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Ordinary differential equations are often used to model the dynamics and interactions in genetic

networks. In one particularly simple class of models, the model genes control the production rates

of products of other genes by a logical function, resulting in piecewise linear differential equations.

In this article, we construct and analyze an electronic circuit that models this class of piecewise

linear equations. This circuit combines CMOS logic and RC circuits to model the logical control of

the increase and decay of protein concentrations in genetic networks. We use these electronic

networks to study the evolution of limit cycle dynamics. By mutating the truth tables giving the

logical functions for these networks, we evolve the networks to obtain limit cycle oscillations of

desired period. We also investigate the fitness landscapes of our networks to determine the optimal

mutation rate for evolution. © 2004 American Institute of Physics. @DOI: 10.1063/1.1786683#

Networks giving rise to complex dynamics exist in a wide

range of physical, biological, and engineered systems. Re-

cent studies have focused on the structure of such net-

works, and examined how the structure is linked to func-

tional properties such as robustness and error tolerance.

In general, however, a theory to predict the dynamics

based on network structure is lacking, and consequently,

it is often unclear what structural architecture is needed

to produce desired dynamics. Here we show that net-

works with desired complex dynamics can be obtained by

evolving their structure rather than by designing it from

the outset. We construct and experimentally analyze an

electronic circuit that is based on a class of ordinary dif-

ferential equations that model genetic networks. Net-

works in this system can display a variety of dynamics,

including steady states, limit cycles, and chaos. Here we

focus on limit cycles and show that it is possible to evolve

networks that display stable oscillations of a specified

cycle length. By analyzing the fitness landscape, we dem-

onstrate that there is an optimal evolution rate for ob-

taining such dynamics. This work shows how mutations

in model gene networks can lead to the evolution of dy-

namic behaviors.

I. INTRODUCTION

Research carried out by Jacob and Monod in the early

1960s provided early insights into the regulation of the ac-

tivities of genes. They discovered that specialized protein

molecules, called transcription factors, could bind directly to

DNA thereby regulating the activity of regions of DNA

proximate to the binding site of the protein. Since the DNA

carries the code for the structure of proteins, products from

one DNA site could affect the activity at another DNA site,

thereby leading to a network of genes interacting through

protein intermediaries. In an early paper, Jacob and Monod

outlined simple genetic control circuits that they imagined

could underlie biological processes associated with multista-

bility and oscillation.1 Shortly after this seminal work, math-

ematical models of genetic control networks were developed

in which the ‘‘on–off’’ dynamics of genes could be modeled

by networks of Boolean logical devices that updated at dis-

crete times.2–6

The notion that the regulation of gene activity can be

modeled using logical functions has persisted to the

present.7–11 Further developing these ideas, recent work has

demonstrated that different logical functions can be combi-

natorially synthesized in bacteria,12 directed evolution can be

used to generate a genetic circuit that acts as an inverter,13

and that the binding of transcription factors to DNA is ide-

ally suited to generate modular and evolvable transcriptional

control.14 Finally, following up on Jacob and Monod’s early

proposals, genetic circuits in bacteria have now been de-

signed and synthesized that show simple dynamic behaviors

including bistability15–17 and oscillations.18

The above papers provide a rationale for studying net-

works of genes that display switchlike behavior. However,

since there is no evidence of clocking devices that update

states of networks at discrete times in genetic networks, wea!Electronic mail: glass@cnd.mcgill.ca
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believe it is more appropriate to study dynamics in differen-

tial equations representing networks in which time is con-

tinuous but the activities of the elements of the networks are

regulated using logical functions.19–25 In this formulation,

the concentrations of the protein transcription factors in-

crease or decrease exponentially, but the target genes that are

under control switch between two states. In the ‘‘on’’ state, a

gene is activated leading to the synthesis of the protein for

which it codes, and in the ‘‘off’’ state, the gene is inactive

and the protein for which it codes decays towards zero con-

centration. A given gene is turned on or off, depending on the

logical function that controls it, and whether the transcription

factors that regulate it are above or below threshold levels.

