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	e intestinal microbiome plays an important role in human physiology. Next-generation sequencing technologies, knockout and
gnotobiotic mouse models, fecal transplant data and epidemiologic studies have accelerated our understanding of microbiome
abnormalities seen in immune diseases and malignancies. Dysbiosis is the disturbed microbiome ecology secondary to external
pressures such as host diseases, medications, diet and genetic conditions o
en leading to abnormalities of the host immune system.
Speci�cally dysbiosis has been shown to lower circulating lymphocytes, and increase neutrophil to lymphocyte ratio, a �nding
which has been associated with a decreased survival in women with breast cancers. Dysbiosis also plays a role in the recycling of
estrogens via the entero-hepatic circulation, increasing estrogenic potency in the host, which is another leading cause of breast
malignancy. Non-modi�able factors such as age and genetic mutations disrupt the microbiome, but modi�able factors such as diet
may also lead to profound disruptions as well. A better understanding of dietary factors and how they disrupt the microbiome may
lead to bene�cial nutritional interventions for breast cancer patients.

1. Introduction

	e human digestive tract is known to host trillions of
microbes collectively called the intestinal microbiota [1–4]. A
commensally, mutually bene�cial relationship exists between
the human host and these microbiota. 	e host’s digestive
tract provides the nutrient niche for the microbiota, while
the microbiota protects against pathogens, helps in the devel-
opment of the immune system, aids in nutrient reclamation
from food by fermenting indigestible �ber to short chain fatty
acids, produces essential amino acids and vitamins, helps in
the absorption ofminerals, and aids the breakdown of dietary
toxins and carcinogens [1–3, 5]. 	e intestinal microbiota
also helps the growth and dierentiation of enterocytes and
colonocytes, thus maintaining the intestinal barrier against
potential pathogens [6].

2. Origin of Microbiome

	e intestinal microbiota is maternally inherited at birth as
the newborn is delivered through the vaginal canal [7–9].
Later in development, factors both dependent on host choices
such as diet and independent of host choices such as genetics
and age modify the intestinal microbiota [10].

Insights into the dynamic structure of intestinal micro-
biota have become possible with the advent of next-
generation sequencing technologies; such technologies are
able to fully characterize the polymorphism of bacterial com-
munities inhabiting the human intestines using bacterial 16S
RNA ribosomal sequences [11–13].	is approach showed that
themajor phylums in adults are Firmicutes and Bacteroidetes
representing over 80% of the colorectal intestinal microbiota.
Minor phylums such as Verrucomicrobia, Actinobacteria,
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Figure 1: Major phylums in children, adults, and elderly detected by
pyrosequencing of 16S ribosomal RNA genes [15, 16].

Proteobacteria, Tenericutes, and Cyanobacteria represent the
remaining 20% of the colon microbiota [14] (Figure 1).

	e ratio of Firmicutes to Bacteroidetes changes with
age. Newborns and infants have more Bacteroidetes; in
adults Firmicutes are the predominant intestinal microbiome
phylum, and in the elderly more Bacteroides and increased
proportion of the minor phylum Proteobacteria are observed
[10]. Major species associates with respective phylums are
described in Table 1.

3. Host Influence on the Microbiome

Environmental and external factors may act on the com-
position of the microbiome. 	e term dysbiosis de�nes the
disturbed microbiome ecology which may be secondary to
external factors such as disease, medications, and diet as well
as to nonmodi�able genetic conditions [18]. Knocking down
genes of the immune system may lead to profound modi�-
cations in the intestinal microbiome and to predisposition
to diseases of the immune system as well as cancer [19–21].
Animal models of fecal transplant of “dysbiotic” microbiome
have been shown to alter the structure of recipient micro-
biome and to induce the development of the same immune
disease that was initially seen in the genetically altered animal
[19–22].

In general, several studies have shown that the micro-
biome structure suers if genetic defects interfere with the

normal development of the immune system of the animal
[23–31]. Table 2 provides a summary of the current knowl-
edge of how defects in the genetic factors that regulate the
development of the immune system stunt the structure of the
intestinal microbiome.

