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Eiji Mizutani, Student Member, IEEE, Hideyuki Takagi, Member, IEEE, David M. Auslander, and

Jyh-Shing Roger Jang, Member, IEEE

Abstract—This paper highlights an evolutionary computing
intelligence for a computerized color recipe prediction that
requires function approximation and combinatorial solution of
colorants to produce color recipes for a given target color sample.
We attack this real challenging problem in the color (paint)
industry by using an evolutionary computing system that consists
of a problem-specific knowledge and three principal constituents
of soft-computing: neural networks, a fuzzy system, and a genetic
algorithm. Departing from the recipe results obtained by neural
networks (NN) approaches, the evolutionary system attempts
to improve them in conjunction with fuzzy classification, a
knowledge base and neural fitness functions. All components
function synergistically in obtaining precise color recipe outputs
through simulation of color paint manufacturing process. Such
computational intelligence can be useful, especially when an exact
mathematical model of the real-world process under consideration
is not available explicitly.

Index Terms—Color recipe prediction, computational intelli-
gence, fuzzy systems, genetic algorithms, neural networks, soft
computing.

I. INTRODUCTION

C
OLOR is important to our daily lives; for instance,

painting a room the proper color can enliven it and make

it more comfortable. Painters often need to determine color

recipe for producing a color specified by other individuals. In

the color industry, it is important to develop scientific methods

in calculating color recipes efficiently. For this purpose, the

Kubelka-Munk theory has been widely used [23], [24]; how-

ever, it requires certain assumptions to formulate differential

equations. In practice, those assumptions limit the situations

where the theory may be applied [24]. Hence, a simple back-

propagation multilayer perceptron (MLP) approach has been

introduced as an alternative method to overcome practical

obstacles in color recipe prediction [2], [13], [20].

This paper serves to introduce a computational intelligence

technique for color recipe prediction that combines a knowledge

base (KB) and three principal soft computing components: fuzzy

systems (FS), neural networks (NN), and genetic algorithms

(GA). When such constituents are put together, they function
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Fig. 1. Input–output relation in a color recipe prediction system. The inputs
are sampled values of the surface spectral reflectance of a given target color,
and the outputs are proportions of colorants.

synergistically rather than competitively. Their mutual depen-

dence may present unexpected performance enhancements. We

shall demonstrate how the synergism of techniques surpasses

the individual capacity of any one technique; color matching is

an excellent test of these methods because it is difficult even for

skilled human operators to do well, yet human color perception

is sensitive, and therefore the matching must be done very well

to meet acceptable standards.

In the next section, we explain the color recipe prediction

task. We then present backpropagation (MLP) approaches, and

a neuro-fuzzy approach in respective Sections III and IV. After

that, we shall describe in detail our genetic-neuro-fuzzy ap-

proach.

II. COLOR RECIPE PREDICTION

A real challenge in the color industry is color recipe predic-

tion, which is a problem of computing a color recipe to match a

sample color submitted by a customer. Technically, color recipe

prediction often relates surface spectral reflectance of a target

color to a list of colorant proportions that are needed to produce

the same color as the given reference color, as shown in Fig. 1. In

a practical situation, it is necessary to examine the color match

in daylight as well as in artificial light. It is actually an arduous

task even for professional colorists. The trained colorists have

a remarkable ability to determine what colorants to be used and

the direction and magnitude of the changes necessary in the col-

orant concentrations to improve the match by reference to their

file of previous color recipes. More specifically, they first search

color samples that are close enough to the given target color, and

then adjust their color recipes by changing colorant proportions

to match the reference color, as seen by human eyes. Those two

skill-required procedures are summerized in Fig. 2, where we

must emphasize two important associated criteria: colorant pro-

portion error (or color pigment concentration error) and color

1094–6977/00$10.00 © 2000 IEEE
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Fig. 2. Two important procedures of skilled human operators (or colorists)
for color recipe prediction and their corresponding computational measures.
Professional colorists first search their file of previous color recipes to find
similar recipes for the given target color, and then adjust their color recipes by
changing colorant proportions to match the reference color, as seen by human
eyes. These two steps can be measured numerically by “colorant proportion
error” and “color difference.” The ultimate goal is to make the color difference
small enough.

difference. The colorant error shows how close to the previous

recipe data, and the color difference indicates how much the

newly-produced color from the predicted recipe is close to the

target color, as perceived by human eyes.

In our recipe prediction problem, ten-dimensional colorant

proportion vectors are considered as output (see Fig. 1). The

“colorant error” is defined as

Colorant error (1)

where and are the colorant

proportion vectors of a target color sample and of a produced

color sample, respectively.

For evaluating color difference, we adopted CIE 1976

-space, which provides a useful measure for de-

termining “color differences” numerically [4], [24]. That is, it

defines the color difference and perceptual attributes of color:

“lightness,” “hue,” and “chroma” as shown in (2) at the bottom

of the page, where , and are obtainable from surface

spectral reflectance and are the values of the target

color. For details about the transformation from surface spectral

reflectance to (see [24]).

The goal of colorists is to decide the color recipe so that

the color difference between a newly-produced color sample

and the reference color is less than 1.0, because human eyes

can hardly distinguish between smaller color differences [24].

