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Abstract

We introduce a cooperative co-evolutionary
system to facilitate the development of teams
of agents. Specifically, we deal with the credit
assignment problem of how to fairly split the
fitness of a team to all of its participants. We
believe that k different strategies for control-
ling the actions of a group of k agents can com-
bine to form a cooperation strategy which ef-
ficiently results in attaining a global goal. A
concern is the amount of time needed to either
evolve a good team or reach convergence. We
present several crossover mechanisms to reduce
this time. Even with this mechanisms, the time
is large; which precluded the gathering of suffi-
cient data for a statistical base.

1 Introduction

The goal of this research is to generate programs for the
coordination of cooperative autonomous agents in pur-
suit of a common goal. In effect, we want to evolve
behavioral strategies that guide the actions of agents
in a given domain. The identification, design, and im-
plementation of strategies for coordination is a central
research issue in the field of Distributed Artificial In-
telligence (DAI) [Bond and Gasser, 1988]. Current re-
search techniques in developing coordination strategies
are mostly off-line mechanisms that use extensive do-
main knowledge to design from scratch the most appro-
priate cooperation strategy. It is nearly impossible to
identify or even prove the existence of the best coordi-
nation strategy. In most cases a coordination strategy is
chosen if it is reasonably good.

In [Haynes et al., 1995], we presented a new ap-
proach for developing coordination strategies for multi-
agent problem solving situations, which is different from
most of the existing techniques for constructing coordi-
nation strategies in two ways:

¯ Strategies for coordination are incrementally con-
structed by repeatedly solving problems in the do-

main, i.e., on-line.

¯ We rely on an automated method of strategy for-
mulation and modification, that depends very little
on domain details and human expertise, and more
on problem solving performance on randomly gen-
erated problems in the domain.

Our approach for developing coordination strategies
for multi-agent problems is completely domain indepen-
dent, and uses the strongly typed genetic programming
(STGP) paradigm [Montana, 1994], which is an exten-
sion of genetic programming (GP) [Koza, 1992]. To use
the STGP approach for evolving coordination strategies,
the strategies are encoded as symbolic expressions (S-
expressions) and an evaluation criterion is chosen for
evaluating arbitrary S--expressions. The mapping of var-
ious strategies to S-expressions and vice versa can be
accomplished by a set of functions and terminals repre-
senting the primitive actions in the domain of the appli-
cation. Evaluations of the strategies represented by the
structures can be accomplished by allowing the agents
to execute the particular strategies in the application
domain. We can then measure their efficiency and effec-
tiveness by some criteria relevant to the domain. Popu-
lations of such structures are evolved to produce increas-
ingly efficient coordination strategies.

We have used the predator-prey pursuit game [Benda
et al., 1985] to test our hypothesis that useful coordina-
tion strategies can be evolved using the STGP paradigm
for non-trivial problems. This domain involves mul-
tiple predator agents trying to capture a mobile prey
agent in a grid world by surrounding it. The predator-
prey problem has been widely used to test new co-
ordination schemes [Gasser et aI., 1989; Korf, 1992;
Levy and Rosenschein, 1992; Stephens and Merx, 1989;
1990]. The problem is easy to describe, but extremely
difficult to solve; the performances of even the best man-
ually generated coordination strategies are less than sat-
isfactory. We showed that STGP evolved coordination
strategies perform competitively with the best available
manually generated strategies.

In this work we examine the rise of cooperation strate-

23

From: AAAI Technical Report FS-95-01. Compilation copyright © 1995, AAAI (www.aaai.org). All rights reserved. 



gies without implicit communication. In our previous
research, the developed strategies had implicit commu-
nieation in that the same program was used to control
the four predator agents. This removal of implicit com-
munication is achieved by having each predator agent
being controlled by its own program. Such a system
solves a cooperative co-evolution problem as opposed
to a competitive cod-evolution problem as described
in [Angeline and Pollack, 1993; Haynes and Sen, 1995;
Reynolds, 1994]. We believe that cooperative cod-
evolution provides opportunities to produce solutions to
problems that cannot be solved with implicit communi-
cation.