The ways in which real genetic control networks evolve

is not understood. The current work shows how the modifi-

cations in the rules controlling gene expression can be used

to seek a desired dynamics, even though there is no theory to

predict what structural architecture is needed to produce the

desired dynamics. Many recent papers have analyzed evolu-

tion in a variety of systems including electronic

networks,26,27 mathematical models of genes,28 computer

models of genes,29–31 computer models of gene networks,32

complex networks,33,34 and genetic circuits in bacteria.13 Our

work is complementary to these studies in that we use a

localized random search method to find and explore novel

dynamical behaviors, and to study how the properties of

these behaviors change as a network becomes progressively

modified.

In this work, rather than analyze dynamics in a theoret-

ical model, we have chosen to study dynamics in a hybrid

digital–analog system that models the differential equations.

We have two main reasons for doing this. First, in the elec-

tronic system there are necessarily small amounts of noise,

and consequently all observed dynamics will be robust to

small perturbations in the circuit. Second, we believe that the

class of circuits we consider has intrinsic interest, and at

some stage might lead to novel ways to build oscillators

displaying robust dynamically different nonlinear oscilla-

tions. Our emphasis on the design of real circuits, also places

the current work in the area of evolutionary electronics.26,27

However, most of the work in evolutionary electronics is

concerned with the design of circuits that compute functions

of input data, rather than the evolution of circuits that have

novel dynamic behaviors.

The paper is organized as follows: In Sec. II, we intro-

duce differential equations that have been used to model ge-

netic networks. Section III describes the design of an elec-

tronic circuit that models the differential equations, and

shows the dynamics for circuits of three and five elements,

respectively. Section IV describes the evolution algorithm we

employ to search for novel dynamic behaviors. In Sec. V, we

provide theoretical insight into the optimal mutation rate by

analyzing the fitness landscape of the model system. Finally,

in Sec. VI, we discuss the significance and implications of

the presented work.

II. A DIFFERENTIAL EQUATION MODEL FOR GENE
NETWORKS

The class of piecewise linear differential equations that

underlie the design of the circuit has been proposed as a

highly simplified model of genetic networks,20–25

dx i

dt
52g ix i1B i~X i1

~ t !,X i2
~ t !, . . . ,X iK

~ t !!,

i51,.. . ,N , ~1!

where x i is a continuous variable, X i is a discrete binary

variable, X i51 if x i>u i and X i50 if x i,u i , where u i is a

threshold, g i is a decay constant, and

B i(X i1
(t),X i2

(t),. . . ,X iK
(t)) is a function that depends only

on the logical values of its K inputs, X i1
(t),X i2

(t),. . . ,X iK
(t).

We assume that there is no self-input, so that the inputs to B i

do not include variable i . In some situations, and in particu-

lar in the current paper, we may assume that B i is a Boolean

variable that only assumes two values ~which through rescal-

ing can be set to be 0 and 1!. In the biological context, we

can think of x i as a class of proteins, called transcription

factors, that regulate the production of other transcription

factors, e.g., see ~8!. Given that the circuit elements act as

simple integrators, the dynamics of any particular network

are governed completely by the truth table and initial condi-

tions.

Letting $t1 ,t2 , . . . ,tk% denote the switch times when any

element of the network crosses its threshold, we can obtain

the solution of Eq. ~1! for each variable x i for t j,t,t j11 :

x i~ t !5x i~ t j! e2(t2t j)1B i~X i1~ t !,X i2~ t !, . . . ,X iK~ t !!

3~12e2(t2t j)!. ~2!

Thus, by piecing together the trajectories, it is possible to

determine the dynamics for future times. As we show below,

this differential equation can be implemented by a hybrid

digital–analog circuit in which different elements are chang-

ing state at different times. Consequently, it differs signifi-

cantly from synchronous Boolean switching networks, such

as those proposed by Kauffman,3,4 in which the logical states

of all network elements are updated simultaneously.

