over Infinite Sets of Symbols

In Section 2.3.4, we have explained the key difference of DARs from DFAs: DARs
can accept or reject finite sequences of symbols from the universal set of symbols,
which is an infinite set. Recognizing finite sequences of symbols from an infinite
set of symbols has also been studied by Kaminski and Frances [57], Globerman and
Harel [43], Milo et. al. [69], and Neven et. al. [72].

Kaminski and Frances [57] introduced register automata: A register automaton is
a finite-state machine equipped with a finite number of registers. Each register can
store a symbol. While processing the input tape, a register automaton compares the
current symbol of the tape with the symbols in the registers. Based on the current
state and the result of the comparison, the automaton decides (a) the next state,
(b) whether to store the current symbol (of the tape) in a register (by overwriting
the existing symbol in the register), and (c) whether to move to the left or the right
position on the tape, or to stay at the current position of the tape. The symbols on
the input tape of a register automaton can be from an infinite set of symbols.

A DAR has a built-in wildcard symbol (i.e. the # symbol), which matches infinite
number of symbols. Whereas, a register automaton has finite number of registers
each of which contains exactly one ‘regular’ (i.e. non-wildcard) symbol. Therefore,
the symbol in a register of a register automaton cannot match infinite number of
symbols. As a result, a register automaton cannot ‘simulate’ the #-transitions of a
DAR. A register automaton can modify the contents of the registers, while processing
the input tape. Whereas, a DAR cannot modify the contents of the abstract input
alphabet. These differences between a DAR and a register automaton suggest that
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DARs and register automata possibly have different expressive power.

Globerman and Harel [43], and Milo et. al. [69] introduced different variations of
pebble automata. In this section, we consider the variation introduced by Milo et. al.
[69]. A pebble automaton is a finite-state machine equipped with a finite number
of consecutively numbered pebbles. A pebble can be placed on a position of the
input tape, so that the symbol at that position is marked by the automaton. While
processing the input tape, a pebble automaton can drop down the pebbles or pick
them up. This is regulated according to the stack convention: the ith pebble can be
dropped down only if the (i− 1)th pebble is already on the tape, and the ith pebble
can be picked up only if the (i + 1)th pebble is already picked up. While processing
the input tape, a pebble automaton compares the current symbol of the input tape
with the symbol marked by the most recently dropped pebble. Based on the current
state and the result of the comparison, the automaton decides (a) the next state,
(b) whether to drop down or pick up a pebble, and (c) whether to move to the left
or to the right position on the tape, or to stay at the current position of the tape.
The symbols on the input tape of a pebble automaton can be from an infinite set of
symbols.

A pebble automaton has a finite number of pebbles each of which can be used for
marking exactly one ‘regular’ (i.e. non-wildcard) symbol. Therefore, the symbols
marked by the pebbles of a pebble automaton cannot match infinite number of
symbols. As a result, a pebble automaton cannot ‘simulate’ the #-transitions of a
DAR. By dropping down and picking up the pebbles, a pebble automaton can modify
the set of marked symbols. Whereas, a DAR cannot modify the contents of the
input abstract alphabet. These differences between a DAR and a pebble automaton
suggest that DARs and pebble automata possibly have different expressive power. A
formal comparison of DARs with register and pebble automata is outside the scope
of this article. Therefore, we leave such a comparison as a part of the future work.

Neven et. al. [72] have investigated the expressive power of different types of regis-
ter and pebble automaton, and compared them with first order logic and monadic
second-order logic. They investigated variations of register and pebble automaton:
one way or two way tape readers; and deterministic, non-deterministic, or alternat-
ing (i.e. hybrid) versions.

8.1.8 Aspect-Oriented Programming (AOP)

In AOP terms, the ETB of a system (Section 6.3) is scattered [39] over and tangled
[39] with the implementations of the activities. Hence, the ETB is a crosscutting
concern [39]. The event specifications (e.g. the pattern in Fig. 6.7) correspond to
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pointcuts [39], the event points (e.g. the point located after ‘;’ in Line 7, Listing 6.1)
correspond to joinpoints [39], the event calls (e.g. preprocessed();) correspond
to advices [39], and the VisuaL specifications in which an event is specified and an
event call is bound (e.g. Fig. 6.7) correspond to aspects [39]. Thus, part of the
solution presented in this chapter exhibits the fundamental characteristics of the
AOP technology. Note that our approach and the tools can be used for weaving not
only event calls but also arbitrary advice code.

In Section 7.1.1, we explain that there are 55 events mapped to 102 source code
points in the component using which we tested our the solution. Hence, a full-blown
application of our solution requires creation of 55 aspects for weaving 102 calls to
55 event functions at 102 joinpoints. That is, 1 aspect needs to be created per 1.9
joinpoints on the average. This means that the ETB of the system is not highly-
replicated, in contrast to the classical examples of crosscutting concerns: tracing,
parameter checking, etc. By addressing the problems presented in Section 6.3.1, we
have shown a case in which AOP can be useful for improving the evolvability of a
crosscutting concern that is not highly-replicated.

Recent research [10, 80] has raised awareness about the problems of aspect-oriented
systems in the context of software evolution. It is argued that seemingly harmless
modifications to base code may break the functionality of aspects, which increases
the workload of aspect developers, and sometimes makes it infeasible to realize a
working system. To address such problems, on one hand Aldrich [10] proposed to
restrict joinpoint models and advising mechanisms. His proposal has been incor-
porated to AspectJ [1] by Ongkingco et. al. [73]. On the other hand, Sullivan et.
al. [80] proposed to constrain the implementation of the base programs, so that the
aspects can properly function. Our solution follows the latter approach: The com-
patibility constraints (Section 6.5) are interface specifications [80] (or contracts [18])
that base code developers implement. The analyzer verifies whether these interface
specifications (or contracts) are correctly implemented. According to the four levels
of contracts proposed by Beugnard et. al. [18], the compatibility constraints can
be classified under the third level: “Constraints on the temporal ordering of system
services and method calls.”

In a nutshell, a VisuaL specification is a Moore machine-like automaton that gen-
erates output strings from an output alphabet, while recognizing regular patterns
of input symbols from an input alphabet. Therefore, using VisuaL one can spec-
ify history-sensitive pointcuts that can identify function call joinpoints, based on
regular patterns of function calls. Hence, VisuaL is related to some of the existing
trace-based and history-sensitive approaches [11, 30, 31, 33]. In these approaches,
the state of the pointcut advances only if the encountered input symbol is in the
input alphabet. In VisuaL, however, one always explicitly specifies the next state for
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the symbols that are not in the input alphabet as well. In this respect, our language
is similar to MOPS [22]. Using this feature, one can naturally express “Function
call c1 has to come immediately after function call c2”, or “Whenever function call
c1 comes immediately after function call c2, weave advice A”.

VisuaL, enables concisely localizing the information about a mandatory event (see
Section 6.6 and Fig. 6.8). If the existing trace-based languages [11, 30, 31, 33] are
used however, it is necessary to create at least one declare error [1] pointcut for
the compatibility constraints (e.g. C1 and C2 in Section 6.5.2), and another one
for the event specification. So, the information about a mandatory event would
be distributed over multiple pointcuts, in which case conciseness and locality-of-
information would be suboptimal.

The programming technique enabled by VisuaL can be considered as concern-shy
programming [62]. The $-labelled edges (see Figures 6.5, 6.6, 6.7, 6.8) abstract away
from the function calls that are not parts of the concerns represented by the VisuaL
specifications. In our case, these concerns are either compatibility constraints, or
the events of a system.

Property checking and program queries are other applications of trace-based ap-
proaches [32, 44, 66]. In these approaches, one writes queries over execution traces
of programs, often for detecting errors, flaws, etc. Hence, weaving is not the purpose
of these applications. In contrast, our purpose is both weaving additional behavior,
and enforcing design rules [80].

Some constraints may apply to multiple functions in the system. For example, “In
each possible sequence of function calls from any function, traceIn must be the
first function call, and traceOut must be the last function call”. Such constraints
can be specified by writing a regular expression in the stereotype of the container
node of the specification, as explained in Section 2.2.1. In such a case, the regular
expression can be seen as a pointcut [39], and the specification can be seen as an
aspect [39].

In Chapter 6, we addressed some of the problems arising from the possible mistakes
during the evolution of activities. The problems due to possible mistakes during the
evolution of statecharts is a part of future work.

8.1.9 State Machines, Interval Logic, TSL, and Rapide

State machines have long been used for modelling both software systems, and the
properties that must be satisfied by these systems [19, 41]. Binder [19] mentions
that complete state machines are necessary for testing purposes. That is, one has to
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define the next state for each possible incoming symbol from each state. Therefore,
the state machines created in this way suffer from the evolvability problem explained
in Section 2.5. VisuaL addresses this problem by enabling the engineers to express
complete state machines in a concise and evolvable way.

