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Learning and evolution are two fundamental forms of adapta-
tion. There has been a great interest in combining learning and
evolution with artificial neural networks (ANN’s) in recent years.
This paper: 1) reviews different combinations between ANN’s and
evolutionary algorithms (EA’s), including using EA’s to evolve
ANN connection weights, architectures, learning rules, and input
features; 2) discusses different search operators which have been
used in various EA’s; and 3) points out possible future research
directions. It is shown, through a considerably large literature
review, that combinations between ANN’s and EA’s can lead to
significantly better intelligent systems than relying on ANN’s or
EA’s alone.

Keywords—Evolutionary computation, intelligent systems, neu-
ral networks.

I. INTRODUCTION

Evolutionary artificial neural networks (EANN’s) refer
to a special class of artificial neural networks (ANN’s) in
which evolution is another fundamental form of adaptation
in addition to learning [1]–[5]. Evolutionary algorithms
(EA’s) are used to perform various tasks, such as con-
nection weight training, architecture design, learning rule
adaptation, input feature selection, connection weight ini-
tialization, rule extraction from ANN’s, etc. One distinct
feature of EANN’s is their adaptability to a dynamic
environment. In other words, EANN’s can adapt to an en-
vironment as well as changes in the environment. The two
forms of adaptation, i.e., evolution and learning in EANN’s,
make their adaptation to a dynamic environment much more
effective and efficient. In a broader sense, EANN’s can be
regarded as a general framework for adaptive systems, i.e.,
systems that can change their architectures and learning
rules appropriately without human intervention.

This paper is most concerned with exploring possible
benefits arising from combinations between ANN’s and
EA’s. Emphasis is placed on the design of intelligent
systems based on ANN’s and EA’s. Other combinations
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between ANN’s and EA’s for combinatorial optimization
will be mentioned but not discussed in detail.

A. Artificial Neural Networks

1) Architectures: An ANN consists of a set of processing
elements, also known as neurons or nodes, which are
interconnected. It can be described as a directed graph in
which each node performs a transfer function of the
form

(1)

where is the output of the node is the th input to
the node, and is the connection weight between nodes

and . is the threshold (or bias) of the node. Usually,
is nonlinear, such as a heaviside, sigmoid, or Gaussian

function.
ANN’s can be divided into feedforward and recurrent

classes according to their connectivity. An ANN is feed-
forward if there exists a method which numbers all the
nodes in the network such that there is no connection from
a node with a large number to a node with a smaller number.
All the connections are from nodes with small numbers to
nodes with larger numbers. An ANN is recurrent if such a
numbering method does not exist.

In (1), each term in the summation only involves one
input . High-order ANN’s are those that contain high-
order nodes, i.e., nodes in which more than one input
are involved in some of the terms of the summation. For
example, a second-order node can be described as

where all the symbols have similar definitions to those in
(1).

The architecture of an ANN is determined by its topo-
logical structure, i.e., the overall connectivity and transfer
function of each node in the network.
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Fig. 1. A general framework of EA’s.

2) Learning in ANN’s: Learning in ANN’s is typically
accomplished using examples. This is also called “training”
in ANN’s because the learning is achieved by adjusting the
connection weights1 in ANN’s iteratively so that trained
(or learned) ANN’s can perform certain tasks. Learning in
ANN’s can roughly be divided into supervised, unsuper-
vised, and reinforcement learning. Supervised learning is
based on direct comparison between the actual output of
an ANN and the desired correct output, also known as the
target output. It is often formulated as the minimization
of an error function such as the total mean square error
between the actual output and the desired output summed
over all available data. A gradient descent-based optimiza-
tion algorithm such as backpropagation (BP) [6] can then
be used to adjust connection weights in the ANN iteratively
in order to minimize the error. Reinforcement learning is a
special case of supervised learning where the exact desired
output is unknown. It is based only on the information of
whether or not the actual output is correct. Unsupervised
learning is solely based on the correlations among input
data. No information on “correct output” is available for
learning.

The essence of a learning algorithm is the learning rule,
i.e., a weight-updating rule which determines how connec-
tion weights are changed. Examples of popular learning
rules include the delta rule, the Hebbian rule, the anti-
Hebbian rule, and the competitive learning rule [7].

More detailed discussion of ANN’s can be found in [7].

B. EA’s

EA’s refer to a class of population-based stochastic
search algorithms that are developed from ideas and princi-
ples of natural evolution. They include evolution strategies
(ES) [8], [9], evolutionary programming (EP) [10], [11],
[12], and genetic algorithms (GA’s) [13], [14]. One im-
portant feature of all these algorithms is their population-
based search strategy. Individuals in a population compete
and exchange information with each other in order to
perform certain tasks. A general framework of EA’s can
be described by Fig. 1.

EA’s are particularly useful for dealing with large com-
plex problems which generate many local optima. They are
less likely to be trapped in local minima than traditional

1Thresholds (biases) can be viewed as connection weights with fixed
input�1.

gradient-based search algorithms. They do not depend
on gradient information and thus are quite suitable for
problems where such information is unavailable or very
costly to obtain or estimate. They can even deal with
problems where no explicit and/or exact objective function
is available. These features make them much more robust
than many other search algorithms. Fogel [15] and Bäck
et al. [16] give a good introduction to various evolutionary
algorithms for optimization.

C. Evolution in EANN’s

Evolution has been introduced into ANN’s at roughly
three different levels: connection weights; architectures;
and learning rules. The evolution of connection weights
introduces an adaptive and global approach to training,
especially in the reinforcement learning and recurrent net-
work learning paradigm where gradient-based training al-
gorithms often experience great difficulties. The evolution
of architectures enables ANN’s to adapt their topologies
to different tasks without human intervention and thus
provides an approach to automatic ANN design as both
ANN connection weights and structures can be evolved.
The evolution of learning rules can be regarded as a process
of “learning to learn” in ANN’s where the adaptation of
learning rules is achieved through evolution. It can also be
regarded as an adaptive process of automatic discovery of
novel learning rules.

D. Organization of the Article

The remainder of this paper is organized as follows.
Section II discusses the evolution of connection weights.
The aim is to find a near-optimal set of connection weights
globally for an ANN with a fixed architecture using EA’s.
Various methods of encoding connection weights and dif-
ferent search operators used in EA’s will be discussed.
Comparisons between the evolutionary approach and con-
ventional training algorithms, such as BP, will be made.
In general, no single algorithm is an overall winner for all
kinds of networks. The best training algorithm is problem
dependent.

Section III is devoted to the evolution of architectures,
i.e., finding a near-optimal ANN architecture for the tasks
at hand. It is known that the architecture of an ANN
determines the information processing capability of the
ANN. Architecture design has become one of the most
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Fig. 2. A typical cycle of the evolution of connection weights.

important tasks in ANN research and application. Two most
important issues in the evolution of architectures, i.e., the
representation and search operators used in EA’s, will be
addressed in this section. It is shown that evolutionary
algorithms relying on crossover operators do not perform
very well in searching for a near-optimal ANN architecture.
Reasons and empirical results will be given in this section
to explain why this is the case.

If imagining ANN’s connection weights and architectures
as their “hardware,” it is easier to understand the importance
of the evolution of ANN’s “software”—learning rules.
Section IV addresses the evolution of learning rules in
ANN’s and examines the relationship between learning
and evolution, e.g., how learning guides evolution and
how learning itself evolves. It is demonstrated that an
ANN’s learning ability can be improved through evolution.
Although research on this topic is still in its early stages,
further studies will no doubt benefit research in ANN’s and
machine learning as a whole.

Section V summarizes some other forms of combinations
between ANN’s and EA’s. They do not intend to be
exhaustive, simply indicative. They demonstrate the breadth
of possible combinations between ANN’s and EA’s.

Section VI first describes a general framework of
EANN’s in terms of adaptive systems where interactions
among three levels of evolution are considered. The
framework provides a common basis for comparing
different EANN models. The section then gives a brief
summary of the paper and concludes with a few remarks.

