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Introduction

The American Thoracic Society (ATS) has a long history, originating as the American Sanatorium Association in 1905, which was
established to promote the treatment and prevention of tuberculosis. Since then, the scope of our mission has widened, and the Society has
become the premier professional society in respiratory medicine, with more than 15,000 members worldwide who are dedicated to
advancing our clinical and scientific understanding of pulmonary diseases, critical illnesses, and sleep-related breathing disorders. Our
members provide care for millions of people who suffer daily from asthma, chronic obstructive pulmonary disease, cystic fibrosis, sleep
apnea, and lung diseases related to prematurity, to name a few.

In celebration of our 110th anniversary, the ATS journals and 2015 ATS International Conference will highlight many of the advances in
patient care and research in adult and pediatric pulmonary, critical care, and sleep medicine. The ATS Discoveries Series is a new
collection of articles and talks that features major scientific and clinical breakthroughs, which have changed the lives of the patients
we treat, as told by leading scientists and clinicians. With input from our membership, the topics range from the development of
bronchoscopy to the discovery of surfactant, from insights into asthma pathogenesis to the potential of lung regeneration.

The following article titled “Evolving Concepts of Asthma,” by Marc Gauthier, M.D., pulmonary, allergy, and critical care medicine fellow;
Anuradha Ray, Ph.D., professor of medicine and immunology; and Sally E. Wenzel, M.D., professor of medicine and director of the
Asthma Institute, all at the University of Pittsburgh, is the second of the series published in the American Journal of Respiratory and
Critical Care Medicine. I hope you enjoy learning about the seminal discoveries in respiratory medicine and their impact on patient care,
now and in the future. Please be sure to read all of the articles in the Discoveries Series, which will appear not only in the “Blue” journal,
but also the American Journal of Respiratory Cell and Molecular Biology and Annals of the American Thoracic Society during the coming
months.
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Abstract

Our understanding of asthma has evolved over time from a singular
disease to a complex of various phenotypes, with varied natural
histories, physiologies, and responses to treatment. Early therapies
treated most patients with asthma similarly, with bronchodilators
and corticosteroids, but these therapies had varying degrees of
success. Similarly, despite initial studies that identified an underlying
type 2 inflammation in the airways of patients with asthma, biologic
therapies targeted toward these type 2 pathways were unsuccessful in
all patients. These observations led to increased interest in
phenotyping asthma. Clinical approaches, both biased and later
unbiased/statistical approaches to large asthma patient cohorts,
identified a variety of patient characteristics, but they also

consistently identified the importance of age of onset of disease and
the presence of eosinophils in determining clinically relevant
phenotypes. These paralleled molecular approaches to phenotyping
that developed an understanding that not all patients share a type 2
inflammatory pattern. Using biomarkers to select patients with
type 2 inflammation, repeated trials of biologics directed toward
type 2 cytokine pathways saw newfound success, confirming the
importance of phenotyping in asthma. Further research is needed to
clarify additional clinical and molecular phenotypes, validate
predictive biomarkers, and identify new areas for possible
interventions.
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Asthma is defined by typical symptoms
(wheezing, chest tightness, and/or shortness
of breath), evidence of airway obstruction,
and airway hyperreactivity or reversibility
of obstruction (1). Although originally
believed to be a single disease, it has been
increasingly recognized as a complex of
multiple phenotypes, each with a somewhat
unique natural history, severity, and
treatment response. This heterogeneity
has led to challenges in treatment,
especially in patients who respond poorly
to current therapies. This review will
explore the evolution of our understanding
of asthma phenotypes and where current
research is heading.

Historical Asthma

Asthma has been recognized throughout
recorded history. The word asthma comes
from the Greek asuma, asumato§,
meaning a “short-drawn breath, hard
breathing, or death rattle,” and thus,
represented multiple breathing maladies
rather than a single disease (2). Earliest
descriptions of “asthma” come from the
Hippocratic corpus, a collection of texts
from 420 to 370 BCE assembled in
Alexandria in the third century BCE (3).
In The Sacred Disease, asthma is described
as a complication of epilepsy, caused by
phlegm from the brain lodging in the lungs,
thereby blocking the airflow to the body.
Despite this “humoral” view, there was
also an early recognition of the association
of asthma with environmental factors,
including a relation to certain winds and
worsening in certain geographical areas (4).

The first modern descriptions come
from Sir John Floyer’s treatise on asthma
from 1698 (5) (Figure 1). Floyer, who had
asthma, described the still predominant
Hippocratic humoral pathology, but also
described bronchial constriction as a cause
for wheezing. He discussed his own asthma
flares, providing some of the first
descriptions of uncontrolled asthma. He
also described his association of symptoms
with regions and triggers, which was later

identified as allergic asthma. His text
remained popular throughout the next two
centuries, but much remained poorly
understood.

Beginning in the late 19th century,
a more formalized definition of asthma
emerged, detailing an association with
allergy and the concept of triggers (6).
Although John Hutchinson introduced
vital capacity measurements in the 1840s
(7), time-dependent FEV was not
introduced until 1947 (8). Bronchodilator
responsiveness in FEV1 emerged as
a diagnostic criterion for asthma in the
1950s, although the sensitivity and
specificity of this test were never formally
addressed (9, 10).

Treatments, including epinephrine,
anticholinergics, methylxanthines, and
inhaled b-agonists were all introduced in

the first half of the twentieth century (6). In
1952, McCombs (11) described the use
of systemic corticosteroids (CS) and
adrenocorticotropic hormone (ACTH) to
prevent and treat asthma exacerbations,
leading to widespread use. Due to systemic
CS side effects, topical delivery was
explored. In the 1970s, beclomethasone,
which was previously used as a topical CS,
was aerosolized and studied in 60 patients
with asthma, 37 of them on long-term
oral CS. Twenty-eight were able to stop oral
therapy, and 19 of 23 patients not on oral
CS had improved symptom control (12).
A noninferiority trial showed that patients
starting on oral or inhaled CS therapy
had no difference in control (13). With
further confirmatory studies (14), the era
of inhaled CS therapy as standard of care
began (15).

In
te

re
st

 in
 P

he
no

ty
pi

ng

Extrinsic/Intrinsic Asthma

Eosinophilic
Asthma

Eosinophilic Asthma

Th2 High Asthma

Th2 Low
Asthma

1900 19901950 1970 2000 2010 20151700

Clustering Studies

1698: Floyer describes
asthma

1898: Stedman’s Modern
Description of asthma

1947: FEV1 Introduced

1947: Rackemann:
extrinsic and intrinsic

asthma

1958: Brown shows
sputum eosinophils

predict CS responsiveness

1948: CS Introduced

1970s
Inhaled
CS trials

1988–1990s
Trials show

Th2
inflammation
regardless of

atopy

1999: Wenzel shows severe
asthma has eosinophilic and

non-eosinophilic groups

2000: Mepolizumab ineffective in
allergen challenges

2009: Mepolizumab effective in
eosinophilic asthma

2011: Lebrikizumab
more effective in type-
2 patients based on
periostin biomarker

2013: Dupilumab
for eosinophilic

asthma

1847:
Spirometry
invented

Figure 1. A timeline showing major events in the understanding of asthma and phenotyping. The
timeline is “semilogarithmic” in scale, emphasizing the growing amount of research in the field with
time. Arrows below represent the emergence of various phenotype strategies. Background shows the
overall changing interest in asthma phenotyping over time. CS = corticosteroids.
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As inhaled CS gained prominence, the
underlying pathology of asthma was also
explored. Historically associated with
allergies, it was realized early on that not all
asthma patients were atopic by skin prick
testing (16). However, a population study
from the 1980s showed strong correlation
between age-adjusted blood IgE levels and
asthma, which suggested that all asthma
had an allergic component (17). Increased
levels of the IL-2 receptor and the cytokines
IL-3, IL-5, and granulocyte–macrophage
colony–stimulating factor (GM-CSF),
found in blood T cells of patients with
asthma, promoted eosinophil survival,
regardless of the presence of atopy (18).
Examination of asthmatic bronchoalveolar
lavage (BAL) fluid further showed that IL-2,
-3, -4, and -5, and GM-CSF could be
localized to T cells (19), which was
consistent with previous work on
inflammation from Th2 cells, a particular
T-helper cell subclass (20). Further studies
showed elevated levels of mRNA for IL-4
and IL-5 that were correlated with airway
hyperreactivity in patients with asthma (21)
and the increased presence of FceRI
receptors (a high affinity receptor for IgE)
in the bronchial biopsies of patients with
asthma, regardless of atopic status (22). In
sum, these studies suggested allergic/Th2
driven disease as the cause for all asthma.

Identification of Th2 pathway
cytokines in asthma led to an interest in
directly targeted biologic therapy, especially
because of the association between sputum
eosinophilia and asthmatic disease (23).
However, an allergen-challenge, placebo-
controlled trial of an antibody to IL-5,
despite reducing eosinophilia, failed to
improve early or late asthmatic reactions or
airway hyperreactivity (24). A larger study
of persistent asthma, despite inhaled CS
therapy, again showed no improvement
in clinical outcomes despite significant
reductions in blood and sputum
eosinophils (25). Similarly, an antibody to
the IL-4 receptor in moderate-to-severe
asthma showed no differences in relevant
asthma outcomes (26). These studies
suggested either that Th2 cytokines were
not important in asthma or that they were
only important in a subset of patients.

Recognition was also emerging that
traditional asthma medications did not work
in all patients. Some inhaled CS trials showed
either mixed benefits or had preselected
patients with response to CS (12–14).
Although inhaled CS were generally more

effective than a leukotriene receptor
antagonist, either or both medications failed
in many patients (27). Similarly, 55% of
children with mild-to-moderate asthma had
no benefit from either inhaled CS or
montelukast. This study was one of the first
to find that certain biomarkers, including
high fractional exhaled nitric oxide (FENO),
blood eosinophil counts, and IgE predicted
greater responses to inhaled CS (28).
These findings supported the underlying
differences in pathobiology that potentially
contributed to different treatment responses.

Phenotypes in Asthma

Phenotypes are defined as the “observable
properties of an organism produced by
the interactions of the genotype and the
environment.” (29) An ideal molecular
phenotype identifies common molecular
pathways with common clinical
characteristics. To be termed an
“endotype,” certain molecular pathways
must be identified as critical to the clinical
manifestations of the patients (30).
Depending on the level of efficacy of
targeted biologic therapies in the next
several years, asthma endotypes may begin
to emerge in which one or more of these
pathways defines the disease.

Clinical and Inflammatory
Phenotyping

Clinically distinct asthma “subgroups” have
been recognized for years. In the 1940s,
Rackemann (16) described two clinical
asthmatic phenotypes. Extrinsic asthma was
believed to be due to allergens from outside
the body and associated with environmental
exposures, atopy, and other allergic diseases,
as well as younger age of onset; intrinsic
asthma was postulated to be due to factors
intrinsic to the body, was present regardless
of season or environment, lacked atopy, and
was associated with older age at onset (16,
31, 32). Age of onset has remained a key
differentiator. In the 1960s, the triad
reported by Samter and Beers (asthma, nasal
polyposis, and aspirin sensitivity) identified
a late-onset asthma phenotype associated
with eosinophilia (33, 34). Forty years later,
an endobronchial biopsy study of patients
with severe asthma divided by early (,12 yr
old) versus late age at onset showed that
allergic symptoms and atopy were associated

with early-onset disease, whereas late-onset
disease had lower lung function for the
duration of disease and more tissue
eosinophils. Furthermore, a subset of
patients with late-onset disease without
eosinophils showed none of the typical
subepithelial basement membrane (SBM)
thickening suggestive of an alternative
disease pathway (35). Statistical clustering
further supported this concept because
Haldar and colleagues identified a patient
cluster with later onset and exacerbation-
prone disease with high levels of sputum
eosinophils (36).

Another early approach to
phenotyping beginning in the late 1950s
found that sputum eosinophils predicted
response to CS therapy (23, 37). Later
studies of inhaled CS confirmed this finding
and argued that, in general, eosinophils
were markers of a CS responsive asthma
phenotype (38–40). A later study targeting
CS therapy to sputum eosinophil counts
rather than symptoms actually improved
control (41). In contrast to studies in milder
disease in which eosinophils predicted CS
responses, Wenzel and colleagues examined
endobronchial biopsies of 34 severe patients
with CS refractory disease and found
elevated tissue eosinophils in approximately
50% of these patients, with rare or no
eosinophils in the remaining patients. Here,
eosinophils were associated with greater
likelihood of a previous near-fatal event,
a higher number of transforming growth
factor-b–positive cells in the tissue, and
a thicker SBM (42). Importantly, these
studies began to link molecular processes to
a clinical phenotype.

This and earlier studies led to a growing
realization that some patients responded
poorly to CS and developed severe, poorly
controlled disease. These patients,
compared with CS responders, were
reported to have higher levels of IL-4 and -5
in their BAL after CS therapy (43). Similarly,
Adcock and colleagues showed that CS
responders had greater glucocorticoid
receptor availability in peripheral blood
monocytes, further supporting differences
in pathology (44). Numerous subsequent
studies have clinically differentiated asthma
subtypes or phenotypes, using
characteristics such as airway obstruction
and reversibility, presence of exacerbations,
atopy/allergy (and other triggers), as well as
age at onset.

Supporting these clinically based
observations, a recent wave of statistical
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clustering analyses of well-characterized
asthma cohorts have appeared. In a cohort
of more than 700 patients recruited through
the Severe Asthma Research Program
(SARP) that used 34 compressed variables,
age at onset and lung function were found to
be the most significant contributors to
identifying 5 clinical asthma phenotypes.
Three phenotypes were early onset, mild-to-
severe “allergic” asthma, with atopy, and
a history of allergic symptoms. Two
additional phenotypes were identified: one
was a very late-onset female, inflammatory,
and obese phenotype; and the other was
a very severe, generally later-onset
phenotype with mixed inflammation (45).
This “clinical clustering” was followed by
an “immuno-inflammatory” clustering not
included in the first approach (46). Wu and
colleagues examined nearly 400 SARP
patients with clinical-physiologic data who
underwent bronchoscopy, BAL cell counts/
differentials, allergy skin testing, and
measurements of FENO and IgE. Using
more than 100 variables, this study again
showed the relative importance of age
at onset, but also added inflammatory
variables, particularly neutrophilic
inflammation and FENO, to define 6 subject
clusters (1 healthy control and 5 asthma
clusters). The primary difference between
these inflammatory clusters and the
previous clinical clusters was the
“statistical” recognition of a late-onset,
highly eosinophilic cluster associated with
nasal polyposis and sinusitis, suggestive of
later onset eosinophilic asthma, and even
the triad reported by Samter and Beers
(33, 34). Several additional clustering
approaches have been reported, including
one from Europe, which supported stability
of some clusters (primarily early onset/
allergic) and the instability of others over
time (47). Finally, a study clustering
patients in the Childhood Asthma
Management Program suggested that
clustering may help identify responders
to specific asthma therapies, despite
a minimal relationship to inflammatory
markers (48).

Despite varied results in these studies,
consistently relevant variables and even
phenotypes have emerged. Age at disease
onset, especially as related to allergy, and the
presence of eosinophils remain consistent
markers of distinct phenotypes (45–47).
Traditional early-onset allergic asthma
associated with clear precipitating factors is
also consistently observed across studies.

However, considerable variability exists in
clusters related to later onset disease, such
as obesity and neutrophilic inflammation.

Molecular/Physiologic
Phenotyping

The alternative to clinical phenotyping
involves using molecular disease pathways
to identify patient groups who respond
to certain therapies (49). Traditional clinical
phenotyping for atopy and/or allergy
was insufficient to identify patients most
likely to respond to the IgE antibody
omalizumab. Inclusion criteria in most
trials specified evidence of atopic asthma,
as defined by elevated total and specific
IgE levels. Although statistical benefit was
seen with treatment, responses were
heterogeneous, because not all patients with
allergic asthma responded to therapy (50,
51). Thus, despite findings suggestive of
atopic/allergic asthma, IgE did not appear
to be a driver of disease in many of these
patients. A post hoc analysis showed that
the patients most likely to respond were
those that had low lung function and were
treated with high-dose CS therapy, but it
could not identify an inflammatory or
molecular mechanism (52).

Type 2 Hi Asthma
Although the cytokines IL-4, -5, and -13
were initially identified as originating from
Th2 CD4 T cells, further evidence showed
that these cytokines and others in the Th2
pathway could be produced by non-Th2
cells, such as basophils, mast cells, and
eosinophils (53, 54). This recognition led to
a relabeling of this inflammatory state as
type 2, rather than Th2, to reflect their
more diverse immunologic origin.

The ability to perform molecular
profiling on well-characterized asthma
populations has contributed to an evolving
ability to “molecularly” phenotype asthma.
The first broad molecular profiling study
of airway epithelial cells in mild asthma
yielded limited results, with only small
differences between asthma and healthy
controls (55). However, the authors found
three differentially expressed genes
(CLCA1, SERPINB2, and periostin)
regulated in vitro by the type 2 cytokine
IL-13. Following up, Woodruff and
colleagues reevaluated the brushings from
42 patients with mild to moderate asthma
and 28 healthy controls using quantitative

polymerase chain reaction for these
three genes, clustering patients on the basis
of the expression of this type 2 signature.
Surprisingly, approximately 50% of the
asthma patients were classified as type 2 Hi,
whereas the others (type 2 Lo) were
clustered with the healthy, nonatopic
controls. Importantly, type 2 Hi asthma
was associated with consistent clinical
and inflammatory characteristics, including
increased blood and airway eosinophilia,
airway hyperresponsiveness, a thickened
SBM, higher IgE levels, and higher tissue
expression of IL-5 and -13 (56). However,
the most important finding was an
association with a response to inhaled CS.
The type 2 Hi phenotype had robust
improvement in FEV1 with a moderate
dose of fluticasone, whereas the type 2 Lo
phenotype had no improvement. This
renewed interest in biologic studies that
targeted a specific type 2 Hi asthma.

Studies of biologic therapies targeted to
specific patient populations using various
biomarkers began to emerge (Table 1). The
first of these studies revisited mepolizumab,
an antibody to IL-5 that in a broad asthma
population had previously been largely
ineffective (25). In contrast, treatment in
patients with severe eosinophilic asthma
(many with late-onset/sinus-related
disease) significantly reduced asthma
exacerbations (57). Further studies showed
that anti–IL-5 (or IL-5R) therapy targeted
to patients with blood or sputum
eosinophilia consistently decreased
exacerbations, daily oral CS dose, and in
some cases, also improved symptoms and
lung function (58, 59). Similarly, using
eosinophilia as a guide, dupilumab (an
antibody to the receptor IL-4Ra)
significantly reduced loss of asthma control
when background therapy was withdrawn,
with additional improvements in FEV1

and asthma symptoms (60). Finally,
lebrikizumab (an antibody to IL-13)
showed only modest benefits in all patients,
but it showed a robust improvement in
FEV1 in those with high-serum periostin
levels, which is a marker of type 2
inflammation (61). FENO worked similarly
well as a type 2 Hi biomarker in this study,
and was significantly suppressed by
lebrikizumab and dupilumab, confirming
the biologic effect of the drugs. Similar
results were reported with tralokinumab
when identifying patients by their high
sputum IL-13 levels (62). Finally, in
a retrospective analysis, even the currently
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available biologic, omalizumab (targeted to
IgE) was more efficacious in patients with
evidence of type 2 inflammation, as
measured by blood eosinophils, serum
periostin, or FENO (63, 64). Overall, these
studies began to link type 2 biomarkers to
responses to type 2 targeted therapy,
supporting a type 2 Hi molecular phenotype.

Type 2 Hi Biomarkers
These striking efficacy findings sparked
interest in biomarkers to predict disease
severity and response to treatment
(Table 1). Asthma biomarkers were
identified as early as the mid-twentieth
century when Brown described an
association between the presence of sputum
eosinophils and response to CS therapy
(23, 37), followed by studies that confirmed
this association and demonstrated its
predictive value (28, 38, 39, 41, 65). Because
of the association between eosinophils and
IL-5, sputum eosinophils successfully
predicted response to drugs that targeted
IL-5 (57, 66), with reductions in sputum
eosinophils associated with therapeutic
response (25, 57, 66). Despite this, recent
studies that examined the relationship
between sputum eosinophilia and elevated
airway type 2 cytokines (IL-4, -5, and -13)
found strong specificity but low sensitivity,
suggesting that some patients have elevated
type 2 signatures without sputum
eosinophilia (67).

Because sputum eosinophils are
technically difficult to measure, interest in
blood eosinophils arose (68, 69). Blood
eosinophils have been similarly linked to
elevated type 2 cytokines in the airways,
although not as robustly as sputum
eosinophils (67). Blood eosinophilia has
been linked to worse outcomes in asthma
(70, 71), more severe disease (72, 73), and
is predictive of CS responsiveness (28, 65).
Blood eosinophilia also predicts response
to anti–IL-5 therapy (mepolizumab,
reslizumab, and benralizumab) and IgE
therapy (omelizumab) (58, 59, 63, 64, 66,
74–76), and decreases with treatment (24,
57, 59, 66, 74–76). As a result, blood
eosinophils have largely replaced sputum
eosinophils as a type 2 biomarker in
clinical trials.

FENO has also been of interest as a type
2 biomarker. The primary enzyme driving
FENO levels, inducible NO synthase, is
upregulated by IL-13 (77) and IL-4 (78).
Elevated FENO is similarly associated with
worse asthma symptoms (72, 79), need for
CS (80), and is predictive of responsiveness
to CS therapy (28, 65). The relationship
between eosinophilia and FENO is complex
(40, 67, 78). