
Hindawi Publishing Corporation
VLSI Design
Volume 2010, Article ID 251210, 25 pages
doi:10.1155/2010/251210

Research Article

Evolvable Block-Based Neural Network Design for
Applications in Dynamic Environments

Saumil G. Merchant1 and Gregory D. Peterson2

1 Department of Electrical and Computer Engineering, George Washington University, 20101 Academic Way, Ashburn,
VA 20147-2604, USA

2 Department of Electrical Engineering and Computer Science, University of Tennessee, 414 Ferris Hall, Knoxville,
TN 37996-2100, USA

Correspondence should be addressed to Saumil G. Merchant, smerchan@gwu.edu

Received 7 June 2009; Accepted 2 November 2009

Academic Editor: Ethan Farquhar

Copyright © 2010 S. G. Merchant and G. D. Peterson. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Dedicated hardware implementations of artificial neural networks promise to provide faster, lower-power operation when
compared to software implementations executing on microprocessors, but rarely do these implementations have the flexibility to
adapt and train online under dynamic conditions. A typical design process for artificial neural networks involves offline training
using software simulations and synthesis and hardware implementation of the obtained network offline. This paper presents a
design of block-based neural networks (BbNNs) on FPGAs capable of dynamic adaptation and online training. Specifically the
network structure and the internal parameters, the two pieces of the multiparametric evolution of the BbNNs, can be adapted
intrinsically, in-field under the control of the training algorithm. This ability enables deployment of the platform in dynamic
environments, thereby significantly expanding the range of target applications, deployment lifetimes, and system reliability. The
potential and functionality of the platform are demonstrated using several case studies.

1. Introduction

Artificial Neural Networks (ANNs) are popular among the
machine intelligence community and have been widely
applied to problems such as classification, prediction, and
approximation. These are fully or partially interconnected
networks of computational elements called artificial neurons.
An artificial neuron is the basic processing unit of the ANN
that computes an output function of the weighted sum of
its inputs and a bias. Depending on the interconnection
topology and the dataflow through the network, ANNs
can be classified as feedforward or recurrent. The design
process with ANNs involves a training phase during which
the network structure and synaptic weights are iteratively
tuned under the control of a training algorithm to identify
and learn the characteristics of the training data patterns.
The obtained network is then tested on previously unseen
data. ANNs are effective at identifying and learning nonlinear
relationships between input and output data patterns and

have been successfully applied in diverse application areas
such as signal processing, data mining, and finance.

Explicit computational parallelism in these networks has
produced significant interest in accelerating their execution
using custom neural hardware circuitry implemented on
technologies such as application specific integrated circuits
(ASICs) and field programmable gate arrays (FPGAs). The
design process for ANNs typically involves offline training
using software simulations and the obtained network is
designed and deployed offline. Hence the training and
design processes have to be repeated offline for every new
application of ANNs. This paper is an extended version
of [1] and presents an FPGA design of block-based neural
networks (BbNNs) that can be adapted and trained online,
on-chip under the control of an evolutionary algorithm. On-
chip evolution under the control of evolutionary algorithms
is called intrinsic evolution in the evolvable hardware
community [2]. The capability of intrinsic evolution expands
the potential applications of these networks to dynamic

2 VLSI Design

Analog

implementations

Custom neural
hardware

implementations

Digital

implementations

Hybrid

implementations

ASIC
implementations

FPGA
implementations

Data
representation

Design

flexibility
On-chip/off-chip

learning
Transfer function
implementation

Figure 1: Neural network hardware classification.

environments and provides increased deployment lifetimes
and improved system reliability. The paper also provides a
detailed survey of reported ANN hardware implementations.

The rest of the paper is organized as follows. Section 2
provides a review of custom ANN implementations reported
in the literature. Section 3 introduces block-based neural
networks and their training procedure. Section 4 gives
the details on the FPGA design of the evolvable BbNN
implementation. Section 5 demonstrates the capabilities of
the design using several case studies and Section 6 concludes
the paper.

2. Review of ANN Implementations

There has been significant interest in custom ANN imple-
mentations and many have been reported in the literature
over the years. Dedicated hardware units for artificial neural
networks are called neurochips or neurocomputers [3]. Due
to limited commercial prospects and the required develop-
ment and support resources, these chips have seen little com-
mercial viability. Also, due to the existence of wide-ranging
neural network architectures and a lack of a complete and
comprehensive theoretical understanding of their capabili-
ties, most commercial neurocomputer designs are dedicated
implementations of popular networks such as multilayer
perceptrons (MLPs), hopfield networks, or kohonen net-
works targeting particular applications. Several classification
and overview studies of neural hardware have appeared
in the literature [3–13]. Heemskerk has a detailed review
of neural hardware implementations until about 1995 [3].
He classified the neural hardware according to their imple-
mentation technologies such as the neurocomputers built
using general purpose processors, digital signal processors,
or custom implementations using analog, digital, or mixed-
signal design. Zhu et al. have surveyed ANN FPGA imple-
mentations, classifying them based on design features such
as precision and flexibility [13]. The review presented here

follows and extends these surveys. Figure 1 shows the classifi-
cation structure used in this review. Broadly, the implemen-
tations have been classified into digital, analog, and hybrid
implementations. The digital hardware implementations
have been grouped into FPGA and ASIC implementations
and classified according to design features such as data
representation, design flexibility, on-chip/off-chip learning,
and transfer function implementation. A brief overview of
analog and hybrid implementations is also offered. A detailed
survey of these is beyond the scope of this work.

2.1. Digital Neural Network Implementations. Digital neural
network implementations offer high computational preci-
sion, reliability, and programmability. They are targeted to
either ASICs or FPGAs. The synaptic weights and biases
for these implementations are typically stored in digital
memories or registers, either on- or off-chip dictated by
the design tradeoffs between the speed and the circuit
size. ASIC neurochips can achieve higher processing speeds,
lower power, and more density than corresponding FPGA
implementations but have significantly higher design and
fabrication costs. FPGAs are COTS chips and can be
reconfigured and reused for different ANN applications
significantly lowering implementation costs for low volume
productions. The last decade has seen a lot of advancement
in reconfigurable hardware technology. FPGA chips with
built-in RAMs, multipliers, gigabit transceivers, on-chip
embedded processors, and faster clock speeds have attracted
many neural network designers. As compared to analog,
digital implementations have relatively larger circuit sizes
and higher power consumption.

2.1.1. Data Representation. Digital neural implementations
represent the real-valued data such as weights and biases
using fixed point, floating point, or specialized represen-
tations such as pulse stream encoding. The choice of a

VLSI Design 3

particular representation is a tradeoff between arithmetic
circuit size and speed, data precision, and the available
dynamic range for the real values. Floating point arithmetic
units are slower, larger, and more complicated than their
fixed point counterparts, which are faster, smaller, and easier
to design.

Generally, floating point representations of real-valued
data for neural networks are found in custom ASIC
implementations. Aibe et al. [14] used floating point
representation for their implementation of probabilistic
neural networks (PNNs). In PNNs, the estimator of the
probabilistic density functions is very sensitive to the
smoothing parameter (the network parameter to be adjusted
during neural network learning). Hence, high accuracy is
needed for the smoothing parameter, making floating point
implementations more attractive. Ayela et al. demonstrated
an ASIC implementation of MLPs using a floating point
representation for weights and biases [15]. They also support
on-chip neural network training using the backpropagation
algorithm and are listed also in Section 2.1.3. Ramacher et al.
present a digital neurochip called SYNAPSE-1 [16]. It
consists of a 2-dimensional systolic array of neural signal
processors that directly implement parts of common neuron
processing functions such as matrix-vector multiplication
and finding a maximum. These processors can be pro-
grammed for specific neural networks. All the real values on
this chip are represented using floating point representation.

For FPGA implementations the preferred implementa-
tion choice has been fixed point due to chip capacity restric-
tions, but advances in FPGA densities may make floating
point representations practical. Moussa et al. demonstrate
implementations of MLP on FPGAs using fixed and floating
point representations [17]. Their results show that the
MLP implementation using fixed point representation was
over 12x greater in speed, over 13x smaller in area, and
achieved far greater processing density as compared to the
MLP implementation using floating point representation.
The works in [17–21] present precision analysis of ANN
implementations and conclude that it is possible to train
ANNs with fixed point weights and biases. But there is a
tradeoff between minimum precision, dynamic data range,
and the area required for the implementation of arithmetic
units. Higher precision has fewer quantization errors but
require larger arithmetic units, whereas lower precision
arithmetic units are smaller, faster, and more power efficient
but may have larger quantization errors that can limit the
ANN’s capabilities to learn and solve a problem. Trade-
off between precision, circuit area, and speed necessitates
numerical analysis to determine the minimum precision
for an application. Holt and Baker [19], Holt and Hwang
[20], and Holt and Hwang [21] investigated the minimum
precision problem on a few ANN benchmark classification
problems using simulations and found 16-bit data widths
with 8-bit fractional parts as sufficient for networks to
learn and correctly classify the input datasets. Ros et al.
demonstrate a fixed point implementation of spiking neural
networks on FPGAs [22]. Pormann et al. demonstrate fixed
point implementations of neural associative memories, self-
organizing feature maps, and basis function networks on

FPGAs [23]. Some other reported implementations that used
fixed point representations can be found in [24–32].

As a third alternative many have proposed specialized
data encoding techniques that can simplify arithmetic circuit
designs. Marchesi et al. proposed special training algorithms
for multilayer perceptrons that use weight values that are
powers of two [33]. The weight restriction eliminates the
need for multipliers in the design which are replaced with
simple shift registers. Other approaches encode real values
in stochastic bit streams and implement the multipliers in
bit-serial fashion using simple logic gates instead of complex
arithmetic units [34–37]. The advantage is that the product
of the two stochastic bit streams can be computed using
a simple bitwise “xor.” But the disadvantage is that for
multiplications to be correct, the bit streams should be
uncorrelated. To produce these would require independent
random sources which require more chip resources to
implement. Also the precision limitation may affect the
ANNs capability to learn and solve a problem. Murray and
Smith’s implementation of ANNs [38] used pulse-stream
encoding for real values which was later adopted by Lysaght
et al. [39] for implementations on Atmel FPGAs. Salapura
used delta encoded binary sequences to represent real values
and used bit stream arithmetic to calculate a large number of
parallel synaptic calculations [40].

Chujo et al. have proposed an iterative calculation
algorithm for the perceptron type neuron model that is
based on a multidimensional, binary search algorithm [41].
Since the binary search does not require any sum of
products functionality, it eliminates the need for expensive
multiplier circuitry in hardware. Guccione and Gonzalez
used a vector-based data parallel approach to represent
real values and compute the sum of products [42]. The
distributed arithmetic (DA) approach of Mintzer [43] for
implementing FIR filters on FPGAs was used by Szabo et al.
[44] for their implementation of neural networks. They used
Canonic Signed Digit Encoding (CSD) technique to improve
the hardware efficiency of the multipliers. Noory and Groza
also used the DA neural network approach and targeted
their design for implementation on FPGAs [45]. Pasero and
Perri use LUTs to store all the possible multiplication values
in an SRAM to avoid implementing costly multiplier units
in FPGA hardware [46]. It requires a microcontroller to
precompute all the possible product values for the fixed
weight and stores it in the SRAM.