II. THE EVOLUTION OF CONNECTION WEIGHTS

Weight training in ANN’s is usually formulated as min-
imization of an error function, such as the mean square
error between target and actual outputs averaged over all
examples, by iteratively adjusting connection weights. Most
training algorithms, such as BP and conjugate gradient
algorithms [7], [17]–[19], are based on gradient descent.
There have been some successful applications of BP in
various areas [20]–[22], but BP has drawbacks due to its use
of gradient descent [23], [24]. It often gets trapped in a local
minimum of the error function and is incapable of finding

a global minimum if the error function is multimodal
and/or nondifferentiable. A detailed review of BP and other
learning algorithms can be found in [7], [17], and [25].

One way to overcome gradient-descent-based training
algorithms’ shortcomings is to adopt EANN’s, i.e., to for-
mulate the training process as the evolution of connection
weights in the environment determined by the architecture
and the learning task. EA’s can then be used effectively
in the evolution to find a near-optimal set of connection
weights globally without computing gradient information.
The fitness of an ANN can be defined according to different
needs. Two important factors which often appear in the
fitness (or error) function are the error between target and
actual outputs and the complexity of the ANN. Unlike
the case in gradient-descent-based training algorithms, the
fitness (or error) function does not have to be differentiable
or even continuous since EA’s do not depend on gradient
information. Because EA’s can treat large, complex, non-
differentiable, and multimodal spaces, which are the typical
case in the real world, considerable research and application
has been conducted on the evolution of connection weights
[24], [26]–[112].

The evolutionary approach to weight training in ANN’s
consists of two major phases. The first phase is to decide
the representation of connection weights, i.e., whether in
the form of binary strings or not. The second one is
the evolutionary process simulated by an EA, in which
search operators such as crossover and mutation have to
be decided in conjunction with the representation scheme.
Different representations and search operators can lead to
quite different training performance. A typical cycle of the
evolution of connection weights is shown in Fig. 2. The
evolution stops when the fitness is greater than a predefined
value (i.e., the training error is smaller than a certain value)
or the population has converged.

A. Binary Representation

The canonical genetic algorithm (GA) [13], [14] has
always used binary strings to encode alternative solutions,
often termed chromosomes. Some of the early work in
evolving ANN connection weights followed this approach
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(a) (b)

Fig. 3. (a) An ANN with connection weights shown. (b) A
binary representation of the weights, assuming that each weight
is represented by four bits.

[24], [26], [28], [37], [38], [41], [52], [53]. In such a repre-
sentation scheme, each connection weight is represented by
a number of bits with certain length. An ANN is encoded by
concatenation of all the connection weights of the network
in the chromosome.

A heuristic concerning the order of the concatenation
is to put connection weights to the same hidden/output
node together. Hidden nodes in ANN’s are in essence
feature extractors and detectors. Separating inputs to the
same hidden node far apart in the binary representation
would increase the difficulty of constructing useful feature
detectors because they might be destroyed by crossover
operators. It is generally very difficult to apply crossover
operators in evolving connection weights since they tend
to destroy feature detectors found during the evolutionary
process.

Fig. 3 gives an example of the binary representation of
an ANN whose architecture is predefined. Each connection
weight in the ANN is represented by 4 bits, the whole ANN
is represented by 24 bits where weight0000 indicates no
connection between two nodes.

The advantages of the binary representation lie in its
simplicity and generality. It is straightforward to apply
classical crossover (such as one-point or uniform crossover)
and mutation to binary strings. There is little need to design
complex and tailored search operators. The binary repre-
sentation also facilitates digital hardware implementation
of ANN’s since weights have to be represented in terms of
bits in hardware with limited precision.

There are several encoding methods, such as uniform,
Gray, exponential, etc., that can be used in the binary
representation. They encode real values using different
ranges and precisions given the same number of bits.
However, a tradeoff between representation precision and
the length of chromosome often has to be made. If too
few bits are used to represent each connection weight,
training might fail because some combinations of real-
valued connection weights cannot be approximated with
sufficient accuracy by discrete values. On the other hand,
if too many bits are used, chromosomes representing large
ANN’s will become extremely long and the evolution in
turn will become very inefficient.

One of the problems faced by evolutionary training of
ANN’s is the permutation problem [32], [113], also known
as the competing convention problem. It is caused by the

(a) (b)

Fig. 4. (a) An ANN which is equivalent to that given in Fig. 3(a).
(b) Its binary representation under the same representation scheme.

many-to-one mapping from the representation (genotype)
to the actual ANN (phenotype) since two ANN’s that order
their hidden nodes differently in their chromosomes will
still be equivalent functionally. For example, ANN’s shown
by Figs. 3(a) and 4(a) are equivalent functionally, but they
have different chromosomes as shown by Figs. 3(b) and
4(b). In general, any permutation of the hidden nodes
will produce functionally equivalent ANN’s with differ-
ent chromosome representations. The permutation problem
makes crossover operator very inefficient and ineffective in
producing good offspring.

B. Real-Number Representation

There have been some debates on the cardinality of
the genotype alphabet. Some have argued that the mini-
mal cardinality, i.e., the binary representation, might not
be the best [48], [114]. Formal analysis of nonstandard
representations and operators based on the concept of
equivalent classes [115], [116] has given representations
other than ary strings a more solid theoretical foundation.
Real numbers have been proposed to represent connection
weights directly, i.e., one real number per connection
weight [27], [29], [30], [48], [63]–[65], [74], [95], [96],
[102], [110], [111], [117], [118]. For example, a real-
number representation of the ANN given by Fig. 3(a) could
be (4.0,10.0,2.0,0.0,7.0,3.0) .

As connection weights are represented by real numbers,
each individual in an evolving population will be a real
vector. Traditional binary crossover and mutation can no
longer be used directly. Special search operators have
to be designed. Montana and Davis [27] defined a large
number of tailored genetic operators which incorporated
many heuristics about training ANN’s. The idea was to
retain useful feature detectors formed around hidden nodes
during evolution. Their results showed that the evolutionary
training approach was much faster than BP for the problems
they considered. Bartlett and Downs [30] also demonstrated
that the evolutionary approach was faster and had better
scalability than BP.

A natural way to evolve real vectors would be to use
EP or ES since they are particularly well-suited for treating
continuous optimization. Unlike GA’s, the primary search
operator in EP and ES is mutation. One of the major
advantages of using mutation-based EA’s is that they can
reduce the negative impact of the permutation problem.
Hence the evolutionary process can be more efficient. There
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have been a number of successful examples of applying EP
or ES to the evolution of ANN connection weights [29],
[63]–[65], [67], [68], [95], [96], [102], [106], [111], [117],
[119], [120]. In these examples, the primary search operator
has been Gaussian mutation. Other mutation operators, such
as Cauchy mutation [121], [122], can also be used. EP
and ES also allow self adaptation of strategy parameters.
Evolving connection weights by EP can be implemented
as follows.

1) Generate an initial population of individuals at
random and set . Each individual is a pair
of real-valued vectors, ,
where ’s are connection weight vectors and’s are
variance vectors for Gaussian mutations (also known
as strategy parameters in self-adaptive EA’s). Each
individual corresponds to an ANN.

2) Each individual , creates a
single offspring by: for

(2)

(3)

where , and denote the
th component of the vectors and ,

respectively. denotes a normally distributed
one-dimensional random number with mean zero and
variance one. indicates that the random
number is generated anew for each value of. The
parameters and are commonly set to
and [15], [123]. in (3) may be
replaced by Cauchy mutation [121], [122], [124] for
faster evolution.

3) Determine the fitness of every individual, including
all parents and offspring, based on the training error.
Different error functions may be used here.

4) Conduct pairwise comparison over the union of par-
ents and offspring .
For each individual, opponents are chosen uni-
formly at random from all the parents and offspring.
For each comparison, if the individual’s fitness is
no smaller than the opponent’s, it receives a “win.”
Select individuals out of and

, that have most wins to form the
next generation. (This tournament selection scheme
may be replaced by other selection schemes, such as
[125].)

5) Stop if the halting criterion is satisfied; otherwise,
and go to Step 2).

C. Comparison Between Evolutionary Training
and Gradient-Based Training

As indicated at the beginning of Section II, the evolu-
tionary training approach is attractive because it can handle
the global search problem better in a vast, complex, mul-
timodal, and nondifferentiable surface. It does not depend
on gradient information of the error (or fitness) function
and thus is particularly appealing when this information

is unavailable or very costly to obtain or estimate. For
example, the evolutionary approach has been used to train
recurrent ANN’s [41], [60], [65], [100], [102], [103], [106],
[117], [126]–[128], higher order ANN’s [52], [53], and
fuzzy ANN’s [76], [77], [129], [130]. Moreover, the same
EA can be used to train many different networks regardless
of whether they are feedforward, recurrent, or higher order
ANN’s. The general applicability of the evolutionary ap-
proach saves a lot of human efforts in developing different
training algorithms for different types of ANN’s.