Interval logic, which is originally introduced by Schwartz et. al. [78], is a type of
temporal logic that is specifically designed for expressing abstract requirements that
a program must satisfy. Dillon et. al. [29, 28] have recognized the need for graphi-
cal languages for expressing interval logic formulas, and they introduced Graphical
Interval Logic. Later, Bates [17] introduced Event-Based Behavioral Abstraction
(EBBA) for debugging heterogenous distributed systems. EBBA provides a textual
way to express interval logic expressions.

Rosenblum [76], presents Task Sequencing Language (TSL), which is designed for
expressing design constraints on the behavior of concurrent programs. TSL is later
evolved in to the architecture description language Rapide [64], which provides ex-
tensive support for event-based specifications of software architectures.

8.2 Discussion and Limitations

8.2.1 VisuaL

VisuaL is a graphical language for expressing temporal constraints on operations in
a system, in particular on the operations within a specified function body. It aims at
being both intuitive (through a UML-style visual notation), precise (a VisuaL speci-
fication can be mapped to a formal representation of automata), and evolution-proof
(through the use of wildcards, one can specify only necessary ordering constraints).

The VisuaL specifications are drawn in the activity diagram editor of Borland To-
gether [5]. We have implemented a plug-in for Borland Together so that the VisuaL
specifications drawn using Borland Together can be recognized by CheckSource as
input.

VisuaL is not expressive enough for constraining the possible sequences of function
calls using data values. For example, one cannot specify the following constraint:
If a possible sequence of function calls from preprocess contains a subsequence in
which the value of reticleIsClean is 0 (i.e. false), then the last function call in
this subsequence must be a call to cleanReticle. To enable the specification of such
constraints, VisuaL must be extended with new constructs that enable data analysis.

In Section 6.2.2, we explained that the processed event is mapped to the point located
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after ’}’ in Line 8, Listing 6.2. One can identify this point if and only if one can match
’{’ in Line 5 with ’}’ in Line 8. Parenthesis matching can be implemented in a given
language, if and only if one can specify a non-deterministic push-down automaton in
that language. Using VisuaL however, one can specify only deterministic finite-state
automaton. Therefore, VisuaL is not suitable for identifying the point located after
’}’ in Line 8, Listing 6.2; hence to define the processed event.

To determine the level of expressive power for VisuaL, we investigated the descrip-
tions1 of the events in the design documents of the software component mentioned
in Section 7.1.1. We did not find any non-regular description (e.g. “The event e
occurs if function b is called exactly the same number of times as function a.”).
We also discussed the event descriptions with some of the key developers and the
architect of the component. The conclusion was “The application domain of this
component does not contain any event that requires a non-regular pattern”. There-
fore, we decided to keep VisuaL simple, and limit its expressive power to regular
patterns. If it is necessary in the future, then we can extend VisuaL by (a) adding
new syntactic elements to manipulate a stack with push and pop operations, and (b)
making VisuaL non-deterministic. If VisuaL is extended, then context-free patterns
can also be specified using VisuaL, and the processed event can also be defined using
VisuaL.

VisuaL is a graphical language whose syntactic elements are labelled rectangles
and arrows. As the size and complexity of a VisuaL specification increases, the
comprehensibility and the ease of layout decreases. Therefore, it is essential that
constraints can be defined using relatively less rectangles and arrows. This is possible
only if software is decomposed into relatively small functions. Since this was the case
for the software component that we investigated, VisuaL was suitable for specifying
the constraints.

Graphical languages such as UML activity diagrams [8] or flowcharts [71] are fre-
quently used for designing the flow of control within procedural programs such as
C functions. Although VisuaL specifications are also graphical artifacts of behav-
ioral design, they are fundamentally different than activity diagrams. An activity
diagram is a control-flow model [74] of a function (or procedure, method, subrou-
tine); different functions that implement the same activity diagram have the same
control-flow. Whereas, a VisuaL specification is a constraint (i.e. formally speci-
fied requirement) on the control-flow of a function; different implementations that
conform to a VisuaL specification may have different control-flow. Thus, VisuaL
specifications are typically more abstract than activity diagrams: a VisuaL specifi-
cation is a constraint on not only the implementation of a procedure but also the
activity diagram that is the control-flow model of the procedure.