2.1.2. Design Flexibility. An important design choice for
neural network hardware implementations is the degree of
structure adaptation and synaptic parameter flexibility. An
implementation with fixed network structure and weights
can only be used in the recall stage of each unique
application, thus necessitating a redesign for different ANN
applications. For ASIC implementations this could be quite
expensive due to high fabrication costs. An advantage of
FPGA ANN implementations is the capability of runtime
reconfiguration to retarget the same FPGA device for any
number of different ANN applications, substantially reduc-
ing the implementation costs. There are several different

4 VLSI Design

motivations of using FPGAs for ANN implementations
such as prototyping and simulation, density enhancement,
and topology adaptation. The purpose of using FPGAs for
prototyping and simulation is to thoroughly test a prototype
of the final design for correctness and functionality before
retargeting the design to an ASIC. This approach was
used in [47]. Runtime reconfigurations in FPGAs can be
used for density enhancement to implement larger network
sizes via time folding that a single FPGA device may not
be able to hold. This increases the amount of effective
functionality per unit reconfigurable circuit area of the
FPGAs. Eldredge et al. used this technique to implement
the backpropagation training algorithm on FPGAs [48, 49].
The algorithm was divided temporally in three different
executable stages and each stage was reconfigured on the
FPGA using runtime reconfiguration. More details on this
and other follow-up implementations to Eldredge’s tech-
nique are covered in Section 2.1.3 for on-chip learning. The
runtime reconfiguration in FPGAs can also be used for
topology adaptation. ANNs with different structures and
synaptic parameters targeting different applications can be
loaded on the FPGA via runtime reconfiguration. One of
the earliest implementations of artificial neural networks on
FPGAs, the Ganglion connectionist classifier, used FPGA
reconfigurations to load networks with different structures
for each new application of the classifier [50]. Similar
approaches of using runtime reconfiguration to retarget the
FPGA for different ANN applications are found in [22, 25–
31, 51, 52].

Runtime reconfiguration provides the flexibility to retar-
get the FPGA for different ANN designs but is impractical for
use with dynamic adaptations required for online training.
The overheads associated with runtime reconfiguration
are on the order of milliseconds. Thus the overheads of
repetitive reconfigurations required in the iterative training
procedures may outweigh any benefits associated with online
adaptations. The design presented in this paper is an online
trainable ANN implementation on FPGAs that supports
dynamic structure and parameter updates without requiring
any FPGA reconfiguration.

ASIC implementations of flexible neural networks that
can be retargeted for different applications have been
reported in literature. The Neural Network Processor (NNP)
from Accurate Automation Corp. was a commercial neural
hardware chip that could be adapted online [53]. It had
machine instructions for various neuron functions such as
multiply and accumulate or transfer function calculation.
Thus the network can be programmed using the NNP assem-
bly instructions for different neural network implementa-
tions. Mathia and Clark compared performance of single and
parallel (up to 4) multiprocessor NNPs against that of the
Intel Paragon Supercomputer (up to 128 parallel processor
nodes). Their results show that the NNP outperformed the
Intel Paragon by a factor of 4 [54].

2.1.3. On-Chip/Off-Chip Learning. ANN training algorithms
iteratively adapt network structure and synaptic parameters
based on an error function between expected and actual

outputs. Hence an on-chip trainable network design should
have the flexibility to dynamically adapt its structure and
synaptic parameters. Most reported ANN implementations
use software simulations to train the network, and the
obtained network is targeted to hardware offline [22–31, 55,
56]. However, few implementations have been reported that
support an on-chip training of neural networks. Eldredge et
al. demonstrate an implementation of the backpropagation
algorithm on FPGAs by temporally dividing the algorithm
into three sequentially executable stages of the feedforward,
error backpropagation, and synaptic weight update [48, 49].
The feed-forward stage feeds in the inputs to the network and
propagates the internal neuronal outputs to output nodes.
The backpropagation stage calculates the mean squared
output errors and propagates them backward in the network
in order to find synaptic weight errors for neurons in the
hidden layers. The update stage adjusts the synaptic weights
and biases for the neurons using the activation and error
values found in the previous stages. Hadley et al. improved
the approach of Eldredge by using partial reconfiguration
of FPGAs instead of full-chip runtime reconfiguration [57].
Gadea et al. demonstrate a pipelined implementation of
the backpropagation algorithm in which the forward and
backward passes of the algorithm can be processed in parallel
on different training patterns, thus increasing the throughput
[58]. Ayala et al. demonstrated an ASIC implementation of
MLPs with on-chip backpropagation training using floating
point representation for real values and corresponding ded-
icated floating point hardware [15]. The backpropagation
algorithm implemented is similar to that by Eldredge et al.
[48, 49]. A ring of 8 floating point processing units (PUs)
are used to compute the intermediate weighted sums in
the forward stage and the weight correction values in the
weight update stage. The size of the memories in the PUs
limits the number of neurons that can be simulated per
hidden layer to 200. A more recent FPGA implementation of
backpropagation algorithm can be found in [59]. Witkowski
et al. demonstrate an implementation of hyper basis function
networks for function approximation [60]. Both learning
and recall stages of the network are implemented in hardware
to achieve higher performance. The GRD (Genetic Recon-
figuration of DSPs) chip by Murakawa et al. can perform
on-chip online evolution of neural networks using genetic
algorithms [61]. The GRD chip is a building block for the
configuration of a scalable neural network hardware system.
Both the topology and the hidden layer node functions
of the neural network mapped on the GRD chips can be
reconfigured using a genetic algorithm (GA). Thus, the most
desirable network topology and choice of node functions
(e.g., Gaussian or sigmoid function) for a given application
can be determined adaptively. The GRD chip consists of a
32-bit RISC processor and fifteen 16-bit DSPs connected in
a binary-tree network. The RISC processor executes the GA
code and each of the DSPs can support computations of
up to 84 neurons. Thus each GRD chip can support 1260
neurons. Multiple GRD chips can be connected for a scalable
neural architecture. Two commercially available neurochips
from the early 1990s, the CNAPS [62] and MY-NEUPOWER
[63], support on-chip training. CNAPS was an SIMD array

VLSI Design 5

of 64 processing elements per chip that are comparable
to low precision DSPs and was marketed commercially by
Adaptive solutions. The complete CNAPS system consisted
of a CNAPS server that connected to a host workstation
and Codenet software development tools. It supported
Kohonen LVQ (linear vector quantization) and backpropaga-
tion networks. MY-NEUPOWER supported various learning
algorithms such as backpropagation, Hopfield, and LVQ and
contained 512 physical neurons. The chip performed as a
neural computational engine for software package is called
NEUROLIVE [63].

The following references discuss analog and hybrid imp-
lementations that support on-chip training. Zheng et al. have
demonstrated a digital implementation of backpropagation
learning algorithm along with an analog transconductance-
model neural network [64]. A digitally controlled synapse
circuit and an adaptation rule circuit with an R-2R ladder
network, a simple control logic circuit, and an UP/DOWN
counter are implemented to realize a modified technique
for the backpropagation algorithm. Linares-Barranco et
al. also show an on-chip trainable implementation of an
analog transconductance-model neural network [65]. Field
Programmable Neural Arrays (FPNAs), an analog neural
equivalent of FPGAs, are a mesh of analog neural models
interconnected via a configurable interconnect network [66–
70]. Thus, different neural network structures can be created
dynamically, enabling on-chip training. Intel’s ETANN
(Electronically Trainable Analog Neural Network) [71]
and the Mod2 Neurocomputer [72] are other examples of
on-chip trainable analog neural network implementations.
Schmitz et al. use the embedded processor on the FPGA
to implement genetic algorithm operators like selection,
crossover, and mutation [73]. This FPGA is closely coupled
as a coprocessor to a reconfigurable analog ANN ASIC chip
on the same PCB. A host processor initializes this PCB and
oversees the genetic evolution process.

2.1.4. Activation Function Implementation. Activation func-
tions, or transfer functions, used in ANNs are typically non-
linear, monotonically increasing sigmoid functions. Exam-
ples include hyperbolic tangent and logistic sigmoid func-
tions. Digital ANN implementations use piecewise linear
approximations of these to implement in hardware either
as a direct circuit implementation or as a look-up table.
Omondi et al. show an implementation of piecewise linear
approximation of activation functions using the CORDIC
algorithm on FPGAs [74]. Krips et al. show an imple-
mentation of piecewise linear approximation of activation
functions precomputed and stored in LUTs [30]. Direct
circuit implementation of the activation function requires
a redesign of hardware logic for every application that uses
a different activation function. In such scenarios the LUT
approach maybe more flexible as the function values can
be precomputed and loaded in the LUT offline. But the
LUTs may occupy significant higher chip area as compared
to direct implementations. Each extra bit in the data width
more than doubles the size of the LUT. These tradeoffs are
further discussed in Section 4.

2.2. Analog Neural Hardware Implementations. Analog arti-
ficial neurons are more closely related to their biological
counterparts. Many characteristics of analog electronics can
be helpful for neural network implementations. Most ana-
log neuron implementations use operational amplifiers to
directly perform neuron-like computations, such as integra-
tion and sigmoid transfer functions. These can be modeled
using physical processes such as summing of currents or
charges. Also, the interface to the environment may be easier
as no analog-to-digital and digital-to-analog conversions
are required. Some of the earlier analog implementations
used resistors for representing free network parameters
such as synaptic weights [75]. These implementations using
fixed weights are not adaptable and hence can only be
used in the recall phase. Adaptable analog synaptic weight
techniques represent weights using variable conductance [76,
77], voltage levels between floating gate CMOS transistors
[71, 78–80], capacitive charges [81, 82], or using charged
coupled devices [83, 84]. Some implementations use digital
memories for more permanent weight storage [85]. The
works in [64–71, 73] are some other analog implementa-
tions previously discussed in Section 2.1.3 above. Although
there are many advantages of implementing analog neural
networks as discussed above, the disadvantage is that the
analog chips are susceptible to noise and process parameter
variations, and hence need a very careful design.

2.3. Hybrid Neural Hardware Implementations. Hybrid imp-
lementations combine analog, digital, and other strategies
such as optical communication links with mixed mode
designs in an attempt to get the best that each can offer.
Typically hybrid implementations use analog neurons taking
advantage of their smaller size and lower power consumption
and use digital memories for permanent weight storage
[85, 86]. The mixed-signal design of the analog neurons with
the digital memories on the same die introduces a lot of
noise problems and requires isolation of the sensitive analog
parts from the noisy digital parts using techniques such
as guard rings. Sackinger et al. demonstrate a high-speed
character recognition application on the ANNA (Analog
Neural Network Arithmetic and logic unit) chip [87]. The
ANNA chip can be used for a wide variety of neural network
architectures but is optimized for locally connected weight-
sharing networks and time-delay neural networks (TDNNs).
Zatorre-Navarro et al. demonstrate mixed mode neuron
architecture for sensor conditioning [88]. It uses an adaptive
processor that consists of a mixed four-quadrant multiplier
and a current conveyor that performs the nonlinearity.
Synaptic weights are stored using digital registers and the
training is performed off-chip.

Due to the large number of interconnections, routing
quickly becomes a bottleneck in digital ASIC implemen-
tations. Some researchers have proposed hybrid designs
using optical communication channels. Maier et al. [89]
show a hybrid digital-optical implementation that performs
neural computations electronically, but the communication
links between neural layers use an optical interconnect
system. They demonstrate a magnitude of performance

6 VLSI Design

improvement as compared to a purely digital approach. But
on the flip side it increases hardware costs and complex-
ity for converting signals between the electronic and the
optical systems. Craven et al. [90] have proposed using fre-
quency multiplexed communication channels to overcome
the communication bottleneck in fully connected neural
networks.