The rest of this paper is laid out as follows: Section 2
introduces the pursuit domain, and describes the exper-
imental setup. Section 3 presents three crossover strate-
gies, beyond simple point based crossover, for improving
the learning of the team. Section 4 shows the relevance
of this work to current research topics in GP. Section 5
compares the utility of several of the crossover strategies
as they evolve teams. Section 6 wraps up our research
into team formation. Section 7 points out how this work
can be extended.

2 Pursuit Domain

In our experiments, the initial configuration consisted
of the prey in the center of a 30 by 30 grid, and the
predators are placed in random non-overlapping posi-
tions. All agents choose their action simultaneously. For
the training cases, each team is allowed 100 moves per
case. The environment is updated after all of the agents
move, and the agents choose their next action based on
the updated state. Conflict resolution is necessary since
we do not allow two agents to co-occupy a position. If
two agents try to move into the same location simul-
taneously, they are "bumped back" to their prior posi-
tions. One predator, however, can push another preda-
tor (but not the prey) if the latter decided not to move.
The prey’s movements are controlled by a strategy that
moves it away from the nearest predator, with all ties
being non-deterministically broken. The prey does not
move 10% of the time: this effectively makes the preda-
tors travel faster than the prey. The grid is toroidal in
nature, and diagonal moves are not allowed. A capture
is defined as all four predator agents occupying the cells
directly adjacent, and orthogonal, to the prey, i.e., when
the predators block all the legal moves of the prey.

A predator can see the prey, and the prey can see
all the predators. Furthermore, two predators cannot
communicate to resolve conflicts or negotiate a capture
strategy. These two rules eliminate explicit communica-
tion between agents.

2.1 Evaluation of Coordination Strategies
for Predators

To evolve coordination strategies for the predators using
STGP we need to rate the effectiveness of those strate-
gies represented as programs or S-expressions. We chose
to evaluate such strategies by putting them to task on
k randomly generated pursuit scenarios. For each sce-
nario, a program is run for 100 time steps. The percent-
age of capture is used as a measure of fitness when we
are comparing several strategies over the same scenario.
Since the initial population of strategies are randomly
generated, it is very unlikely that any of these strate-
gies will produce a capture. Thus we need additional
terms in the fitness function to differentially evaluate
these non-capture strategies. The key aspect of STGPs
or GAs is that even though a particular structure is not
effective, it may contain useful substructures which when
combined with other useful substructures, will produce a
highly effective structure. The evaluation (fitness) func-
tion should be designed such that useful sub-structures
are assigned due credit.

With the above analysis in mind, we designed our eval-
uation function of the programs controlling the predators
to contain the following terms:

¯ After each move is made according to the strategy,
the fitness of the program representing the strat-
egy is incremented by (Grid width) / (Distance 
predator from prey), for each predator. Thus higher
fitness values result from strategies that bring the
predators closer to the prey, and keep them near the
prey. This term favors programs which produce a
capture in the least number of moves.

¯ When a simulation ends, for each predator occupy-
ing a location adjacent to the prey, a number equal
to (number of moves allowed ̄  grid width) is added
to the fitness of the program. This term is used to
favor situations where one or more predators sur-
round the prey.

¯ Finally, ira simulation ends in a capture position, an
additional reward of (4 * number of moves allowed
¯ grid width) is added to the fitness of the program.
This term strongly biases the evolutionary search
toward programs that enable predators to maintain
their positions when they succeed in capturing a
prey.

In our experiments, the distance between agents is
measured by the Manhattan distance (sum of x and 
offsets) between their locations. We have limited the
simulation to 100 time steps. As this is increased, the
capture rate will increase.

In order to generate general solutions, (i.e., solutions
that are not dependent on initial predator-prey config-
uration), the same k training cases were run for each



member of the population per generation. The fitness
measure becomes an average of the training cases. These
training cases can be either the same throughout all gen-
erations or randomly generated for each generation. In
our experiments, we used random training cases per gen-
eration.

