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Evolving Card Sets Towards Balancing Dominion

Tobias Mahlmann, Julian Togelius and Georgios N. Yannakakis

Abstract—In this paper we use the popular card game
Dominion as a complex test-bed for the generation of interesting
and balanced game rules. Dominion is a trading-card-like game
where each card type represents a different game mechanic.
Each playthrough only features ten different cards, the selection
of which can form a new game each time. We compare and
analyse three different agents that are capable of playing
Dominion on different skill levels and use three different
fitness functions to generate balanced card sets. Results reveal
that there are particular cards of the game that lead to
balanced games independently of player skill and behaviour.
The approach taken could be used to balance other games with
decomposable game mechanics.

I. INTRODUCTION

The field of procedural content generation (PCG) is con-

cerned with algorithms that automatically create various

types of game content. While isolated examples of PCG in

games date three decades back, and the SpeedTree software

is commonly used for creating vegetation in commercial

games, PCG in published games is almost never used for

“necessary” content such as levels and mechanics rather than

just for peripheral, “optional” content such as textures and

collectable items. Further, most PCG algorithms in published

games are not controllable as they generate random content

within bounds.

To address this issue, the term search-based procedural

content generation (SBPCG) [1] was proposed for PCG

algorithms that build on global stochastic search algorithms

(such as evolutionary computation) and fitness functions

designed to measure the quality of game content. Examples

of this approach include the evolution of platform game

levels [2] and racing game tracks [3] and the distributed

evolution of weapons in a space shooter game [4].

Recently, the idea of including the rules of a game in the

definition of “game content” and generating them through

SBPCG algorithms has gained some interest in the PCG

community. Like for other SBPCG problems, devising game

content representations that allows for effective search of the

content space and meaningful fitness metrics appear to be the

main challenges. Functions that accurately measure the qual-

ity of game rules are likely to be simulation-based (according

to the taxonomy presented in [1]), meaning that the functions

build on the game being played by an algorithm, since

their complexity makes an analytical approach very hard.

On that basis, Browne measured the quality of board games

using a number of custom-defined measurements [5], most of

them simulation-based. Togelius and Schmidhuber proposed

a learnability-based fitness function, where the entertainment

values of 2D predator-prey games are estimated by how they
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can be learnt by an algorithm [6]. Salge and Mahlmann

evaluated simple strategy game battles using the information-

theoretic concept of relevant information to determine the

amount of information necessary to play well [7].

Balance is a key concern in game design, and lack of

balance is usually considered detrimental to game quality

(conversely, games such as StarCraft are often praised for

their exquisite balance). Many authors address the problem of

game balancing (see [8]–[13] among others), and predictably

there a number of differing conceptions of what game bal-

ance is. It could mean that the game has a smooth challenge

level throughout a game session, that different players have

the same initial chance of winning despite different starting

positions or resources, or that different strategies can all

be effective given equally skilled player. The existence of

a dominant strategy that wins against all others is usually

considered evidence of poor balancing.

In this paper, we are mainly concerned with balance

between different strategies, and use the card game Dominion

as a test-bed for the design of balanced game rules. Inspired

by earlier work in the field of general game playing we test

three fitness functions that map to game balance metrics;

these fitness functions are based on three Dominion agents

implementing different types of AI. The card sets obtained

generate an interesting discussion and pose some initial

questions about game balancing in Dominion.

II. DOMINION

Dominion is a card game for 2 to 4 players created by

Donald X. Vaccarino and published by Rio Grande Games

in 2008. The game revolves around building a powerful

dominion, which is reflected in all cards’ design. It shares

many game mechanics with popular trading card games (e.g.

Magic the Gathering and Pokémon) like using resources to

buy new cards, separate card decks for each player, and turn

based gameplay with different classes of actions available.

On the other hand, it features no collectable cards or card

trading outside the game; every copy of the game contains

the same cards. At the moment of writing (March 2012) six

expansions of the game have been published, each extending

the game with new cards and rules. Like in other trading

card games, each player has his own deck from which he

draws cards from every turn. That deck contains just a few

cards at the start of the game, but is extended throughout the

game. The goal of the game is to accumulate as many points

as possible represented by victory cards.