2.4. Summary. Custom neural network hardware imple-
mentations can best exploit the inherent parallelism in
computations observed in artificial neural networks. Many
implementations have relied on offline training of neural
networks using software simulations. The trained neural
network is then implemented in hardware. Although these
implementations have good recall speedups, they are not
directly comparable to the implementation reported here
which supports on-chip training of neural networks. On-
chip trainable neural hardware implementations have also
been reported in literature. Most of the reported ones
are custom ASIC implementations such as the GRD chip
by Murakawa et al. [61], on-chip backpropagation imple-
mentation of Ayala et al. [15], CNAPS by Hammerstrom
[62], MY-NEUPOWER by Sato et al. [63], and FPNA by
Farquhar, et al. [66]. FPGA-based implementations of on-
chip training algorithms have also been reported such as
the backpropagation algorithm implementations in [48, 49,
57, 58]. An online trainable implementation of hyperbasis
function networks has been reported in [60]. The implemen-
tation presented here differs from the reported ones in one
or more of the following: (i) the artificial neural network
supported (block-based neural networks in our case), (ii) the
training algorithm, and (iii) the implementation platform.
The design presented in this paper supports on-chip training
without reliance on FPGA reconfigurations, unlike some of
the approaches listed above. It uses genetic algorithms to
train the BbNNs. The genetic operators such as selection,
crossover, and mutation are implemented on the embedded
processor PPC 405 on the FPGA die, similar to the approach
of Schmitz et al. [73]. But unlike their approach the
neural network designed is a digital implementation in the
configurable logic portion of the same FPGA chip.

3. Block-Based Neural Networks

A block-based neural network (BbNN) is a network of
neuron blocks interconnected in the form of a grid as
shown in Figure 2 [91]. Neuron blocks are the information
processing elements of the network and can have one of four
possible internal configurations depending on the number of
inputs and outputs: (i) 1-input, 3-output (1/3), (ii) 2-input,
2-output (2/2) (left side output), (iii) 2-input, 2-output (2/2)
(right side output), and (iv) 3-input, 1-output (3/1). These
are shown in Figure 3.

Outputs of the neuron block are a function of the
summation of weighted inputs and a bias as shown in (1)
below. The internal block configurations and the dataflow

Inputs

B11 B12 B1n

B21 B22 B2n

Bm1 Bm2 Bmn

Outputs

Figure 2: Block-based Neural Network topology.

x1

w12 w13

w14

y2
b2

b4 y4

b3

y3

(a)

x1

w13

w23

w14w24

x2

b4 y4

b3

y3

(b)

x1

w12

w23

w34

w14

y2

b2

b4 y4

x3

(c)

x1

w24 w34

w14

x2

b4 y4

x3

(d)

Figure 3: Four different internal configurations of a basic neuron
block: (a) 1/3, (b) 2/2 (left), (c) 2/2 (right), and (d) 3/1 configura-
tions.

through the network are determined by the network struc-
ture. Figure 4 shows three unique 2× 2 BbNN structures:

yk = g

⎛

⎝bk +
J
∑

j=1

w jkx j

⎞

⎠, k = 1, 2, . . . ,K , (1)

VLSI Design 7

(a) (b) (c)

Figure 4: Three different 2× 2 BbNN network structures.

Structure

BbNN

Weight

Application
Fitness

evaluation

GA operations

Selection,
crossover,
mutation,

recombination

Initialize
population

Figure 5: Flowchart of the genetic evolution process.

where,

yk : is the kth output signal of the neuron block,

x j : is the jth input signal of the neuron block,

w jk : is the synaptic weight connection between jth

input node and kth output node,

bk : is the bias at kth output node,

J ,K : are the number of input and output nodes

respectively of a neuron block,

g(•) : is the activation function.

Moon and Kong [91] have evaluated and compared
BbNN and MLP characteristics. They state that any synaptic
weight in an MLP network can be represented by a combi-
nation of more than one weight of the BbNN. Thus, a BbNN
of m × n can represent the equivalent structure of the MLP
network MLP(n, m − 1), where n denotes the maximum
number of neurons per layer and m − 1 represents the total
number of hidden layers in an MLP network.

BbNN training is a multiparametric optimization prob-
lem involving simultaneous structure and weight optimiza-
tions. Due to multimodal and nondifferentiable search space,
global search techniques such as genetic algorithms are
preferred over local search techniques to explore suitable
solutions. Genetic algorithms (GAs) are evolutionary algo-
rithms inspired from the Darwinian evolutionary model

where in a population of candidate solutions (individuals or
phenotypes) of a problem, encoded in abstract representa-
tions (called chromosomes or the genotypes), are evolved
over multiple generations towards better solutions. The
evolution process involves applying various genetic operators
such as selection, crossover, mutation, and recombination
to the chromosomes to generate successive populations with
selection pressure against the least fit individuals. Figure 5
shows a flowchart of the genetic evolution process. The
network structure and weights of the BbNN are encoded as
chromosomes as shown in Figure 6. Detailed information on
the BbNN GA evolution process can be found in [92–94].
BbNNs have been applied to navigation [91], classification
[1, 92–94], and prediction [95] problems in the past.

4. BbNN FPGA Implementation

Many FPGA ANN implementations are static implementa-
tions, targeted and configured offline for individual appli-
cations. The main design objective of this implementation
is enabling intrinsic adaptation of network structure and
internal parameters such that the network can be trained
online without relying on runtime FPGA reconfigurations.
Previous versions of this implementation were reported in [1,
96]. The target system environment for the implementation
is an embedded computing system. As a result various design
choices were made to optimize area and power constraints.
It was assumed that the hardware resources available for

8 VLSI Design

x2x1

B21 B22

B12B11 B12B11
0

1

1

0

Y1 Y2

Encoding

Structure gene Weight gene

0 1 1 0 B11 B12 B21 B22

w14 w23 b4 w13 w34 b3 w12 w24 b2

Figure 6: BbNN encoding.

Address decode logic
Input

register file AF LUTs

Weight gene

Structure gene

BbNN

chromosome

array

Configu-

ration
control

logic

Synaptic
parameters

register file

BCSR register

file

Neural ALUs

M
U
X

Output

register file

Data flow
synchronization logic

Figure 7: BbNN logic diagram.

this design in the target environment will be FPGA(s) and
supporting memory and control circuits. Hence the design
was prototyped on Xilinx Virtex-II Pro (XC2VP30) FPGA
development boards [97]. The design was tested on two
different prototyping boards, a stand-alone Digilent Inc.
XUP development board [98] and an Amirix AP130 FPGA
board [99]. The targeted FPGA has two on-chip PowerPC
405 embedded processor cores, 30,816 logic cells, 136 built-
in 18 × 18 multipliers, and 2448 KBits (306 KBytes) of on-
chip block RAM. The following sections describe the neuron
block and network design in detail. Figure 7 shows the logic
diagram of the design.

4.1. Data Representation and Precision. The ability to use
variable bit-widths for arithmetic computations gives FPGAs
significant performance and resource advantages over com-
peting computational technologies such as microprocessors
and GPUs. Numerical accuracy, performance, and resource
utilization are inextricably linked, and the ability to exploit
this relationship is a key advantage of FPGAs. Higher
precision comes at the cost of lower performance, higher
resource utilization, and increased power consumption. But
at the same time, lower precision may increase the round-off

errors adversely impacting circuit functionality.
The inputs, outputs, and internal parameters such as

synaptic weights and biases in BbNN are all real valued.

These can be represented either as floating point or fixed
point numbers. Floating point representations often have a
significantly wider dynamic range and higher precision as
compared to fixed point representations. However, floating
point arithmetic circuits are often more complicated, have a
larger footprint in silicon, and are significantly slower com-
pared to their fixed point counterparts. On the other hand
fixed point representations have higher round-off errors
when operating on data with large dynamic range. Although
escalating FPGA device capacities have made floating point
arithmetic circuits feasible for many applications, their use in
our application will severely restrict the size of the network
(i.e., the number of neuron blocks per network) that can
be implemented on a single FPGA chip. Thus our imple-
mentation uses fixed point arithmetic for representing real-
valued data. Also, [19–21] investigated the minimum fixed
point precision needed for various benchmark classification
problems on artificial neural networks and found 16 bits of
precision as adequate for reliable operation. Hence all real
valued data are represented as 16-bit fixed point numbers in
our implementation.

4.2. Activation Function Implementation. Activation func-
tions used in ANNs are typically nonlinear, monotonically
increasing sigmoid functions. A custom circuit implemen-
tation of these functions may be area efficient as compared

VLSI Design 9

x

ta
n

h
(x

)

Values
stored in LUT

Figure 8: Illustrating activation function implementation in LUT.

to piecewise linearly approximated values stored in lookup
tables (LUTs) but is inflexible and involves complicated
circuitry. In our design we have chosen to use the internal
FPGA BRAMs to implement LUTs which can be preloaded
and reloaded as necessary with activation function values.
The size of the lookup table required is directly associated
with the data widths used. A 16-bit fixed point representation
requires an LUT that is 16 bits wide and 216 deep. This
requires a total of 128 KBytes per LUT. Even though it may
be simpler to use separate LUTs for each neuron block in
the network such that each block can have parallel access
to the LUTs, it is inefficient utilization of on-chip resources
and the circuit will have longer setup times. For our design
we have chosen to share an LUT across each column of
neuron blocks in a network. This ensures that every neuron
block that is actively computing at a given time will have
independent access to the LUTs. This is guaranteed as no
two blocks in a column can execute simultaneously for the
case of feedforward networks implemented here. Sharing one
LUT per column may also set an upper bound to the total
number of columns implemented per FPGA due to limited
BRAM resources per chip. But due to various optimizations
described next the main bottleneck for our design is the
number of logic resources on the FPGA used for neuron
block designs and not the available internal memory. The
128 KB LUT is still large enough to restrict the number of
columns that can be implemented per FPGA. For example,
on the VirtexIIPro (V2P30) FPGA from Xilinx we would
be restricted to only two columns. This severely restricts
our ability to implement any interesting applications on the
BbNN. Hence to further optimize the size of the LUT we
restricted it to 16 bits × 212 (i.e., 8 KB per LUT). Since the
activation functions monotonically increase during only a
small range of input data and saturate outside that window
(e.g., hyperbolic tangent or logistic sigmoid functions) this
optimization, in effect, stores only the transient portion of
the activation function as illustrated in Figure 8.

4.3. Neuron Block Design. Kothandaraman designed a core
library of neuron blocks with different internal block con-
figurations for implementation on FPGAs [25]. A network
can be stitched together with these cores using an HDL,
but with fixed network structure and internal parameters.
Thus a new network needs to be designed for each unique
application. The objective to design an online, evolvable
network necessitates dynamically adaptable network design
that can change structure and internal parameters on-the-fly
with little overhead.