To acheive this goal, the colorists’ decision-making process

Fig. 3. Color paint manufacturing process. The dotted part includes
time-consuming paint manufacturing based on predicted recipe results. The
number of repetitions of this time-consuming process can be reduced by
effective color recipe prediction.

inevitably involves a factor of “trial and error” to finalize color

recipes until color difference becomes small enough. Fig. 3

shows the entire cycle of color paint manufacturing, in which

the dotted part is usually time-consuming and labor-intensive.

A succinct description of the main concerns in the recipe pre-

diction is summarized in Table I. Recall that the output vector

is a list of ten colorant proportions; those ten outputs included

three pairs of the same types of colorants (i.e., green, yellow,

and red ones) and also complementary colorants such as “green

and red,” and “blue and yellow” (see Fig. 1). We must care-

fully determine which colorants to use, avoiding use of the same

colorant types and complementary colorants to maintain accept-

able cost performance. Since the desired average number of col-

orants required to produce any color was approximately four

out of ten colorants (see Table II), this recipe prediction task

involves aspects of combinatorial problems as well as those of

nonlinear regression analysis.

For experimentation, we used 1446 training samples of Mun-

sell color chips and 302 checking samples of standard paint

color chips from the Japan Paint Manufacturers Association.

Those data distributions on the plane are shown in Fig. 4.

The input data consist of surface spectral reflectance of target

colors sampled at 16 points in the visible range of color spec-

trum between 400 nm and 700 nm in wavelength (20-nm in-

tervals). They were collected by using spectrophotometers [7].

All subsequent experiments were conducted using the same data

sets.

Color Difference

Lightness

Hue

Chroma (2)
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TABLE I
MAIN CONCERNS IN COLOR RECIPE PREDICTION

TABLE II
NUMBER OF DATA CLASSIFIED BY THE DESIRED NUMBER OF COLORANTS REQUIRED TO PRODUCE COLOR RECIPES IN DATA SETS

Fig. 4. Data distribution plots on the a � b plane for (a) 1446 training
data and (b) 302 checking data. There are relatively many data near the origin,
because dark color samples are hard to predict their recipes.

III. MLP APPROACHES

Since MLPs are by far the most commonly employed NN

structures for a wide range of applications, a simple MLP,

, was first applied as a touchstone to the aforemen-

tioned recipe prediction to fathom its intrinsic difficulty [13]. It

is then realized that the weakness of the simple MLP approach

was due to the following reasons.

• Colorant selection is of great importance as indicated in

(P2) of Table I, which is a sort of combinatorial problems.

Table II shows the desired number of colorants in our data

sets. The average number of colorants required to produce

any color is fewer than five; this means six of the ten final

outputs should be zero.

• We sometimes need to predict proportions with enough

precision to specify levels such as 0.01% [Table I (P1)].

It is an important concern in color recipe prediction to

specify such output range extremities [2], [13].

For instance, a sample color recipe might be given as follows:

White Black Red Yellow

This recipe uses only four colorants and thus the other six col-

orant proportions must be zero. Since black colorant is most

likely to have a significant influence on the entire color, its col-

orant proportion tends to be extremely small compared with the

others, especially in bright color recipes.

To handle these concerns, we have introduced in MLPs

modified sigmoidal functions and truncation filter functions in

the output layer [9], [13]. Here we compare the two types of

MLPs: and has normal sigmoidal

functions and has modified sigmoidal functions in the

output layer. Both and have the same model

size ( neurons), mapping surface spectral

reflectance of a target color (16 sampled inputs) to a list of

required colorant concentrations (ten outputs) (see Fig. 1);

those NNs were trained by using Polak-Ribiere’s conjugate

gradient methods [19]. Since the modified sigmoidal function

prevents an NN from exceeding the desired output range, the

outputs are further processed to eliminate redundant colorants

at the minimum of the desired output range. The effects of the

modified sigmoidal functions can be seen clearly in Fig. 5.

The tends to specify use of more colorants than

necessary; it averages almost seven specified colorants, which

is far from the ideal number of about four. On the other hand,

in Fig. 5, the shows the predicted number of colorants
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TABLE III
PERFORMANCE COMPARISON OF SINGLE MLP APPROACHES: NN AND NN , USING 302 CHECKING DATA. NN IS A SIMPLE BACKPROPAGATION

MLP, AND NN IS AN MLP WITH MODIFIED SIGMOIDAL FUNCTIONS. THE COLUMN, “ERROR” DENOTES THE AVERAGE COLORANT PROPORTION ERROR

Fig. 5. Learning behaviors with respect to the number of necessary colorants
predicted by an MLP with the normal sigmoidal functions (NN ) and an
MLP with the modified sigmoidal functions (NN ).

asymptotically approached the ideal number of colorants as

iterations progressed. The comparison of prediction accuracy

between and is shown in Table III;

was more effective in avoiding use of the same types of

colorants and of complementary colorants than . For

more details about modified sigmoidal functions and truncation

filter functions (see [11] and [13].

Recall our objective discussed in Section II; that is, the color

difference should be lowered close enough to 1.0. In light of

this criteria, the results obtained by was not completely

satisfactory, because the average predicted color difference was

2.847, as will be shown in Table VII. Indeed did a better

job than , but greater precision in concentration speci-

fication is desired.

