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1 Introduction

There exists a growing demand for smart condition monitor-

ing in engineering applications often achieved through evo-

lution of the sensors used. This is especially true when some 

constraints are present that cannot be satisfied by human 

intervention with regard to decision making speed in life 

threatening situations (e.g. automatic collision systems, 

exploring hazardous environments, processing large vol-

umes of data). Because computer-assisted instrumentation 

is capable of processing large amounts of heterogeneous data 

much faster and is not subject to the same level of fatigue as 

humans, the use of machine-based condition monitoring in 

many practical situations is preferable.

Cyber physical systems (CPSes) integrate information 

processing, computation, sensing and networking, which 

allows physical entities to operate various processes in 

dynamic environments (Lee 2008). Many of these intelli-

gent CPSes carry out smart data acquisition and processing 

that minimise the amount of necessary human intervention. 

In particular, a considerable research interest lies in the area 

of managing huge volumes of alerts that may or may not 

correspond to incidents taken place within CPSes (Pierazzi 

et al. 2016).

The integration of multiple data sources into a uni-

fied system leads to data heterogeneity, often resulting 

Abstract An adaptive multi-tiered framework, that can be 

utilised for designing a context-aware cyber physical system 

to carry out smart data acquisition and processing, while 

minimising the amount of necessary human intervention is 

proposed and applied. The proposed framework is applied 

within the domain of offshore asset integrity assurance. 

The suggested approach segregates processing of the input 

stream into three distinct phases of Processing, Prediction 

and Anomaly detection. The Processing phase minimises the 

data volume and processing cost by analysing only inputs 

from easily obtainable sources using context identification 

techniques for finding anomalies in the acquired data. Dur-

ing the Prediction phase, future values of each of the gas tur-

bine’s sensors are estimated using a linear regression model. 

The final step of the process— Anomaly Detection—clas-

sifies the significant discrepancies between the observed 

and predicted values to identify potential anomalies in the 

operation of the cyber physical system under monitoring 

and control. The evolving component of the framework is 

based on an Artificial Neural Network with error backpropa-

gation. Adaptability is achieved through the combined use 

of machine learning and computational intelligence tech-

niques. The proposed framework has the generality to be 
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into difficulty, or even infeasibility, of human process-

ing, especially in real-time environments. For example, 

in real-time automated process control, information about 

a possible failure is more useful before the failure takes 

place so that prevention and damage control can be car-

ried out in order to either completely avoid the failure, or 

at least alleviate its consequences.

Computational Intelligence (CI) techniques have been 

successfully applied to problems involving the automation 

of anomaly detection in the process of condition monitor-

ing (Khan et al. 2014). These techniques however require 

training data to provide reliable and reasonably accurate 

specification of the context in which a CPS operates. The 

context enables the system to highlight potential anoma-

lies in the data so that intelligent and autonomous control 

of the underlying process can be carried out.

Anomalies are defined as incidences or occurrences, 

under a given circumstances or a set of assumptions, that 

are different from the expected outcome (for instance 

when generator rotor speed of the gas turbine goes below 

3000 rpm). By their nature, these incidences are rare and 

often not known in advance. This makes it difficult for the 

Computational Intelligence techniques to form an appro-

priate training dataset. Moreover, dynamic problem envi-

ronments can further aggravate the lack of training data 

by occurrence of intermittent anomalies.

Computational Intelligence techniques that are used 

to tackle dynamic problems should therefore be able to 

adapt to situational/contextual changes. A multi-tiered 

framework for CPSes with heterogeneous input sources 

is proposed in the paper that can deal with unseen anoma-

lies in a real-time dynamic problem environment. The 

goal is to develop a framework that is as generic, adaptive 

and autonomous as possible. In order to achieve this goal 

both machine learning and computational intelligence 

techniques are applied within the framework, together 

with the online learning capability that allows for adap-

tive problem solving.

The application of the CI techniques to provide evolv-

ing functionality of the intelligent sensors deployed 

within cyber physical systems is the first novel contribu-

tion of the presented work. The second contribution is 

the implementation of the generic framework to make 

the CPSes context-aware by processing a large amount of 

heterogeneous data. Finally, the application of these novel 

approaches to developing evolving sensory systems for 

optimising the operation of an offshore gas turbine consti-

tutes another original contribution of the paper that dem-

onstrates practical benefits of the suggested methodology.