1These descriptions were written in English.
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A rigorous comparison of VisuaL and process algebra [52], in particular Π-calculus
[68], is a part of our future work

8.2.2 CheckDesign

One can write multiple VisuaL specifications for a given C function. Once Check-
Design verifies that a the specifications are consistent, it is possible to generate
‘skeleton code’ of the function, using the analysis report created by CheckDesign:
To verify that specifications are consistent, CheckDesign constructs the shortest se-
quence of function calls that is matched by the pattern of each specification, and
outputs this sequence in the analysis report. It is possible to generate code such
that the body of the function consists of only this sequence. Such an implementation
of the function is consistent with each specification. If there are multiple shortest
sequences of function calls, then it is possible to select a specific sequence, based on
some optimization criteria (e.g. select the sequence that has the minimum number
of calls to a specific function).

Since VisuaL and DARs are equivalent, it is possible to implement the algorithms
of CheckDesign such that they operate directly on VisuaL specifications, without
converting the specifications to DARs. This may arguably improve the runtime
performance. However, the standard proofs and algorithms of automata theory has
to be adapted for VisuaL, so that the operations are performed directly on VisuaL
specifications.

8.2.3 CheckSource

The SCFG generator of the current CheckSource has limitations that can be over-
come through further development. For example, CheckSource cannot recognize
calls through a function pointer. To overcome this limitation, we need to incor-
porate pointer analysis capabilities to CheckSource. Such limitations are neither
fundamental, nor they are severe regarding the actual wafer scanner’s software: We
could manually prepare 55.000 lines of source code for our tools in less than one
hour, because ASML has well-applied coding conventions.

Execution of some paths through a function may be infeasible. The current im-
plementation of CheckSource cannot rule out infeasible paths through a function,
because it does not analyze the flow of data. This may result in false positives during
consistency analysis: Some infeasible paths may indicate an inconsistency for which
CheckDesign outputs an error. Although we did not come across such paths while
testing CheckDesign in an industrial context (Section 5.5.1), it is a limitation to be
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addressed in the future.

In the industrial application, the C programming language was chosen to imple-
ment the activities. Therefore, the implementation of CheckSource is specific for C.
But, the problems we discussed and the solution approach we proposed are general:
If the implementation language of the activities is changed to another procedural
programming language (e.g. Pascal [85]), then porting the solution boils down to
adapting the SCFG creation functionality of CheckSource. The design decisions
while developing call graph extractors are studied by Murphy et. al. [70].

In the object-oriented paradigm, the behavior of the instances of a class is typically
implemented in the methods of the class. Hence, the solution presented in this
chapter can be applied in an object-oriented context, too. But, certain issues need
to be addressed: For example, due to dynamic binding, statically resolving a method
call to a unique method definition may not be possible. Further research is necessary
to address such issues if the solution is applied in an object-oriented context. One
may try to use “Rapid Type Analysis” [14] for a static approximation of dynamic
binding.

8.2.4 TransformSource

TransformSource does not have the functionality to bind free variables [11] in the
event calls to the variables in the context of the event points in the source code.
Therefore, the event calls are separately parsed and directly inserted. In case of
unresolved variables, we rely on the error mechanism of the C compiler that compiles
the transformed source code. The functionality to bind free variables is a part of
our future work.

8.3 Conclusions

8.3.1 Problems

The development and maintenance of today’s software systems is an increasingly
effort-consuming and error-prone task. A major cause of the effort and errors is the
lack of formal and human-readable documentation of software design. In practice,
software design is often informally documented, or not documented at all. Therefore,
the following problems occur:

1. The design cannot be properly communicated between software engineers.
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2. The design cannot be automatically analyzed for finding and removing faults.
3. The conformance of an implementation to the design cannot be automatically

verified.
4. Source code maintenance tasks have to be manually performed, although some

of these tasks can be automated using formal documentation.

8.3.2 Solutions

In this thesis, we addressed these problems for the design and documentation of
the behavior implemented in procedural programs. We introduced the following
solutions:

1. A graphical language called VisuaL, which enables engineers to specify con-
straints on the possible sequences of function calls from a given program.
VisuaL addresses the first problem stated above, and it enables us to address
the remaining problems.

2. An algorithm called CheckDesign, which automatically verifies the consistency
between multiple specifications written in VisuaL. CheckDesign addresses the
second problem stated above.