IV. NEURO-FUZZY APPROACHES

Since some problem-specific knowledge can be obtained

from professional colorists, we contend that knowledge-based

approach, such as fuzzy modeling, must complement simple

MLP’s to enhance overall performance. In this section, we

show how the knowledge is incorporated into NN models, re-

sulting in neuro-fuzzy models, and how they can be generalized

for application to color recipe prediction. Our neuro-fuzzy

approaches are expressed within the framework of the CoActive

Neuro-Fuzzy Inference System (CANFIS), detailed in [9],

[11], and [12], which has enormous potential for augmenting

the learning capacity of its predecessor ANFIS [5].

Fig. 6. Inferencing mechanism of a two-input, one-output Sugeno (TSK)
fuzzy model, in which rules’ consequents are linear.

A. Neuro-Fuzzy Inferencing Mechanism

This subsection briefly introduces a Sugeno-type (or TSK)

fuzzy inference system [22] using Fig. 6, in which the system

has two inputs ( and ) and a single output. A typical fuzzy

rule in the TSK fuzzy system has the form

Rule If is and is

then (3)

where and are linguistic terms characterized by proper

fuzzy membership functions (MFs); are modifiable

parameters.

The overall output is computed via weighted average

Output (4)

where are firing strengths defined as the product of mem-

bership grades on the antecedent part (see Fig. 6). In the orig-

inal TSK model, is a linear function of inputs. But it can

be any function; for instance, an MLP (neural network) can be

employed. CANFIS realizes such a rather complicated fuzzy in-

ference model in the layered network architecture. For more de-

tails, see [12].

B. Fuzzy Partitionings

In fuzzy systems, the number of MFs should be carefully de-

termined so that fuzzy rules can be held to meaningful limits.

Considering these points, it must be a good idea to set up MFs

for perceptual attributes of color such as “lightness,” “hue,” and

“chroma” [4], [24] (see also Section V-F). Those values must be

more suitable as MF inputs for treating color in a linguistically

meaningful way than the 16 spectral values, which were used

for MLP inputs.

When we consider one perceptual attribute of color “hue” as

a linguistic variable, we can build up five fuzzy MFs according

to the “hue” angle on the polar coordinates that define color gra-

dation: “red yellow green blue violet red.” Fig. 7

(top) illustrates a fuzzy membership value generation; that is, if
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Fig. 7. CANFIS with five color rules for color recipe prediction. Each rule’s
consequent has been realized by an MLP. In the fuzzy membership value
generator (top), five bell-shaped MF’s are centered at red, yellow, green, blue,
and violet regions according to the hue angle on the a � b circular plane
(see Fig. 4, also). If a given target color sample looks “greenish yellow,” for
instance, then it may be close to 125 in terms of the hue angle. In this case,
the yellow MF and the green MF specify the degree of membership of their
color regions; the larger degree of the yellow MF than that of the green MF
(M >M ) is a useful measure for defining “greenish yellow” numerically.

a given color sample looks “greenish yellow,” it may be close

to 125 in terms of the hue angle on the circular plane,

where the five center positions of those five color regions are

indicated by arrows. The membership value of the yellow MF

implies how yellow the presented color looks as seen by human

eyes. In Fig. 7 (top), the yellow MF and the green MF specify

the degree of membership of their color regions. The larger de-

gree of the yellow MF than that of the green MF

is a useful measure for defining “greenish yellow” numerically.

Fuzzy rules in the “if-then” format [cf. (3)] serve to determine

color selection; for instance

Yellow rule: If the target color is y` ellow'

then use a yellow consequent

Each of five color MFs specifies the degree of membership of

its color region, and assigns the degree value to each color rule

(rule’s consequent) as the firing strength; see (4). In the above

yellow rule, the firing strength is determined by the yellow MF

because CANFIS in Fig. 7 has a single MF input “hue angle.”

Introducing many more MFs might yield better results, be-

cause the number of adjustable parameters will be increased

accordingly. But there is one important caveat from a fuzzy

logic standpoint. When too many MFs are introduced, resulting

fuzzy rules may be ill-defined, or hard to understand simply

because of the difficulty of specifying the difference between

“greenish yellow” and “very yellow” that humans perceive by

saying “slightly greenish yellow,” or using some other vague

description [11]. Instead of increasing MF’s, we can construct

more sophisticated rules’ consequents such as neural rules (or

local color expert NN’s), as suggested previously; that is,

in (3) can be an MLP. Fig. 7 illustrates such a CANFIS with

five color neural rules. This CANFIS model can be viewed as a

variant of the modular networks [11], [12]. The given prediction

task is decomposed into five color rules using five local color

expert MLPs, which form rules’ consequents. For instance, the

“green rule” has a neural consequent (green MLP) that has 16

spectral reflectance inputs.

CANFIS in Fig. 7 is constructed to handle an important aspect

of color vision “hue angle” alone. Yet, of course, it is possible

to construct another CANFIS that deals with the other two per-

ceptual aspects: “lightness” and “chroma” so as to alleviate the

problem (P3) in Table I. For details on such a CANFIS [11].