2  Cyber physical systems

Rapid advances in miniaturisation, speed, power and mobil-

ity have led to the pervasive use of networking and informa-

tion technologies across all economic sectors. These tech-

nologies are increasingly combined with elements of the 

physical worlds (e.g. machines, devices) to create smart or 

intelligent systems that offer increased effectiveness, produc-

tivity, safety and speed (Lee 2008). Cyber physical systems 

(CPS) are a new type of system that integrates computa-

tion with physical processes. They are similar to embedded 

systems but focus more on controlling the physical entities 

rather than processes embedded computers monitor and con-

trol, usually with feedback loops, where physical processes 

affect computations and vice versa. Components of cyber 

physical system (e.g. controllers, sensors and actuators) 

transmit the information to cyber space through sensing a 

real world environment; also they reflect policy of cyber 

space back to the real world (Park et al. 2012).

Rather than dealing with standalone devices, cyber 

physical systems are designed as a network of interacting 

elements with physical inputs and outputs, similar to the 

concepts found in robotics and sensor networks. The main 

challenge in developing a CPS is to create an interactive 

interface between the physical and cyber worlds; the role of 

this interface is to acquire the context information from the 

physical world and to implement context-aware computing 

in the cyber world (Lun and Cheng 2011). Figure 1 illus-

trates a conceptual framework for building context-aware 

cyber physical systems (Rattadilok et al. 2013), adapted 

from a widely used modern sensor system reference model 

standardised by the CENSIS Innovation Centre for Sensor 

and Imaging Systems (www.sensorsystems.org.uk). The 

component parts and function of this reference model need 

to be delineated by function and interface in order to effec-

tively develop effective instrumentation system in particular 

and cyber physical system in general.

Each layer of the framework is dedicated to a certain con-

text processing task, ranging from low-level context acquisi-

tion up to high level context application using either existing 

or acquired knowledge. In particular, the context acquisition 

layer corresponds to the exploration of the available sensory 

data, including their visual representation, identification of 

the appropriate sampling periods, and data transformation 

(for example, differencing) for further analysis. The context 

processing layer deals with pre-processing of measured sig-

nals (e.g. identification of outliers, signal validation, etc.) 

and with detection of their salient features (e.g. the presence 

of outliers). The main function of the second layer is to make 

necessary preparations for building data-driven models with 

good generalisation capabilities. Of particular interest to 

the authors are the models based on computational intel-

ligence techniques artificial neural networks, support vector 

http://www.sensorsystems.org.uk
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machines, etc., built and tuned with the help of genetic algo-

rithms, particle swarm optimization and artificial immune 

systems. The remaining layers of the proposed framework 

operate at a higher abstraction level. The third context selec-

tion layer is responsible for building, evaluating, and correct-

ing (if necessary) the data-driven models based on empirical 

data supplied by the lower layers. The final context acquisi-

tion layer purports to examine the outputs of the models built 

at the previous layer in order to obtain or refine knowledge 

about the principles or rules that govern the dynamics of the 

processes under investigation (Petrovski et al. 2013).

Of a particular interest in the context of the present work 

is the data acquisition and processing layers that in context-

aware CPSes are often implemented on the basis of intel-

ligent and evolving sensors. Figure 2 illustrates a possible 

structure of evolving CPS sensors, wherein the adaptation 

or evolution of the sensors is done through building a data-

driven process model (typically implemented in the con-

text selection layer of the framework) and its tuning using 

machine learning techniques (Rattadilok et al. 2013). Thus, 

referring back to Fig. 1, the context processing and selection 

layers of the CPS framework are merged together to form 

evolving sensors within the CPS under investigation.

Cyber physical systems may consist of many intercon-

nected parts that must instantaneously exchange, parse and 

act upon heterogeneous data in a coordinated way. This cre-

ates two major challenges when designing cyber physical 

systems: the amount of data available from various data 

sources that should be processed at any given time and the 

choice of process controls in response to the information 

obtained.