Because of their simple structure, these equations are

amenable to theoretical analysis. The equations can display

fixed points, stable limit oscillations, and chaotic dynamics.

Further, as the number of variables in the networks increases,

there is a combinatorial explosion in the number of possible

networks. We are interested in constructing an electronic net-

work with a comparatively small number of elements that

can have rich dynamic behavior. We choose to construct a

system of five variables in which each receives four inputs.

Since there are 24 logical states of four variables, there are

224

5216 different logic functions of four variables. Conse-

quently, the total number of networks is 280. Using group

theoretic arguments based on the symmetries of the truth

tables, the number of distinct networks is '3.1431020.22

These different networks are generated by designating the 80

entries in the five truth tables of the five elements of the

network. Edwards gives a comprehensive review of the prop-

erties of these equations.23
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III. A HYBRID DIGITAL–ANALOG CIRCUIT

A. Design of the circuit

We constructed a hybrid digital–analog circuit that mod-

els networks of five genes described by the above equations.

Since this system is subjected to intrinsic noise and time

delays associated with its operation, and since its parameters

depend on the actual values of capacitances and resistors,

any observed oscillations must be robust.

The construction of this circuit relies on RC circuits and

combinatorial switching circuits. In an RC circuit, a voltage

E is provided to a circuit with a resistance R and capacitance

C . In our system, the voltage E arises from the logical con-

troller as it switches back and forth between 5 V and 0 V, as

determined by the dynamics of the network described below

@Fig. 1~A!#. Following a change in the value of E at t50, we

find that the voltage across the capacitor is

V~ t !5E1~V~0 !2E !e2 ~ t/RC !. ~3!

Thus, the voltage across the capacitor is an exponential func-

tion that approaches E with a time constant equal to RC . In

this sense, the voltage V(t) is analogous to the concentration

of a protein transcription factor x i(t). Moreover, we can pass

the voltage through a threshold element to provide a logical

variable analogous to the logical variable X i(t).

Figure 1~A! shows a schematic diagram of the circuit for

element 5. To model the regulation of genes, we apply meth-

ods of combinatorial switching circuit design35 using CMOS

logic. This allows us to model in a programmable way, the

logical functions that control the regulation of the ‘‘on–off’’

states the genes. Any of the 216 logic functions of four vari-

ables can be synthesized by an appropriate combination of

the control lines b1 ,b2 , . . . ,b16 . In order to generate any

logical function, the b i are combined in an AND function

with all possible logical states of the four model genes that

are inputs to gene 5. For example, setting b151 and b i50

for i52,.. . ,16, only produces a value ‘‘true’’ or ‘‘1’’ if X1

5X25X35X451 at the same time.

The operation of the network can be appreciated by con-

sidering the voltage relative to ground that would be re-

corded at three different places in the circuit @see Fig. 1~B!#.

The voltage at I corresponds to the Boolean function B5 in

Eq. ~2!. This voltage would be 5 V if the logical switch at

that time was ‘‘true,’’ otherwise it would be 0 V. The voltage

at point II corresponds to the value of x5 in Eq. ~2!. As

follows from Eq. ~3!, if the voltage at I is 5 V, then at point

II in the circuit, there will be an exponentially increasing

function; if the voltage at I is 0 V, then at point II in the

circuit, there will be an exponentially decreasing function.

Finally, the voltage at III corresponds to the value of X5 in

Eq. ~2!. By passing the signal at II through two inverters, we

find a voltage of 5 V at point III if the voltage is above the

threshold, or we find a voltage of 0 V if the voltage is less

than the threshold. The feedback is provided by feeding back

X5 , and its complement X̄5, into the combinatorial logic

functions for the other elements. By selecting R5100 kV ,

C50.1 mF, we set the time constant to be 10 ms.