3. An algorithm called CheckSource, which automatically verifies the consistency
between a given implementation and a corresponding specification written in
VisuaL. CheckSource addresses the third problem stated above.

4. An algorithm called TransformSource, which uses VisuaL specifications for
automatically inserting additional source code at the well-defined locations in
existing source code. TransformSource addresses the fourth problem stated
above.

8.3.3 Results

We conducted three controlled experiments:

1. The first experiment was conducted with 27 M.Sc. computer science students
for evaluating CheckSource. The results of this experiment indicates that
CheckSource is beneficial during some of the typical maintenance tasks: 60%
effort reduction, and prevention of one error per 250 lines of source code. These
results are statistically significant at the level 0,05.

2. The second experiment was conducted with 21 M.Sc. computer science stu-
dents for evaluating the combination of CheckSource and TransformSource.
The results of this experiment indicates that the combination of CheckSource
and TransformSource is beneficial during some of the typical maintenance
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tasks: 50% effort reduction, and prevention of one error per 100 lines of source
code. These results are statistically significant at the level 0,01.

3. The third experiment was conducted with 23 professional developers from
ASML, for evaluating the combination of CheckSource and TransformSource.
The results of this experiment indicates that the combination of CheckSource
and TransformSource is beneficial during some of the typical maintenance
tasks: 75% effort reduction, and prevention of one error per 140 lines of source
code. These results are statistically significant at the level 0,01.

8.3.4 Contributions

The main contribution of this thesis is the graphical language VisuaL with its key
feature called context-sensitive wildcard. The purpose of context-sensitive wildcards
is to make VisuaL specifications more evolvable (i.e. less susceptible to changes),
and more concise.

In this thesis we also provide a formal underpinning for VisuaL specifications, called
Deterministic Abstract Recognizers (DARs). DARs define a new family of formal
languages called Open Regular Languages (ORLs):

• The set of regular languages [63] is a proper subset of the set of ORLs.
• There are ORLs that are not in the set of context-free languages (CFLs) [63].
• There are CFLs that are not in the set of ORLs.

Additional contributions are

• An algorithm for checking the consistency between multiple VisuaL specifica-
tions (i.e. CheckDesign),

• An algorithm for verifying the conformance of source code to the corresponding
VisuaL specifications (i.e. CheckSource), and

• An algorithm for inserting additional source code at well-defined locations in
given source code (i.e. TransformSource).

Finally, the controlled experiments we conducted for evaluating CheckSource and
TransformSource confirm the benefits we claimed for the concepts introduced in this
thesis.
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Appendix A

Data Structures and Algorithms

A.1 Deterministic Abstract Transducers

We introduce a formalism called deterministic abstract transducers (DAT s) that is a
variant of Moore machines [54]. The only difference of a DAT from a Moore machine
is its ability to operate on input strings [63] from any (possibly infinite) alphabet.
Hence, a DAT is not specific to a predefined input alphabet (i.e. it is ‘abstract’).

In the remainder of this section, first, we formally define DAT. Next, based on
the definition, we precisely explain how DATs consume input strings and produce
output strings.

A DAT M is a nonuple 〈Q, Σa, Λ, δ, θ, q0, F, Ξ, η〉, where

Q = Ω ∪ {qt} is a finite set of states, where Ω is the set of user-defined states,
qt is the default trap state, and qt /∈ Ω.

Σa = Σb ∪{#} is the abstract input alphabet, where Σb is a finite set of symbols
such that # /∈ Σb, which is called the base input alphabet. # is a wildcard-like
symbol that will become clear in this section.

Λ is a finite set of symbols called the output alphabet.

δ : Q × Σa → Q is the transition function. ∀σ(σ ∈ Σa ⇒ δ(qt, σ) = qt).

θ : Q → Λ ∪ {λ} is the output function, where λ is the empty string, and λ /∈ Λ.
θ(qt) = λ.

q0 ∈ Q is the initial state.
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F ⊆ Ω is a set of final states.

Ξ is a regular expression called scope expression that matches a non-empty set
of strings, such that this set is the set of scopes of M . A scope of M is a function
name in the C programming language.

η is the name of M , which is a string of English characters and natural numbers.

In the remainder of this section, we explain how M consumes input strings and
produces output strings.

Let Σ be a (possibly infinite) set of symbols.

Σ∗ denotes the set of strings obtained by concatenating zero or more symbols from
Σ.