An optimal balance needs to be attained between data 

availability and its quality in order to effectively control the 

underlying physical processes. Figure 3 illustrates a system-

atic approach to handling the challenges related to context 

processing, which has been successfully applied by the 

authors to various real world applications (Petrovski et al. 

2013; Rattadilok et al. 2013).

Fig. 1  Framework for designing context-aware CPS

Fig. 2  Structure of an evolving sensor
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As can be seen from Fig. 3, the suggested approach seg-

regates processing of the input stream into three distinct 

phases. The Processing phase minimises the volume of data 

and the data processing cost by analysing only input streams 

from easy to obtain data sources using context selection 

techniques for finding anomalies in the acquired data. If any 

anomalies are detected at this stage, Alert 1 gets activated. 

This phase of the process is used to analyse real-time data 

and is a safe guard process on scenarios where the frame-

works prediction fails to highlight an occurrence of unex-

pected changes in the environment.

In the Prediction phase, future values of each sensor in 

the CPS under investigation (gas turbine’s sensor in our 

case) are estimated, using a linear regression model. Moreo-

ver, a new parameter is added which gets populated with the 

“predicted status” value for each data instance, indicating 

with Alert 2 whether any of the future predicted value of the 

sensors goes beyond the set threshold.

The final step of the process—Anomaly Detection—

classifies the meaning and implications of overall predicted 

future values so that anomalies being present in the under-

lying operation process of the cyber physical system are 

shown. If any anomalies are detected at this stage, Alert 3 

is triggered.

Such an approach allows for the acquisition of data 

and/or activation of the necessary physical entities on an 

ad-hoc basis, depending on the outcome at each phase. 

Moreover, the accuracy attained at the specified phases 

can be enhanced by incorporating additional data sen-

sors or additional environmental factors. Computational 

intelligence techniques and expert systems have been 

successfully applied to tackling many anomaly detection 

problems, where anomalies are known a priori (El-Abbasy 

2014). More interesting, however is to detect previously 

unseen anomalies, especially for real-time control of the 

cyber physical systems, which is the focus of the approach 

suggested in the current paper.

Statistical analysis and clustering are examples of tech-

niques that are commonly used when the characteristics 

of anomalies are unknown (Chandola et al. 2009). Fig-

ure 4 illustrates a more detailed process for the systematic 

approach where machine learning and computational intelli-

gence techniques are combined to tackle the unknown anom-

alies and learn from the experience when similar anoma-

lies occur again. In Fig. 4, a circle labelled “b” represents a 

belief function of the output from both the statistical analysis 

and computational intelligence nodes, such that

 

The weights (w
i
 and wj) of this belief function are adap-

tively adjusted depending on how much knowledge related 

to the problem context has been obtained. The contribution 

of the CI nodes increases with collection of more normal 

and abnormal data points that can be used for training. This 

allows the system to run autonomously if required, and any 

potential anomalies are flagged for closer inspection at the 

anomaly classification phase.

(1)f (t) =

n
∑

i=1

wi�i(X) +

m
∑

j=1

wj�j(X)

Fig. 3  Systematic approach to 

context processing
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With the use of parallelisation and/or distributed systems, 

multiple machine learning, CI techniques and various belief 

functions can be evaluated simultaneously with their param-

eters being adaptively chosen. Anomaly identification using 

a combination of such techniques, as described in Fig. 4, has 

been successfully applied to a traffic surveillance applica-

tion (Rattadilok et al. 2013), a smart home environment and 

automotive process control (Petrovski et al. 2013), and in 

some other applications (Duhaney et al. 2011).

3  Experimental results

It is a common practice that most of the sensory data on a 

platform are stored in a historian system (e.g. the PI system), 

which act as a repository of sensory information gathered 

from one or multiple installation. For this study we used his-

torical sensor data of a gas turbine from an offshore instal-

lation in the North Sea. This data in real-time is transmitted 

offshore via satellite Internet. The integration of smart sen-

sors with networked computing clearly indicated the appro-

priateness of considering the gas turbine under investigation 

as an example of a cyber-physical system, since it utilises the 

computing–networking combination.