Human research has shown that patients with mutations
in Crohn’s disease genes such as nucleotide binding oligomer-
ization domain 2 (NOD2) [33] and autophagy related pro-
tein 16L-1 (ATG16L1) [34] have decreased numbers of the
Firmicutes species of bacteria Faecalibacterium prausnitzii
and Roseburia intestinalis in their ileum [35]. 	is decrease
in commensal bacteria is associated with a proportional
increase in the pathogenic adherent invasive Escherichia
coli and Salmonella typhimurium [36, 37]. 	e inability of
Faecalibacterium and Roseburia to survive in the intesti-
nal microbiome of patients with Crohn’s disease deprives
these patients of bacteria which produce short chain fatty
acids (SCFA) used as nutrition and energy for colonocytes
[38]. Decreased SCFA leads to increased colonocyte death,
increased cell turnover and may explain in part the 3.2-fold
higher lifetime risk of colorectal cancer observed in Crohn’s
when compared to general population [39, 40].

4. Diet, Microbiome, Phytoestrogens, and
Breast Cancer

Fiber represents the indigestible portions of plant cell walls
and may be either soluble or insoluble. 	e insoluble �bers,
such as lignins, cellulose, dextrins, waxes, and chitins are not
fermented by the human commensal microbiota. Soluble �-
ber such as inulin, arabinoxylans, pectins, beta-glucans, am-
ylase resistant starches, fructans, and lignans are fermented
by the intestinal microbiota into short chain fatty acids [41].
Lignans are substances found in whole grains, soy, fruits, and
vegetables, while inulin, arabinoxylans and oligofructose are
�bers found in artichoke, onion, and banana. Pectins and
fructans are found predominantly in fruits [42]. Beta-glucans
are soluble �bers found in mushrooms and amylase-resistant
starches are found in beans and chickpeas [43–53].

	e presence of high concentrations of soluble �ber in the
distal ileum and colon favors the growth and maintenance of
bene�cial Bi	dobacterium (from Actinobacteria phylum) the
anti-in�ammatory Faecalibacterium prausnitzii (a Firmicute)
as well as commensal species from Bacteroidetes phylum [54,
55]. By-products of bacterial fermentation of soluble �bers
are short chain fatty acids (acetate, propionate, and butyrate),
the preferred source of energy for colonocytes [56].

In one study, fourteen healthy volunteers consumed for 2
weeks a high �ber diet (19 grams/day) followed by 2 weeks
of a low �ber diet (under 5 grams/day). 	e microbiome
was analyzed and Faecalibacterium prausnitzii, Roseburia
intestinalis (from Firmicute phylum) were quanti�ed by 16S
ribosomal tagged probes by �uorescent in situ hybridization
concomitantly with the quantity of short chain fatty acids
(SCFA) per gram of dry fecal weight [57]. 	e low �ber diet
was associatedwith a statistically signi�cant 80% reduction in
Faecalibacterium prausnitzii,Roseburia intestinalis, and SCFA
(� < 0.001). At 2 weeks, the �ber rich diet increased ten-folds
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Table 1: 	e composition of human colonic microbiome: phylums and selected major species belonging to each phylum [14, 17].

Phylum Species

Actinobacteria Bi	dobacterium

Bacteroidetes Bacteroides, Prevotella, Porphyromonas

Verrucomicrobia Akkermansia

Firmicutes
Clostridium, Faecalibacterium, Ruminococcus, Roseburia, Veillonella, Staphylococcus, Streptococcus, segmented
�lamentous bacteria, Butyrivibrio

Tenericutes Erysipelotrichaceae

Proteobacteria Citrobacter, Enterobacter, E. coli, Shigella, Klebsiella, Hemophilus, Sphingomonas

Cyanobacteria Unclassi�ed YS2

Table 2: 	e in�uence of host genes on the structure of the intestinal microbiome in gnotobiotic rodents [32].