The evolutionary approach also makes it easier to gener-
ate ANN’s with some special characteristics. For example,
the ANN’s complexity can be decreased and its generaliza-
tion increased by including a complexity (regularization)
term in the fitness function. Unlike the case in gradient-
based training, this term does not need to be differentiable
or even continuous. Weight sharing and weight decay can
also be incorporated into the fitness function easily.

Evolutionary training can be slow for some problems in
comparison with fast variants of BP [131] and conjugate
gradient algorithms [19], [132]. However, EA’s are gen-
erally much less sensitive to initial conditions of training.
They always search for a globally optimal solution, while
a gradient descent algorithm can only find a local optimum
in a neighborhood of the initial solution.

For some problems, evolutionary training can be signif-
icantly faster and more reliable than BP [30], [34], [40],
[63], [83], [89]. Prados [34] described a GA-based training
algorithm which is “significantly faster than methods that
use the generalized delta rule (GDR).” For the three tests
reported in his paper [34], the GA-based training algorithm
“took a total of about 3 hours and 20 minutes, and the GDR
took a total of about 23 hours and 40 minutes.” Bartlett and
Downs [30] also gave a modified GA which was “an order
of magnitude” faster than BP for the 7-bit parity problem.
The modified GA seemed to have better scalability than
BP since it was “around twice” as slow as BP for the
XOR problem but faster than BP for the larger 7-bit parity
problem.

Interestingly, quite different results were reported by Ki-
tano [133]. He found that the GA–BP method, a technique
that runs a GA first and then BP, “is, at best, equally
efficient to faster variants of back propagation in very small
scale networks, but far less efficient in larger networks.”
The test problems he used included theXOR problem,
various size encoder/decoder problems, and the two-spiral
problem. However, there have been many other papers
which report excellent results using hybrid evolutionary and
gradient descent algorithms [32], [67], [70], [71], [74], [80],
[81], [86], [103], [105], [110]–[112].

The discrepancy between two seemingly contradictory
results can be attributed at least partly to the different
EA’s and BP compared. That is, whether the comparison
is between a classical binary GA and a fast BP algorithm,
or between a fast EA and a classical BP algorithm. The
discrepancy also shows that there is no clear winner in
terms of the best training algorithm. The best one is always
problem dependent. This is certainly true according to the
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no-free-lunch theorem [134]. In general, hybrid algorithms
tend to perform better than others for a large number of
problems.

D. Hybrid Training

Most EA’s are rather inefficient in fine-tuned local search
although they are good at global search. This is especially
true for GA’s. The efficiency of evolutionary training can
be improved significantly by incorporating a local search
procedure into the evolution, i.e., combining EA’s global
search ability with local search’s ability to fine tune. EA’s
can be used to locate a good region in the space and then
a local search procedure is used to find a near-optimal
solution in this region. The local search algorithm could
be BP [32], [133] or other random search algorithms [30],
[135]. Hybrid training has been used successfully in many
application areas [32], [67], [70], [71], [74], [80], [81], [86],
[103], [105], [110]–[112].

Lee [81] and many others [32], [136]–[138] used GA’s to
search for a near-optimal set of initial connection weights
and then used BP to perform local search from these
initial weights. Their results showed that the hybrid GA/BP
approach was more efficient than either the GA or BP al-
gorithm used alone. If we consider that BP often has to run
several times in practice in order to find good connection
weights due to its sensitivity to initial conditions, the hybrid
training algorithm will be quite competitive. Similar work
on the evolution of initial weights has also been done on
competitive learning neural networks [139] and Kohonen
networks [140].

It is interesting to consider finding good initial weights
as locating a good region in the weight space. Defining that
basin of attraction of a local minimum as being composed
of all the points, sets of weights in this case, which can
converge to the local minimum through a local search
algorithm, then a global minimum can easily be found by
the local search algorithm if an EA can locate a point, i.e., a
set of initial weights, in the basin of attraction of the global
minimum. Fig. 5 illustrates a simple case where there is
only one connection weight in the ANN. If an EA can find
an initial weight such as , it would be easy for a local
search algorithm to arrive at the globally optimal weight

even though itself is not as good as .

III. T HE EVOLUTION OF ARCHITECTURES

Section II assumed that the architecture of an ANN is
predefined and fixed during the evolution of connection
weights. This section discusses the design of ANN architec-
tures. The architecture of an ANN includes its topological
structure, i.e., connectivity, and the transfer function of each
node in the ANN. As indicated in the beginning of this
paper, architecture design is crucial in the successful ap-
plication of ANN’s because the architecture has significant
impact on a network’s information processing capabilities.
Given a learning task, an ANN with only a few connections
and linear nodes may not be able to perform the task
at all due to its limited capability, while an ANN with

Fig. 5. An illustration of using an EA to find good initial weights
such that a local search algorithm can find the globally optimal
weights easily.wI2 in this figure is an optimal initial weight
because it can lead to the global optimumwB using a local search
algorithm.

a large number of connections and nonlinear nodes may
overfit noise in the training data and fail to have good
generalization ability.

Up to now, architecture design is still very much a human
expert’s job. It depends heavily on the expert experience
and a tedious trial-and-error process. There is no systematic
way to design a near-optimal architecture for a given task
automatically. Research on constructive and destructive al-
gorithms represents an effort toward the automatic design of
architectures [141]–[148]. Roughly speaking, a constructive
algorithm starts with a minimal network (network with
minimal number of hidden layers, nodes, and connections)
and adds new layers, nodes, and connections when nec-
essary during training while a destructive algorithm does
the opposite, i.e., starts with the maximal network and
deletes unnecessary layers, nodes, and connections during
training. However, as indicated by Angelineet al. [149],
“Such structural hill climbing methods are susceptible to
becoming trapped at structural local optima.” In addition,
they “only investigate restricted topological subsets rather
than the complete class of network architectures” [149].

Design of the optimal architecture for an ANN can be
formulated as a search problem in the architecture space
where each point represents an architecture. Given some
performance (optimality) criteria, e.g., lowest training error,
lowest network complexity, etc., about architectures, the
performance level of all architectures forms a discrete
surface in the space. The optimal architecture design is
equivalent to finding the highest point on this surface. There
are several characteristics of such a surface as indicated by
Miller et al. [150] which make EA’s a better candidate for
searching the surface than those constructive and destruc-
tive algorithms mentioned above. These characteristics are
[150]:

1) the surface is infinitely large since the number of
possible nodes and connections is unbounded;

2) the surface is nondifferentiable since changes in the
number of nodes or connections are discrete and can
have a discontinuous effect on EANN’s performance;
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Fig. 6. A typical cycle of the evolution of architectures.

3) the surface is complex and noisy since the mapping
from an architecture to its performance is indirect,
strongly epistatic, and dependent on the evaluation
method used;

4) the surface is deceptive since similar architectures
may have quite different performance;

5) the surface is multimodal since different architectures
may have similar performance.

Similar to the evolution of connection weights, two major
phases involved in the evolution of architectures are the
genotype representation scheme of architectures and the EA
used to evolve ANN architectures. One of the key issues
in encoding ANN architectures is to decide how much
information about an architecture should be encoded in the
chromosome. At one extreme, all the details, i.e., every
connection and node of an architecture, can be specified
by the chromosome. This kind of representation scheme
is called direct encoding. At the other extreme, only the
most important parameters of an architecture, such as the
number of hidden layers and hidden nodes in each layer,
are encoded. Other details about the architecture are left to
the training process to decide. This kind of representation
scheme is called indirect encoding. After a representation
scheme has been chosen, the evolution of architectures can
progress according to the cycle shown in Fig. 6. The cycle
stops when a satisfactory ANN is found.