3.1  Data monitoring flow

Data from most of the Turbine’s sensors goes straight to 

the connected High Frequency Machine Monitoring System 

(HFMMS). This is due to the high volume of data generated 

every fraction of a seconds, which makes it almost impossi-

ble for any other system to handle such data volumes. These 

sensor values are then passed into Conditional Monitoring 

System (CMS) to prevent any possible system failure, with-

out resorting to the ground truth values rarely available for 

real CPSes, in particular used in the oil and gas industry. 

On CMS there are varieties of formulae and thresholds to 

measure and assure safety conditions and efficiency of the 

turbine. These sensors’ data, although not very important 

as part of the CMS, nevertheless is used for controlling dif-

ferent divisions of the Turbine and is passed straight into 

HMI. In addition to this, FMMS is also connected to HMI, 

enabling the SCADA software on the HMI to read all sensor 

values from Turbine as well as being able to write some val-

ues into some of actuators. On the HMI there is also another 

software called OPC Server, which is capable of writing data 

into OPC client that then writes data into the historian. The 

proposed Cyber Physical System then reads data from his-

torian, as shown in the Fig. 5 illustrating the entire process.

3.2  Data cleaning process and challenges

One of the challenges in exporting data from a historian 

system, such as PI, is the necessity of interpolating values 

that are calculated by the PI system during the export pro-

cess and are not real data. Another challenge is that some 

sensors can have an assigned text when the value goes below 

(or beyond) the admissible range and that text get written 

to the PI system instead of an actual number. For example, 

for some of the sensors during the reboot process the word, 

Configuration get stored in PI instead of a value;another 

example of this is I/O timeout, which gets written into PI 

when a connection to a sensor is temporarily lost. Unfortu-

nately in such scenarios, where the expected value is a num-

ber rather than text, the entire instance needs to be removed 

since it is problematic for many machine learning algorithms 

Fig. 4  Context processing in 

a CPS
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to combine textual and numeric data in the same input pro-

cessing approach.

The issues, which highlighted above and any other similar 

issues, make the use of approaches such as time-series very 

hard since after deleting the records with missing values 

the expected time frame changes. As a result, to be able 

to work with the data we need to use bigger window size, 

which might not be ideal and fail to capture vital informa-

tion. Another challenging issue with the output dataset from 

the PI system is selecting the right sensors for the study. The 

reason for that is because not only the oil and gas instal-

lations are packed with many sensors, but in the majority 

of cases having redundant sensors is very common—hav-

ing many sensors can make selection of the right data input 

channels very difficult. However as well as being a chal-

lenge, these redundant sensors might work to an advantage 

where by comparing the value of the main and redundant 

sensors, it becomes possible to validate sensor inputs before 

writing them into the data historian.

Notwithstanding, care should be taken while doing input 

validation, because sometimes the value Doubtful gets writ-

ten to the PI system, indicating a potentially broken sensor. 

In addition to this, it might also happen from time to time 

that a sensor due to various reasons temporarily goes offline, 

which in those scenarios results in an Out of Service mes-

sage written to PI. Therefore removing instances from the 

dataset due to various reasons as illustrated above, makes it 

difficult to have a solid dataset. By trial and error, from the 

initial interval of every 1 s we have increased the dataset 

into the interval of 5 s to populate the sensor dataset used 

for further investigations.

Another vital challenge in the area of data cleaning is the 

attribute selection. In something like gas turbine the whole 

system is packed with 800 + sensors and to be able to run 

any study on that we needed to reduce number of attributes 

to around only 20 sensors.

For this study, initially 432 sensors have been identified, 

which assumed to have direct impact on the performance of 

the turbine engine. However these factors are mainly selected 

based on those sensors, which are used as part of calculation 

in CMS to monitor real-time malfunctions. To identify the 

significance of each of these contributing sensors, we used a 

factorial Design subcategory of Design of Experiment using 

the Minitab statistical software. A factorial design aims at 

carrying out experiments to identify the effect of several 

factors simultaneously. To conduct this experiment, instead 

of varying one element at the time, all the factors change 

concurrently. The most common approaches for conducting 

the studies is to run either a Fractional or a Full Factorial 

Design. One of the known approach to Full Factorial Design 

is 2-level Full Factorial, when the experimenter assigns only 

two value of maximum and minimum to each factor. There-

fore the number of runs necessary for a 2-Level Full Facto-

rial Design is 2∧
k where k is the number of factors.