C. Knowledge-Embedded Structures

In Fig. 7, adaptive fuzzy MF’s specify the degree of member-

ship of five color regions (red, yellow, green, blue, violet) ac-

cording to perceptual attributes of color. They determine what

weight should be assigned to each rule’s output to produce a

final output. We have applied the colorist’s knowledge to the

CANFIS architecture so that several connections between local

color experts and the final ten outputs can be pruned. For in-

stance, the yellow expert has no effect on blue colorant propor-

tions because of the yellow-blue complementary color relation-

ship. This idea is pictured in Fig. 8 where the yellow MLP has

just eight output units, fewer than the ten final output units; see

Table IV for the size of all local experts as well as the number

of output units (or neurons). As previously stated, the desired

number of colorants should be about four; this means six of the

ten final outputs should be zero. Reducing the number of zero

outputs through the pruning procedure can possibly have a posi-

tive impact on the construction of the desired input-output map-

pings inside CANFIS. This modification is intended mainly to

eliminate the problems of (P1) and (P2) in Table I.

V. COLOR PAINT MANUFACTURING INTELLIGENCE

This section describes a cooperative hybrid system to simu-

late the entire manufacturing process in an attempt to construct

evolutionary “manufacturing intelligence” for color recipe

prediction. In particular, we integrate the three major elements

of soft computing and problem-specific knowledge. To be

concrete, NNs, an FS, and a GA with a KB complement each

other in obtaining more precise recipe outputs than individual

NN methods through simulation of the whole decision-making

process of a professional colorist.

A GA may be a good choice for dealing with a combinatorial

problem (P2) in Table I; hence, the GA plays a leading role in

intermixing NN’s, an FS, and a KB to evolve colorant recipe

vectors (or chromosome).
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Fig. 8. Knowledge-embedded structure of the local expert NN (or MLP) for
the yellow color region; the colorist’s knowledge makes the yellow expert MLP
have no connections to complementary colorant outputs: “blue and violet”
outputs, although the 16 inputs remain the same as in the other local expert
MLP’s. Note that this yellow expert MLP corresponds to the yellow rule’s
consequent of CANFIS, denoted by “Yellow MLP” in Fig. 7.

A. Color Simulator Neural Networks

The aforementioned MLP’s and CANFIS built up only the

color recipe prediction system shown in Fig. 1 that does not use

any feedback information concerning color difference explic-

itly. Yet, it is of great importance to consider perceived color

difference during the recipe prediction process (see Table I and

Fig. 3). Basically, our ultimate objective is to decrease color dif-

ference rather than colorant errors (see Fig. 2). In other words,

proportion error measure might lead to rapid approach to nearly

optimal recipe results, but color difference measure might be

more important to fine-tune the recipe results. Practically, the

color difference between pairs of presented colors should be

smaller than about 1.0; human eyes can hardly distinguish be-

tween smaller color differences. If the predicted color recipe

causes color difference greater than 1.0, then it may be neces-

sary to readjust the color recipe.

The bird’s-eye view of the paint production pictured in Fig. 3

gives us a hint about how to feed back the color difference

information to the recipe prediction system in order to improve

prediction accuracy. In particular, we have constructed an

MLP, , specially designed to cope with the third critical

problem (P3) in Table I. The plays an important role

as a color simulator in estimating color difference so that the

entire system can mimic the whole paint production process, as

depicted in Fig. 9. This manufacturing process can be expressed

within an evolutionary framework, as illustrated in Fig. 10.

We shall explain the evolutionary mechanism in subsequent

sections.

B. Overlook of Manufacturing Intelligence

In the initial stage [left side of Fig. 10], the first-generation

population, or starting points for a GA search are set by a fuzzy

population generator and a multi-elite generator using results

from the CANFIS and NN approaches. Those results must al-

ready be somewhat close to the range of ideal colorant concen-

trations. This initial stage corresponds to the first step of the

colorist’s operation described in Fig. 2. The difference is that

the human colorists use their reference file of the stocked recipe

records, which can be viewed as a sort of look-up table method.

On the other hand, the manufacturing intelligence employs NN

function approximators.

TABLE IV
OPTIMAL STRUCTURES OF FIVE LOCAL COLOR EXPERT MLPS IN CANFIS,

AND THEIR INITIAL NUMBER OF TRAINING/TEST DATA CLASSIFIED INTO THE

FIVE COLOR REGIONS. DURING THE LEARNING PHASE, MF PARAMETERS ARE

UPDATED; HENCE, THE AMOUNT OF DATA INTO THE FIVE COLOR CATEGORIES

CHANGES ACCORDINGLY. SINCE DIFFERENT AMOUNT OF TRAINING DATA

GOES INTO EACH LOCAL COLOR EXPERT, EACH MLP MAY HAVE A

DIFFERENT MODEL SIZE AND CAN BE OPTIMIZED FOR ITS OWN TERRITORY.
THE STRUCTURES WERE OPTIMIZED BY A PROCESS OF TRIAL AND ERROR.

NOTICE THAT EACH COLOR EXPERT’S OUTPUT UNITS ARE FEWER THAN THE

FINAL 10 CANFIS OUTPUT UNITS, ACCORDING TO COLORISTS’ KNOWLEDGE

Fig. 9. Important role of NN (in the paint manufacturing process) as
a color simulator to predict what the produced color will look like. NN
replaces the time-consuming part of paint manufacturing (compare Fig. 3).

In the evolutionary phase, the system tries to improve

colorant proportions encoded into chromosomes in conjunction

with three functions, NNs and a KB, which form the fitness

function. Genes’ colorant concentrations are passed to the three

functions which calculate fitness values individually, and then

the three values are combined into the final fitness value. This

evolutionary phase corresponds to the second step of the col-

orist’s operation described in Fig. 2. In the following, we shed

light on more details of each component in the evolutionary

system.

C. Colorist’s Knowledge Base

Performing the color recipe prediction task requires special

knowledge, thus, a KB is constructed that has the following four

main rules:

• Rule 1

keep total proportions of colorants 100%;

• Rule 2

keep the number of necessary colorants around the ideal

number;
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Fig. 10. Architecture of color paint manufacturing intelligence.

• Rule 3

avoid use of complementary colorants, e.g., Red and

Green;

• Rule 4

avoid use of the same type of colorants at the same time:

e.g., and .

Note that we have ten colorants (ten outputs) that include three

pairs of the same kind of colorants: green, yellow, and red ones

(see Fig. 1); each pair, such as and , has different

characteristics. In the color recipe prediction task, the 100% rule

(Rule 1) was also emphasized in [20].

Knowledge may be useful in reinforcing some favorable as-

pects of genetic searches [8]. Thus, the KB might play an im-

portant role in helping the hybrid system evolve to recognize

specific features of a target color.

D. Multi-Elites Generator

The resultant color recipes obtained by , and

CANFIS are encoded into the initial population as elite mem-

bers. Then, a multi-elite generator produces more elites by mod-

ifying those results according to Rule 4 in the KB. That is, the

concentrations of the same type of colorants are summed into

one or another of them, e.g.,

or

This is derived from the fact (in Table III) that the simple back-

propagation MLP, , tends to specify use of more than

six colorants although the desired number of colorants to pro-

duce any color in our data sets is fewer than five. Table V shows

two sample color recipes obtained by the aforementioned NN

approaches. Again, it is important to keep the number of col-

orants used at a practical level.

The following table shows a sample of initial multiple elites

produced by the multi-elite generator, and their associated color

difference predicted by :

Colorant Color difference Fitness

error by value

CANFIS

Elite

Elite

Elite

Elite

In this example, four new elites are generated by modifying the

’s recipe vector. The four newly generated elites (Elites

1 through 4) have different fitness values, which are higher than

’s fitness value, because knowledge has been applied to

improve the recipe vector obtained by .

Multiple elite colorant vectors offer several different good

starting points for GA searches. The number of encoded elites

depends on the quality of the CANFIS/NN results; we take the

results of three approaches ( , CANFIS), and

so at least three elite members always exist at the initial stage.

The combination of several solutions may be effective in finding

an optimal solution [6]. The other members are initialized by a

fuzzy population generator. This seeding procedure is shown in

the left side of Fig. 10.
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TABLE V
TWO SAMPLE COLOR RECIPES, COMPARED WITH THE RECIPES OBTAINED BY

NN ; NN , AND CANFIS; THOSE ARE ENCODED INTO

THE INITIAL POPULATION

E. Fuzzy Population Generator

The CANFIS concept in Fig. 7 is adapted to initialization

process [see the left side of Fig. 10]. The idea is to generate

the initial population according to the fuzzy classification of a

target color, which serves to determine colorant selection. First,

we classify the target color into one of five color categories (red,

yellow, green, blue, and violet) on the plane, which

shows hue and chroma [see (2)], and decide to what extent the

desired color belongs to each color category using fuzzy MFs, as

discussed in Section IV-B. We then generate initial color chro-

mosomes by modifying chromosomes generated by a random

number generator according to rules in the KB. For example,

when a target color looks greenish yellow, green chromosomes

and yellow ones are generated; Green chromosomes have zero

values in either or colorant concentration and

in red colorant concentrations because of the red-green com-

plementary color relationship (see Rule 3 and Rule 4 in Sec-

tion V-C). It is effective to inactivate some genes which have

information on the same type of colorants and complementary

colorants in order to eliminate redundant colorants at the initial

stage.

The number of green chromosomes and that

of yellow ones are decided according to the fol-

lowing calculations:

where two membership values, and , signify to what ex-

tent the target color belongs to the yellow category and the green

one, respectively. denotes the total population number,

and signifies the number of elite chromosomes from the

CANFIS/NN results including the chromosomes generated by

the multi-elite generator.

F. Fitness Function

The fitness function consists of three functions; two neural

fitness functions (Function 1 and Function 3), and the KB-based

fitness function (Function 2). Its form can be expressed as

fitness fitness fitness fitness (5)

where , and are scaling factors such that the total fitness

value is scaled to 1.0.

1) Function 1: The first function evaluates genes’ colorant

concentration vectors according to the use of colorants speci-

fied by . The ( neurons) maps

surface spectral reflectance to a list of required colorants (see

Fig. 11). It gives just ON/OFF values to each output unit to pre-

dict which colorants should be used to produce the same color

as the target color, where ON means “colorant needed” and OFF

means “not needed.” Function 1 evaluates each chromosome by

calculating the Euclidean distance in binary space (ON/OFF)

after each chromosome’s representation has been transformed

into the ON/OFF format as follows:

fitness (6)

where and are ten-dimensional

binary vectors of output and of an evolving color chro-

mosome, respectively. The calculated fitness is plugged into

(5).

Fig. 11 describes this procedure. Table VI shows the capa-

bility of this trained .

2) Function 2: The second function calculates a fitness

value based on the KB described in Section V-C. The fitness

value depends on the extent to which genes’ colorant concen-

tration vector obeys the rules in the KB. To keep the GA search

moving in a consistent direction, the KB is used in both the

initial stage and in the calculation of fitness values as illustrated

in Fig. 10. Function 2 computes the following:

fitness

# of complementary colorants

# of the same type of colorants

(7)

where vector is a ten-dimensional colorant

proportion vector encoded in an evolving color chromosome;
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Fig. 11. Component of the fitness function based on NN [see (6)].

TABLE VI
CAPABILITIES OF DIFFERENT NN APPROACHES IN SPECIFYING NECESSARY

COLORANTS. NN IS THE SIMPLE BACKPROPAGATION MLP, AND NN

IS THE IMPROVED NN AS DISCUSSED IN SECTION III; CANFIS IS THE

NEURO-FUZZY MODEL DESCRIBED IN SECTION IV. NN IS THE SPECIAL NN
THAT PREDICTS NECESSARY COLORANTS AS SHOWN IN FIG. 11

vector is a corresponding transformed binary

(ON/OFF) vector; and are some positive coef-

ficients that make the four parenthesized values positive. The

computed fitness is used in (5).

3) Function 3: The third function, based on , gener-

ates a fitness value with respect to color difference between a

target color and each member’s color whose colorant concentra-

tions are predicted by the system. Because it is time-consuming

to manufacture actual color paint by mixing colorants specified

by genes’ values, the plays a crucial role as a color sim-

ulator to predict what color will be produced (see Fig. 9). The

( neurons) maps colorant concentrations

to , and ; that is, by plugging each member’s colorant

proportions into , we can obtain , and to calcu-

late the color difference between a target color and an individual

color (see Fig. 12).

The calculated color difference shows how satisfactorily the

predicted color matches the reference color. Recall that human

eyes can hardly distinguish two color samples if their color dif-

ference is smaller than 1.0. The use of provides a way

to calculate color differences numerically, and thus to take into

account human visual sensitivity to color differences. Table VII

shows the potential of the color simulator .

Function 3 determines the fitness value fitness of each

chromosome based on

fitness (8)

where denotes the color difference calculated by (2). Other

decreasing functions can be employed alternatively. The calcu-

lated fitness goes to (5).

G. Genetic Strategies

GA search is controlled by genetic operations, which might

have a significant effect on the quality of solutions. We have

embodied some ideas special to the color recipe prediction in

both mutation and crossover operations.

1) Mutation Strategy: Usual mutation operation as in a

simple GA [3], [21] is applied to all members with a changeable

mutation rate scheme such that a fixed mutation rate (0.01) is

adopted with a probability of 0.4, and otherwise, a mutation

rate ranging from 0.09 to 0.69, is decided using a random

number. Moreover, the following modified operations are also

considered.

• Chromosome Template:

To avoid specifying use of more colorants than neces-

sary, we set out to inactivate some genes using the fuzzy

population generator as described in Section V.E. This has

made it possible to use a chromosome itself as a template

to do the mutation operation. That is, before the mutation

operation, it is decided whether to mutate an inactivated

gene or not; the mutation is applied with low probability

(0.1) to inactivated genes, which have zero values of con-

centrations. If the mutation is applied to an inactivated

gene, this leads to an increase in the number of necessary

colorants.

• Local Search and Preservation of Multi-elites:

Multi-elites, i.e., chromosomes from the results of

CANFIS/NN approaches, are mutated only at the lower

bits of each gene to keep traits similar to the NN results.

Those mutant copies of the multi-elites may stay in the

vicinity of the original multi-elites. In this way, local

search of the NN results is realized. In addition, the

offspring of multi-elites always advance to the next gen-

eration. The mutant copies of multi-elites are preserved

throughout the entire evolution. Note that this manipula-

tion of low-order bits is applied only to multi-elites.

• Exchanging Mutation:

After the usual mutation, with low probability, mem-

bers are subjected to another mutation: exchanging genes
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Fig. 12. Component of the fitness function based on NN . The NN predicts what color will be produced after genes’ specified colorant proportions are
mixed.

TABLE VII
AVERAGE COLOR DIFFERENCE PREDICTED BY NN USING THE IDEAL

COLORANT CONCENTRATIONS, AND THE RESULTS OF THREE NN APPROACHES:
NN ; NN , AND CANFIS. THIS TABLE SHOWS THE POTENTIAL

CAPABILITY OF NN FOR 302 CHECKING DATA

that have the same type of colorant information. This mu-

tation is illustrated in Fig. 13. Among ten output colorant

proportions, we have three pairs of the same types of col-

orants (e.g., and ); so, we must decide which

one to use. This exchanging mutation allows us to explore

such colorant choices. This may lead to an escape from

local optima in the initial CANFIS/NN and results;

their choices may not match the final choice determined

by the system. Later in Table IX, we will show the agree-

ment with ; namely, how much the resultant choice

of colorants optimized by the system matched the colorant

choices specified by .

2) Modified Simplex Crossover: Instead of using ordi-

nary two-point crossover method, we employed the simplex

crossover method, detailed in [1]. We have modified the

selection method of the original simplex crossover, resulting in

the following three procedures:

1) select one good chromosome with respect to fitness value;

2) pick, with high probability, a multi-elite, i.e., one of the

mutant copies from the initial CANFIS/NN results, as a

good chromosome;

3) choose one bad chromosome with respect to fitness value.

The procedures share an idea of the Nelder-Mead downhill sim-

plex method [18], based on a reflection away from a bad chro-

mosome, as illustrated in Fig. 14. Procedure 1) lights a direc-

tion toward minimizing color difference since a chromosome

Fig. 13. Exchanging mutation.

with high fitness most likely has small color difference due to

(8) with . In this GA search, it is desirable to find a di-

rection that minimizes both color difference and colorant er-

rors. The problem is that we cannot calculate colorant errors

directly; however, the CANFIS/NN results provide a clue as to

better colorant concentrations since they must already be within

some range of the ideal colorant concentrations. That is why mu-

tant copies from the CANFIS/NN results, including ones origi-

nally generated by the multi-elite generator, should be involved

in guiding the search toward better colorant proportion vectors

as in procedure 2). And then procedure 3) completes the sim-

plex crossover, as depicted in Fig. 14. These three procedures

were motivated by the colorists’ skillful procedures described

in Fig. 2.

VI. EXPERIMENTS OF MANUFACTURING INTELLIGENCE

The performance of the evolutionary color paint “manufac-

turing intelligence” was evaluated by actually manufacturing

color paint samples according to the experimental results. Due

to the time constraints in the usual production schedule and lim-

ited manufacturing capacity, 111 checking data were randomly

selected for the performance evaluation.
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Fig. 14. GA search control by the modified simplex crossover. Two selected
chromosomes are called “good” or “bad” according to their fitness value, and
the third chromosome is a mutant copy from the CANFIS/NN results.

The configuration of the GA was as follows:

Population size members

Mutation rate flexible

Crossover method simplex crossover

Simplex crossover rate

Maximum generations

Table VIII shows the comparison of the evolutionary system

and the aforementioned CANFIS/NN approaches.

with all three components of the fitness function,

employed the results of three approaches: ,

and CANFIS in generating the initial population. According to

the corresponding color difference predicted by , only

the result of was good enough to reach a satisfactory

level of color difference where human eyes could not tell

the difference between presented colors. (Again note that the

desired color difference should be smaller than about 1.0.)

To exhibit how indispensable CANFIS/NN results are at the

initial seeding stage, we examined , which had no

multi-elites from CANFIS/NN results, but had the same fitness

function as . It started the GA search from the ran-

domly initialized colorant proportion vectors. Note in Table IX

that the parenthesized values show the best performance with

respect to colorant errors regardless of fitness; those were the

results when the minimal colorant errors were obtained.

Furthermore, to demonstrate the validity of each of the three

components in the fitness function, we tested ,

and : had as the only component of the

fitness function; had both and as two

components of the fitness function; had the KB as well

as as two components. (Note that played an im-

portant role as a color simulator; hence, it always had to stay in

the fitness function.) Table IX summerizes the results, showing

how each component contributed to the prediction, and how they

complemented each other.

Fig. 15 shows a sample evolutionary process of .

The system selects a chromosome with the highest fitness as

the final solution over a preset number of generations (10 000).

For instance, in a sample evolution process in Fig. 15, the final

outcome is obtained at generation 4468, as shown in Table X.

TABLE VIII
RESULTS OF COMPUTATIONAL PREDICTION IN COLORANT ERROR (�10 )

AND THE CORRESPONDING COLOR DIFFERENCE PREDICTED BY NN USING

111 CHECKING DATA. NN IS A SIMPLE BACKPROPAGATION MLP,
AND NN IS AN IMPROVED NN , AS DISCUSSED IN SECTION

III; CANFIS IS A NEURO-FUZZY MODEL DESCRIBED IN SECTION IV;
GNF IS A GENETIC NEURO-FUZZY MODEL

VII. DISCUSSION

In reality, it is very difficult to obtain the perfect fitness

function to evaluate a complicated industrial process, especially

when its precise mathematical model is not available. To over-

come the limitation, we employed NN function approxmators,

and , as components of the fitness function.

Although those NN’s were not perfect, as shown in Tables VI

and VII, they helped direct the GA search to a better region of

the search space; consequently, the performance of

was still better than those of other approaches (see Tables VIII

and IX).

When solely acted as the fitness function in ,

the system tended to go too far toward minimizing color dif-

ference, and therefore the average number of required colorants

was larger. In addition, the specified colorants did not match

well those designated by as indicated in the low per-

centage of agreement with in Table IX.

Intriguingly enough, and have comparable

-agreements, and were still better than those

two in the -agreement. This indicates that the KB surely

helped the system evolve to recognize important aspects in col-

orant selections, compensating for the lack of accuracy of

(Table VI). Here, it is emphasized that they functioned synergis-

tically.

had no multi-elites but had all three components of

the fitness function, starting from the randomly initialized col-

orant concentration vectors. Its poor performance in Table IX

places emphasis on the existence of the multi-elites (i.e., mutant

copies from the CANFIS/NN approach results); without them,

we cannot draw any advantage from the search direction pre-

sented in Fig. 14. In other words, seedings from CANFIS or

other NN approaches are indispensable in enabling “manufac-

turing intelligence” to function efficiently. This case

corresponds to a situation where professional colorists have no

access to their own file of previous color recipes, leading to very

time-consuming efforts to generate near-optimal recipes.