Considerable research on evolving ANN architectures
has been carried out in recent years [33], [42], [45],
[118], [127], [128], [130], [138], [149]–[225]. Most of
the research has concentrated on the evolution of ANN
topological structures. Relatively little has been done on
the evolution of node transfer functions, let alone the
simultaneous evolution of both topological structures and
node transfer functions. In this paper, we will analyze
the genotypical representation scheme of topological struc-
tures in Sections III-A and III-B. For convenience, the
term architecture will be used interchangeably with the

term topological structure (topology) in these two sec-
tions. Section III-C discusses the evolution of node transfer
functions briefly. Then we explain why the simultaneous
evolution of ANN connection weights and architectures
is beneficial and what search operators should be used in
evolving architectures in Section III-D.

A. The Direct Encoding Scheme

Two different approaches have been taken in the direct
encoding scheme. The first separates the evolution of archi-
tectures from that of connection weights [24], [150], [153],
[154], [165], [167], [169], [170]. The second approach
evolves architectures and connection weights simultane-
ously [149], [179], [180], [182], [185]–[200]. This section
will focus on the first approach. The second approach will
be discussed in Section III-D.

In the first approach, each connection of an architecture
is directly specified by its binary representation [24], [150],
[153], [154], [165], [167], [169], [170], [202]. For example,
an matrix can represent an ANN
architecture with nodes, where indicates presence or
absence of the connection from nodeto node . We can use

to indicate a connection and to indicate no
connection. In fact, can represent real-valued connection
weights from node to node so that the architecture and
connection weights can be evolved simultaneously [37],
[42], [45], [165], [166], [169]–[171].

Each matrix has a direct one-to-one mapping to
the corresponding ANN architecture. The binary string
representing an architecture is the concatenation of rows
(or columns) of the matrix. Constraints on architectures
being explored can easily be incorporated into such a rep-
resentation scheme by imposing constraints on the matrix,
e.g., a feedforward ANN will have nonzero entries only
in the upper-right triangle of the matrix. Figs. 7 and 8
give two examples of the direct encoding scheme of ANN
architectures. It is obvious that such an encoding scheme
can handle both feedforward and recurrent ANN’s.

YAO: EVOLVING ARTIFICIAL NEURAL NETWORKS 1429



(a) (b) (c)

Fig. 7. An example of the direct encoding of a feedforward ANN. (a), (b), and (c) show the
architecture, its connectivity matrix, and its binary string representation, respectively. Because only
feedforward architectures are under consideration, the binary string representation only needs to
consider the upper-right triangle of the matrix.

(a) (b) (c)

Fig. 8. An example of the direct encoding of a recurrent ANN. (a), (b), and (c) show the
architecture, its connectivity matrix, and its binary string representation, respectively.

Fig. 7(a) shows a feedforward ANN with two inputs and
one output. Its connectivity matrix is given by Fig. 7(b),
where entry indicates the presence or absence of a
connection from node to node . For example, the first
row indicates connections from node 1 to all other nodes.
The first two columns are 0’s because there is no connection
from node 1 to itself and no connection to node 2. However,
node 1 is connected to nodes 3 and 4. Hence columns 3
and 4 have 1’s. Converting this connectivity matrix to a
chromosome is straightforward. We can concatenate all the
rows (or columns) and obtain

00 110 00 101 00 001 00 001 00 000.

Since the ANN is feedforward, we only need to represent
the upper triangle of the connectivity matrix in order to
reduce the chromosome length. The reduced chromosome is
given by Fig. 7(c). An EA can then be employed to evolve
a population of such chromosomes. In order to evaluate
the fitness of each chromosome, we need to convert a
chromosome back to an ANN, initialize it with random
weights, and train it. The training error will be used to
measure the fitness. It is worth noting that the ANN in
Fig. 7 has a shortcut connection from the input to output.
Such shortcuts pose no problems to the representation and
evolution. An EA is capable of exploring all possible
connectivities.

Fig. 8 shows a recurrent ANN. Its representation is
basically the same as that for feedforward ANN’s. The
only difference is that no reduction in chromosome length

is possible if we want to explore the whole connectivity
space. The EA used to evolve recurrent ANN’s can be the
same as that used to evolve feedforward ones.

The direct encoding scheme as described above is quite
straightforward to implement. It is very suitable for the
precise and fine-tuned search of a compact ANN architec-
ture, since a single connection can be added or removed
from the ANN easily. It may facilitate rapid generation and
optimization of tightly pruned interesting designs that no
one has hit upon so far [150].

Another flexibility provided by the evolution of architec-
tures stems from the fitness definition. There is virtually
no limitation such as being differentiable or continuous
on how the fitness function should be defined at Step 3
in Fig. 6. The training result pertaining to an architecture
such as the error and the training time is often used in
the fitness function. The complexity measurement such as
the number of nodes and connections is also used in the
fitness function. As a matter of fact, many criteria based
on the information theory or statistics [226]–[228] can
readily be introduced into the fitness function without much
difficulty. Improvement on ANN’s generalization ability
can be expected if these criteria are adopted. Schaffer
et al. [153] have presented an experiment which showed
that an ANN designed by the evolutionary approach had
better generalization ability than one trained by BP using
a human-designed architecture.

One potential problem of the direct encoding scheme
is scalability. A large ANN would require a very large
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matrix and thus increase the computation time of the
evolution. One way to cut down the size of matrices is
to use domain knowledge to reduce the search space. For
example, if complete connection is to be used between two
neighboring layers in a feedforward ANN, its architecture
can be encoded by just the number of hidden layers and
nodes in each hidden layer. The length of chromosome can
be reduced greatly in this case [153], [154]. However, doing
so requires sufficient domain knowledge and expertise,
which are difficult to obtain in practice. We also run the
risk of missing some very good solutions when we restrict
the search space manually.

The permutation problem as illustrated by Figs. 3 and
4 in Section II-A still exists and causes unwanted side
effects in the evolution of architectures. Because two func-
tionally equivalent ANN’s which order their hidden nodes
differently have two different genotypical representations,
the probability of producing a highly fit offspring by
recombining them is often very low. Some researchers
thus avoided crossover and adopted only mutations in
the evolution of architectures [45], [128], [149], [179],
[185]–[197], [217], [223], although it has been shown that
crossover may be useful and important in increasing the
efficiency of evolution for some problems [48], [113],
[212], [229]. Hancock [113] suggested that the permutation
problem might “not be as severe as had been supposed”
with the population size and the selection mechanism he
used because “The increased number of ways of solving
the problem outweigh the difficulties of bringing building
blocks together.” Thierens [101] proposed a genetic encod-
ing scheme of ANN’s which can avoid the permutation
problem, however, only very limited experimental results
were presented. It is worth indicating that most studies on
the permutation problem concentrate on the GA used, e.g.,
genetic operators, population sizes, selection mechanisms,
etc. While it is necessary to investigate the algorithm, it is
equally important to study the genotypical representation
scheme, since the performance surface defined in the be-
ginning of Section III is determined by the representation.
More research is needed to further understand the impact of
the permutation problem on the evolution of architectures.

B. The Indirect Encoding Scheme

In order to reduce the length of the genotypical represen-
tation of architectures, the indirect encoding scheme has
been used by many researchers [151], [152], [155], [156],
[159], [160], [168], [184], [205], [208], [211], [230]–[232]
where only some characteristics of an architecture are
encoded in the chromosome. The details about each con-
nection in an ANN is either predefined according to prior
knowledge or specified by a set of deterministic devel-
opmental rules. The indirect encoding scheme can pro-
duce more compact genotypical representation of ANN
architectures, but it may not be very good at finding
a compact ANN with good generalization ability. Some
[151], [230], [231] have argued that the indirect encoding
scheme is biologically more plausible than the direct one,
because it is impossible for genetic information encoded in

chromosomes to specify independently the whole nervous
system according to the discoveries of neuroscience.

1) Parametric Representation:ANN architectures may
be specified by a set of parameters such as the number
of hidden layers, the number of hidden nodes in each
layer, the number of connections between two layers, etc.
These parameters can be encoded in various forms in a
chromosome. Harpet al. [152], [156] used a “blueprint” to
represent an architecture which consists of one or more
segments representing an area (layer) and its efferent
connectivity (projections). The first and last area are
constrained to be the input and output area, respectively.
Each segment includes two parts of the information: 1)
that about the area itself, such as the number of nodes in
the area and the spatial organization of the area, and 2)
that about the efferent connectivity. It should be noted that
only the connectivity pattern instead of each connection
is specified here. The detailed node-to-node connection is
specified by implicit developmental rules, e.g., the network
instantiation software used by Harpet al. [152], [156].
Similar parametric representation methods with different
sets of parameters have also been proposed by others [155],
[159]. An interesting aspect of Harpet al.’s work is their
combination of learning parameters with architectures in
the genotypical representation. The learning parameters can
evolve along with architecture parameters. The interaction
between the two can be explored through evolution.

Although the parametric representation method can re-
duce the length of binary chromosome specifying ANN’s
architectures, EA’s can only search a limited subset of
the whole feasible architecture space. For example, if we
encode only the number of hidden nodes in the hidden layer,
we basically assume strictly layered feedforward ANN’s
with a single hidden layer. We will have to assume two
neighboring layers are fully connected as well. In general,
the parametric representation method will be most suitable
when we know what kind of architectures we are trying
to find.

2) Developmental Rule Representation:A quite different
indirect encoding method from the above is to encode de-
velopmental rules, which are used to construct architectures,
in chromosomes [151], [168], [184], [205], [230], [232].
The shift from the direct optimization of architectures to
the optimization of developmental rules has brought some
benefits, such as more compact genotypical representation,
to the evolution of architectures. The destructive effect of
crossover will also be lessened since the developmental rule
representation is capable of preserving promising building
blocks found so far [151]. But this method also has some
problems [233].

A developmental rule is usually described by a recursive
equation [230] or a generation rule similar to a production
rule in a production system with a left-hand side (LHS) and
a right-hand side (RHS) [151]. The connectivity pattern of
the architecture in the form of a matrix is constructed from a
basis, i.e., a single-element matrix, by repetitively applying
suitable developmental rules to nonterminal elements in
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Fig. 9. Examples of some developmental rules used to construct a connectivity matrix.S is the
initial element (or state).

the current matrix until the matrix contains only terminal2

elements which indicate the presence or absence of a
connection, that is, until a connectivity pattern is fully
specified.

Some examples of developmental rule are given in Fig. 9.
Each developmental rule consists of a LHS which is a
nonterminal element and a RHS which is a 22 matrix
with either terminal or nonterminal elements. A typical step
of constructing a connection matrix is to find rules whose
LHS’s appear in the current matrix and replace all the
appearance with respective RHS’s. For example, given a
set of rules as described by Fig. 9, whereis the starting
symbol (state), one step application of these rules will
produce the matrix

by replacing with . If we apply these rules again,
we can generate the following matrix:

by replacing with with with ,
and with . Another step of applying these rules
would lead us to the matrix

by replacing with with with , and
with . Since the above matrix consists of ones and

zeros only (i.e., terminals only), there will be no further
application of developmental rules. The above matrix will
be an ANN’s connection matrix.

Fig. 10 summarizes the previous three rule-rewriting
steps and the final ANN generated according to Fig. 10(d).

2In this paper, a terminal element is either 1 (existence of a connection)
or 0 (nonexistence of a connection) and a nonterminal element is a symbol
other than 1 and 0. These definitions are slightly different from those used
by others [151].

(a) (b) (c)

(d) (e)

Fig. 10. Development of an EANN architecture using the rules
given in Fig. 9: (a) the initial state; (b) step 1; (c) step 2; (d) step 3
when all the entries in the matrix are terminal elements, i.e., either
1 or 0; and (e) the architecture. The nodes in the architecture are
numbered from one to eight. Isolated nodes are not shown.

Note that nodes 2, 4, and 6 do not appear in the ANN
because they are not connected to any other nodes.

The example described by Figs. 9 and 10 illustrates how
an ANN architecture can be defined given a set of rules.
The question now is how to get such a set of rules to
construct an ANN. One answer is to evolve them. We can
encode the whole rule set as an individual [151] (the so-
called Pitt approach) or encode each rule as an individual
[184] (the so-called Michigan approach). Each rule may
be represented by four allele positions corresponding to
four elements in the RHS of the rule. The LHS can
be represented implicitly by the rule’s position in the
chromosome. Each position in a chromosome can take
one of many different values, depending on how many
nonterminal elements (symbols) we use in the rule set.
For example, the nonterminals may range from “” to
“ ” and “ ” to “ .” The 16 rules with “ ” to “ ” on the
LHS and 2 2 matrices with only ones and zeros on the
RHS are predefined and do not participate in evolution in
order to guarantee that different connectivity patterns can
be reached. Since there are 26 different rules, whose LHS
is “ ,” “ ,” ,“ ,” respectively, a chromosome encoding
all of them would need 26 4 104 alleles, four per rule.
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The LHS of a rule is implicitly determined by its position
in the chromosome. For example, the rule set in Fig. 9 can
be represented by the following chromosome:

ABCDaaaaiiiaiaacaeae
where the first four elements indicate the RHS of rule “”,
the second four indicate the RHS of rule “,” etc.

Some good results from the developmental rule repre-
sentation method have been reported [151] using various
size encoder/decoder problems. However, the method has
some limitations. It often needs to predefine the number of
rewriting steps. It does not allow recursive rules. It is not
very good at evolving detailed connectivity patterns among
individual nodes. A compact genotypical representation
does not imply a compact phenotypical representation, i.e.,
a compact ANN architecture. Recent work by Siddiqi and
Lucas [233] shows that the direct encoding scheme can be
at least as good as the developmental rule method. They
have reimplemented Kitano’s system and discovered that
the performance difference between the direct and indirect
encoding schemes was not caused by the encoding scheme
itself, but by how sparsely connected the initial ANN
architectures were in the initial population [151]. The direct
encoding scheme achieved the same performance as that
achieved by the developmental rule representation when
the initial conditions were the same [233].

The developmental rule representation method normally
separates the evolution of architectures from that of con-
nection weights. This creates some problems for evolution.
Section III-D will discuss these in more detail.

Mjolsnesset al. [230] described a similar rule encoding
method where rules are represented by recursive equa-
tions which specify the growth of connection matrices.
Coefficients of these recursive equations, represented by
decomposition matrices, are encoded in genotypes and op-
timized by simulated annealing instead of EA’s. Connection
weights are optimized along with connectivity by simulated
annealing since each entry of a connection matrix can have
a real-valued weight. One advantage of using simulated
annealing instead of GA’s in the evolution is the avoidance
of the destructive effect of crossover. Wilson [234] also
used simulated annealing in ANN architecture design.

3) Fractal Representation:Merrill and Port [231] pro-
posed another method for encoding architectures which
is based on the use of fractal subsets of the plane. They
argued that the fractal representation of architectures was
biologically more plausible than the developmental rule
representation. They used three real-valued parameters, i.e.,
an edge code, an input coefficient, and an output coefficient
to specify each node in an architecture. In a sense, this
encoding method is closer to the direct encoding scheme
rather to the indirect one. Fast simulated annealing [235]
was used in the evolution.

4) Other Representations:A very different approach to
the evolution of architectures has been proposed by Ander-
sen and Tsoi [236]. Their approach is unique in that each
individual in a population represents a hidden node rather
than the whole architecture. An architecture is built layer
by layer, i.e., hidden layers are added one by one if the

current architecture cannot reduce the training error below
certain threshold. Each hidden layer is constructed auto-
matically through an evolutionary process which employs
the GA with fitness sharing. Fitness sharing encourages the
formation of different feature detectors (hidden nodes) in
the population. The number of hidden nodes in each hidden
layer can vary.

One limitation of this approach [236] is that it could
only deal with strictly layered feedforward ANN’s. Another
limitation is that there are usually several hidden nodes in
the same species which have very similar functionality,
i.e., which are basically the same feature detector in a
population. Such redundancy needs to be removed by an
additional clean-up algorithm.

Smith and Cribbs [181], [237] also used an individual
to represent a hidden node rather than the whole ANN.
Their approach can only deal with strictly three-layered
feedforward ANN’s.

C. The Evolution of Node Transfer Functions

The discussion on the evolution of architectures so far
only deals with the topological structure of an architecture.
The transfer function of each node in the architecture has
been assumed to be fixed and predefined by human experts,
yet the transfer function has been shown to be an important
part of an ANN architecture and have significant impact on
ANN’s performance [238]–[240]. The transfer function is
often assumed to be the same for all the nodes in an ANN,
at least for all the nodes in the same layer.