Since Minitab only allows total of 15 factors for each 

experiment, similar sensors have been grouped into a total 

of 29 groups and a separate set of experiments have been ran 

on each sensor group. Having a scenario where 15 elements 

match the expected pattern is very rare, therefore percentage 

thresholds have been used as part of the filtering process. 

Depending on the expected minimum or maximum value for 

each sensor, as part of the full factorial scenarios, thresholds 

have been added in accordance with the following formulae:

If an instance of the dataset satisfies the scenario, the record 

with the performance rate of the engine gets stored into a file 

for further analysis. This means for each scenario multiple 

instances satisfy the requirement. After going through all 

the elements, a new cut down version of the dataset gets 

formed. Then once more application goes through all the 

scenarios, one by one, and if the scenario expect more mini-

mum values than maximum values the least sensor value of 

all the instances get selected and vice versa for the maxi-

mum value. Moreover, if the expected minimum and maxi-

mum are equal, then the average performance value of the 

instances get selected. This process lead to a single perfor-

mance value for each scenario, which will then gets feed 

into Minitab. Generated p-values using Minitab then help to 

identify statistically significant factors. Since each p-value is 

a probability, it ranges from 0 to 1, and measures the prob-

ability of obtaining the observed values due to randomness 

only, therefore the lower the p-value of a parameter is the 

more significant this parameter appears. If the p-value of a 

(2)f (x) =nmax − ((nmax − nmin) × �)

(3)f (x) =nmin + ((nmax − nmin) × �)

Fig. 5  Data monitoring flow
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factor is less than 0.05, this means that a factor is statisti-

cally significant.

This approach has been used on three-month worth of 

data from a PI historian, which led to a selection of total 25 

sensors from different parts of the gas turbine out of initial 

432 sensors (see Fig. 6). Within this period system expe-

rienced eight failures, which are indicated by blue arrows 

in Fig. 7. The sample data for the 3-month period includes 

around 217,000 instances. Sensors used from the turbine are 

listed in Table 1.

In addition to all the sensors we also had a turbine status, 

which has each of the instances of the dataset labelled as 

either False, True or I/O timed out. False indicates the tur-

bine failure state, True indicates the engine is running, and 

I/O Timed out indicates when the engine is getting restarted 

or communication between the PI historian and offshore is 

temporarily lost. The importance of having the I/O Timeout 

state is to prevent the system from sending an alarm when 

the system is actually in a state of reboot.

3.3  Processing

The Processing phase of the proposed context-aware CPS 

implements a computational intelligence technique [an artifi-

cial neural network (ANN)] to classify the input stream. The 

ANN was chosen as many studies have shown that it is the 

most effective classification model to predict the condition of 

offshore oil and gas pipelines on varieties of factors, includ-

ing corrosion (El-Abbasy 2014; Schlechtingen and Santos 

2011). Also these studies highlighted the effective use of 

Bayesian and decision tree approaches in condition-based 

maintenance of offshore wind turbines (Nielsen and Srensen 

2011). Random Forest Tree is another algorithm, which is 

widely used in the field of predictive maintenance in the oil 

and gas industry to forecast a remote environment condi-

tion, where visual inspection is not sufficient (Topouzelis 

and Psyllos 2012). Moreover, additional algorithms used 

to detect anomalies on offshore turbines includes k-Nearest 

Neighbour (kNN), Support Vector Machine (SVM), Logistic 

Regression and C4.5 decision tree (Duhaney et al. 2011). 

Based on these studies,seven algorithms have been com-

pared to identify the best performing one. These algorithms 

are listed in Table 3. Moreover Table 2 lists the most signifi-

cant hyperpatameters used for each algorithm.