The circuit was modified and data were analyzed under

Labview ~National Instruments, Austin, TX, USA! with a

digital I/O card to initialize the control functions and an ana-

log data acquisition card to collect the output. All modifica-

tions involved only making changes in the set of b i that

define the truth tables for the network. We analyzed the re-

sulting dynamics for stable periodic oscillations. The analy-

ses were carried out for time series of 3.5 s length sampled at

FIG. 1. Schematic diagram of element 5 in the electronic circuit ~A! and the output at three points in this circuit ~B!. The output of the circuit is controlled

by inputs from X1 ,X2 ,X3 ,X4 and the truth table b1 ,b2 , . . . ,b16 . The AND functions and OR functions are realized using CMOS chips. The waveforms at

points I, II, and III in the circuit are indicated in panel B. The output of the truth table at I is converted to an exponentially increasing or decreasing sawtooth

at II by passing the voltage at I into an RC circuit. The sawtooth is then converted to a step function using two inverter chips in series. An inverter chip

converts an input voltage that is less than a threshold of approximately 2.1 V, to a ‘‘high’’ output, and an input voltage that is greater than the threshold to a

‘‘low’’ output. The output at III from this circuit is fed into the inputs of the other elements. The circuits for the other elements are constructed in an analogous

fashion. The bar over a variable indicates negation, i.e., 0̄51 and 1̄50.
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2 kHz. Each time a circuit element switched from high to

low, or low to high, we recorded the element that switched.

The resulting sequence of integers was then analyzed for the

shortest repeating sequence, of at least three integers, in

which each integer appears an even number of times. Peri-

odic switching sequences in the solutions of Eq. ~2! are as-

sociated with stable limit cycle oscillations.22 If the identified

sequence repeated at least 15 times, we determined the pe-

riod of the resulting cycle. This analysis procedure was

checked in a large number of cases, and in all cases, it iden-

tified stable large-amplitude periodic solutions. Since these

networks can also display switching at a rapid rate set by the

time delays of the circuit that are associated with a stable

focus in the differential equations, and since we are inter-

ested in stable limit cycle oscillations with long periods, we

only consider cycles whose period was greater than 10 ms.

B. The repressilator: Oscillations in a three-gene
network

In order to illustrate the operation of the circuit, we show

the dynamics for a simple circuit with three genes that has

been designed to oscillate. One mechanism for generating

oscillations involves feedback circuits composed of a ring of

elements, each of which either inhibits or activates the next

element in the ring. Situations in which there are an odd

number of inhibitory interactions often display stable limit

cycle oscillations. Elowitz and Leibler18 implemented this

type of circuit in bacteria by constructing an inhibitory ring

of three genes. Each gene coded for a transcription factor

that in turn inhibited the synthesis of the next gene in the

ring, Fig. 2~A!. The network was constructed using plasmids

in E. coli, and the dynamics were monitored using green

fluorescent protein ~GFP! that was under control of the tran-

scriptional circuit. The resulting network, called the repressi-

lator, exhibited oscillations in the expression of GFP. A dif-

ferential equation of the form in Eq. ~2! shows stable limit

cycle oscillations with period 2.887... when g i51.22

As a first test for our circuit, we implemented a network

that had the same logical structure as the repressilator.22 The

truth table for this corresponding network is shown in Fig.

2~B!. The network has a stable oscillation, shown in Fig.

2~C!. Taking into account the time constant for our circuit,

we compute that the period of the limit cycle oscillation in

the circuit would be 28.87 ms, provided all the time con-

stants are equal, and the thresholds of all switches are exactly

2.5 V. In the current case, measurement of the time constants

show that they differ from the rated 10 ms by up to 6%, and

that the thresholds are approximately 2.1 V. These small dif-

ferences lead to a period of the digital–analog repressilator

circuit of approximately 29.5 ms. The pattern of oscillation

in the circuit is similar to that observed in the repressilator

and in differential equation models of the repressilator.18,22

C. More complex oscillations in a five-gene network

A five-gene network is capable of an extremely rich va-

riety of oscillatory behaviors. Examples of two truth tables

and their corresponding dynamics are shown in Fig. 3. For

compactness, the truth tables are written in the following

way: all combinations of four inputs for any individual net-

work element are given on the left, and the logic functions

represented by the five elements are given in columns

B1 – B5 on the right. Recalling that each element receives

input from the other four elements with no self-input, the

four inputs on the right correspond to inputs from elements

1, 2, 3, 4, and 5, minus the element in question. In other

words, for element 1, inputs 1–4 come from elements 2–5,

respectively. For element 2, inputs 1–4 come from elements

1, 3, 4, and 5, respectively, and so on. As seen in Fig. 3, it

would be difficult to predict these dynamics based on the

logic of the network.

IV. SEARCHING FOR COMPLEX OSCILLATIONS IN
THE ELECTRONIC CIRCUIT

We set a search task of finding networks that display

complex oscillations which occur infrequently by chance. To

do this, we first carried out a survey of the distribution of the

periods of randomly generated networks. Figure 4 shows a

histogram displaying the periods found in the circuit for 300

randomly generated networks. There are a comparatively

small number of networks with periods greater than 60 ms.

Based on this observation, we selected a target period, de-

noted T*, of 80 ms (65 ms) as the target period for our

search procedure.

Evolution was implemented in the following manner.

Random networks were generated until a network displayed

periodic dynamics. Then a random local search was initiated.

For each element in the truth table, a random number was

generated. If this random number was less than the mutation

rate, called r, then a random 1 or 0 replaced that element in

the truth table. This led to truth table mutations at an average

rate of r/2. In each generation, there was only one ‘‘prog-

eny.’’ If the progeny had a limit cycle oscillation whose pe-

riod was the same as the period of the parent or closer to the

FIG. 2. ~Color! ~A! Schematic diagram of the repressilator. ~B! Truth table

for the repressilator. ~C! Dynamics of the digital–analog repressilator cir-

cuit. There is a stable oscillation with period 29.5 ms.
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target than the period of the parent, then future evolution was

carried out from its truth table. Otherwise, evolution was

carried out using the truth table of the parent.

Figure 5 shows the results of a typical evolution trial.

The initial period of the circuit was 27.0 ms. The period

increases through a series of plateaus of different heights and

durations, and at the end of 540 trials achieves a period of

75.5 ms. The observed oscillation of the final network differs

considerably from that of the initial circuit. The course of

evolution in each run was different, and the final circuits

obtained are also typically different. Even though a small

percentage ~about 2%–3%! of the possible networks show

stable oscillations, this is still a very large number of circuits

displaying stable limit cycles.

Figure 6 compares the average results of 25 trials for

several different rates of evolution. Each trial was carried out

FIG. 3. ~Color! The truth tables and data for two different networks. To read the truth tables, recall that each element receives four inputs ~one from each other

element, with no self input!. For each element, then, inputs 1–4 represent inputs from the five elements minus itself. For example, for element 3, inputs 1–5

come from elements 1, 2, 4, and 5, respectively. The logic function defined for each element in the circuit, 1–5, is given by B1 through B5 on the right side

of the truth table.

FIG. 4. Histogram showing the periods of stable limit cycle oscillations in

the electronic circuit based on an analysis of 300 randomly generated net-

works which display limit cycle oscillations. A period of oscillation for a

network in the differential equation literature must be multiplied by approxi-

mately 10 to find the comparable period in ms for the electronic circuit. The

percentage of randomly generated networks showing stable oscillations is

approximately 2.8%.
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for 250 generations. These results demonstrate that the ap-

proach to the target is maximally fast for a mutation rate of

r55% – 10%.

V. DETERMINATION OF THE FITNESS LANDSCAPE

One of the main theoretical means for understanding

evolution in biological systems and model systems is to con-

struct the fitness landscape, a graph in which the vertices

represent the different genetic makeup of organisms. A fit-

ness is associated with each vertex, where the fitness reflects

the relative ability of the organism to compete with other

organisms. Higher fitnesses are associated with organisms

that tend to outcompete other organisms of the same species.