3 Establishing an Environment for

Teamwork

In our earlier work, each program was represented as a
chromosome in a population of individuals. The mem-
bers of a team can randomly be selected from the pop-
ulation of chromosomes, with each member awarded a
certain percentage of the total fitness. 1 Each member
would get the points that it definitely contributed to the
team’s fitness score. How do we divide up the team’s
score among the participating members (chromosomes)?
Is it fair to evenly divide the score? Assuming k members
to a team, if the actions of one individual accounted for
a large share of the team’s score, why should it only get
lth of the score? This problem is the same as the credit
assignment problem in [Grefenstette, 1988]. A modifi-
cation of this strategy is to deterministically split the
population into k sized teams. Thus the first k individu-
als would always form the first team. The problem with
this is that it imposes an artificial ordering on the pop-
ulation. The same team in generation Gi might not be
formed in generation Gi+l due to a re-ordering caused
by the reproductive cycle.

The method we employ to ensure consistency of mem-
bership of a team is to evolve a team rather than an
individual. Thus each chromosome consists of k pro-
grams. Subject to the effects of crossover and muta-
tion, we are ensured that the same members will form
a team. This effectively removes the credit assignment
problem. Each team member always participates in the
same team. Thus all of the points it is awarded, for both
its individual contribution and the teams contribution,
are correctly apportioned to the entire team.

This approach is similar to "the Pitt approach"
used for evolving Genetic-Based Machine Learning sys-
tems [DeJong, 1990]. For GA based production systems,
there are two camps as how to maintain a ruleset: the
Pitt approach is to maintain the entire ruleset as an in-
dividual string with the entire population being a col-
lection of rulesets, and "the Michigan approach" is to
maintain the entire population as the ruleset. In the
Michigan approach there is the credit assignment prob-
lem of how to correctly award individual rules for their
contributions to the global solution. The Pitt approach
bypasses the credit assignment problem, in that rules
are only evaluated in the context of a ruleset. A similar
mechanism as proposed in this paper has been used to

1We could also ensure that each member of the population
participates in ~ teams.

successfully co-evolve a set of prototypes for supervised
concept classification problems [Knight and Sen, 1995].

3.1 TeamBranch

(0 (b}

Figure 1: Example crossover for 1 crossover point in a
chromosome.

Our method of maintaining consistency in a team does
introduce a problem in that what do we do for crossover?
Do we allow crossover, as shown in Figure 1, to take
place in the usual sense? (i.e. only one of the pro-
grams participates in the crossover.) Or, as shown in
Figure 2, do we allow all of the programs to participate
in crossover? The first crossover mechanism allows only
relatively small changes of parent structures to produce
offspring, and thus slows down learning.

3.2 TeamAll
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Figure 2: Example crossover for all programs in a tree. A
crossover point is selected in the subtree of each program.
Thus there are four crossovers taking place; between each
program P~ for the two chromosomes.

The second crossover mechanism will speed up the emer-
gence of good cooperation strategies by allowing each
program in a parent structure to participate in the
crossover process. A research issue in this crossover
method is determining whether we should constrain
crossover between corresponding programs in the two
parents. If the first program in the first parent always
crosses over with the first program in the second parent,
then can the first program become a specialist? There
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can be a need for specialists, i.e. the dessert maker in
a team of cooks, but in applying this constraint do we
restrict ourselves to a part of the solution space in which
the global optimum can not be found?

Some possible solutions to this concern are:

1. For chromosomes A and B, randomly determine
which program Ai will be used in crossover with
program Bj. Also each program in a chromosome
participates exactly once in the crossover process.

2. A new mutation operator could be defined which
swaps subtrees between programs in a chromosome.
This is different than recombination in that there is
only one "parent" and one resultant "child".

3.3 TeamUniform

A third crossover mechanism is to adapt the uniform
crossover function from GA research. Basically we would
develop a uniform crossover mask for the programs inside
a chromosome. A "r’ would indicate that the programs
are copied into the respective child, while a "0" would
indicate that the programs would undergo crossover. We
are able to use the uniform crossover function because
the number of programs in a team is fixed. Since the
programs are not atomic in the sense that alleles in GAs
are, we could randomly determine the interactions be-
tween the programs. An example of this is if we decided
that the order of interaction between two parent chro-
mosomes i and j is i(3241) and j(4123), and the 
mask is {1001}, then this would produce the children
s(3(2X1)(4X2)l and t(4(2X1)(4X2)3. This is repre-
sented visually in Figure 3. The programs have been
re-ordered such that i3 is paired with j4, etc.