3.3.1  Evolving process

In the processing phase when the input stream is analysed 

and classified, it gets appended to the training dataset.The 

whole framework is wrapped by a Linux bash file and gets 

Fig. 6  Gas turbine process design

Table 1  Gas turbine sensors

Sensor description Unit Count

Power turbine rotor speed rpm 2

Gas generator rotor speed rpm 2

Power turbine exhaust temperature F 6

None drive end direction mm/s 1

Drive end vibration × direct um P-P 1

Turbine inlet pressure psia 1

Compressor inlet total pressure psia 1

Ambient temperature F 1

Axial compressor inlet temperature F 2

Mineral oil tank temperature F 1

Synthetic oil tank temperature F 1

OB bearing temperature C 1

IB bearing temperature C 1

IB thrust bearing temperature C 1

OB thrust bearing temperature C 1

Generator active power Mwatt 1

Grid voltage V 1
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executed using a timer every 5 min. To prevent downtime 

while the framework cycle gets restarted with the updated 

training dataset there are two parallel virtual machines called 

primary and secondary. The two machines run side by side. 

The secondary virtual machine runs the cycle with 2.5 

min lag which provide enough time for the primary virtual 

machine restart the cycle with the updated training dataset 

before itself restart the cycle. the process create a continues 

monitoring system which every 5 min evolves and retrain the 

model with the updated dataset without downtime.

As it is illustrated in Table 3, Multi-Layer Perceptron 

(MLP) Neural Network generates the best result amongst 

other algorithms. All the results listed are the best results 

for each of the algorithms considered, obtained by adjust-

ing their hyper-parameters to achieve the best performance 

using the Auto-Weka package for comparing CI techniques. 

Therefore to implement the Processing phase of the sug-

gested framework, a Multilayer Perceptron is used, which is 

a feedforward Artificial Neural Network (ANN). Funahashi 

Fig. 7  Turbine’s fail scenarios

Table 2  Comparison of algorithm performance

Algorithm Hyperparameters

Multi-layer perceptron (MLP) 

neural network

Iteration: 5000

Hidden layers: 4

Neurons per layer: 24

C4.5 decision tree (%) Confidence factor: 0.25

Number of folds: 3

Minimum number of objects: 2

Number of leaves: 30

Size of the tree: 59

Decision tree random forest Minimum number of records per 

node: 10

Number of threads: 4

Quality measure: Gini Index

Number of leaves: 29

Size of the tree: 58

k-nearest neighbour (%) Number of neighbours to consider 

(k): 3

Support vector machine (SVM) Overlapping penalty: 1.7

Kernel:polynomial

Power: 1.3

Bias: 0.7

Gamma: 0.3

Logistic regression (%) –

Nave Bayes (%) Default probability: 0.004

Maximum number of unique 

nominal values per attribute: 20

Table 3  Comparison of algorithm performance

Algorithm Accuracy (%) Error (%)

Multi-layer perceptron (MLP) neu-

ral network

100 0

C4.5 decision tree (%) 94.74 5.26

Decision tree random forest 94.73 5.27

k-nearest neighbour (%) 94.07 5.93

Support vector machine (SVM) 87.21 12.79

Logistic regression (%) 46.5 53.5

Nave Bayes (%) 40.45 59.55
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(1989), Hornik et al. (1989) and Qin et al. (2016) have all 

shown that only one hidden layer can effectively generate 

highly accurate results and to improve the processing time. 

Therefore initially an ANN Multilayer Perceptron with 

Backpropagation of error with one hidden layer has been 

used. However, in addition to that the chosen algorithm has 

been been trained with 1, 2, 3 and 4 hidden layers and ten-

fold cross validation. The experiments had been carried out 

up until four hidden layers, which eventually generated an 

excellent result. Table 4 lists the results obtained from the 

experiments with 1–4 hidden layers.

Although by using only one hidden layer we have man-

aged to classify 92.77% of the instances correctly, by 

increasing the number of hidden layers to 4, all test instances 

could be correctly classified.

Figure 8 illustrated an artificial neural network design. 

The input layer corresponds to the 25 input sensors of the 

gas turbine. The middle layers are used to form the rela-

tions between the neurons, their number being determined 

at runtime. The output neurons are the three classifications 

which indicates the status of the turbine. 