Mouse model
Phenotype/microbiome in

mouse model
Systemic manifestation of
abnormal microbiome in mice

Results of fecal transplant to wild
type animal

References

Rag2-knockout
No functional B and T

cells/in�ammatory colitis
Recurrent infections In�ammatory colitis [23, 24]

Tbx21-knockout
No functional 	1 cells/Crohn’s

disease, colitis
Asthma, autoimmune disease,
and various malignancies

Crohn’s disease, colitis, asthma, and
autoimmune disease

[25]

TLR5-knockout No �agellin receptor

Metabolic syndrome: insulin
resistance, hyperlipidemia, fat
deposition on omentum, and
atherosclerosis

Metabolic syndrome: insulin
resistance, hyperlipidemia, fat
deposition on omentum, and
atherosclerosis

[26]

SHP-1 mutation
No T, B cells and no

immunoglobulins/colitis

Autoimmune disease, alopecia,
glomerulonephritis,
pneumonitis, colitis, and paws
in�ammation triggered by
microbiota

Colitis alopecia,
glomerulonephritis, and
pneumonitis

[27, 28]

NLR-P3 gene
mutation

Cold urticaria in�ammatory
disease, dysbiosis

Dysbiosis, cold urticaria
in�ammatory disease

Colitis, cold urticaria in�ammatory
disease

[29]

NOD-2 mutation
Abnormal innate immune

response
Various adenocarcinomas Crohn’s disease, dysbiosis [30, 31]

Rag2: recombination activating gene 2.
NLR-P3: nucleotide binding oligomerization domain (NOD) like receptors P3.
Tbx21: T cell speci�c T-box transcription factor (crucial transcription factor for TH1 cells); TLR-5: toll-like receptor 5.
SHP-1: Src homology region 2 domain-containing phosphatase-1.
NOD-2: nucleotide binding oligomerization domain 2.

the quantity of SCFA and of both F. prausnitzii and Roseburia
(� < 0.01) [57].

	e promotion of growth of Firmicutes and Bacteroidetes
within the intestinalmicrobiomeby dietary �bers has another
important eect: these bacteria are able to metabolize dietary
lignans into the potent phytoestrogens enterodiol (END) and
its oxidation product enterolactone (ENL), which are then
readily absorbed into bloodstream [58, 59].

Antibiotic use in�uences the bioavailability of enterolac-
tone due to disruptions in the intestinal microbiome [60].

Unlike estrogen, high blood levels of phytoestrogens have
been shown to be inversely associated with risk of breast
cancer in epidemiologic studies [61, 62]. In a population
based case-control study of over 6,000 women, consumption
of lignans three times per week was associated with a 50%
reduction in breast cancer risk in premenopausal women.
Notably, this bene�t was also seen in overweight and obese
women [63].

Research on more than 35,000 women participants in
the UK Women’s Cohort Study showed that premenopausal
women who ate most of their �ber fromwhole grains (at least
13 grams per day of whole grain �ber) and 30 grams per day of
total �ber had 50% less breast cancer. If themajority of soluble
�ber came from fruits rather thanwhole grains the protection
from breast cancer was slightly lower 35% for those women
who ate 30 grams of �ber compared to those who ate only 2
grams of �ber daily [64].

	e bene�t of high �ber diets extends to postmenopausal
women, despite the fact that with age the intestinal micro-
biota ratio of Firmicutes to Bacteroidetes phylums changes in
an unfavourable direction [10].

A study of over 51,000 postmenopausal women followed
overmore than 8 years showed thatwomenwho consumed 30
grams or more of �ber from fruit and whole grains had 34%
less breast cancer than those who consumed less quantities
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of those items. Notably, lignan �ber seemed to be more
protective than fruit and vegetable �bers [65].

In another study, premenopausal women at risk for breast
cancer because of benign breast disease (such as ductal hy-
perplasia, lobular hyperplasia, radial scar) were asked to un-
dergo a baseline periareolar �ne needle aspiration (RPFNA)
and were then followed on a diet which included daily
plant lignans (intervention) for one year. Serum enterolac-
tone was measured before and a
er the intervention. A
er
intervention serum enterolactone increased ninefold from
the baseline. A
er one year, a repeated RPFNA showed atypia
in only half of the women treated with diets rich in lignans
in whom the serum enterolactones increased ninefold from
baseline levels [66].

A Finnish case-control study also looked at serum levels
of enterolactone and their association with breast cancer.
Women with the highest dietary intake on lignans (at least
two slices of rye bread per day) were in the highest quintile
of serum enterolactone (54 nmol/L) while with the lowest
consumption were in the lowest quintile (3 nmol/L). A
er
eight years of followup, women in the highest quintile of
enterolactone had 62% less breast cancer diagnosed com-
pared to the lowest quintile [67].

In a study ofmore than 300women diagnosedwith breast
cancer, serum enterolactone was used to quantify the amount
of dietary lignans consumed. At a median followup of 276
months there was 30% decrease in breast cancer speci�c
mortality in patients with enterolactone levels more than
10 nmol/L [68].

A recent meta-analysis of serum enterolactones and
breast cancer showed a protective eect for breast cancer for
women with serum levels in the highest quartile compared to
the lowest (meta-OR: 0.72; 95%CI: 0.55–0.88) [69].	e eect
was more pronounced in postmenopausal women [69].

Serum enterolactone, a product of microbiome fermen-
tation of dietary lignans, appear to have protective eects in
breast cancer patients and in breast cancer prevention.

5. Diet, Microbiome, Estrogens, and
Breast Cancer

Saturated fats are the source of cholesterol used by the
ovaries for estrogen synthesis. In postmenopausal women the
adipose tissue, adrenal glands, and other organs transform
circulating androgens into estrogens using the aromatase
enzymes [70]. In the blood, estrogens circulate either bound
to proteins or free. 	e liver inactivates estrogens by conju-
gation, that is, sulfonation, methylation, and glucuronidation
reactions; conjugated estrogens are then �nally excreted with
bile acids and are transported into the intestinal lumen [71].
Once in the intestinal lumen, the fate of these conjugated
estrogens depends on the composition of the intestinal
microbiota present in the host. Individuals with an intestinal
microbiome capable of deconjugating estrogens will reabsorb
the free estrogen via the enterohepatic circulation, increasing
the estrogenic potency in the host. 	ose with an intestinal
microbiome less favorable to deconjugation will promote
estrogen excretion in feces [72]. 	us diet plays an important

role in creating the microbiome environment that deconju-
gates estrogens or is indierent to conjugated estrogens.

Diets rich in fats and red meat promote the production
and excretion of bile acids necessary for fat digestion and
absorption. Commensal bacteria then break down these bile
acids into deoxycholic and lithocholic acids, metabolites that
favor the growth of Proteobacteria species such as E. coli,
Klebsiella, Enterobacter, and Citrobacter and are detrimen-
tal to certain species of Firmicutes and Bacteroidetes in
the intestinal microbiota. 	is process in turn produces a
dysbiotic state [73] that favors the growth of E. coli from
Proteobacteria phylum, an organism that is able to produce
potent beta-glucuronidases [74], deconjugating estrogens in
the intestinal lumen and thus contributing to the higher
estrogenic burden of the host [75]. A direct relationship
between higher circulating estrogen levels and the increased
risk of postmenopausal women developing breast cancer has
been extensively reported in the literature [76].

6. The Microbiome’s Role in Obesity and
Breast Cancer

Diet-induced obesity changes the balance of Firmicutes to
Bacteroidetes phylums. Studies in twins, of which one is
obese, the other nonobese, have shown smaller Bacteroidetes
phylums and more Firmicutes in the obese twin as compared
to the lean twin [77, 78]. Notably, the ratio of Bacteroidetes
increases at the expense of Firmicutes when the obese indi-
vidual loses weight or a
er gastric bypass surgery [79]. It is
unknown whether the change in proportion of Firmicutes to
Bacteroidetes, allowing for the growth of detrimental species
in the microbiome, is merely an eect of obesity or a cofactor
that promotes obesity. It has been speculated that intestinal
dysbiosis (perpetuated by atherogenic, western diet) and
not merely high caloric intake is a main cofactor in the
obesity epidemic in theWesternworld [80].	is concomitant
presence of dysbiosis and obesity, and the resulting increased
circulating estrogen levels, may synergistically contribute to
the 20% higher risk of breast cancer seen among women with

a BMI greater than 30 kg/m2, as compared to normal weight
controls [81].