As shown in the parenthesized values in Table IX, the system

did not put the highest fitness on the ‘best’ chromosome in terms

of colorant errors (see Table X also). In this simulation, we did

not use the elitist selection method since the fitness function

could not calculate colorant errors, which may suggest that even

if a better child chromosome in terms of colorant error appears,

the elitist strategy may jeopardize its chance of advancement to

the next generation. In fact, when the elitist selection strategy

was used, the system had a tendency to go too far toward mini-

mizing color difference [10], [13].
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TABLE IX
PERFORMANCE EVALUATION OF “MANUFACTURING INTELLIGENCE” SYSTEMS FOR 111 CHECKING DATA. GNF SHOWS THE MAXIMAL ABILITY OF THE

MANUFACTURING INTELLIGENCE IN THE PREDICTION TASK. PARENTHESIZED VALUES SHOW POTENTIAL CAPABILITIES WITH RESPECT TO COLORANT ERRORS;
THEY WERE OBTAINED WHEN COLORANT ERRORS WERE MINIMIZED. A COLUMN, “AVG. # OF GENERATION” SHOWS WHEN MAXIMAL FITNESS IS REACHED. A

COLUMN, “ERROR” DENOTES THE AVERAGE COLORANT ERROR. A COLUMN, “AGREEMENT WITH NN ” IMPLIES HOW MUCH THE PREDICTED CHOICE OF

COLORANTS OPTIMIZED BY THE SYSTEM MATCHES THE COLORANT CHOICE SPECIFIED BY NN , AND THE LAST COLUMN, “COLOR DIF. BY NN ”
SIGNIFIES COLOR DIFFERENCE PREDICTED BY THE COLOR SIMULATOR, NN

Fig. 15. Sample evolutionary process without the elitist selection strategy (see
Table X).

The parenthesized colorant errors in Table IX show almost

the same error level except for that of ,

TABLE X
SAMPLE OF EVOLVED COLOR RECIPES THAT WERE SORTED ACCORDING TO

THE FITNESS VALUES. THE RECIPE WITH THE HIGHEST FITNESS AT

GENERATION 4468 WAS SELECTED AS THE FINAL OUTCOME. NOTE THAT THE

COLOR DIFFERENCE WAS PREDICTED BY NN (SEE FIG. 15)

although the colorant errors of the final solutions of the system

are quite different. Actually, only 71 patterns among the 111

checking patterns were improved in terms of colorant error. This

may be partly because the CANFIS models worked well in pre-

diction, so their results may be hard to improve upon, but partly

also because the system may happen to find another colorant

composition solution. In other words, the presented “manufac-

turing intelligence” can potentially handle it if the color simu-

lator, , learns much of the mapping from colorant com-

positions to perceptual attributes of color ( , and ).

Fig. 16 shows an interesting fact that the real perceived color

difference did not exactly correspond to the magnitude of col-

orant errors. Such complicated relationships between colorant

errors and actual color differences may imply that the mapping

from surface spectral reflectance to a list of colorants may not

be a one-to-one correspondence. (As stated in Table I, we may

need to take care of the (P4) and (P5) problems; different col-

orant compositions may produce the same or almost the same

color to human perception.)
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Fig. 16. Complicated relationships of 32 color samples between actual color
difference and colorant proportion errors; these 32 sample color paints were
actually manufactured and their color differences were actually measured.

Fig. 17. Kubelka-Munk theory-based NN system; neural networks (or
neuro-fuzzy) models compensate for the conventional Kubelka-Munk
theory-based system.

Also, the smallest colorant error calculated by (1) may not

be the best solution for human color perception. We may need

weighted colorant error calculations in place of (1); in a bright

color, for instance, black colorant error would be considered

more important than white colorant error, and therefore, larger

weight may be assigned to the black colorant error.

This section concludes with one notice of accuracy of “color

difference” formula defined in (2); the adopted CIE 1976

-space may not be perfect. In color science, it is still

important to characterize the nature of human color perception.

VIII. CONCLUDING REMARKS AND FUTURE DIRECTIONS

In Section IV, we have demonstrated the strength of a knowl-

edge-embedded neuro-fuzzy model, CANFIS. By constructing

MF’s in the color attribute space, this neuro-fuzzy approach

allows us to express and realize meaningful representations of

colorists’ knowledge. This concept was further incorporated

into “manufacturing intelligence,” highlighted in Section V,

a unique blend of principal components of soft computing

where a GA with a KB plays a leading role in pursuit of

predictions, linking an FS and NNs; they function complemen-

tarily as an evolutionary system. The resultant “manufacturing

intelligence” system has a mechanism for checking predicted

perceptual color difference in conjunction with an embedded

color simulator by simulating the manufacturing cycle

of color paint. Therefore, the system realized a higher degree of

prediction precision, improving the results of other individual

approaches, although its disadvantage is that it was fairly

time-consuming to construct the entire architecture (shown in

Fig. 10) using soft-computing function approximators.

Our immediate future work includes the following:

• employ CANFIS/NN’s to compensate for the conven-

tional Kubelka-Munk-theory-based system, as illustrated

in Fig. 17;

• improve CANFIS and NN performances by using ad-

vanced nonlinear least squares techniques, i.e., a direct

dogleg trust-region algorithm [14], [15] for a small-scale

problem, or an iterative Krylov-dogleg algorithm [16],

[17] for a large-scale problem;

• develop systematic and faster implementations of the com-

putational intelligence for further improvements.
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