3.4  Prediction

The second stage of the proposed model is the Prediction 

Phase. The purpose of this phase is to predict the future 

values for the next 24 h of all 25 sensors. During this phase 

three-month historical data has been used to train a linear 

regression model for each sensors. In addition to that, the 

thresholds for each of the sensors, provided from currently 

installed Conditional Monitoring System have been used to 

set threshold alarms. After training the models the developed 

anomaly detection framework was put into practice for each 

sensors times series with the lag period of 24 h for each 

sensor to predict the next 24-h datasets. Therefore, if any 

of the predicted values for each of the sensors fall below or 

beyond the allowed threshold interval, then Alarm 2 gets 

activated. Figure 9 illustrates the predicted results for all the 

25 sensors chosen.

3.5  Anomaly detection

Since the combination of all the sensors together reflects the 

status of the turbine, after predicting future sensor values, 

all the predicted values get merged into a single test dataset. 

A Multi-Layer Perceptron (MLP) Neural Network model, 

which has been selected as the best performing algorithm as 

part of the Processing phase, was used again for labelling the 

status of the turbine for each of the instances. After predict-

ing the status of the turbine for all instances of the dataset, 

the developed framework iterates through all labels and, if 

any of the instances are labeled as failed, Alarm 3 gets trig-

gered. The system then picks the timestamp of the predicted 

time and deducts it from the current time to provide the 

estimated hours left until the system failure. In the final step 

of the Anomaly Detection phase, the total remaining hours 

gets included into an automatically generated email and is 

Table 4  ANN multilayer perceptron optimisation

Layers count One Two Three Four

Correctly classified (%) 92.77 92.77 94.95 100

Incorrectly classified (%) 7.23 7.23 5.05 0

Kappa statistic 0.60 0.60 0.74 1

Mean absolute error 0.09 0.09 0.062 0

Root mean squared error 0.21 0.21 0.17 0

Relative absolute error (%) 57.32 57.79 39.10 0.34

Root relative squared error (%) 74.89 74.97 62.71 0.77

Coverage of cases (0.95 level) (%) 100 100 100 100

Mean rel. region size (0.95 level) 4.65 64.65 55.25 33.33

Fig. 8  ANN multilayer percep-

tron proposed model
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sent out to the preset list of email addresses, as well as play-

ing an audio alarm on the PC.

3.6  Overall automated process

Initially Weka (www.cs.waikato.ac.nz/ml/weka/) was used 

to run each of the phases separately. However, in the final 

stage of the process we have actually formed the proposed 

framework using Knime (www.knime.org/). Knime is 

an open source data analytics, reporting and integration 

platform. Although there are other alternatives, such as 

Weka’s KnowledgeFlow and Microsoft Azure’s Machine 

Learning, Knime was chosen since it has the capability of 

importing most of Weka’s features through the addition of 

a plugin. Also being able to run java snippets and write the 

developed model into disk to free up space on memory, it 

Fig. 9  Predicted sensor values

http://www.cs.waikato.ac.nz/ml/weka/
http://www.knime.org/
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was considered to be a preferred option in comparison to 

Azure’s Machine Learning.

The dataset was divided into two sets of training and 

test data as illustrated in Fig. 10. Two-month worth of data 

was used for training, which included eight cases of tur-

bine failure, with the remainder set aside for testing. The 

training dataset has been used to form an Artificial Neural 

Network Multilayer Perceptron (MLP) using backpropaga-

tion of error (Pal and Mitra 1992).

After training the model, it was tested against the devel-

oped ANN MLP to classify the status of the engine. This 

implementation covered the Processing phase of the pro-

posed Cyber Physical System. This was followed by intro-

ducing times series lag and a linear regression model to 

Fig. 9  (continued)
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predict the next 24 h on the test dataset. By looking at the 

eight failure situations, corresponding thresholds were iden-

tified for each of the input sensors based on the pre-labeled 

dataset generated by the CMS. Therefore, if during the pre-

diction stage any of the sensor’s value go below or above 

the set threshold, the second Alarm goes off. However, this 

alarm is an amber alarm, which does not necessarily imply 

that the turbine will fail. With 24 h of predicted data for the 

sensor data gathered in the final stage of the process, all the 

predicted data is put together as a test dataset and is tested 

against the model developed in the Processing Phase. If the 

status of the engine gets classified as False, then the third 

and last alarm gets activated.