A simplistic design can combine all cores in the library
into a larger neuron block and use a multiplexor to select
individual cores with the correct internal configuration. But
the area and power overheads of such an approach render
it impractical. Instead, a smarter block design is presented
here that can emulate all internal block configurations
dynamically as required and is less than a third the size of
the simplistic larger block. For obvious reasons the block
design is called the Smart Block-based Neuron (SBbN).
An internal configuration register within each SBbN called
the Block Control and Status Register (BCSR) regulates the
configuration settings for the block. BCSR is a 16-bit register
and is part of the configuration control logic section of
the neuron block that defines the state and configuration
mode of the block. All the bits of this register except 8
through 11 are read-only and the register can be memory
or I/O mapped to the host systems address space for read
and write operations. Figure 9 shows all the bit fields of
the BCSR. States of BCSR bits 4 through 7 determine the
current internal configuration of the neuron block. Setting
bit 3 deactivates the block which then acts as a bypass from
inputs to corresponding outputs. Figure 10 shows the BCSR
settings and corresponding internal block configurations.

4.4. Configuration Control Logic. Configuration control logic
uses the structure gene within the BbNN chromosome array
as its input and sets the BCSR configuration bits of all the
neuron blocks in the network. The translation process from
the structure gene array into internal configuration bits of
the neuron blocks is illustrated in Figure 11 for a 10 × 4
network. The translation logic extracts the structure gene
from the chromosome array, divides it by the number of
rows, and extracts the corresponding bits for each column
from all the rows. The extracted column bits are divided
across corresponding neuron blocks in the column and
written to the internal BCSR of the corresponding neuron
block. The neuron blocks not used are deactivated. Since the
configuration control logic is combinational logic, the net-
work is reconfigured to the correct network structure based
on the structure gene loaded in the BbNN chromosome array
immediately after a small delay.

4.5. Address Decode Logic. Address decoder provides a
memory-mapped interface for the read/write registers and
memories in the network design. It decodes address, data,
and control signals for the input and output register files,
the BbNN chromosome array, the BCSRs within each neuron
block, and the activation function LUTs.

10 VLSI Design

BCSR-block control and status register

15 14 13 12 11 10 9 8

0 0 0 0 AF1 AF2 AF3 AF4

7 6 5 4 3 2 1 0

ND1 ND2 ND3 ND4 DACT 0 CB FM

(a)

Bits Description
15-12 reserved
11 AF1 Node 1 Activation function enable (“0”-Purelin / “1”-LUT AF)
10 AF2 Node 2 Activation function enable (“0”-Purelin /“1”-LUT AF)
9 AF3 Node 3 Activation function enable (“0”-Purelin /“1”-LUT AF)
8 AF4 Node 4 Activation function enable (“0”-Purelin /“1”-LUT AF)
7 ND1 Node 1 direction (hardcoded as “0”-Input)
6 ND2 Node 2 direction (“0”-Input /“1”-Output)
5 ND3 Node 3 direction (“0”-Input /“1”-Output)
4 ND4 Node 4 direction (hardcoded as “1”-Output)
3 DACT Deactivate block
2 reserved
1 CB Configuration busy signal
0 FM Neuron fire mode signal

(b)

Figure 9: Block control and status register (BCSR).

x1

w12

w23

w34

w14

y2

b2

b4 y4

BCSR [7:4] = “0101”

x3

(a)

x1

w12 w13

w14

y2

b2

BCSR [7:4] = “0111”

b4 y4

b3

y3

(b)

x1

w13

w23

w14w24

x2

BCSR [7:4] = “0011”

b4 y4

b3

y3

(c)

x1

w24 w34

w14

x2

BCSR [7:4] = “0001”

b4 y4

x3

(d)

Figure 10: SBbN emulation of the internal block configurations based on BCSR settings.

4.6. Dataflow Synchronization Logic. To enable network
scalability across multiple FPGAs the data synchronization
between neuron blocks is asynchronous. Synchronization
is achieved using generation and consumption of tokens
as explained next. The logic associates a token with each
input and output registers of every neuron block in the
network. Each neuron block can only compute outputs
(i.e., fire) when all of its input tokens are valid. On each
firing the neuron block consumes all of its input tokens
and generates output tokens. The generated output tokens
in turn validate the corresponding input tokens of the
neuron blocks next in the dataflow. This is illustrated in
Figure 12. Black dots (•) in the figure represent valid tokens.
Asynchronous communication mechanism between neuron
blocks facilitates implementing larger network sizes either by

scaling networks across multiple FPGAs or by folding the
network in a time multiplexed fashion within a single FPGA.

4.7. Intrinsic BbNN Evolution. The design features explained
above enable dynamic adaptations to network structure and
internal synaptic parameters. Hence the network can be
trained online, intrinsically under the control of the evo-
lutionary training algorithm described in Section 3 above.
There are several options for implementing the training
algorithm based on the end system solution and other system
design constraints. Examining the execution profiles of the
serial genetic evolution code, the most computationally
intensive section is found to be the population fitness
evaluation function. Fitness evaluations involve applying

VLSI Design 11

Structure gene translation in to internal SBbN configuration

40-bit structure gene

for a 10× 4 network

40-bit structure gene translated to

12 structure bits for each column
i.e.12 bits × 10 columns

3bits per BbNN block

in 12 Structure bits of a
column, i.e. 4 BbNN

blocks per column

BCSR register bits

Bit 7-”0” channel 1 always input

Bit 6 and 5-channels 2 and 3
Bits 4-”1” channel 4 always output

Bit 3-DACT mode bit

Figure 11: Gene translation process within the configuration control logic.

B11

B21

B11

B21

B12

B22

B12

B22

B11

B21

B11

B21

B12

B22

B12

B22

Figure 12: Dataflow synchronization logic.

the training patterns to the network and examining the
measured outputs against expected values to determine the
network fitness. This is performed for each network in the
population to determine the average and maximum popu-
lation fitness values. Genetic operations such as selection,
crossover, and mutation are relatively less computationally
intensive. Hence an obvious software-hardware partitioning
is to perform genetic operations in software running on
the host microprocessor and fitness evaluations in hardware
executing in FPGAs. This has the benefit of dedicating all the

available configurable logic space in the FPGAs to implement
the neural network, facilitating implementation of larger
network sizes.

Escalating FPGA logic densities has enabled building a
programmable system-on-chip (PSoC) with soft or hard-
core processors, memory, bus system, IO, and other custom
cores on a single FPGA device. The Xilinx Virtex-II Pro
FPGA used for prototyping our implementation has on-chip,
hard-core PPC405 embedded processors which are used to
design our PSoC prototyping platform. The platform is

12 VLSI Design

GA operators

Selection
Crossover

Mutation
IBM
PPC
405

PLB
BRAM

controller

Bus arbiter

Bus arbiter

PLB DDR
controller

Processor local bus(PLB)

On-chip peripheral bus (OPB)

OPB-PLB
bridge

BbNN
core

OPB
interrupt

controller

OPB
UART

lite

Fitness evaluation

B11 B12 B1n

B21 B22 B2n

Bm1 Bm2 Bmn

Figure 13: PSoC platform used for prototyping BbNN implementation.

Table 1: Peak and relative computational capacities and capacity per mW of commercial embedded processors. Relative values are
normalized to PPC405 numbers.

Processor Organization Cycle freq Power MOPS Relative MOPS MOPS/mW Relative MOPS/mW

MIPS 24Kc 1× 32 261 MHz 363 mW 87 0.65 0.24 0.14

MIPS 4KE 1× 32 233 MHz 58 mW 78 0.59 1.33 0.76

ARM 1026EJ-S 1× 32 266 MHz 279 mW 89 0.67 0.32 0.18

ARM 11MP 1× 32 320 MHz 74 mW 107 0.80 1.45 0.83

ARM 720T 1× 32 100 MHz 20 mW 33 0.25 1.67 0.95

PPC 405 1× 32 400 MHz 76 mW 133 1.00 1.75 1.00

PPC 440 1× 32 533 MHz 800 mW 178 1.34 0.22 0.13

PPC 750FX 2× 32 533 MHz 6.75 W 355 2.67 0.05 0.03

PPC 970FX 2× 64 1 GHz 11 W 667 5.02 0.06 0.03

designed using Xilinx EDK and ISE tools. A block diagram
for the designed platform is shown in Figure 13. The BbNN
core is memory-mapped to the PPC405’s address space via
the on-chip peripheral bus (OPB). The genetic operations
such as selection, crossover, mutation, and recombination
are implemented in software executing on the PPC405 pro-
cessor and the population fitness evaluation is implemented
on the BbNN core as shown in Figure 13. On-board DDR
is used as data memory to quickly access and store the
chromosome populations and the training vectors for the
evolution process. A fixed point version of the BbNN GA
evolution algorithm is used due to the limited computational
capacity of the on-chip PowerPC processor. The platform
offers a very compact solution that is deployable and
adaptable in field for embedded applications with area and
power constraints.

In the case of target environments with less stringent
area and power constraints, other higher-capacity embed-
ded solutions such as single-board computers with FPGA

accelerators can be used. The GA operators can thus be
implemented on the on-board processor and the fitness
evaluation can be performed in the FPGA using the BbNN
core. Table 1 surveys computational capacities and capacity
per mW of some commercial embedded processors. Also
shown are relative values normalized to PPC405 numbers.
The capacities are calculated to implement a single 2/2 BbNN
block computation, that is 6 integer arithmetic operations.
The calculations assume CPI of 1.0 and ignore instruction
fetch and data transfer overheads. The Watt ratings are as
published in the processor datasheets and do not include
power consumption of other associated hardware resources.
Based on these calculations, PPC405 offers the best compu-
tational capacity per mW out of the processors surveyed.
The PPC970FX has 5 times the computational capacity
of PPC405, but significantly higher power consumption.
Although the numbers approximate capacities for neuron
block computations, similar values for GA operators can be
extrapolated from these numbers. For our assumed target

VLSI Design 13

0

0.2

0.4

0.6

0.8

1

1.2

F
it

n
es

s

1 11 21 31 41 51 61 71 81 91 101 111 121 131

Generations

Fitness trends

Average

Maximum

(a)

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

F
it

n
es

s

1 51 101 151 201 251 301 351 401 451

Generations

Fitness trends

Average

Maximum

(b)

Figure 14: Fitness evolution trends for (a) 3-bit and (b) 4-bit parity
examples.

system constraints, power efficiency is critical. Thus, the
selection of the on-chip PPC405 to execute the GA operators
in our prototype implementation is a sound design decision.

4.8. Performance and Resource Utilization. The postsynthesis
timing analysis for the design reports a clock frequency of
245 MHz on the Xilinx Virtex-II Pro FPGA (XC2VP30).
The designed block takes 10 clock cycles to compute
outputs for six synaptic connections per block. Thus,
each block has a computational capacity of 147 MCPS per
block. Computational capacity is the measure of throughput
defined as computational work per unit time. Hence for an
artificial neural network it is determined by the number of
synaptic connections processed per second (unit CPS). The
computational capacity of the network is determined by the
number of concurrent block executions, which in turn is
dependent on the network structure. At peak computational
capacity one block from each network column computes
concurrently. Hence an m × n BbNN has a peak computa-
tional capacity of 147n MCPS. But the clock frequency on the
actual implementation is limited by the on-chip peripheral
bus (OPB) clock frequency which is set at 100 MHz for
the prototyping platform. Thus, the peak computational
capacity is limited to 60 MCPS per block or 60n MCPS for
a m × n network size. The minimal platform (as shown in

Figure 13) excluding the BbNN occupies about 13% of the
Xilinx Virtex-II Pro FPGA (XC2VP30) resources.

Table 2 shows the postsynthesis device utilization sum-
maries for various network sizes. According to the utilization
summaries we can fit around 20 neuron blocks on a single
FPGA chip along with the rest of the platform. Table 3 shows
the postsynthesis device utilization results for a larger device
(XC2VP70) from the same Xilinx Virtex-II Pro family of
FPGA devices family. This device can hold around 48 neuron
blocks.