3.4 TeamKCross

A fourth crossover function is to allow k crossover points
inside a chromosome. A restriction is that crossover
point i can not be an ancestor node of any crossover
point j, j ~ i. A difference between this method and the
previous methods is that two crossovers can happen to
the same program, as can be seen in Figure 4. Each
crossover point i is not tied to any one program.

4 Implications of Research
There has been previous research into S-expressions con-
taining more than one executable branch. Both An-
dre [Andre, 1995] and Haynes [Haynes, 1994] have inves-
tigated systems in which one branch of the S-expression
manipulate a memory structure and the other branch
utilizes the memory structure to interact with an en-
vironment. Andre explicitly creates two programs in
the S-expression, while Haynes relies on strong typing
to force the root node to develop two branches for the
construction and utilization of memory. Both of these
systems can be considered to utilize the Pitt approach
to credit assignment.

(o

Figure 3: Example uniform crossover for the mask
(1001). (a) has Parent i with aa ordering of (3241). 
has Parent j with an ordering of (4123). (c) has Child 
with two children created via crossover. (d) has Child 
with two children created via crossover.

While Koza’s Automatically Defined Functions
(ADF) [Koza, 1994] are not separate "agents", they uti-
lize many different branches, say k, to facilitate learn-
ing. In the GP mailing list, Siegel [Siegel, 1994] posed
the question as to whether some form of crossover uti-
lizing k > 1 would help in the learning process? The
replies were mixed, and pointed out the need for further
research.

5 Results
We have tested two different approaches to constructing
teams for the predator agents: TeamBraach, Section 3.1,
each team member has its own program, i.e. subtree,

{3rtmv~Pdr~.

oo~" i,

¯ | ¯
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I

~)

Figure 4: Example crossover k crossover points in a chro-
mosome.
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and there is one branch crossover. TeamAll, Section 3.2,
each team member has its own program, i.e. subtree,
and there is k -- 4 branch crossover. Finally, we compare
the above strategies against the method we have utilized
in our previous research: TeamTree, each team member
shares the same program.

The basic setup for each experiment was a popula-
tion size of 600, a maximum of 1000 generations, and
a maximum fitness of 48,000. Note that even if either
a good solution or convergence was found before 1000
generations, we let the system continue. In order to be
somewhat fair, we ran each approach with the same four
different initial seeds for the random number generator.
We would have liked to have a better statistical base,
but each run takes between four to ten days, depending
on the Sun system used.

5.1 Population Results

The averaged results for the Best and Average Fitnesses
per generation are shown in Figures 5 (TeamTree), 
(TeamBranch), and 7 (TeamAll). In general the 
of Generation curves have reached a plateau of about
20,000 to 22,000 fitness points. If we look at the "center"
of the plateaus, then the systems can be ranked in the
order of TeamTree, TeamAll, and TeamBranch. These
curves can also be broken into three regions, although it
is harder to do so for TeamBranch, Figure 6.

The differences occur in reaching that plateau. The
TeamTree curve learns faster than both TeamBranch
and TeamAll. It reaches both of its plateaus before
the other systems. The TeamAll system learns faster
than the TeamBranch. Notice that TeamAll reaches the
plateau level about 200 generations before TeamBranch.

Figure 5: Average and Best Fitness for no branches.

5.2 Team Analysis

We have also tested the best individuals per system for
both 1000 random test cases and the 30 standard test
cases as set forth by Stephens and Merx [Stephens and
Merx, 1989]. Each team was allowed to move for 200
time steps. None of the teams did very well.

1OO0O

0

Figure 6: Average and Best Fitness for 1 branch
crossover.

Figure 7: Average and Best Fitness for all crossover.