Various models of the fitness landscape have been proposed

and features such as the number of local maxima and the

mean path length from any state to its nearest local maxima

have been computed; for example, see Refs. 30, 36–38, and

references therein.

For our circuit, the fitness landscape is an 80-

dimensional Boolean hypercube where each of the 280 verti-

ces represents a different truth table for the network. The

Hamming distance between two Boolean vectors of the same

length represents the number of loci in which the two vectors

differ. Consequently, in the Boolean hypercube, vertices that

share a common edge represent states with a Hamming dis-

tance of one, vertices separated by two edges represent states

with a Hamming distance of two, and so forth. Networks that

do not give rise to periodic dynamics have fitness 0. The

fitness of a given network with period T and target period T*

is inversely proportional to uT2T*u. We sampled the fitness

landscape in the neighborhood of many different periodic

networks. Random networks were generated until a network

displayed periodic dynamics.

Once a network which displayed periodic dynamics was

randomly generated, the effects of flipping a fixed number of

truth table entries were determined. All 80 truth tables with a

Hamming distance of one from the parent network were

sampled. One thousand randomly selected networks that lie

FIG. 5. ~Color! Typical example of evolution of the limit cycle oscillation in the electronic circuit. The three traces in the left panel show the increases in

period of the network in three different runs as the network evolves towards the goal. Each run begins with the same initial network, whose dynamics are

displayed in panel A. Panels B and C show the dynamics of an intermediate network and the ending network, respectively, for one of these runs. The colored

traces in panels A, B, and C represent the output of the five network elements. Both the complexity of the oscillation and the period increase during evolution,

and the dynamics of the final network differs dramatically from that of the initial network.

FIG. 6. ~Color! Evolution of the electronic circuit ~schematically repre-

sented in Fig. 1! for different mutation rates r. The average deviation of the

period from the target value T*580 ms is plotted as a function of genera-

tion number.
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Hamming distances k52 – 10, 15, 20, and 25, from the par-

ent network were also sampled. We repeated this process for

10 different periodic networks at each condition, and deter-

mined the mean fitness and fraction of periodic networks for

each condition.

To study properties of the random local search in these

networks, we developed an approximate characterization of

the fitness landscape. Let k represent the Hamming distance

of a network from another network displaying a stable peri-

odic cycle. The fitness landscape is characterized by two

functions: f (k), which is the fraction of networks displaying

periodicity, and g(k), the average improvement in the period

of a progeny network displaying a stable limit cycle towards

the target period. As k increases, f (k) decreases and g(k)

increases. These data are shown with standard errors in Fig.

7 and were fit to exponential functions ~solid lines!.
The probability that any given element of the truth table

will change given the mutation rate r is r/2. Using the bino-

mial theorem in a truth table of N entries, the fraction of

truth tables that are a Hamming distance k from the initial

network, F(N ,k ,r) is

F~N ,k ,r !5S N

k D S r

2
D kS 12

r

2
D N2k

. ~4!

Using this result, we can compute the expected mean im-

provement per generation D~r!

D~r !5(
k

f ~k !g~k !F~N ,k ,r !. ~5!

The results are shown in Fig. 8. Based on the above compu-

tation, the search towards the target period is predicted to be

most rapid for r'0.08. This is in agreement with the experi-

mental data in Fig. 6.

Figure 7 shows that while there is a small amount of

variation of each data point for f (k), there is considerably

more variation in the values of the data points for g(k). This

occurs since we only sample a small portion of the networks

a Hamming distance k away from a given network, and as k

increases, the standard error also increases. Consequently,

many different functional forms could have been used to fit

g(k) in Fig. 7. However, choosing other functional forms

such as a second-order polynomial or Gaussian for g(k) also

yield optimal mutation rates approximately the same as the

one found using the exponential fit.