7. The Microbiome’s Role in Immune
Modulation and Breast Cancer

Much of what we know about the symbiotic interaction
between the intestinal microbiome and systemic immune
system development has come from the study of germ-free
(knows as gnotobiotic) rodents. Lack of intestinal microbiota
in gnotobiotic rodents decreases the size of the small and large
intestine Peyer’s patches of the spleen and also aects distant
immune organs. 	e size of the pancreas and the number of
beta-cells are decreased [82], and the hypothalamic-pituitary-
adrenal axis stress response is also altered [83]. 	e lack of
a microbiome decreases the number and function of neu-
trophils due to decreased microbiota-derived peptidoglycans
responsible for serum and bone marrow neutrophil function
[84].
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Figure 2: Schematic representation of Peyer’s patch organization (also known as gut-associated lymphoid tissue—GALT) shows that the bulk
of the tissue is made up by B cells organized in a large and highly active domed follicle. T cells occupy the areas between the follicles. 	e
antigen enters across a specialized epitheliummade up of so-called multifenestrated (M) cells. 	e germinal center is located in the center of
the follicle. Cross-section through the Peyer’s patch shows the types of cells and the interactions between the cells of the immune system and
the microbiome. M cells: multifenestrated cells; 	-17: T cell helper 17; Treg: T regulatory cells; T cells CD8+: eectors T cells; T helper: naı̈ve
CD4+ T cells; B cell; SFB: segmented �lamentous bacteria.

	e colonization of gnotobiotic rodents with known
strains of human microbiome allows measuring the eects of
known bacterial species on the immune system development.

Normal microbiome contributes to maturation of eec-
tor CD8+ T cells (known as killer T cells) via contact
with Sphingomonas species (of Proteobacteria phylum) [85].
In�ammation decreases the proportion of Sphingomonas in
the Proteobacteria phylum and prevents proper development
of CD8+ antitumor cytotoxic T cells [86, 87]. CD8+T cells are
the most potent immune cells capable of eliminating foreign
antigens and breast tumor cells [88].

T cell dierentiation takes place in the thymus from 12
weeks of gestation until the thymus regresses through invo-
lution by 9months of age [89].	e role of thymus in immune
reconstruction is replaced in part by the interactions between
the trillions of organisms in the microbiome and cells of the
immune system [89, 90]. 	ese interactions take place with
the help of multifenestrated epithelial cells (M cells) lining
the Peyer’s patches (Figure 2). Dendritic cells in the Peyer’s

patches sample via direct contact the microbial contents
of the intestines and adapt the immune responses to the
antigenic load. Segmented �lamentous bacteria (SFB) have
direct contact with dendritic cells in the Peyer’s patches.	ey
are necessary and su�cient to contribute to the maturation
of CD8+ eector cytotoxic T cells and CD4+ helper cells [91]
(Figure 2). Table 3 summarizes the contribution of dierent
phylums and species in the microbiome to the maturation of
the immune system.

It was previously noted that diets rich in fats and red
meats result in dysbiosis, favoring the growth of Proteobac-
teria phylum (species such as E. coli, Klebsiella, Enterobacter,
and Citrobacter) and Fusobacterium nucleatum [103, 104] and
impacting in a negative way certain species of Firmicutes and
Bacteroidetes [73]. Notably, Fusobacteriumnucleatum species
are able to kill maturing lymphocytes viaM cells in the Peyer’s
patches via direct contact, lowering the number of circulating
systemic lymphocytes [92, 105] (Figure 2).
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Table 3: Microbiome role in maturation of the immune system and involvement in cancer.