Each game session uses a supply of seven basic cards and

ten kingdom cards. The ten kingdom cards are selected before

the start of the game, randomly or by players’ preference,

from a pool of 25 different cards (more with expansion



Fig. 1. A set of five Dominion cards: Copper, Province, Spy, and Festival.

Fig. 2. Typical Dominion setup seen from a player’s perspective. It shows
the supply and the player’s discard pile in the foreground.

sets). This makes more than 2 quadrillion combinations of

card sets possible with the base game alone (our current

implementation only models the base game).

Dominion cards are divided in four main categories (an

example of each card can be seen in Fig. 1):

• Victory cards: contribute to the player’s score.

• Curse cards: victory cards with negative point value.

• Treasure cards: used to buy other cards from the supply.

• Action cards: these cards are used in the action phase to

a variety of game effects. Action cards that harm other

players are called attack cards.

The seven card types present in every game are the basic

treasure cards copper, silver, and gold (each of those cards

provides a different amount of coin value) and the victory

cards estate, duchy, province, and curse (each providing a

different amount of victory points. A typical setup of the

game can be seen in Fig. 2.

Each turn, each player goes through the following phases:

a) Action phase: During this phase a player has one

action which he can use to play an action card from his hand,

if present. The player may gain additional actions, given as

properties of some cards. Example card properties are: “Draw

two more cards from your deck”, “Every player passes a card

to the player to his left”, or “Every card in the supply costs

one coin less this turn”.

b) Buy phase: In this phase the player uses her treasure

cards, which add to the coin value gained in the action phase.

The coins can be spent to buy new cards from supply. Each

card in the supply displays a price ranging from 0 to 8.

Normally players want to include cards from every cost tier

of the kingdom cards, i.e. both cheap and expensive cards.

The player can only buy one card per turn, but there are

action cards which grant additional buys.

c) Clean-up phase: when done with his turn, the player

discards all the cards he played this turn and those left in

his hand on a separate discard pile. He then draws five new

cards from his deck. If there are not enough cards left in his

deck, the discard pile is shuffled and used as the new deck.

The game ends when either the stack of Provinces is empty

or three stacks in the supply are depleted. The player with

the highest amount of victory points wins the game. The

main challenge for players is to develop a strategy to win

the game using the cards on the table. Different strategies

are effective in different games due to the synergy effects

(or the lack thereof) between different cards.

Each play-through generates different dynamics depend-

ing on the cards available which, in turn, yield dissimilar

playing experiences. However, not all card combinations are

interesting or fun to play with. For example, different card

combinations reward different playing styles, and some card

sets are allow for deeper or more diverse gameplay than

others. One card set can be said to more balanced than

another both in terms of differentiating better between strong

and weak players, and in terms of allowing for more different

strategies to be effective when played by a strong player.

The software used in our experiments is based on the

vDom engine which is part of the popular Dominion im-

plementation Androminion [14] for the Android operating

system. Both software programs are free and open source but

not affiliated with the original publisher, Rio Grande Games.

Presently, we only consider two-player games, both in order

to simplify our experiments and the analysis of them.

III. SEARCHING FOR DOMINION CARD SETS

For the experiments presented in this paper we employ an

integer-valued genetic algorithm (GA) [15] that evolves card

sets based on two different fitness functions that attempt to

approximate different notions of interestingness and balance.

Our GA implementation is based on the genetic algorithm

toolkit JGAP [16]. Every experiment reported in this paper

runs for 30 generations using a population of 100 individuals.

The chromosome is a ten-element integer vector where

each element represents a kingdom card. The value of each

gene corresponds to an index of all available cards. Any

chromosome with duplicate cards is invalid; such chromo-

somes are assigned a fitness value of zero but kept in the

population to promote diversity. Below we present the two

fitness functions used to evaluate card sets.

A. Skill differentiation-based fitness

From a pilot survey among the authors and their fellow

Dominion players we gained the impression that players who

self-reported to be a skillful enjoyed a game more if they

could achieve a clearer win (leading by a larger amount of

victory points) over their opponents. We therefore derived



the hypothesis that an interesting card set would allow more

skilled players to win by a larger amount of points. Thus, a

card set will be interesting if the victory point difference at

the end of the games including that card set is high. For our

skill differentiation fitness function we simulated a number of

N games per card set (N is 1000 in this paper) and calculated

the average victory point difference. The fitness function, fs
is formalised as:

fs =

∑
N

i

hi−li

hi

N

where hi is the score of the winning player in game i and

li the score of the losing player in that game. Note that in

one experiment we instead minimised the score difference;

in that experiment the formula 1− fs was used instead.

B. Game metric-based fitness

The second fitness function we used is based on the work

of Cincotti et al. [17] on the Synchronized Hex game. Using

MCTS roll-outs in each of the game’s turn, they measured

the uncertainty of the outcome of the game. With the game

progressing, it normally gets easier to predict the winner

of a game. Cincotti et al. argued that in a good game this

uncertainty stays high until a very late point in the game. An

uninteresting game, where the winner is determined early,

might bore the players if there is no possibility to compete

for the second and third place.

The computational cost of the MCTS rollouts proved to

be a problem in that study as MTCS performance depends

on the branching factor of the game, which is rather high

in Synchronized Hex. Browne [5] was inspired by the idea

of Cincotti et al. [17] and further developed the concepts

of “Lead changes” and “Decisiveness”. He applied those

measurements for the design of two player combinatorial

games and used PCG techniques to create “interesting”

board games. We first describe those two principles and the

quantitative measures that encapsuate them in Dominion, and

we then present the fitness function that we constructed based

on these measures.

1) Lead changes: refers to the concept of the leading

player. While there are some games where this concept

does not apply (especially folk games), board- and video

games normally provide a metric that determines how far

a player is from winning or losing the game. Note that this

information may be hidden from the players during play, even

when it is well-defined. For every turn the leading player

is determined. If it differs from the previous turn a “lead

change” has occurred. Browne follows the hypothesis that

more lead changes may provide a more exciting game play.

It is not trivial to determine neither which player is leading

nor which player will win a Dominion game. It is not as

simple as simply counting the victory cards in the possession

of each player at any time (the material balance of e.g. Chess

and Checkers). The reason is that in most games a player

will try to accumulate as many treasure and action cards

as possible before buying their victory cards. Since victory

cards are also shuffled into the player’s deck, they reduce

the chance of drawing a more beneficial card in the early

game phase. Therefore, in early game phases, most players’

deck will contain few victory cards but, instead, numerous

treasure cards which are worthless at the end of the game.

This creates the necessity for a precise estimator of which

player is leading the game. We opt to train an Artificial Neu-

ral Network (ANN) (employing logistic transfer functions)

using backpropagation to predict the leader of the Dominion

game in every turn resulting in one ANN model per turn.

We choose ANN for their non-linear classification abilities

and their universal approximation capacities. The input of the

ANN is normalised to [0,1] and and it contains the following

20 values per player in the game:

• Number of action cards gained in this turn.

• Number of treasure cards gained in this turn.

• Number of victory cards gained in this turn.

• Accumulated number of action cards gained over the

last five turns.

• Accumulated number of treasure cards gained over the

last five turns.

• Accumulated number of victory cards gained over the

last five turns.

• Number of action played in this turn.

• Number of buys used in this turn.

• Total number of actions available in this turn.

• Total number of buys available in this turn.

• Accumulated number of actions over the last five turns.

• Accumulated number of buys over the last five turns.

• Total number of actions available accumulated from the

last five turns.

• Total number of buys available accumulated from the

last five turns.

• Number of curses other players have.

• Coin value of the treasure cards held, divided by the

total deck size (money density).

• Total number of action cards in a player’s deck.

• Total number of treasure cards in a player’s deck.

• Total number of victory cards in a player’s deck.

• The player’s victory points.

For a two-player game we used an ANN with 40 input

nodes, a layer of 10 hidden neurons, and 3 output nodes. Note

that we trained a separate network for each turn, therefore

the current turn is not fed into the network. Each output node

represents one of the following outcomes: player one wins

the game, player two wins the game, or the game ends in a

draw. The output node with the highest value is selected as

the most probable game outcome.

For each card set, 1000 games are played and used to train

the ANN. Then another 1000 games were played using the

trained network and in each turn the predicted leader of the

game was tracked. The number of lead changes is normalised

to the total number of turns, T , in a game.

2) Decisiveness: is related to the outcome uncertainty

of the game and measures the point in the game where

the leading player reaches a winning advantage (Decisive

Threshold) over the other player, i.e. when the player lead



changes. Ideally this point comes very late in the game and is

also followed by a very short end phase. So the decisiveness

value is the ratio of turns before and after the decision point.

For our experiments we normalise the decision point to the

number of total turns in that game:

fd =
tl

T

where tl is the turn in which the last lead change occurred,

and T is the total number of turns in that game.

3) Fitness function calculation: Lead change combined

with decisiveness measures have already been successfully

applied to different configurations of turn-based strategy

games [18]. Like in that study, the final fitness function is

constructed by forming the average of both measurements:

f =
fd +

L

T

2

where L is the number of lead changes.

IV. AI-CONTROLLED DOMINION PLAYERS

We used three different AI-controlled Dominion players

for our experiments: two agents are shipped with the VDom

game engine (Drew and Earl) and a player controlled by

a combination of NeuroEvolution of Augmented Topolo-

gies (NEAT) [19] and Monte-Carlo Tree Search [20], [21];

this Dominion player was developed by Fynbo and Nelle-

mann [22]. Initially a fourth random agent, which bought

and played cards on a random basis, was developed for the

experiments. However, this player was abandoned due to its

very poor performance (low win rate), making experiments

involving that agent degenerate. Such a low performance for

a random player, and much better performance for existing

artificial players, show that there is a considerable skill

element in Dominion which can at least partly be captured

by heuristics. However, although there are many decisions

on a tactical level that are quite obvious (e.g. which cards to

discard, or which action card to play) and are easily solved

with a deterministic heuristic, it is not straightforward how

to develop an overall strategy that provides a fair challenge

against experienced human players.

A. The Earl Player

The Earl player goes through a priority queue (also known

as “greedy buy”) based on the amount of available money

in its hand to buy a card. This way high valued cards like

provinces or gold are always bought. In the mid-game this

decision is overridden by always buying a duchy card. Every

cost tier has a set of defined cards to buy. If those cards are

not available, Earl continues with the next lower tier. In the

action phase Earl favours the Throne Room card if he has

another card from a pre-defined list of cards in his hand.

This decision is fed into the decision of the next action card

to play. The next action cards preferred are those that give

additional actions or (if non of these is available) those that

cause negative effects to other players, e.g. the Thief or the

Militia card. If none of these cards are present either, the

remaining cards are passed into a sanity check (i.e. cards

that make no sense to play in the current context are sorted

out) and a random card is selected.

B. The Drew Player

The Drew player is making decisions based on the progres-

sion of the game. Drew includes ad-hoc designed thresholds

for the predefined card sets (those that come as recommen-

dations with the game’s manual) and an “improvise” setting

for a random game. It always favours the high victory cards

and high treasure cards until the mid game, and has a number

of cards set as “valued cards”. If those are not available, it

buys a random card. In the action phase, Drew first plays all

the cards that would give the player additional actions in any

order, then any cards that multiply other cards’ effects, and

finally other reaming action cards in a random order.

C. Fynbo’s and Nellemann’s Player

This player, which is trained via neuroevolution using

the NEAT algorithm [19], was originally developed by

Fynbo and Nellemann [22]. The player was ported by us to

fit into the vDom framework. The player comprises of two

artificial neural networks (ANNs): one for selecting which

next card to buy, and one to select which action card to play.

a) Action phase: The player makes use of the general

Monte Carlo Tree Search [20], [21] algorithm. The original

algorithm is not feasible for this problem (since some actions,

e.g. drawing new cards from the player’s deck, would branch

the tree by a huge number of possible outcomes), and

simulating the whole game until its end is rather costly.

Instead, Fynbo and Nellemann developed a variant that was

inspired by a solution proposed by Ward and Cowling for

Magic: The Gathering [23]. For each action card in the

player’s hand a number of random simulations are performed

in which the tree is expanded until the player runs out of

actions or action cards. The resulting state is then evaluated

by another ANN. The ANN evaluating the game state takes

the following features as inputs (all normalised to [0,1]):

• Number of extra buys

• Number of extra coins (from treasure cards and action

cards’ effects)

• Number of Militias played

• Number of Witches played

• Number of Bureaucrat played

• Total coin value stolen by a thief

• Number of Spy effects

• Number of Remodel plays

• Number of Chapel plays

• Number of Chancellor plays

• Number of Council room plays

• Number of Mine plays

• Number of Money Lender plays

• Total number of coin in gains

• The estimate of the game’s progress (using a separate

evaluation function)

• Constant bias

Each resulting game state is assigned a value and the action

card sequence that yields the highest valued state is played.



TABLE I
FITNESS GROWTH BETWEEN FIRST AND LAST GENERATIONS. MAXIMUM

FITNESS IN GENERATION 1 AND 30, AVERAGED OVER 30 RUNS (fs AND

1− fs) OR 5 RUNS (f ), STANDARD DEVIATIONS OF THOSE AND P

VALUES FOR A TWO-TAILED STUDENT’S T-TEST. THERE IS SIGNIFICANT

FITNESS GROWTH FOR ALL EXPERIMENTS.

〈First〉 〈Last〉 σFirst σLast p <

Skill (fs)

Earl vs. F-N 0.44 0.64 0.07 0.04 0.0001
F-N vs. Drew 0.38 0.57 0.06 0.008 0.0001
Drew vs. Earl 0.28 0.65 0.05 0.04 0.0001

Skill (1− fs)
Earl vs. F-N 0.98 0.99 0.01 0.0001 0.0001

F-N vs. Drew 0.99 0.998 0.008 0.0002 0.0001
Drew vs. Earl 0.994 0.999 0.005 0.0002 0.0001

Lead changes (f )

Earl 0.43 0.24 0.191 0.131 0.0337
F-N 0.52 0.62 0.101 0.083 0.0706

Drew 0.06 0.05 0.02 0.01 0.6013

b) Buy phase: The ANN that decides whether to buy

a card takes as input the general game state and five inputs

for every kingdom card (“every” refers to all the cards that

come with the base game, not just those which are in the

current card set). Those inputs are:

• average value of the highest value card gained in the

last three rounds.

• the average coin value per card, based on treasure cards.

• the same measurement as the previous, but for the

opponents.

• the output of a progress evolution function that tries to

determine how far the game is to its end

For each kingdom card the following inputs are considered:

• whether the card is available in the current game

• the number of remaining cards in the pile on the table

• the number of cards in the player’s own deck

• the number of cards in opponents’ decks

• a control signal. The control signal of the current card

is set to 1, otherwise the control signal is set to 0.

This technique for ANN input selection is inspired by

Stanley [24].

Each input value is normalised between [0,1] using standard

min-max normalisation. The single output of the network is

an indicator of how promising the currently evaluated card

is. The card with the highest output is selected to be bought.

Since the number of inputs is fixed, the agent is limited

to play only with the cards in the base game, but it could

easily be generalised and trained to play with one or more

of the game extensions as well. However, the training effort

would make this approach improbable on current hardware

due to the increased number of inputs.

V. RESULTS

As a first experiment we wanted to make sure that all

three AI agents showed different skill levels, assuming that

this would correspond to a different playing style for each

agent. For that purpose we matched up two agents and let

them play a number of 50000 games, each with a different

card combination we randomly sampled. The results can

TABLE II
THE NUMBER OF WON GAMES BETWEEN THE DREW, EARL AND

FYNBO-NELLEMANN (FN) AGENT, USING A NUMBER OF 50000
RANDOMLY SAMPLED CARD SETS (DRAWS COUNT AS A VICTORY FOR

BOTH PLAYERS).

Drew vs. Earl 23827 29474
Drew vs. FN 19484 31958
Earl vs. FN 34190 17399

be seen in table II. where we observe performance (win

rate) differences among the three AI agents. The win rate

differences show that the three agents employ different

playing tactics. Draws are counted as a win for both players.

For the main study presented in this paper we run nine

separate sets of experiments. In each trial, one of the three

fitness functions (fs, 1−fs and f ) was used and the scores of

each individual in each generation was logged. 30 repetitions

were carried out of the experiments involving the first two

functions, but due to computational resource constraints only

5 repetitions were carried out of the experiments involving

f . Table I presents the numerical results of several runs of

the experiments. As a note on the computational effort of the

experiment, a run of the genetic algorithm with a population

size of 30 over 30 generations and the fs fitness function took

between 5 and 12 hours on a 2 GHz dual-core computer. We

used the second core to train multiple ANN in parallel where

applicable.

We recorded several runs for each fitness with each AI

agent. The skill differentiation function (fs), which requires

two agents, ran with all possible combinations of AI-agents.

In this initial set of experiments we did not consider the order

of play. The experiment with the game metrics-based fitness

ran with two instances of the same agent playing against each

other. This was done to prevent the predictor of the leading

player learning which agent was first and which was second.

A. Maximising the skill difference

The line-plots of the average and maximum fitness values

of the fs maximisation experiments (see Fig. 3(a), Fig. 3(b),

and Fig. 3(c)) show that the GA seems to converge on a local

optimum value at the 15th to 18th generation, approximately.

This behaviour was repeated by re-running the algorithm

for 3 times. Figure 3(a), Fig. 3(b), and Fig. 3(c) show the

results of the first run. The only card that was selected all

three times, independently of the AI player pair, is the cellar;

although Militia, Witch, and Woodcutter show up twice (see

table III(a)). The key findings of this set of experiments are

further discussed in Section VI.

B. Minimising the skill difference

In this set of experiments we, instead, attempt to mimimise

1−fs. The resulting card sets that can be seen in table III(b)

while the evolution of the average and maximum fitness

values are plotted in Fig. 4(a), Fig. 4(b), and Fig. 4(c).

Investigation of the highest performing card sets reveal that

all three sets include the bureaucrat card (see table III(b)).
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Fig. 3. Maximising skill difference: Evolution of the fs fitness across
different player types.

The bureaucrat card forces the other player to put a victory

card from his hand back onto his deck thus drawing it again

next turn. If played repeatedly, this may actually hinder

the opponent player hence countering his skilful play. The

second card which exists in all three card sets — across

player combinations — is the spy card. Finally, there are five

cards which appear at least twice in the sets: the cellar, the

chancellor, the gardens, the throne room, and the witch card.

Apart from the witch card which is an attack card, and the

throne room card which is a multiplier for other cards, it is

hard to see what impact those cards have on skill difference

minimisation. The results are further discussed in Section VI.

C. Maximising for lead changes and decisiveness

Our attempts to maximise lead changes and decisiveness

yielded somewhat inconclusive results, with the high noise

level of this fitness measure coupled with the substantial

computational complexity hindering us from finding statis-

tically significant fitness growth. As can be observed from

Fig. 3(c), Fig. 5(a), and Fig. 5(b), all three runs show similar

convergence characteristics; nevertheless, the fitness values
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Fig. 4. Minimising skill difference: Evolution of the 1- fs fitness across
different player types.

differ substantially between the three AI agents tested. The

resulting card sets (see table III(c)) are also much more

diverse between agents than in the other experiments. The

following section discusses these findings further.

VI. DISCUSSION

The results of the first experiment, which compared the

performance of the three AI agents, showed that playing

skill is not transitive: Drew and Earl showed nearly equal

performance against each other; however, Drew lost against

Fynbo-Nellemann’s player while Earl dominated that player.

As part of future research we would like to further analyse

which types of games are lost by which AI agent in the

future and examine the relationship between playing styles,

card sets and playing performance in Dominion.

Optimising card sets for minimising skill differentiation



TABLE III
RESULTING CARD SETS WITH THEIR CORRESPONDING (HIGHEST) FITNESS VALUES OBTAINED IN EACH EXPERIMENT

(a) Maximising skill difference (fs)

Drew vs. Earl Adventurer Cellar Chapel Council Festival Laboratory Mine Remodel Village Workshop 0.596
Drew vs. F-N Chancellor Cellar Militia Moat Smithy Thief Throne Village Witch Woodcutter 0.592
Earl vs. F-N Bureaucrat Cellar Chancellor Library Militia Smithy Spy Thief Witch Woodcutter 0.639

(b) Miminising skill difference (1− fs)

Drew vs. Earl Bureaucrat Chancellor Festival Gardens Library Remodel Spy Throne Village Witch 1.0
Drew vs. F-N Adventurer Bureaucrat Cellar Chancellor Chapel Council Gardens Mine Smithy Spy 1.0
Earl vs. F-N Bureaucrat Cellar Feast Laboratory Library Market Spy Throne Witch Woodcutter 1.0

(c) Maximising lead changes and decisiveness (f )

Drew Adventurer Bureaucrat Council Laboratory Market Money Lender Smithy Spy Thief Witch 0.458
Earl Adventurer Cellar Feast Festival Gardens Market Militia Moat Smithy Village 0.59
F-N Council Festival Gardens Laboratory Market Militia Spy Remodel Witch Workshop 0.894
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Fig. 5. Maximising lead changes and decisiveness: Evolution of the f
fitness across different player types.

yielded consistently good results, quickly finding card sets

that allowed one agent to reliably win over the other. It

is likely that evolution found card sets that exploited the

inability of the agents to play with arbitrary card sets; in

other words, that evolution found exploits or bugs in the

agents. Since all generated card sets contained several attack

cards, it could be also possible that the AI agents hindered

each others play and, therefore scored evenly.

The results from the skill maximisation experiment were

less clear: the only card that is included in all three winning

sets was the cellar card. The cellar card lets players toss

unimportant cards (in a given turn) from their hand and draw

new ones from the deck. When creating a Dominion strategy

one has to consider that all cards that are bought (including

victory cards) go into the deck of the player. Thus, the higher

the number of potentially important cards in the deck is,

the lower the probability to draw a beneficial card from the

deck. Novice players often ignore this mechanic and buy as

many cards as they can get each turn. Given this observation

we suspect that a highly skilled player may use the cellar

to counteract this problem and, therefore, achieves a clearer

win over an unskilled player.

We have seen that most card sets generated contain one

or two attack cards. This was expected as without attack

cards the player interaction in Dominion is rather minimal:

the only possibility to affect the opponents’ progress is to

buy certain cards from the supply before the opponents

buy them. Yet attack cards are not mandatory to include in

the supply and many players enjoy a game with minimal

player-to-player interaction. Others enjoy playing Dominion

by actively sabotaging the opponents’ play through stealing

cards from them (Thief card) or giving them curses (Witch

card). It is interesting that our experiments — which are

driven by fitness functions that relate only implicitly to player

experience — show that those cards do not only serve an

entertainment purpose, but they constitute a critical element

of the game’s balance.

This paper presented an initial set of experiments testing

balance in Dominion. As part of our future research agenda,

we aim to test the game with more AI-controlled players and



different fitness functions. We also believe that this method

could be used more generally to help design and balance

other games. Each card in Dominion represents a single

game mechanic, and including the card in a set translates

to enabling the corresponding mechanic. By analogy, one

could modify other games to enable the toggling on/off

of individual mechanics, and search the space of sets of

mechanics for game variants that induce certain kinds of

balance or unbalance with regard to agents or sets of agents.

Depending on the level of abstraction, even simple games can

be said to have numerous mechanics – e.g., Super Mario Bros

has running, jumping, run-jumping, wall jumping, shooting,

stomping, crouching, jumping while crouching and many

others. A complex strategy game such as StarCraft of fighting

game such as Street Fighter II has such a wealth of mechanics

that it is scarcely humanly possible to keep track of how

they interact with each other. Searching the space of sets of

mechanics, on the other hand, is not a hard problem given

appropriate fitness functions and agents to base them on.

VII. CONCLUSION

In this paper we used three different fitness functions to

evolve different sets of cards for the Dominion game with the

aim to make it more balanced. We tested our genetic search

algorithm against three agents that are capable of playing

Dominion on different skill levels and we compared their

performance. Results obtained show that there are particular

cards in Dominion that make the game more balanced

independently of playing styles. We have also argued that

the method used here can be used more widely for automatic

game design and game balancing.
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