Storket al. [241] were, to our best knowledge, the first to
apply EA’s to the evolution of both topological structures
and node transfer functions even though only simple ANN’s
with seven nodes were considered. The transfer function
was specified in the structural genes in their genotypic
representation. It was much more complex than the usual
sigmoid function because they tried to model a biological
neuron in the tailflip circuitry of crayfish.

White and Ligomenides [171] adopted a simpler ap-
proach to the evolution of both topological structures and
node transfer functions. For each individual (i.e., ANN)
in the initial population, 80% nodes in the ANN used
the sigmoid transfer function and 20% nodes used the
Gaussian transfer function. The evolution was used to
decide the optimal mixture between these two transfer
functions automatically. The sigmoid and Gaussian transfer
function themselves were not evolvable. No parameters of
the two functions were evolved.

Liu and Yao [191] used EP to evolve ANN’s with
both sigmoidal and Gaussian nodes. Rather than fixing
the total number of nodes and evolve mixture of different
nodes, their algorithm allowed growth and shrinking of the
whole ANN by adding or deleting a node (either sigmoidal
or Gaussian). The type of node added or deleted was
determined at random. Good performance was reported for
some benchmark problems [191]. Hwanget al. [225] went
one step further. They evolved ANN topology, node transfer
function, as well as connection weights for projection neural
networks.
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Sebald and Chellapilla [242] used the evolution of node
transfer function as an example to show the importance of
evolving representations. Representation and search are the
two key issues in problem solving. Co-evolving solutions
and their representations may be an effective way to tackle
some difficult problems where little human expertise is
available.

D. Simultaneous Evolution of Architectures
and Connection Weights

The evolutionary approaches discussed so far in design-
ing ANN architectures evolve architectures only, without
any connection weights. Connection weights have to be
learned after a near-optimal architecture is found. This is es-
pecially true if one uses the indirect encoding scheme, such
as the developmental rule method. One major problem with
the evolution of architectures without connection weights
is noisy fitness evaluation [194]. In other words, fitness
evaluation as described in step 3 of Fig. 6 is very inaccurate
and noisy because a phenotype’s (i.e., an ANN with a
full set of weights) fitness was used to approximate its
genotype’s (i.e., an ANN without any weight information)
fitness. There are two major sources of noise [194].

1) The first source is the random initialization of the
weights. Different random initial weights may pro-
duce different training results. Hence, the same geno-
type may have quite different fitness due to different
random initial weights used in training.

2) The second source is the training algorithm. Different
training algorithms may produce different training
results even from the same set of initial weights. This
is especially true for multimodal error functions. For
example, BP may reduce an ANN’s error to 0.05
through training, but an EA could reduce the error
to 0.001 due to its global search capability.

Such noise may mislead evolution because the fact that
the fitness of a phenotype generated from genotypeis
higher than that generated from genotypedoes not mean
that truly has higher quality than . In order to reduce
such noise, an architecture usually has to be trained many
times from different random initial weights. The average
result is then used to estimate the genotype’s mean fitness.
This method increases the computation time for fitness
evaluation dramatically. It is one of the major reasons why
only small ANN’s were evolved in previous studies.

In essence, the noise identified in this paper is caused by
the one-to-many mapping from genotypes to phenotypes.
Angelineet al. [149] and Fogel [12], [243] have provided a
more general discussion on the mapping between genotypes
and phenotypes. It is clear that the evolution of architectures
without any weight information has difficulties in evaluat-
ing fitness accurately. As a result, the evolution would be
very inefficient.

One way to alleviate this problem is to evolve ANN
architectures and connection weights simultaneously [37],
[42], [45], [149], [165], [166], [169]–[172], [179], [180],

[182], [185]–[200], [230], [232]. In this case, each individ-
ual in a population is a fully specified ANN with complete
weight information. Since there is a one-to-one mapping
between a genotype and its phenotype, fitness evaluation
is accurate.

One issue in evolving ANN’s is the choice of search
operators used in EA’s. Both crossover-based and mutation-
based EA’s have been used. However, use of crossover
appears to contradict the basic ideas behind ANN’s, because
crossover works best when there exist “building blocks” but
it is unclear what a building block might be in an ANN since
ANN’s emphasize distributed (knowledge) representation
[244]. The knowledge in an ANN is distributed among all
the weights in the ANN. Recombining one part of an ANN
with another part of another ANN is likely to destroy both
ANN’s.

However, if ANN’s do not use a distributed represen-
tation but rather a localized one, such as radial basis
function (RBF) networks or nearest-neighbor multilayer
perceptrons, crossover might be a very useful operator.
There has been some work in this area where good results
were reported [119], [120], [245]–[253]. In general, ANN’s
using distributed representation are more compact and have
better generalization capability for most practical problems.

Yao and Liu [193], [194] developed an automatic system,
EPNet, based on EP for simultaneous evolution of ANN
architectures and connection weights. EPNet does not use
any crossover operators for the reason given above. It relies
on a number of mutation operators to modify architectures
and weights. Behavioral (i.e., functional) evolution, rather
genetic evolution, is emphasized in EPNet. A number of
techniques were adopted to maintain the behavioral link
between a parent and its offspring [190]. Fig. 11 shows the
main structure of EPNet.

EPNet uses rank-based selection [125] and five muta-
tions: hybrid training; node deletion; connection deletion;
connection addition; and node addition [188], [194], [254].
Hybrid training is the only mutation in EPNet which mod-
ifies ANN’s weights. It is based on a modified BP (MBP)
algorithm with an adaptive learning rate and simulated
annealing. The other four mutations are used to grow and
prune hidden nodes and connections.

The number of epochs used by MBP to train each ANN’s
in a population is defined by two user-specified parameters.
There is no guarantee that an ANN will converge to even
a local optimum after those epochs. Hence this training
process is called partial training. It is used to bridge the
behavioral gap between a parent and its offspring.

The five mutations are attempted sequentially. If one
mutation leads to a better offspring, it is regarded as
successful. No further mutation will be applied. Otherwise
the next mutation is attempted. The motivation behind
ordering mutations is to encourage the evolution of compact
ANN’s without sacrificing generalization. A validation set
is used in EPNet to measure the fitness of an individual.

EPNet has been tested extensively on a number of bench-
mark problems and achieved excellent results, including
parity problems of size from four to eight, the two-spiral
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Fig. 11. The main structure of EPNet.

problem, the breast cancer problem, the diabetes problem,
the heart disease problem, the thyroid problem, the Aus-
tralian credit card problem, the Mackey–Glass time series
prediction problem, etc. Very compact ANN’s with good
generalization ability have been evolved [185]–[195]. There
are some other different EP-based systems for designing
ANN’s [128], [129], [217], [223], but none has been tested
on as many different benchmark problems.

IV. THE EVOLUTION OF LEARNING RULES

An ANN training algorithm may have different perfor-
mance when applied to different architectures. The design
of training algorithms, more fundamentally the learning
rules used to adjust connection weights, depends on the
type of architectures under investigation. Different variants
of the Hebbian learning rule have been proposed to deal
with different architectures. However, designing an optimal
learning rule becomes very difficult when there is little
prior knowledge about the ANN’s architecture, which is
often the case in practice. It is desirable to develop an
automatic and systematic way to adapt the learning rule to
an architecture and the task to be performed. Designing a
learning rule manually often implies that some assumptions,
which are not necessarily true in practice, have to be made.
For example, the widely accepted Hebbian learning rule
has recently been shown to be outperformed by a new rule
proposed by Artolaet al. [255] in many cases [256]. The
new rule can learn more patterns than the optimal Hebbian
rule and can learn exceptions as well as regularities. It is,
however, still difficult to say that this rule is optimal for

all ANN’s. In fact, what is needed from an ANN is its
ability to adjust its learning rule adaptively according to its
architecture and the task to be performed. In other words,
an ANN should learn its learning rule dynamically rather
than have it designed and fixed manually. Since evolution
is one of the most fundamental forms of adaptation, it is
not surprising that the evolution of learning rules has been
introduced into ANN’s in order to learn their learning rules.

The relationship between evolution and learning is
extremely complex. Various models have been proposed
[257]–[271], but most of them deal with the issue of
how learning can guide evolution [257]–[260] and the
relationship between the evolution of architectures and
that of connection weights [261]–[263]. Research into
the evolution of learning rules is still in its early stages
[264]–[267], [269], [270]. This research is important not
only in providing an automatic way of optimizing learning
rules and in modeling the relationship between learning
and evolution, but also in modeling the creative process
since newly evolved learning rules can deal with a complex
and dynamic environment. This research will help us to
understand better how creativity can emerge in artificial
systems, like ANN’s, and how to model the creative process
in biological systems. A typical cycle of the evolution of
learning rules can be described by Fig. 12. The iteration
stops when the population converges or a predefined
maximum number of iterations has been reached.