3.7  Evaluation

To test the accuracy and performance of the proposed model, 

we have divided the available dataset which covers a total 

of four months into four separate datasets. Then the test for 

each month was run individually by removing 5-day worth 

of data from each dataset. This led to developing a model 

used to predict each of eliminated days on an hourly basis. 

To achieve this, the operational performance of the turbine 

for the next 1, 3, 6, 9, 12, 14, 16, 18 and 24 h on each days 

has been predicted. Then the average performance across 

these 5 days was estimated, using twenty experiment that 

have been averaged, as illustrated in Fig. 11.

The average performance shows that within the first 12 

h the proposed framework could predict the status of the 

turbine with nearly 99% accuracy, which is a very high per-

formance. Even for the 15 h period, prediction was around 

84.28%, where other studies (Topouzelis and Psyllos 2012) 

support that predictive accuracy over 84% by having 25 

features (sensors) or above is considered to be of high per-

formance. Also, Naseri and Barabady (2016) showed the 

waiting downtime associated with each item of corrective 

Fig. 10  Overall automated framework of the process

Fig. 11  Hourly performance 

evaluation
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maintenance for gas turbine is considered to be about 7210 

h. Therefore having performance of even 73% after 16 h can 

very effectively reduce the downtime by 20%. However, after 

18 h the prediction performance shows a sudden decline and, 

when it gets to prediction of the next 24 h, the result is really 

poor by being around 58%. Table 5 lists the average value of 

the results for each prediction.

Figure 12 shows the correlation of the 4 factors of Rotor 

speed, Exhaust temperature, generated active power and the 

prediction in processing phase of the framework. As the 

speed of rotor increases, this results in a rise of exhaust tem-

perature, which leads to higher generated power. The figure 

illustrates the prediction is clearly matching the scenario 

where the rotor speed and exhaust temperature is low, system 

is generating low power or it is in the fail state.

As illustrated in Fig. 13, the prediction phase of the 

framework where future values of the sensors are predicted 

and correlation of the values matching what is expected 

where when Rotor speed is increasing, the predicted values 

of Exhaust temperature is increasing, so is the expected Gen-

erator Active Power.

To visualise the accuracy of the framework in the Anom-

aly Detection phase (Fig. 14), the correlation between Rotor 

Speed, Exhaust Temperature, Generator active power and 

the framework’s prediction are shown. As expected, in the 

scenario illustrated in the Figure, although all three input 

values showing an increase in expected correlation, but 

all the performances are below the expected rate and, as a 

result, the Turbine state is identified as failure, which is the 

expected result.

4  Conclusion

An implementation of a context-aware cyber physical system 

using evolving inferential sensors for condition monitoring 

to predict the status of a gas turbine on an offshore instal-

lation has been successfully developed. In this research, a 

three-phase approach has been proposed: In the process-

ing phase, historical data of 25 sensors was collected from 

different areas of turbine to train an evolving component 

(ANN-based) used as the basis of the prediction model. In 

the second phase, future value of each physical sensor were 

predicted for a certain period of time using linear regression. 

The final phase makes use of the model developed in phase 

one to label the predicted data in order to detect anomalies 

prior to their occurrence.

The developed evolving sensor proved to be capable of 

highly accurate predictions of gas turbine status up to 15 h in 

advance with the accuracy of about 84.28%. The clear chal-

lenge in these sort of problem is dealing with imbalanced 

data and taking advantage of a time-series algorithm, such as 

Table 5  Comparison of real-time status vs. predicted status

Hours Accuracy (%) Error (%)

1 100 0

3 100 0

6 100 0

9 100 0

12 98.716 1.284

14 84.287 15.713

16 73.539 26.461

18 65.221 34.779

24 58.545 41.455

Fig. 12  Processing output
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time series prediction with Feed-Forward Neural Networks, 

to help improving the length of a predication period. Fur-

ther research will focus on normalising the imbalanced data 

using approaches, such as ensemble methods that include 

bagging and boosting, as well as extending the prediction 

time frame by assuring high accuracy in anomaly identifica-

tion through exploring various combinations of computa-

tional intelligence techniques with conventional classifica-

tion approaches.
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