Let str ∈ Σ∗.

|str| denotes the number of symbols in str.

str[i] denotes the ith symbol of str.

str1 · str2 denotes the string obtained by concatenating strings str1 and str2.

error denotes an error string, such that error /∈ Λ∗.

The operation of M is defined by the total function OperateM : Σ∗ → (Λ∗∪{error})
that is specified in the following pseudocode [26]:

function OperateM(str)
(1) i ← 1
(2) q ← q0

(3) output ← θ(q)
(4) while i ≤ |str|
(5) do if str[i] ∈ Σb

(6) then q ← δ(q, str[i])
(7) else q ← δ(q, #)
(8) output ← output · θ(q)
(9) i ← i + 1
(10) if q /∈ F
(11) then output ← error
(12) return output

Note that Line 7 provides the semantics of the # symbol.
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L(M) = {str|OperateM(str) 6= error} denotes the language accepted by M .

A.2 Syntax and Formal Semantics of Extended

VisuaL

In this section, we introduce a graphical syntax for the extended version of VisuaL,
and provide the formal semantics of the syntactic constructs. The original version
of VisuaL is presented in Chapter 2.

A specification in extended VisuaL represents a deterministic abstract transducer
(DAT), as introduced in Appendix A.1. Thus, understanding Appendix A.1 is the
prerequisite for understanding the formal semantics of VisuaL.

Figure A.1: An example specification in VisuaL.

Let M be a DAT. G(M) denotes the VisuaL specification that represents M . In
Fig. A.1, there is an example specification G(M) that represents a specific DAT
M = 〈Q = Ω ∪ {qt}, Σa = Σb ∪ {#}, Λ, δ, θ, q0, F, Ξ, η〉 whose contents are defined
by the syntax of VisuaL:

A.2.1 Rectangles

A specification in VisuaL has a rounded rectangle that is stereotyped and labelled.
This rectangle is called container rectangle (e.g. the rectangle with label mySpec-

ification in Fig. A.1). The label of the container rectangle defines the name of the
DAT represented by the specification, and the stereotype of the container rectangle
defines the scope expression of the DAT represented by the specification. Hence,
η = mySpecification and Ξ = foo. Multiple scopes can be specified by writing
a regular expression in the label of the container rectangle, such that the regular
expression matches the identifiers of all the functions that are intended to be a scope
of the DAT.
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Inside the container rectangle, there can be multiple, uniquely-labelled, rounded-
rectangles. Such a rectangle is called inner rectangle (e.g. the rectangles with
label q0, q1, q2, and q3, in Fig.A.1). The set of the labels of the inner rectangles
define the set of user-defined states. Hence, Ω = {q0, q1, q2, q3}.

If an inner rectangle is stereotyped as <<initial>>, or <<final>>, or <<initial-final>>,
then the label of the rectangle respectively defines the initial state that is not a final
state, or a final state that is not the initial state, or the initial state that is also a
final state. Hence, the initial state of M is q0, and F = {q3}.

Inside an inner rectangle, there can be at most one1 ellipse, which is labelled. Such
an ellipse is called output ellipse (e.g. the ellipse with label x in Fig. A.1). The
set of the labels of the output ellipses define the output alphabet. Hence, Λ = {x}.

Let q be a state defined by the label of an inner rectangle ν. Inside ν, if there is an
output ellipse that has a label, say lbl, then the value of the output function at q is
equal to lbl. Otherwise, the value of the output function at q is equal to λ. Hence,
θ(q1) = x, and θ(q0) = θ(q2) = θ(q3) = λ.

A.2.2 Arrows

Arrows can be drawn between inner rectangles. The arrows are labelled. The labels
of the outgoing arrows of an inner rectangle must differ from each other. This
enforces determinism.

The set of arrow labels that are different than $ defines the base input alphabet.
Hence, Σb = {a, b}.

Let ν1 and ν2 be two inner rectangles whose labels define states q1 and q2, respec-
tively. If there is an arrow (ν1, ν2) with a label lbl that is different than $, then this
arrow indicates that the value of the transition function at (q1, lbl) is equal to q2.
Hence, δ(q0, a) = q1, and δ(q1, b) = q2. If there is an arrow (ν1, ν2) with the label $,
then this arrow indicates that the value of the transition function at (q1, #) is equal
to q2. Hence, δ(q0, #) = q0, and δ(q2, #) = q3.