Similar to the reason explained in Section III-D, the
fitness evaluation of each individual, i.e., the encoded
learning rule, is very noisy because we use phenotype’s
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Fig. 12. A typical cycle of the evolution of learning rules.

fitness (i.e., an ANN’s training result) to approximate
genotype’s fitness (i.e., a learning rule’s fitness). Such
approximation may be inaccurate. Some techniques have
been used to alleviate this problem, e.g., using a weighted
average of the training results from ANN’s with different
initial connection weights in the fitness function. If the
ANN architecture is predefined and fixed, the evolved
learning rule would be optimized toward this architecture. If
a near-optimal learning rule for different ANN architectures
is to be evolved, the fitness evaluation should be based on
the average training result from different ANN architectures
in order to avoid overfitting a particular architecture.

A. The Evolution of Algorithmic Parameters

The adaptive adjustment of BP parameters (such as
the learning rate and momentum) through evolution could
be considered as the first attempt of the evolution of
learning rules [32], [152], [272]. Harpet al. [152] encoded
BP’s parameters in chromosomes together with ANN’s
architecture. This evolutionary approach is different from
the nonevolutionary one such as offered by Jacobs [273]
because the simultaneous evolution of both algorithmic
parameters and architectures facilitates exploration of in-
teractions between the learning algorithm and architectures
such that a near-optimal combination of BP with an archi-
tecture can be found.

Other researchers [32], [139], [213], [272] also used an
evolutionary process to find parameters for BP but ANN’s
architecture was predefined. The parameters evolved in this
case tend to be optimized toward the architecture rather
than being generally applicable to learning. There are a
number of BP algorithms with an adaptive learning rate
and momentum where a nonevolutionary approach is used.
Further comparison between the two approaches would be
quite useful.

B. The Evolution of Learning Rules

The evolution of algorithmic parameters is certainly
interesting but it hardly touches the fundamental part of
a training algorithm, i.e., its learning rule or weight up-
dating rule. Adapting a learning rule through evolution is
expected to enhance ANN’s adaptivity greatly in a dynamic
environment.

Unlike the evolution of connection weights and architec-
tures which only deal with static objects in an ANN, i.e.,
weights and architectures, the evolution of learning rules
has to work on the dynamic behavior of an ANN. The key
issue here is how to encode the dynamic behavior of a
learning rule into static chromosomes. Trying to develop a
universal representation scheme which can specify any kind
of dynamic behaviors is clearly impractical, let alone the
prohibitive long computation time required to search such
a learning rule space. Constraints have to be set on the
type of dynamic behaviors, i.e., the basic form of learning
rules being evolved in order to reduce the representation
complexity and the search space.

Two basic assumptions which have often been made on
learning rules are: 1) weight updating depends only on
local information such as the activation of the input node,
the activation of the output node, the current connection
weight, etc., and 2) the learning rule is the same for all
connections in an ANN. A learning rule is assumed to be a
linear function of these local variables and their products.
That is, a learning rule can be described by the function [5]

(4)

where is time, is the weight change,
are local variables, and the’s are real-valued coefficients
which will be determined by evolution. In other words,
the evolution of learning rules in this case is equivalent to
the evolution of real-valued vectors of’s. Different ’s
determine different learning rules. Due to a large number
of possible terms in (4), which would make evolution
very slow and impractical, only a few terms have been
used in practice according to some biological or heuristic
knowledge.

There are three major issues involved in the evolution
of learning rules: 1) determination of a subset of terms
described in (4); 2) representation of their real-valued
coefficients as chromosomes; and 3) the EA used to evolve
these chromosomes. Chalmers [264] defined a learning rule
as a linear combination of four local variables and their
six pairwise products. No third- or fourth-order3 terms

3The order is defined as the number of variables in a product.
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were used. Ten coefficients and a scale parameter were
encoded in a binary string via exponential encoding. The
architecture used in the fitness evaluation was fixed because
only single-layer ANN’s were considered and the number
of inputs and outputs were fixed by the learning task at
hand. After 1000 generations, starting from a population of
randomly generated learning rules, the evolution discovered
the well-known delta rule [7], [274] and some of its vari-
ants. These experiments, although simple and preliminary,
demonstrated the potential of evolution in discovering novel
learning rules from a set of randomly generated rules.
However, constraints set on learning rules could prevent
some from being evolved such as those which include third-
or fourth-order terms.

Similar experiments on the evolution of learning rules
were also carried out by others [265], [266], [267], [269],
[270]. Fontanari and Meir [267] used Chalmers’ approach
to evolve learning rules for binary perceptrons. They also
considered four local variables but only seven terms were
adopted in their learning rules, which included one first-
order, three second-order, and three third-order terms in (4).
Baxter [269] took one step further than just the evolution
of learning rules. He tried to evolve complete ANN’s
(including connection weights, architectures, and learning
rules) in a single level of evolution. It is clear that the search
space of possible ANN’s would be enormous if constraints
were not set on the connection weights, architectures, and
learning rules. In his experiments, only ANN’s with binary
threshold nodes were considered, so the weights could only
be 1 or 1. The number of nodes in ANN’s was fixed.
The learning rule only considered two Boolean variables.
Although Baxter’s experiments were rather simple, they
confirmed that complex behaviors could be learned and
the ANN’s learning ability could be improved through
evolution [269].

Bengioet al.’s approach [265], [266] is slightly different
from Chalmers’ in the sense that gradient descent algo-
rithms and simulated annealing, rather than EA’s, were
used to find near-optimal’s. In their experiments, four
local variables and one zeroth-order, three first-order, and
three second-order terms in (4) were used.

Research related to the evolution of learning rules in-
cludes Parisiet al.’s work on “econets,” although they
did not evolve learning rules explicitly [260], [275]. They
emphasized the crucial role of the environment in which
the evolution occured while only using some simple neural
networks. The issue of environmental diversity is closely
related to the noisy fitness evaluation as pointed out in
Section III-D and at the beginning of Section IV. There
are two possible sources of noise. The first is the decoding
process (morphogenesis) of chromosomes. The second is
introduced when a decoded learning rule is evaluated by
using it to train ANN’s. The environmental diversity is
essential in obtaining a good approximation to the fitness
of the decoded learning rule and thus in reducing the noise
from the second source. If a general learning rule which
is applicable to a wide range of ANN architectures and
learning tasks is needed, the environmental diversity has to

be very high, i.e., many different architectures and learning
tasks have to be used in the fitness evaluation.

V. OTHER COMBINATIONS BETWEEN ANN’ S AND EA’S

A. The Evolution of Input Features

For many practical problems, the possible inputs to an
ANN can be quite large. There may be some redundancy
among different inputs. A large number of inputs to an
ANN increase its size and thus require more training data
and longer training times in order to achieve a reasonable
generalization ability. Preprocessing is often needed to
reduce the number of inputs to an ANN. Various dimension
reduction techniques, including the principal component
analysis, have been used for this purpose.

The problem of finding a near-optimal set of input
features to an ANN can be formulated as a search problem.
Given a large set of potential inputs, we want to find a near-
optimal subset which has the fewest number of features
but the performance of the ANN using this subset is no
worse than that of the ANN using the whole input set. EA’s
have been used to perform such a search effectively [267],
[277]–[287]. Very good results, i.e., better performance
with fewer inputs, have been reported from these studies.
In the evolution of input features, each individual in the
population represents a subset of all possible inputs. This
can be implemented using a binary chromosome whose
length is the same as the total number of input features.
Each bit in the chromosome corresponds to a feature. “1”
indicates presence of a feature, while “0” indicates absence
of the feature. The evaluation of an individual is carried out
by training an ANN with these inputs and using the result
to calculate its fitness value. The ANN architecture is often
fixed. Such evaluation is very noisy, however, because of
the reason explained in Section III-D.

Not only does the evolution of input features provide a
way to discover important features from all possible inputs
automatically, it can also be used to discover new training
examples. Zhang and Veenker [288] described an active
learning paradigm where a training algorithm based on
EA’s can self-select training examples. Cho and Cha [289]
proposed another algorithm for evolving training sets by
adding virtual samples.