VI. DISCUSSION

In biological systems, stable oscillations are commonly

exhibited, but it is unclear how these dynamics can arise and

evolve. The present work shows that robust physically real-

izable oscillations can arise quite easily in model genetic

networks, and that such networks can be modified to produce

oscillations of different periods. Further, by analyzing the

fitness landscape in the neighborhood of periodic networks,

we demonstrate that the search procedure is optimized for an

intermediate mutation rate ~Fig. 8!.
In the evolution runs carried out in this work, the circuit

starts each trial with with each element at a low voltage near

zero in the low logic state. Therefore, during all evolutionary

trials, the period of a particular network was the period start-

ing from this initial condition. As we demonstrate, we obtain

an approach to the target period using this scheme. However,

these networks can also display more than one attractor start-

ing from different initial conditions. Consequently, it would

be of interest to analyze the evolution rates, if at any trial we

selected the best period possible from some limited subset of

initial conditions.

We think that this system, in which there is a precisely

defined fitness landscape for a real physical system, poses an

interesting model for further theoretical analysis. In this sys-

tem, there are a large number of good solutions that are

sparsely scattered through the space of all possible networks.

As a consequence, in contrast to recent theoretical results in

which there is an evolution through adjacent states to a local

FIG. 7. The fraction of periodic networks, f (k), and the average improve-

ment in period of a periodic network, g(k), as a function of the Hamming

distance k of a network from its parent. The error bars show the standard

error and the solid curves represent fits to exponential functions.

FIG. 8. The expected improvement per generation, D~r!, as a function of the

mutation rate r.
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maximum after a small number of steps,37 the evolution in

the current model occurs over many intermediates with long

plateaus, to one of a large number of possible end states ~Fig.

5!. The discontinuous changes in dynamic behavior, are

similar to the discontinuous evolution that has been observed

in many different biological systems, e.g., see Ref. 39, and

references therein. In the current case, the discontinuous

changes in the period reflect the combined effects of neutral

mutations that do not lead to a change in the period and other

mutations that lead to large changes in the period.

The data in Fig. 7 indicate that the fitness landscapes are

correlated, so that in the neighborhood of a network display-

ing periodic dynamics, there tend to be a high density of

periodic networks with a similar period. For correlated fit-

ness landscapes, optimal mutation schemes would incorpo-

rate a mutation rate inversely proportional to the fitness,

similar to observed mutation rates in other biological and

model systems.38 It would also be interesting to study evo-

lutionary schemes based on genetic algorithms,40 and

schemes that allow the possibility of detrimental mutations.

The current work is also relevant to nonlinear dynamics.

In addition to the periodic dynamics that we have described

in the current paper, we anticipate that the circuit would sup-

port chaotic dynamics, since Eq. ~2! does.21,24 Thus, it would

be interesting to study the dynamics obtained when the truth

tables or time constants of networks displaying chaos are

varied. Just as there are families of networks displaying

closely related types of periodic oscillations, there might be

families of networks that display closely related chaotic

dynamics,22,25 and it might be possible to evolve networks

displaying chaotic dynamics with specified dynamical prop-

erties.

This work shows that it is possible to evolve electronic

networks with desired dynamics without needing to design

the circuit architecture from the outset. This has implications

for engineering since it shows that it should be possible to

develop autonomous electronic circuits that evolve their dy-

namics, based upon environmental demands, by changing the

logical structure of the network without reconfiguring its

hardware. Moreover, because of the intimate connection be-

tween our circuits and genetic networks, it may be feasible to

adapt these methods to evolve genetic oscillators. Indeed, we

think that this work represents an important middle ground

between more theoretical work21,22 and more biological

work.12,15,18 Further, since the building blocks of our net-

works depend on functions that can be implemented using

the binding of transcription factors to DNA, the current work

also shows how complex biological functions may have

evolved dynamic behaviors even though the combinatorial

complexity of possible network states is astronomical.
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