If ν1 does not have any outgoing arrow that is labelled with $, then the value of the
transition function at (q1, #) equals to the default trap state. Hence, δ(q1, #) = qt,
δ(q3, #) = qt.

Let lbl 6= $ be the label of an existing arrow in the specification. If ν1 does not

1This limit on the number of ellipses is due to the fact that there can be at most one output
symbol of a given state of DAT. If necessary, the DAT formalism can be extended for allowing
multiple outputs for one state.
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have any outgoing arrow that is labelled with lbl, then the value of the transition
function at (ν1, lbl) equals to the value of the transition function at (ν1, #). Hence,
δ(q0, b) = δ(q0, #) = q0, δ(q1, a) = δ(q1, #) = qt, δ(q2, a) = δ(q2, b) = δ(q2, #) =
q3, and δ(q3, a) = δ(q3, b) = δ(q3, #) = qt.

A.3 Compatibility Constraints for Processed Event

The compatibility constraints related to the mandatory event processed are

C3: In each possible sequence of function calls from process, there must be at least
one call to advance.

C4: In each possible sequence of function calls from process, there must be at least
one call to scan.

C5: If at least one call to advance and at least one call to scan exist in a possible
sequence of function calls from process, then the first call to advance must come
before the first call to scan.

C6: If at least one call to advance and at least one call to scan exist in a possible
sequence of function calls from process, then the last call to advance must come
before the last call to scan.

C7: In each possible sequence of function calls from process, exactly one call to scan

must exist between consecutive calls to advance.
C8: In each possible sequence of function calls from process, exactly one call to

advance must exist between consecutive calls to scan.

The specifications of C3 and C4 are similar to the specification of C1 (Section 6.5.3):
In Fig. 6.5, if measureWafer is replaced with advance or scan, then the result is the
specification of C3 or C4, respectively. C5, C6 and C7 can respectively be specified
as in Figures A.2, A.3, and A.4. The specification of C8 is similar to the specification
of C7: If each scan in Fig. A.4 is replaced with an advance, and each advance in Fig.
A.4 is replaced with a scan, then the result is the specification of C8.

Figure A.2: The specification of the compatibility constraint C5.
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Figure A.3: The specification of the compatibility constraint C6.

Figure A.4: The specification of the compatibility constraint C7.

A.4 Transformation

Appendix A.1 and Section 5.3.1 are the prerequisites for this appendix.

Let f be a function definition in the C programming language, and
M = 〈Q, Σa, Λ, δ, θ, q0, F, f, η〉 be a DAT that is mapped to
SCFGf = 〈V = {ν0} ∪ VI ∪ {νF}, E〉 as a result of the verification (Section 6.7.3).
mappedTo(q, ν) denotes that state q ∈ Q is mapped to node ν ∈ V . callsOf(q) =
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{c|∀ν(ν ∈ VI ∧ mappedTo(q, ν) ⇒ c = nodeOfCall−1(ν))} is the set of AST nodes
designated by q.

If M is given as the input to TransformSource, then it iterates over each state
q ∈ Q, and carries out the following operations at each iteration: (a) constructs
ASTθ(q), and (b) inserts ASTθ(q) after each c ∈ callsOf(q). After the last iteration,
TransformSource emits the source code corresponding to the transformed ASTf .
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Appendix B

Experimental Data

B.1 Experimental Data for CheckSource

Table B.1: The data of the tool-supported M.Sc. students

Student #Errors Effort in minutes

S1 0 14
S2 0 8
S3 0 13
S4 N.A. N.A.
S5 0 25
S6 0 13
S7 0 4
S8 0 10
S9 0 33
S10 0 11
S11 0 18
S12 0 16
S13 0 5
S14 N.A. N.A.

The data of the students S4, S14, S19, and S25 were manually modified (i.e. cor-
rupted). Therefore, we excluded their data from our calculations.
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Table B.2: The data of the manual M.Sc. students.

Student #Errors Effort in minutes

S15 3 28
S16 0 27
S17 2 12
S18 0 42
S19 N.A. N.A.
S20 5 21
S21 0 41
S22 4 43
S23 0 30
S24 0 33
S25 N.A. N.A.
S26 2 54
S27 2 45

B.2 Experimental Data for the Combination of

CheckSource and TransformSource

Table B.3: The data of the tool-supported M.Sc. students

Student #Errors Effort in minutes

S1 0 39
S2 0 29
S3 0 26
S4 0 27
S5 N.A. N.A.
S6 N.A. N.A.
S7 0 24
S8 0 58
S9 0 21
S10 0 51
S11 0 17

The student S6 could not finish the task within the given time frame, which was
three hours. Therefore, we omitted the related data. In addition, the logged data of
the student S5 and S17 was corrupted. Therefore, we excluded this data from our
calculations.
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Table B.4: The data of the manual M.Sc. students.