B. ANN as Fitness Estimator

EA’s have been used with success to optimize various
control parameters [290]–[292]. However, it is very time
consuming and costly to obtain fitness values for some
control problems as it is impractical to run a real system
for each combination of control parameters. In order to
get around this problem and make evolution more efficient,
fitness values are often approximated rather than computed
exactly. ANN’s are often used to model and approximate
a real control system due to their good generalization
abilities. The input to such ANN’s will be a set of control
parameters. The output will be the control system output
from which an evaluation of the whole system can easily be
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obtained. When an EA is used to search for a near-optimal
set of control parameters, the ANN will be used in fitness
evaluation rather than the real control system [293]–[297].

This combination of ANN’s and EA’s has a couple of
advantages in evolving control systems. First, the time-
consuming fitness evaluation based on real control systems
is replaced by fast fitness evaluation based on ANN’s. Sec-
ond, this combination provides safer evolution of control
systems. EA’s are stochastic algorithms. It is possible that
some poor control parameters may be generated in the
evolutionary process. These parameters could damage a
real control system. If we use ANN’s to estimate fitness,
we do not need to use the real system and thus can avoid
damages to the real system. However, how successful this
combination approach will be depends largely on how well
ANN’s learn and generalize.

C. Evolving ANN Ensembles

Learning is often formulated as an optimization problem
in the machine learning field. However, learning is different
from optimization in practice because we want the learned
system to have best generalization, which is different from
minimizing an error function on a training data set. The
ANN with the minimum error on a training data set may
not have best generalization unless there is an equivalence
between generalization and the error on the training data.
Unfortunately, measuring generalization quantitatively and
accurately is almost impossible in practice [298] although
there are many theories and criteria on generalization,
such as the minimum description length (MDL) [299],
Akaike information criteria (AIC) [300], and minimum
message length (MML) [301]. In practice, these criteria
are often used to define better error functions in the hope
that minimizing the functions will maximize generalization.
While these functions often lead to better generalization of
learned systems, there is no guarantee.

EA’s are often used to maximize a fitness function or
minimize an error function, and thus they face the same
problem as described above: maximizing a fitness function
is different from maximizing generalization. The EA is
actually used as an optimization, not learning, algorithm.
While little can be done for traditional nonpopulation-based
learning, there are opportunities for improving population-
based learning, e.g., evolutionary learning.

Since the maximum fitness may not be equivalent to best
generalization in evolutionary learning, the best individual
with the maximum fitness in a population may not be
the one we want. Other individuals in the population may
contain some useful information that will help to improve
generalization of learned systems. It is thus beneficial
to make use of the whole population rather than any
single individual. A population always contains at least
as much information as any single individual. Hence,
combining different individuals in the population to form
an integrated system is expected to produce better results.
Such a population of ANN’s is called an ANN ensemble
in this section. There have been some very successful

experiments which show that EA’s can be used to evolve
ANN ensembles [192], [193], [302]–[305].

D. Others

There are some other novel combinations between
ANN’s and EA’s. For example, Zitar and Hassoun [306]
used EA’s to extract rules in a reinforcement learning
system and then used them to train ANN’s. Sziranyi
[99] and Pal and Bhandari [98] used EA’s to tune circuit
parameters and templates in cellular ANN’s. Olmez [97]
used EA’s to optimize a modified restricted Coulomb
energy (RCE) ANN. Imada and Araki [307] used EA’s
to evolve connection weights for Hopfield ANN’s. Many
others used EA’s and ANN’s for combinatorial or global
(numerical) optimization in order to combine EA’s global
search capability with ANN’s fast convergence to local
optima [308]–[318].

VI. CONCLUDING REMARKS

Although evolution has been introduced into ANN’s at
various levels, they can roughly be divided into three: the
evolution of connection weights, architectures, and learning
rules. This section first describes a general framework for
ANN’s and then draws some conclusions.

A. A General Framework for EANN’s

A general framework for EANN’s can be described
by Fig. 13 [3]–[5]. The evolution of connection weights
proceeds at the lowest level on the fastest time scale in an
environment determined by an architecture, a learning rule,
and learning tasks. There are, however, two alternatives to
decide the level of the evolution of architectures and that of
learning rules: either the evolution of architectures is at the
highest level and that of learning rules at the lower level
or vice versa. The lower the level of evolution, the faster
the time scale it is on.

From the engineering perspective, the decision on the
level of evolution depends on what kind of prior knowledge
is available. If there is more prior knowledge about an
ANN’s architecture than that about their learning rules, or
if a particular class of architectures is pursued, it is better
to put the evolution of architectures at the highest level
because such knowledge can be encoded in an architecture’s
genotypic representation to reduce the (architecture) search
space and the lower-level evolution of learning rules can
be biased toward this type of architectures. On the other
hand, the evolution of learning rules should be at the
highest level if there is more prior knowledge about them
available or if there is a special interest in certain type of
learning rules. Unfortunately, there is usually little prior
knowledge available about either architectures or learning
rules in practice except for some very vague statements
[319]. In this case, it is more appropriate to put the evolution
of architectures at the highest level since the optimality
of a learning rule makes more sense when evaluated in
an environment including the architecture to which the
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Fig. 13. A general framework for EANN’s.

learning rule is applied. Fig. 13 summarizes different levels
of evolution in ANN’s.

Fig. 13 can also be viewed as a general framework of
adaptive systems if we do not restrict ourselves to EA’s
and three levels. Simulated annealing, gradient descent,
and even exhaustive search could be considered as special
cases of EA’s. For example, the traditional BP network
can be considered as a special case of our general frame-
work with one-shot (only-one-candidate) search used in
the evolution of architectures and learning rules and BP
used in the evolution of connection weights. In fact, the
general framework provides a basis for comparing various
specific EANN models according to the search procedures
they used at three different levels since it defines a three-
dimensional space where zero represents one-shot search
and represents exhaustive search along each axis. Each
EANN model corresponds to a point in this space.

B. Conclusions

Evolution can be introduced into ANN’s at many differ-
ent levels. The evolution of connection weights provides a
global approach to connection weight training, especially
when gradient information of the error function is difficult
or costly to obtain. Due to the simplicity and generality
of the evolution and the fact that gradient-based training
algorithms often have to be run multiple times in order
to avoid being trapped in a poor local optimum, the
evolutionary approach is quite competitive.

Evolution can be used to find a near-optimal ANN
architecture automatically. This has several advantages over
heuristic methods of architecture design because of the

characteristics of the design problem given in the begin-
ning of Section III. The direct encoding scheme of ANN
architectures is very good at fine tuning and generating
a compact architecture. The indirect encoding scheme is
suitable for finding a particular type of ANN architecture
quickly. Separating the evolution of architectures and that
of connection weights can make fitness evaluation inaccu-
rate and mislead evolution. Simultaneous evolution of ANN
architectures and connection weights generally produces
better results. It is argued that crossover produces more
harm than benefit in evolving ANN’s using distributed
representation (e.g., multilayer perceptrons) because it de-
stroys knowledge learned and distributed among different
connections easily. Crossover would be more suitable for
localized ANN’s, such as RBF networks.

Evolution can also be used to allow an ANN to adapt its
learning rule to its environment. In a sense, the evolution
provides ANN’s with the ability of learning to learn. It also
helps to model the relationship between learning and evo-
lution. Preliminary experiments have shown that efficient
learning rules can be evolved from randomly generated
rules. Current research on the evolution of learning rules
normally assumes that learning rules can be specified by
(4). While constraints on learning rules are necessary to
reduce the search space in the evolution, they might prevent
some interesting learning rules from being discovered.

Global search procedures such as EA’s are usually com-
putationally expensive. It would be better not to employ
EA’s at all three levels of evolution. It is, however, benefi-
cial to introduce global search at some levels of evolution,
especially when there is little prior knowledge available
at that level and the performance of the ANN is required
to be high, because the trial-and-error and other heuristic
methods are very ineffective in such circumstances.

With the increasing power of parallel computers, the
evolution of large ANN’s becomes feasible. Not only can
such evolution discover possible new ANN architectures
and learning rules, but it also offers a way to model the
creative process as a result of ANN’s adaptation to a
dynamic environment.
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