5. Case Studies

Results from three case studies are presented. The case
studies on n-bit parity classifier and Iris data classification
demonstrate the functionality of the design. The case study
on adaptive forward prediction demonstrates the benefit of
online evolution capability.

5.1. n-bit Parity Classification. A parity classifier can be used
to determine the value of the parity bit to get even or odd
number of 1’s in an “n” bit stream. The technique is widely
used for error detection and correction with applications
in communication and data storage. Results presented here
show the outcome of BbNN training to determine the value
of the parity bit for 3-bit and 4-bit data streams. A population
size of 30 chromosomes is used for genetic evolution with
crossover and mutation probabilities set at 0.7 and 0.1,
respectively. The evolutionary algorithm uses tournament
selection to choose parent chromosomes for crossover and
elitism for recombination operations. A logistic sigmoid
function was used as the activation function for the neuron
block outputs. Figure 14 shows the average and maximum
fitness curves for the 3-bit and 4-bit parity examples. The
target fitness of 1.0 is reached after 132 generations in the case
of the 3-bit parity problem and 465 generations for the 4-bit
parity example. Figure 15 shows the evolution trends for the
top five structures. Each color indicates a unique structure
and the y-axis values determine the number of chromosomes
per generation. Figure 16 shows the evolved networks for
the 3-bit and the 4-bit parity examples. The average time
per generation of the evolution with the PPC405 processor
computing at 300 MHz was found to be 11 microseconds.

5.2. Iris Data Classification. This case study uses a well-
known dataset in the machine learning community orig-
inally compiled by R. A Fisher [100]. The dataset has
150 samples of three classes of Iris plants, Iris Setosa, Iris
Versicolour, and Iris Virginica with 50 samples per class. The
dataset attributes are sepal length, sepal width, petal length,
and petal width for the three classes of the Iris plants. The
Iris Setosa class is linearly separable from the other two
classes, Iris Versicolour and Iris Virginica. But the latter is
not linearly separable from each other, which makes this
an interesting problem to test neural classifiers. A BbNN
was used to learn and correctly classify this dataset. The
classification result is shown in Figure 17. The results show
less than a 1.5% misclassification rate. A population size

14 VLSI Design

0

5

10

15

20

25

N
u

m
b

er
o

f
ch

ro
m

o
so

m
es

1 11 21 31 41 51 61 71 81 91 101 111 121 131

Generations

Structure evolution trends

(a)

0

5

10

15

20

25

N
u

m
b

er
o

f
ch

ro
m

o
so

m
es

1 21 41 61 81 101 121 141

Generations

Structure evolution trends

(b)

Figure 15: Structure evolution trends for (a) 3-bit and (b) 4-bit parity examples. Each color represents a unique BbNN structure.

x1 x2 x3

y1 y2 y3

−512.00

−1090.0
−178.00

−315.00

418.000

−337.00

−6934.0
−30233.

−25821. 15222.0

3203.00

14702.0
−9470.0

−2990.0

22772.0

15680.0

−961.00

−5155.0

4291.00

2662.00

−12844.

−10078.

−4248.0

5878.00
6689.00

734.000

−89.000
−1582.0

295.000 200.000

−347.00

−311.00

(a)

x1 x2 x3 x4

y1 y2 y3 y4

11437.0

96.0000
124.000

1928.00

−621.00

77.0000

−1185.0

−28912.

3157.00 −12658.

−19163.

5376.00
−530.00

−63.000

−869.00

301.000

1140.00
−912.00

756.000

84.0000

−826.00

252.000

−63.000

−271.00
4654.00

7072.00

2784.00

457.000

878.000

−10941.

−5950.0

−519.00

720.000
5993.00

1533.00

1564.00

241.000

1147.00

−27.000
−169.00

−28.000
−179.00

71.0000

−119.00

(b)

Figure 16: Evolved networks for (a) 3-bit and (b) 4-bit parity examples.

VLSI Design 15

0

0.2

0.4

0.6

0.8

1

1.2

A
b

so
lu

te
er

ro
r

0 20 40 60 80 100 120 140 160

Data sample

Training error

Figure 17: Training error for Iris data classification.

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

F
it

n
es

s

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Generations

Fitness trends

Average

Maximum

Figure 18: BbNN fitness evolution trends for Iris data classification.

of 80 chromosomes is used for evolution and crossover
and mutation probabilities set at 0.7 and 0.2, respectively.
Maximum fitness of 0.99 is achieved after 9403 generations.
Figure 18 shows the average and maximum fitness trends.
Figure 19 shows the structure evolution trends. Figure 20
shows the evolved network. The average evolution time to
produce a new generation was found to be 23 microseconds.

5.3. Adaptive Forward Prediction. The objective of this case
study is to demonstrate online training benefits of the
BbNN platform. This feature is beneficial for applications
in dynamic environments where changing conditions may
otherwise require offline retraining and deployment to
maintain system reliability. This simulation study will use
a BbNN to predict future values of ambient luminosity
levels in a room. The network will be pretrained offline to
predict ambient luminosity levels in an ideal setup and then
deployed in the test room. The actual ambient luminosity
levels in the test room can be different from the training data
due to various external factors such as a sunny or a cloudy
day, number of open windows, and closed or open curtains.
The actual levels can be recorded in real time using light
sensors and used for online training of the BbNN predictor
to improve its future predictions. This study could be applied
to many applications sensitive to luminosity variations such
as embryonic cell or plant tissue cultures.

5.3.1. Offline Training Experimental Setup and Results.
The pretraining setup for our experiment is as follows.
Figure 21(a) shows the normalized values of the ambient
luminosity variations during the course of a day for the
simulated training room. The plot also shows the training
result for the BbNN. Figure 21(b) shows the training error.
The training dataset for the network consists of past four
luminosity observations as the inputs and the next luminos-
ity level as the target output. Figure 22 shows the average and
maximum fitness trends over the course of genetic evolution
and the evolution parameters used for the training. Figure 23
shows the evolved network.

5.3.2. Online Training Experimental Setup and Results. The
evolved network from the previous step is deployed in
the simulated test room. Two case studies are considered
that simulate the ambient luminosity variations in the test
room. The first represents a cloudy day with lower ambient
luminosity levels as compared to the ones considered in the
offline training step and the second represents a sunny day
with higher luminosity levels. These are shown in Figure 24.

The deployed BbNN platform is set up to trigger an
online retraining cycle on observing greater than 5% predic-
tion error. For the cloudy day test case the BbNN predicts the
ambient luminosity reasonably well until 7:50 hours when
the first retraining trigger is issued. The second retraining

16 VLSI Design

0

10

20

30

40

50

60

N
u

m
b

er
o

f
ch

ro
m

o
so

m
es

1 1001 2001 3001 4001 5001 6001 7001 8001 9001 10001

Generations

Structure evolution trends

Figure 19: BbNN structure evolution trends for Iris data classification. Each color represents a unique BbNN structure.

x1 x2 x3

y1 y2 y3

−970.00

−37.000
759.000

−2673.0

−404.00

184.000

−787.00
1313.00

−431.00 −1545.0

1475.00

−460.00
−1348.0

−189.00

−167.00

−91.000

903.000

727.000

−1338.0
−7367.0

−10804. −284.00

−416.00

−29.000

−1150.0

418.000

215.000

−1782.0

−2682.0
61.0000

−2385.0

1252.00

−692.00

−405.00

10027.0
−112.00−44.000

219.000 235.000

−1206.0

−258.00

−74.000

−162.00

−61.000

−138.00
230.000

50.0000

78.0000

−658.00

139.000

Figure 20: Evolved network for Iris data classification.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
o

rm
al

is
es

lu
m

in
o

si
ty

le
ve

ls

4 6 8 10 12 14 16 18 20 22

Time (h)

Training result for the ambient luminosity

predictions in the training room

Trained

True

(a)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

×10−3

Sq
u

ar
ed

er
ro

r

0 20 40 60 80

Training error

100 120

Samples

(b)

Figure 21: Pretraining result: (a) actual and predicted luminosity levels, and (b) training error.

VLSI Design 17

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

F
it

n
es

s

0 100 200 300 400 500

Generations

Fitness trends

Average

Maximum

(a)

Parameter Value
Activation function Hypergolic tangent function
Selection strategy Tournament selection
Population size 80
Maximum generations 2000
Structure crossover probability 0.7
Structure mutation probability 0.3
Weight mutation probability 0.3
Number of patterns 120
Inputs per pattern 4
Evolution strategy Ellitist evolution

(b)

Figure 22: (a) Average and maximum fitness values. (b) GA parameters used for training.

x1 x2 x3 x4

y1 y2 y3 y4

−173.00

240.000

20.0000

46.0000

94.0000

207.000

206.000
119.000

567.000

−353.00

−178.00

−104.00

−254.00
119.000

−277.00

−441.00

−131.00

−58.000
66.0000

151.000

209.000

−215.00

38.0000

131.000

−14.000

−43.000

−240.00

303.000

−27.000

−204.00

19.0000
−536.00

−262.00

6.0000

83.0000
−234.00

27.0000

7.0000

−40.000

−158.00

346.000
−245.00

116.000−102.00

−48.000

48.0000

−97.000
−211.00

−401.00122.000

290.000

140.000

45.0000

−15.000

167.000

−33.000

135.000

168.000 85.0000

−292.00 −3.0000

−3.0000

−190.00
−239.00

59.0000

−269.00

−111.00

14.0000

Figure 23: Evolved network after pre-training.

0
0.1
0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

L
u

m
in

o
si

ty
le

ve
ls

4 6 8 10 12 14 16 18 20 22

Time of day

Trained

Cloudy day

Sunny day

Figure 24: Luminosity levels used for offline training, cloudy day, and sunny day test cases.

18 VLSI Design

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

L
u

m
in

o
si

ty
4 6 8 10 12 14 16 18 20 22

Time of day

First re-
training

point

Second re-
training point

Predicted values

Actual values

Figure 25: Online evolution operation for the cloudy day showing the two trigger points.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

L
u

m
in

o
si

ty
er

ro
r

4 6 8 10 12 14 16 18 20 22

Prediction errors

Time of day

Pretrained

First retraining

Second retraining

Figure 26: Prediction errors with and without online re-training.

Table 2: Device Utilization Summary on Xilinx Virtex-II Pro FPGA (XC2VP30).

Network size
Number of slice registers Number of block RAMs Number of MULT18× 18s

Used Utilization Used Utilization Used Utilization

2× 2 2724 19% 8 5% 12 8%

2× 4 4929 35% 16 11% 24 17%

2× 6 7896 57% 24 17% 36 26%

2× 8 10589 77% 32 23% 48 35%

2× 10 12408 90% 40 29% 60 44%

3× 2 3661 26% 8 5% 18 13%

3× 4 7327 53% 16 11% 36 26%

3× 6 11025 80% 24 17% 54 39%

3× 8 14763 107% 32 23% 72 52%

3× 10 18456 134% 40 29% 90 66%

4× 2 4783 34% 8 5% 24 17%

4× 4 9646 70% 16 11% 48 35%

4× 6 14587 106% 24 17% 72 52%

4× 8 19508 142% 32 23% 96 70%

4× 10 24461 178% 40 29% 120 88%

VLSI Design 19

x1 x2 x3 x4

y1 y2 y3 y4

214.000
−51.000

282.000

229.000

77.0000

−104.00

14.0000

−573.00
−630.00

−109.00 −92.000

44.0000

−131.00
−101.00

−19.000

−280.00

−215.00

−78.000 47.0000

−98.000−296.00

−64.000

155.000

62.0000

0.0000

30.000

33.0000

−164.00

205.000

431.000
154.000

−320.00

9.0000
−12.000

−154.00

−223.00

−179.00

−136.00

−162.00
−242.00

266.000
−325.00

564.000

−96.000

170.000
30.0000

−54.000
−490.00

30.0000

−37.000

58.0000

−234.00

170.000

−128.00

−261.00
−46.000

−28.000 −46.000

−310.00

43.0000
−133.00

−200.00−309.00

−62.000

(a)

x1 x2 x3 x4

y1 y2 y3 y4

−214.00
305.000

−98.000

−463.00

−439.00

−99.000

−122.00314.000

−41.000 −319.00

72.0000

−524.00

−36.000

−141.00

23.0000

−258.00

79.0000 −181.00
209.000

61.0000

128.000

−286.00

−120.00

232.000

−270.00

−118.00

75.0000

−139.00
−160.00

264.000

−244.00

−299.00
133.000

−197.00

−173.00

−322.00

7.0000

83.0000
94.0000

−44.000

244.000

−151.00

−198.00

−220.00

124.000
346.000

−438.00

−13.000

53.0000

−218.00

−144.00

−107.00

225.000

63.0000

473.000
−208.00

160.000 151.000

−339.00

4.0000
−381.00

−288.00

−112.00

−25.000

−277.00

−27.000

(b)

Figure 27: Evolved networks after retraining triggers: (a) first trigger point and (b) second trigger point.

trigger is issued at 17:50 hours. The actual and predicted
luminosity values and the corresponding trigger points are
shown in Figure 25. The prediction errors with and without
online retraining are shown in Figure 26. Evolved networks
after the first and second retraining cycles are shown in
Figure 27.

In the sunny day test case the pretrained network
performs poorly and requires eight retraining trigger points
as shown in Figure 28. Figure 29 shows the prediction errors
with and without retraining cycles. It can be seen that
the network fails to correctly predict the transient rise in
the luminosity level and over estimates after the first few

20 VLSI Design

0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

L
u

m
in

o
si

ty

4 6 8 10 12 14 16 18 20 22

Time of day

Trigger points

Online re-training

Actual

Figure 28: Online training result for the sunny day test case.

0

0.1

0.2

0.3

0.4

0.5

0.6

L
u

m
in

o
si

ty
er

ro
r

4 6 8 10 12 14 16 18 20 22

Time of day

Pre-trained

First re-training

Second re-training

Third re-training

Fourth re-training

Fifth re-training

Sixth re-training

Seventh re-training

Eighth re-training

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

L
u

m
in

o
si

ty
er

ro
r

4 6 8 10 12 14 16 18 20 22

Time of day

Pretrained

Eighth retraining

(b)

Figure 29: Prediction errors with and without retraining cycles for the sunny day test case.

x1 x2 x3 x4

y1 y2 y3 y4

195.000

131.000

51.0000

33.0000

−299.00

−13.000
−240.00

267.000 −299.00

−86.000

97.0000

−208.00−224.00

−295.00

−13.000
133.000

−50.000−17.000

−11.000

−186.00
−66.000

−67.000

128.000

131.000

177.000

103.000

498.000

125.000

−84.000

95.0000
−189.00

−111.00

−44.000

−106.00

−27.000

516.000 294.000
73.0000

27.0000

−278.00

243.000

−101.00

−129.00
−32.000

−150.00

16.0000

−177.00

−21.000

79.0000

16.0000
−187.00

44.0000

91.0000

−39.000

298.000
158.000

139.000

175.000

−130.00

85.0000

21.0000 127.000
−45.000

−86.000

−30.000

246.000

Figure 30: Evolved network after the eighth re-training cycle for the sunny day test case.

VLSI Design 21

Table 3: Device utilization summary on Xilinx Virtex-II pro FPGA (XC2VP70).

Network size
Number of slice registers Number of block RAMs Number of MULT18× 18s

Used Utilization Used Utilization Used Utilization

2× 2 2497 7% 8 2% 12 3%

2× 4 4929 14% 16 4% 24 7%

2× 6 7390 22% 24 7% 36 10%

2× 8 9915 29% 32 9% 48 14%

2× 10 12403 37% 40 12% 60 18%

3× 2 3661 11% 8 2% 18 5%

3× 4 7327 22% 16 4% 36 10%

3× 6 11025 33% 24 7% 54 16%

3× 8 14788 44% 32 39% 72 9%

3× 10 18461 55% 40 12% 90 27%

3× 12 22233 67% 48 14% 108 33%

3× 14 25652 77% 56 17% 126 38%

3× 16 29254 88% 64 19% 144 43%

4× 2 4783 14% 8 2% 24 7%

4× 4 9646 29% 16 4% 48 14%

4× 6 14561 44% 24 7% 72 21%

4× 8 19534 59% 32 9% 96 29%

4× 10 24470 73% 40 12% 120 36%

4× 12 29221 88% 48 14% 144 43%

4× 14 34389 103% 56 17% 168 51%

retraining cycles necessitating multiple retrains. Figure 30
shows the evolved network after the eighth re-training cycle.

This case study demonstrates the online training benefits
of the BbNN platform and its potential for applications in
dynamic environments. Figures 26 and 29 demonstrate the
performance of the network with and without re-training.
Our study has not taken into consideration the time required
to retrain the network. This time is dependent on the
actual platform setup which can vary depending on the
implementation constraints. Our design prototype currently
uses the on-chip PPC 405 processor for executing the GA
operators. For rapid convergence of the GA algorithm faster
processors can be used with BbNN core executing on FPGAs
for speeding up fitness evaluations.

6. Conclusions

In this paper we present an FPGA design for BbNNs that
is capable of on-chip training under the control of genetic
algorithms. Typical design process for ANNs involves a
training phase performed using software simulations and
the obtained network is designed and deployed offline.
Hence, the training and design processes have to be repeated
offline for every new application of ANNs. The novel
online adaptability features of our design demonstrated
using several case studies expand the potential applications
for BbNNs to dynamic environments and provide increased

deployment lifetimes and improved system reliability. The
platform has been prototyped on two FPGA boards: a stand-
alone Digilent Inc. XUP development board [98] and an
Amirix AP130 development board [99], each with a Xilinx
Virtex-II Pro FPGA. The ANN design can achieve peak
computational capacity of 147 MCPS per neuron block on
the Virtex-II Pro FPGAs. The paper presents three case
studies. The first two, the n-bit parity classification and
the Iris data classification, demonstrate the functionality
of the designed platform. The case study on adaptive
forward prediction demonstrates the benefits of online
evolution under dynamically changing conditions. This work
provides a platform for further research on design scalability,
online unsupervised training algorithms, and applications of
BbNNs in dynamic environments. To further speedup the
evolution process, parallel GA algorithms can be used that
can take advantage of multiple on-chip PowerPC processors
per FPGA as well as scaling the design across multiple FPGAs.
These are topics for further research.

Acknowledgments

This work was supported in part by the National Science
Foundation under Grant nos. ECS-0319002 and CCF-
0311500. The authors also acknowledge the support of the
UT Exhibit, Performance, and Publication Expense Fund

22 VLSI Design

and thank the reviewers for their valuable comments which
helped them in improving this manuscript.

References

[1] S. G. Merchant and G. D. Peterson, “An evolvable artificial
neural network platform for dynamic environments,” in
Proceedings of the 51st Midwest Symposium on Circuits and
Systems (MWSCAS ’08), pp. 77–80, Knoxville, Tenn, USA,
August 2008.

[2] H. de Garis, “Evolvable Hardware: Principles and Practice,”
Communications of the Association for Computer Machinery
(CACM Journal), August 1997.

[3] J. N. H. Heemskerk, “Overview of neural hardware,” in
Neurocomputers for Brain-Style Processing: Design, Implemen-
tation and Application, Unit of Experimental and Theoretical
Psychology, Leiden University, Leiden, The Netherlands,
1995.

[4] H. P. Graf and L. D. Jackel, “Advances in neural network
hardware,” in Proceedings of the International Electron Devices
Meeting (IEDM ’88), pp. 766–769, San Francisco, Calif, USA,
December 1988.

[5] D. R. Collins and P. A. Penz, “Considerations for neural
network hardware implementations,” in Proceedings of the
22nd IEEE International Symposium on Circuits and Systems
(ISCAS ’89), vol. 2, pp. 834–836, Portland, Ore, USA, May
1989.

[6] P. Ienne, “Architectures for neuro-computers: review and
performance evaluation,” Tech. Rep. 93/21, Swiss Federal
Institute of Technology, Zurich, Switzerland, 1993.

[7] P. Ienne and G. Kuhn, “Digital systems for neural networks,”
in Digital Signal Processing Technology, P. Papamichalis and
R. Kerwin, Eds., vol. 57, SPIE Optical Engineering, Orlando,
Fla, USA, 1995.

[8] I. Aybay, S. Cetinkaya, and U. Halici, “Classification of neural
network hardware,” Neural Network World, vol. 6, no. 1, pp.
11–29, 1996.

[9] H. C. Card, G. K. Rosendahl, D. K. McNeill, and R. D.
McLeod, “Competitive learning algorithms and neurocom-
puter architecture,” IEEE Transactions on Computers, vol. 47,
no. 8, pp. 847–858, 1998.

[10] T. Schoenauer, A. Jahnke, U. Roth, and H. Klar, “Digital
neurohardware: principles and perspectives,” in Proceedings
of the 3rd International Workshop on Neural Networks in
Applications (NN ’98), Magdeburg, Germany, February 1998.

[11] L. M. Reyneri, “Theoretical and implementation aspects
of pulse streams: an overview,” in Proceedings of the 7th
International Conference on Microelectronics for Neural, Fuzzy
and Bio-Inspired Systems, pp. 78–89, Granada, Spain, April
1999.

[12] B. Linares-Barranco, A. G. Andreou, G. Indiveri, and T.
Shibata, “Special issue on neural networks hardware imple-
mentations,” IEEE Transactions on Neural Networks, vol. 14,
no. 5, pp. 976–979, 2003.

[13] J. Zhu and P. Sutton, “FPGA implementations of neural
networks—a survey of a decade of progress,” in Proceedings
of the 13th International Conference on Field-Programmable
Logic and Applications (FPL ’03), pp. 1062–1066, Lisbon,
Portugal, September 2003.

[14] N. Aibe, M. Yasunaga, I. Yoshihara, and J. H. Kim, “A prob-
abilistic neural network hardware system using a learning-
parameter parallel architecture,” in Proceedings of the Interna-
tional Joint Conference on Neural Networks (IJCNN ’02), vol.
3, pp. 2270–2275, Honolulu, Hawaii, USA, May 2002.

[15] J. L. Ayala, A. G. Lomeña, M. López-Vallejo, and A.
Fernández, “Design of a pipelined hardware architecture for
real-time neural network computations,” in Proceedings of the
45th Midwest Symposium on Circuits and Systems (MWSCAS
’02), vol. 1, pp. 419–422, Tulsa, Okla, USA, August 2002.

[16] U. Ramacher, “Synapse-X: a general-purpose neurocomputer
architecture,” in Proceedings of IEEE International Joint
Conference on Neural Networks (IJCNN ’91), vol. 3, pp.
2168–2176, Seattle, Wash, USA, July 1991.

[17] M. Moussa, S. Areibi, and K. Nichols, “On the arithmetic
precision for implementing back-propagation networks on
FPGA: a case study,” in FPGA Implementations of Neural
Networks, A. R. Omondi and J. C. Rajapakse, Eds., pp. 37–61,
Springer, Berlin, Germany, 2006.

[18] K. R. Nichols, M. A. Moussa, and S. M. Areibi, “Feasibility
of floating-point arithmetic in FPGA based artificial neural
networks,” in Proceedings of the 15th International Conference
on Computer Applications in Industry and Engineering
(CAINE ’02), San Diego, Calif, USA, November 2002.

[19] J. L. Holt and T. E. Baker, “Back propagation simulations
using limited precision calculations,” in Proceedings of the
International Joint Conference on Neural Networks (IJCNN
’91), pp. 121–126, Seattle, Wash, USA, July 1991.

[20] J. L. Holt and J.-N. Hwang, “Finite precision error analysis
of neural network electronic hardware implementations,” in
Proceedings of the International Joint Conference on Neural
Networks (IJCNN’91), pp. 519–525, Seattle, Washington,
USA, July 1991.

[21] J. L. Holt and J.-N. Hwang, “Finite precision error analysis
of neural network hardware implementations,” IEEE
Transactions on Computers, vol. 42, no. 3, pp. 281–290, 1993.

[22] E. Ros, E. M. Ortigosa, R. Agis, R. Carrillo, and M. Arnold,
“Real-time computing platform for spiking neurons (RT-
spike),” IEEE Transactions on Neural Networks, vol. 17, no. 4,
pp. 1050–1063, 2006.

[23] M. Porrmann, U. Witkowski, H. Kalte, and U. Ruckert,
“Implementation of artificial neural networks on a
reconfigurable hardware accelerator,” in Proceedings of
the 10th Euromicro Workshop on Parallel, Distributed and
Network-Based Processing, pp. 243–250, Canary Islands,
Spain, January 2002.

[24] C. Torres-Huitzil and B. Girau, “FPGA implementation of
an excitatory and inhibitory connectionist model for motion
perception,” in Proceedings of IEEE International Conference
on Field Programmable Technology (FPT ’05), pp. 259–266,
Singagore, December 2005.

[25] S. Kothandaraman, “Implementation of block-based neural
networks on reconfigurable computing platforms,” MS
Report, Electrical and Computer Engineering Department,
University of Tennessee, Knoxville, Tenn, USA, 2004.

[26] D. Ferrer, R. González, R. Fleitas, J. P. Acle, and R. Canetti,
“NeuroFPGA—implementing artificial neural networks on
programmable logic devices,” in Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition
(DATE ’04), vol. 3, pp. 218–223, Paris, France, February 2004.

[27] C. T. Yen, W.-D. Weng, and Y. T. Lin, “FPGA realization
of a neural-network-based nonlinear channel equalizer,”
IEEE Transactions on Industrial Electronics, vol. 51, no. 2, pp.
472–479, 2004.

[28] Q. Wang, B. Yi, Y. Xie, and B. Liu, “The hardware structure
design of perceptron with FPGA implementation,” in
Proceedings of IEEE International Conference on Systems, Man
and Cybernetics, vol. 1, pp. 762–767, Washington, DC, USA,
October 2003.

VLSI Design 23

[29] M. M. Syiam, H. M. Klash, I. I. Mahmoud, and S. S. Haggag,
“Hardware implementation of neural network on FPGA for
accidents diagnosis of the multi-purpose research reactor of
Egypt,” in Proceedings of the 15th International Conference
on Microelectronics (ICM ’03), pp. 326–329, Cairo, Egypt,
December 2003.

[30] M. Krips, T. Lammert, and A. Kummert, “FPGA imple-
mentation of a neural network for a real-time hand tracking
system,” in Proceedings of the 1st IEEE International Workshop
on Electronic Design, Test and Applications, pp. 313–317,
Christchurch, New Zealand, January 2002.

[31] J. Zhu, G. J. Milne, and B. K. Gunther, “Towards an FPGA
based reconfigurable computing environment for neural
network implementations,” in Proceedings of the 9th Interna-
tional Conference on Artificial Neural Networks (ICANN ’99),
vol. 2, pp. 661–666, Edinburgh, UK, September 1999.

[32] S. Happe and H.-G. Kranz, “Practical applications for
the machine intelligent partial discharge disturbing pulse
suppression system NeuroTEK II,” in Proceedings of the 11th
International Symposium on High Voltage Engineering (ISH
’99), vol. 5, pp. 37–40, London, UK, August 1999.

[33] M. Marchesi, G. Orlandi, F. Piazza, and A. Uncini, “Fast
neural networks without multipliers,” IEEE Transactions on
Neural Networks, vol. 4, no. 1, pp. 53–62, 1993.

[34] M. van Daalen, T. Kosel, P. Jeavons, and J. Shawe-Taylor,
“Emergent activation functions from a stochastic bit-stream
neuron,” Electronics Letters, vol. 30, no. 4, pp. 331–333, 1994.

[35] E. van Keulen, S. Colak, H. Withagen, and H. Hegt, “Neural
network hardware performance criteria,” in Proceedings of
IEEE International Conference on Neural Networks, vol. 3, pp.
1955–1958, Orlando, Fla, USA, June 1994.

[36] H. O. Johansson, P. Larsson, P. Larsson-Edefors, and C.
Svensson, “A 200-MHz CMOS bit-serial neural network,”
in Proceedings of the 7th Annual IEEE International ASIC
Conference and Exhibit, pp. 312–315, Rochester, NY, USA,
September 1994.

[37] M. Gschwind, V. Salapura, and O. Maischbergeres, “Space
efficient neural net implementation,” in Proceedings of the
2nd International ACM/SIGDA Workshop on Field-Prog-
rammable Gate Arrays, Berkeley, Calif, USA, February 1994.

[38] A. F. Murray and A. V. W. Smith, “Asynchronous VLSI neural
networks using pulse-stream arithmetic,” IEEE Journal of
Solid-State Circuits, vol. 23, no. 3, pp. 688–697, 1988.

[39] P. Lysaght, J. Stockwood, J. Law, and D. Girma, “Artificial
neural network implementation on a fine-grained FPGA,”
in Proceedings of the 4th International Workshop on Field-
Programmable Logic and Applications (FPL ’94), pp. 421–431,
Prague, Czech Republic, September 1994.

[40] V. Salapura, “Neural networks using bit stream arithmetic:
a space efficient implementation,” in Proceedings of IEEE
International Symposium on Circuits and Systems (ISCAS
’94), vol. 6, pp. 475–478, London, UK, May 1994.

[41] N. Chujo, S. Kuroyanagi, S. Doki, and S. Okuma, “An
iterative calculation method of neuron model with sigmoid
function,” in Proceedings of IEEE International Conference on
Systems, Man and Cybernetics, vol. 3, pp. 1532–1537, Tucson,
Ariz, USA, October 2001.

[42] S. A. Guccione and M. J. Gonzalez, “Neural network imple-
mentation using reconfigurable architectures,” in Selected
Papers from the Oxford 1993 International Workshop on Field
Programmable Logic and Applications on More FPGAs, pp.
443–451, Abingdon EE & CS Books, Oxford, UK, 1994.

[43] L. Mintzer, “Digital filtering in FPGAs,” in Proceedings of the
28th Asilomar Conference on Signals, Systems and Computers,

vol. 2, pp. 1373–1377, Pacific Grove, Calif, USA, November
1994.

[44] T. Szabo, L. Antoni, G. Horvath, and B. Feher, “A full-parallel
digital implementation for pre-trained NNs,” in Proceedings
of the International Joint Conference on Neural Networks
(IJCNN ’00), vol. 2, pp. 49–54, Como, Italy, July 2000.

[45] B. Noory and V. Groza, “A reconfigurable approach to hard-
ware implementation of neural networks,” in Proceedings of
the Canadian Conference on Electrical and Computer Engi-
neering, vol. 3, pp. 1861–1864, Montreal, Canada, May 2003.

[46] E. Pasero and M. Perri, “Hw-Sw codesign of a flexible
neural controller through a FPGA-based neural network
programmed in VHDL,” in Proceedings of IEEE International
Joint Conference on Neural Networks (IJCNN ’04), vol. 4, pp.
3161–3165, Budapest, Hungary, July 2004.

[47] C.-H. Kung, M. J. Devaney, C.-M. Kung, C.-M. Huang, Y.-J.
Wang, and C.-T. Kuo, “The VLSI implementation of an
artificial neural network scheme embedded in an automated
inspection quality management system,” in Proceedings of
the 19th IEEE Instrumentation and Measurement Technology
Conference (IMTC ’02), vol. 1, pp. 239–244, Anchorage,
Alaska, USA, May 2002.

[48] J. G. Eldredge and B. L. Hutchings, “Density enhancement
of a neural network using FPGAs and run-time reco-
nfiguration,” in Proceedings of IEEE Workshop on FPGAs
for Custom Computing Machines, pp. 180–188, Napa Valley,
Calif, USA, April 1994.

[49] J. G. Eldredge and B. L. Hutchings, “RRANN: a hardware
implementation of the backpropagation algorithm using
reconfigurable FPGAs,” in Proceedings of IEEE International
Conference on Neural Networks, IEEE World Congress on
Computational Intelligence, vol. 4, pp. 2097–2102, Orlando,
Fla, USA, June 1994.

[50] C. E. Cox and W. E. Blanz, “GANGLION—a fast field-
programmable gate array implementation of a connectionist
classifier,” IEEE Journal of Solid-State Circuits, vol. 27, no. 3,
pp. 288–299, 1992.

[51] A. Perez-Uribe and E. Sanchez, “FPGA implementation
of an adaptable-size neural network,” in Proceedings of the
6th International Conference on Artificial Neural Networks
(ICANN ’96), pp. 383–388, Bochum, Germany, July 1996.

[52] H. F. Restrepo, R. Hoffmann, A. Perez-Uribe, C. Teuscher,
and E. Sanchez, “A networked FPGA-based hardware imple-
mentation of a neural network application,” in Proceedings of
IEEE Symposium on Field-Programmable Custom Computing
Machines, pp. 337–338, Napa Valley, Calif, USA, April 2000.

[53] I. Kajitani, M. Murakawa, D. Nishikawa, et al., “An evolvable
hardware chip for prosthetic hand controller,” in Proceedings
of the 7th International Conference on Microelectronics for
Neural, Fuzzy and Bio-Inspired Systems (MicroNeuro ’99), pp.
179–186, Granada, Spain, April, 1999.

[54] K. Mathia and J. Clark, “On neural network hardware and
programming paradigms,” in Proceedings of the International
Joint Conference on Neural Networks (IJCNN ’02), vol. 3, pp.
2692–2697, Honolulu, Hawaii, USA, June 2002.

[55] D. Hajtas and D. Durackova, “The library of building blocks
for an “integrate & fire” neural network on a chip,” in
Proceedings of IEEE International Joint Conference on Neural
Networks (IJCNN ’04), vol. 4, pp. 2631–2636, Budapest,
Hungary, July 2004.

[56] Jayadeva and S. A. Rahman, “A neural network with O(N)
neurons for ranking N numbers in O(1/N) time,” IEEE
Transactions on Circuits and Systems I, vol. 51, no. 10, pp.
2044–2051, 2004.

24 VLSI Design

[57] J. D. Hadley and B. L. Hutchings, “Design methodologies
for partially reconfigured systems,” in Proceedings of IEEE
Symposium on FPGAs for Custom Computing Machines, pp.
78–84, Napa Valley, Calif, USA, April 1995.

[58] R. Gadea, J. Cerda, F. Ballester, and A. Macholi, “Artificial
neural network implementation on a single FPGA of a
pipelined on-line backpropagation,” in Proceedings of the
13th International Symposium on System Synthesis, pp.
225–230, Madrid, Spain, September 2000.

[59] K. Paul and S. Rajopadhye, “Back-propagation algorithm
achieving 5 Gops on the Virtex-E,” in FPGA Implementations
of Neural Networks, pp. 137–165, Springer, Berlin, Germany,
2006.

[60] U. Witkowski, T. Neumann, and U. Ruckert, “Digital hard-
ware realization of a hyper basis function network for on-line
learning,” in Proceedings of the 7th International Conference
on Microelectronics for Neural, Fuzzy and Bio-Inspired Systems
(MicroNeuro ’99), pp. 205–211, Granada, Spain, April 1999.

[61] M. Murakawa, S. Yoshizawa, I. Kajitani, et al., “The GRD
chip: genetic reconfiguration of DSPs for neural network
processing,” IEEE Transactions on Computers, vol. 48, no. 6,
pp. 628–639, 1999.

[62] D. Hammerstrom, “A VLSI architecture for high-perfor-
mance, low-cost, on-chip learning,” in Proceedings of the
International Joint Conference on Neural Networks (IJCNN
’90), vol. 2, pp. 537–544, San Diego, Calif, USA, June 1990.

[63] Y. Sato, K. Shibata, M. Asai, et al., “Development of a high-
performance, general purpose neuro-computer composed
of 512 digital neurons,” in Proceedings of the International
Joint Conference on Neural Networks (IJCNN ’93), vol. 2, pp.
1967–1970, Nagoya, Japan, October 1993.

[64] T. Tang, O. Ishizuka, and H. Matsumoto, “Backpropagation
learning in analog T-model neural network hardware,” in
Proceedings of the International Joint Conference on Neural
Networks (IJCNN ’93), vol. 1, pp. 899–902, Nagoya, Japan,
October 1993.

[65] B. Linares-Barranco, E. Sanchez-Sinencio, A. Rodriguez-
Vazquez, and J. L. Huertas, “A CMOS analog adaptive BAM
with on-chip learning and weight refreshing,” IEEE Transac-
tions on Neural Networks, vol. 4, no. 3, pp. 445–455, 1993.

[66] E. Farquhar, C. Gordon, and P. Hasler, “A field programmable
neural array,” in Proceedings of IEEE International Symposium
on Circuits and Systems (ISCAS ’06), pp. 4114–4117, Kos,
Greece, May 2006.

[67] F. Tenore, R. J. Vogelstein, R. Etienne-Cummings, G.
Cauwenberghs, M. A. Lewis, and P. Hasler, “A spiking silicon
central pattern generator with floating gate synapses [robot
control applications],” in Proceedings of IEEE International
Symposium on Circuits and Systems (ISCAS ’05), vol. 4, pp.
4106–4109, Kobe, Japan, May 2005.

[68] G. Indiveri, E. Chicca, and R. J. Douglas, “A VLSI reco-
nfigurable network of integrate-and-fire neurons with
spike-based learning synapses,” in Proceedings of the 12th
European Symposium on Artificial Neural Networks (ESANN
’04), Bruges, Belgium, April 2004.

[69] B. Girau, “FPNA: applications and implementations,” in
FPGA Implementations of Neural Networks, pp. 103–136,
Springer, Berlin, Germany, 2006.

[70] B. Girau, “FPNA: concepts and properties,” in FPGA
Implementations of Neural Networks, pp. 63–101, Springer,
Berlin, Germany, 2006.

[71] M. Holler, S. Tam, H. Castro, and R. Benson, “An electrically
trainable artificial neural network (ETANN) with 10240
‘floating gate’ synapses,” in Artificial Neural Networks: Elec-

tronic Implementations, pp. 50–55, IEEE, New York, NY,
USA, 1990.

[72] M. L. Mumford, D. K. Andes, and L. L. Kern, “The Mod 2
Neurocomputer system design,” IEEE Transactions on Neural
Networks, vol. 3, no. 3, pp. 423–433, 1992.

[73] T. Schmitz, S. Hohmann, K. Meier, J. Schemmel, and F.
Schurmann, “Speeding up hardware evolution: a coprocessor
for evolutionary algorithms,” in Evolvable Systems: From
Biology to Hardware, vol. 2606 of Lecture Notes in Computer
Science, pp. 274–285, Springer, Berlin, Germany, 2003.

[74] A. Omondi, J. Rajapakse, and M. Bajger, “FPGA neuro-
computers,” in FPGA Implementations of Neural Networks,
pp. 1–36, Springer, Berlin, Germany, 2006.

[75] L. D. Jackel, H. P. Graf, and R. E. Howard, “Electronic
neural network chips,” Applied Optics, vol. 26, no. 23, pp.
5077–5080, 1987.

[76] E. Farquhar and P. Hasler, “A bio-physically inspired silicon
neuron,” IEEE Transactions on Circuits and Systems I, vol. 52,
no. 3, pp. 477–488, 2005.

[77] B. Linares-Barranco, E. Sanchez-Sinencio, A. Rodriguez-
Vazquez, and J. L. Huertas, “A modular T-mode
design approach for analog neural network hardware
implementations,” IEEE Journal of Solid-State Circuits, vol.
27, no. 5, pp. 701–713, 1992.

[78] C. Gordon, E. Farquhar, and P. Hasler, “A family of floating-
gate adapting synapses based upon transistor channel
models,” in Proceedings of IEEE International Symposium
on Circuits and Systems (ISCAS ’04), vol. 1, pp. 317–320,
Vancouver, Canada, May 2004.

[79] E. Farquhar, D. Abramson, and P. Hasler, “A reconfigurable
bidirectional active 2 dimensional dendrite model,” in
Proceedings of IEEE International Symposium on Circuits and
Systems (ISCAS ’04), vol. 1, pp. 313–316, Vancouver, Canada,
May 2004.

[80] G. Cauwenberghs, C. F. Neugebauer, and A. Yariv, “An adap-
tive CMOS matrix-vector multiplier for large scale analog
hardware neural network applications,” in Proceedings of the
International Joint Conference on Neural Networks (IJCNN
’91), vol. 1, pp. 507–511, Seattle, Wash, USA, July 1991.

[81] O. Barkan, W. R. Smith, and G. Persky, “Design of coupling
resistor networks for neural network hardware,” IEEE
Transactions on Circuits and Systems, vol. 37, no. 6, pp.
756–765, 1990.

[82] T. J. Schwartz, “A neural chips survey,” AI Expert, vol. 5, no.
12, pp. 34–38, 1990.

[83] A. J. Agranat, C. F. Neugebauer, and A. Yariv, “A CCD
based neural network integrated circuit with 64 K analog
programmable synapses,” in Proceedings of the International
Joint Conference on Neural Networks (IJCNN ’90), vol. 2, pp.
551–555, San Diego, Calif, USA, June 1990.

[84] L. W. Massengill and D. B. Mundie, “An analog neural
hardware implementation using charge-injection multipliers
and neuron-specific gain control,” IEEE Transactions on
Neural Networks, vol. 3, no. 3, pp. 354–362, 1992.

[85] A. Passos Almeida and J. E. Franca, “A mixed-mode
architecture for implementation of analog neural networks
with digital programmability,” in Proceedings of the
International Joint Conference on Neural Networks (IJCNN
’93), vol. 1, pp. 887–890, Nagoya, Japan, October 1993.

[86] M. R. DeYong, R. L. Findley, and C. Fields, “The design,
fabrication, and test of a new VLSI hybrid analog-digital
neural processing element,” IEEE Transactions on Neural
Networks, vol. 3, no. 3, pp. 363–374, 1992.

VLSI Design 25

[87] E. Sackinger, B. E. Boser, J. Bromley, Y. LeCun, and L. D.
Jackel, “Application of the ANNA neural network chip to
high-speed character recognition,” IEEE Transactions on
Neural Networks, vol. 3, no. 3, pp. 498–505, 1992.

[88] G. Zatorre-Navarro, N. Medrano-Marqués, and S. Celma-
Pueyo, “Analysis and simulation of a mixed-mode neuron
architecture for sensor conditioning,” IEEE Transactions on
Neural Networks, vol. 17, no. 5, pp. 1332–1335, 2006.

[89] K. D. Maier, C. Beckstein, R. Blickhan, W. Erhard, and D. Fey,
“A multi-layer-perceptron neural network hardware based on
3D massively parallel optoelectronic circuits,” in Proceedings
of the 6th International Conference on Parallel Interconnects,
pp. 73–80, Anchorage, Alaska, USA, October 1999.

[90] M. P. Craven, K. M. Curtis, and B. R. Hayes-Gill,
“Consideration of multiplexing in neural network hardware,”
IEE Proceedings: Circuits, Devices and Systems, vol. 141, no.
3, pp. 237–240, 1994.

[91] S.-W. Moon and S.-G. Kong, “Block-based neural networks,”
IEEE Transactions on Neural Networks, vol. 12, no. 2, pp.
307–317, 2001.

[92] W. Jiang, S. G. Kong, and G. D. Peterson, “ECG signal classi-
fication using block-based neural networks,” in Proceedings of
the International Joint Conference on Neural Networks (IJCNN
’05), vol. 1, pp. 326–331, Montreal, Canada, July 2005.

[93] W. Jiang, S. G. Kong, and G. D. Peterson, “Continuous
heartbeat monitoring using evolvable block-based neural
networks,” in Proceedings of IEEE International Joint
Conference on Neural Networks (IJCNN ’06), pp. 1950–1957,
Vancouver, Canada, July 2006.

[94] W. Jiang and S. G. Kong, “Block-based neural networks for
personalized ECG signal classification,” IEEE Transactions on
Neural Networks, vol. 18, no. 6, pp. 1750–1761, 2007.

[95] S. G. Kong, “Time series prediction with evolvable block-
based neural networks,” in Proceedings of IEEE International
Joint Conference on Neural Networks (IJCNN ’04), vol. 2, pp.
1579–1583, Budapest, Hungary, July 2004.

[96] S. Merchant, G. D. Peterson, S. K. Park, and S. G. Kong,
“FPGA implementation of evolvable block-based neural
networks,” in Proceedings of IEEE Congress on Evolutionary
Computation (CEC ’06), pp. 3129–3136, Vancouver, Canada,
July 2006.

[97] Xilinx, “Virtex-II Pro and Virtex-II Pro X Platform FPGAs:
Complete Data Sheet,” Product Specification, DS083 (v4.6),
March 2007.

[98] Xilinx, “Xilinx University Program Virtex-II Pro Develo-
pment System Hardware Reference Manual,” Hardware Refe-
rence Manual, UG069 (v1.0), March 2005.

[99] Amirix, “AMIRIX Systems Inc. PCI Platform FPGA Deve-
lopment Board Users Guide,” User Guide, DOC-003266
Version 06, June 2004.

[100] R. Fisher, “The use of multiple measurements in taxonomic
problems,” Annals of Eugenics, vol. 7, pp. 179–188, 1936.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