Student #Errors Effort in minutes

S12 9 84
S13 2 60
S14 4 67
S15 5 49
S16 8 40
S17 N.A. N.A.
S18 1 72
S19 8 71
S20 4 81
S21 1 53

Table B.5: The data of the tool-supported professional developers

Developer #Errors Effort in minutes

D1 0 16
D2 0 8
D3 0 9
D4 0 15
D5 0 10
D6 0 9
D7 0 10
D8 0 17
D9 0 13
D10 0 10
D11 0 10
D12 0 14
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Table B.6: The data of the manual professional developers

Developer #Errors Effort in minutes

D13 8 66
D14 3 26
D15 1 47
D16 2 44
D17 1 51
D18 6 61
D19 1 66
D20 3 59
D21 5 58
D22 5 29
D23 5 40
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Samenvatting

De ontwikkeling en het onderhoud van hedendaagse software systemen kost steeds
grotere inspanningen waarbij bovendien steeds meer fouten worden gemaakt. Het
ontbreken van formele en voor mensen leesbare documentatie is een belangrijke reden
voor deze toenemende inspanningen en fouten. In de praktijk worden software-
ontwerpen informeel, of in het geheel niet, gedocumenteerd. Als gevolg hiervan: (a)
kan het ontwerp niet goed worden gecommuniceerd tussen software-ontwikkelaars,
(b) kan het ontwerp niet geautomatiseerd worden geanalyseerd voor het opsporen
en verwijderen van fouten, (c) kan niet geautomatiseerd worden geverifierd of een
implementatie ook conform het ontwerp is, en (d) moet onderhoud aan de source
code handmatig worden uitgevoerd, terwijl sommige onderhoudstaken zich lenen
voor geautomatiseeerde verwerking op basis van een formele documentatie.

In dit proefschrift addresseren we bovenstaande problemen met betrekking tot het
ontwerp en de documentatie van gedrag dat in procedurele talen is geprogrammeerd.
We presenteren de volgende oplossingen, welke elk overeenkomen met de hierboven
genoemde problemen: (a) de grafische taal VisuaL, waarmee softwareontwikkelaars
beperkingen kunnen specificeren op de mogelijke sequenties van functie-aanroepen
door een gegeven procedureel programma, (b) een algorithme genaamd CheckDe-
sign, welke automatisch de consistentie tussen meerdere VisuaL specificaties kan
controleren, (c) een algorithme genaamd CheckSource, welke automatisch de con-
sistentie tussen gegeven programmacode en de bijbehorende VisuaL specificaties
kan controleren, en (d) een algorithme genaamd TransformSource, welke VisuaL
specificaties kan gebruiken om automatisch programmafragmenten in te voegen op
welgedefinieerde locaties in bestaande programmacode.

Empirische resultaten laten zien dat het gebruik van CheckSource nuttig is tijdens
een aantal van de veelvoorkomende onderhoudstaken met betrekking tot de control-
flow van programma’s: het kan 60% minder tijdsbesteding en 1 fout minder in elke
250 regels programmacode betekenen. Deze resultaten zijn statistisch significant op
het niveau 0,05. Bovendien is de combinatie van CheckSource en TransformSource
eveneens nuttig tijdens een aantal van de veelvoorkomende onderhoudstaken met
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betrekking tot de control-flow: dit kan 75% minder tijdsbesteding en 1 fout minder in
elke 140 regels programmacode betekenen. Deze resultaten zijn statistisch significant
op het niveau 0,01.

De belangrijkste bijdrage van dit proefschrift is de grafische taal VisuaL met zijn
mathematische onderbouwing op basis van zogenoemde Deterministic Abstract Re-
cognizers (DARs). Deze laatste definiren een nieuwe familie van formele talen welke
open reguliere talen worden genoemd (ofwel Open Regular Languages–ORLs ). De
belangrijkste eigenschap van VisuaL is de zogenoemde ’context-sensitive wildcard’.
Deze maakt VisuaL specificaties beter aanpasbaar (d.w.z. minder gevoelig voor
veranderingen), en meer compact.
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