Microbiome components Immune cell development Role in cancer References

Firmicutes phylum: Fusobacterium nucleatum Direct killing of lymphocytes;
Promotes metastasis and
tumor growth

[92]

Proteobacteria: E. coli, Citrobacter, Enterobacter,
Shigella, Klebsiella, and Hemophilus

Promotes TH17
Promotes cancer progression
and metastasis

[93]

Archea phylum: Eubacterium rectale
IL-6 production by intestinal
in�ammatory dendritic cells

Promotes cancer progression
and metastasis

[94]

Proteobacteria phylum: Sphingomonas species,
CD8+ T cells Anti cancer activities

[91, 95]

Clostridium cluster IV-XIVa [22, 96–101]

Actinobacterium phylum: Bi	dobacterium 	1 nonin�ammatory
Protects against in�ammation
and cancer

[102]

An intestinal microbiome that destroys lymphocytes may
in�uence the outcomes of cancer. Patients with a lower
number of systemic lymphocytes at diagnosis appear to have
poorer cancer-related outcomes. Studies show that the ratio
of neutrophils to lymphocytes (calculated as neutrophil count
divided by lymphocyte count) at diagnosis predicts long-
term cancer outcome, with higher ratios predicting worse
outcomes independently of patients’ age or stage at diagnosis
[106–109].

In a study of early stage breast cancer (stages I, II, and
III) a neutrophil-to-lymphocyte ratio of more than 2.5 was
associated with 4-fold risk of disease relapse at 10 years
compared to patients with a ratio lower than 2.5 regardless
of stage or age at diagnosis (� < 0.001) [110]. A retrospective
study of 316 breast cancer patients showed that a neutrophil-
to-lymphocyte ratio of more than 3.3 at diagnosis had a
44% higher risk of death within 5 years of cancer diagnosis
compared to those with a ratio less than 1.8 (� < 0.0001) [111].

In BIG-02-98 study of more than 2000 patients with node
positive breast cancer more than 50% in�ltration of tumor
stroma with lymphocytes was associated with reduced risk
of breast cancer relapse and death. For each additional 10%
increase in percentage of lymphocytes the risk of relapse was
17% lower and risk of death was 27% lower independent of
stage at diagnosis and patients’ age (� < 0.0001) [112].

Most chemotherapy decreases tumor burden by 1-2 logs.
	e decrease is followed by immune recognition of tumor
antigens, with the desirable response being that the rest
of the tumor burden is dealt with by the patient’s own
immune system [113]. CD8+ T cells are the most potent
immune cells capable of eliminating foreign antigens and
breast tumor cells [88]. A normal microbiome contributes to
maturation of eector CD8+ T cells (known as killer T cells)
via contact with Sphingomonas species (of Proteobacteria
phylum) [85]. In�ammation decreases the proportion of
Sphingomonas in the Proteobacteria phylum and prevents
proper development of CD8+ antitumor cytotoxic T cells
detected in the peripheral blood [86, 87].

Research correlating the number of CD8+ eector T cells
in�ltrating breast cancer tumors with patients survival shows
that patients with higher numbers of eector T cells in their
breast tumors have better chance of being successfully treated
for their disease or being long-term survivors than those
without these immune cells. In a study of over 1,300 patients

followed for over 10 years, patients whose breast tumors had
more than 24 of CD8+ cells per high power �eld of the tumor
had better breast cancer speci�c survival, 75% versus 45%
(� < 0.001), than those having fewer than �ve [114]. In
over 170 triple negative breast cancer patients followed over
8 years a
er the diagnosis, patients with more lymphocytes

in�ltrating their tumors more than 36/mm2 were associated
with a 60% recurrence-free survival at 8 years versus 20% in

patients with fewer than 20/mm2 (� < 0.0019) [115].

8. Conclusion

	e incidence of breast cancer around the world is vastly
dierent in the USA and Western Europe compared to Asia
and Africa. In the industrialized world, the incidence is
around 120 women per 100,000 individuals per year; in the
less developed parts of the world it is 17 per 100,000 [116].
	e western born children of those immigrants, however,
have the same incidences of breast cancer as their west-
ern compatriots, rather than that of their ancestors. 	is
occurs despite the obvious fact that their genes pool does
not signi�cantly change over just one generation [117]. 	e
major change that occurred is environmental; diet and the
resulting microbiome changes appear to play a major role
among the possible environmental factors [118]. Advances in
understanding of our diet, our microbiome, and the complex
interactions between the two, hold the potential to modify
not just the course of digestive diseases but also of disorders
such as breast cancer. It is hoped that a deeper understanding
of this world within us can point the way towards evidence
based dietary therapies to decrease the risk of developing
breast cancer aswell as improve the outcomes of those already
diagnosed.
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