In Table 1, we present the results of the prey having a
move away from nearest predator (MAFNP) algorithm.
Due to space considerations, we do not present other
prey algorithms. We do include performance results of
agents controlled by the MN, MNO, MD, and MDO for
comparison. The STGP algorithm is the evolved strat-
egy reported in [Haynes et aL, 1995], and the other algo-
rithms are based on the max norm (MN and MNO) and
Manhattan distance (MD and MDO) algorithms. They
are discussed in detail in [Haynes et al., 1995]. The
STGP strategy represents the TeamTree team.

The TeamAll team did better than the TeamBranch
team, but they both did worse than the STGP algo-
rithm. Also, from our analysis of the best four teams
per crossover system, we determined that the some of
the TeamBranch and TeamAll behavioral strategies al-
low the prey to escape capture. This does not happen
when the same strategy is used to control all agents, i.e.
STGP.

The moves taken by the STGP program (strategy)
for various relative positions of a predator with respect
to the prey are graphically represented in Figure 8. In
Figure 9, the moves taken by the four predators, from
the TeamAll strategy A1, are graphically represented.
Note that Figure 9(a) and Figure 9(b) are very simi-
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Prey First Prey Sync
Captures Steps Blocks Captures Steps Blocks

STGP 0.385(0.496) 29.500(24.185) 5.846(2.412) 14.846(1.642) 109.412(11.872) 3.462(1.529)
0.385(0.496) 29.500(24.185) 14.846(1.642) 109.412(11.872)

A1 I0.308(1.995) 115.466(13.152) 2.462(1.794) 0.115(0.326) 99.333(98.241) 0.577(0.809)
10.308(1.995) 115.466(13.152) 0.115(0.326) 99.333(98.241)

B1 6.000(1.811) 107.000(16.859) 1.692(1.123) 0.962(0.720) 109.160(70.818) 0.654(0.745)
6.000(1.811) 107.000(16.859) 0.962(0.720) 109.160(70.818)

MNO 0.000(0.0O0) 0.000(0.0O0) 0.346(0.562) 0.000(0.00O) 0.000(0.000) 0.385(0.571)
0.346(0.562) 104.333(94.001) 0.308(0.471) 99.875(89.788)

MDO 2.423(1.528) 56.254(34.139) 13.731(3.672) 2.923(1.742) 55.263(23.194) 14.077(2.576)
2.423/1.528) 56.254(34.139) 2.923/1.742/ 55.263(23.194)

MN 0.077(0.272) 199.000(194.979) 1.731(1.589) 0.000(0.000) 0.000(0.000) 1.385(1.098)
2.000(1.265) 112.615(53.095) 0.538(0.647) 127.071(100.675)

MD 15.808(2.173) 101.182(12.816) 3.231(1.394) 17.615(2.654) 108.919(11.340) 2.000(1.296)
15.803(2.173) 101.182(12.316} 17.615(2.654) 108.919(11.340)

Table 1: Average number of captures for MAFNP Prey (standard deviations are presented in parentheses).

lar movement strategies. This observation suggests that
the predator agents are learning the same behavioral
strategy, which in turn implies implicit communication
is starting to take place. A similar occurrence of this
duplication of strategies was observed in one of the four
best TeamBranch chromosomes.

6 Conclusions

We believe that the TeamAll strategy for building a team
is better than the TeamBranch strategy. In particular,
with each agent’s program engaging in crossover versus
only one of the agent’s programs engaging in crossover,
learning is faster. The TeamTree building strategy fares
better than either of the other two. We believe that
this feature is due to the implicit communication that
the TeamTree team members have available. It is our
conjecture that the others can be evolving implicit com-
munication in that team members are developing similar
behavioral strategies.

Our belief that the TeamAll strategy is better than
the TeamBranch strategy has been supported by the col-
lected data. As we gather further data, we will see if this
is truly statistically significant.

7 Future Work

Clearly we need to run more test cases in order to build
a statistical basis for significance testing. We also need
to experiment with the uniform crossover and k-point
crossover mechanisms mentioned earlier.

We need to develop some tools to enable us to analyze
the similarity of two chromosomes; both in semantical
and syntactical content. This is evidenced by there be-
ing two team members with different subtrees, but with
identical results.
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Figure 8: Pursuit path found by STGP.

(a) (b)

(c) (d)

Figure 9: Pursuit paths found by A1.
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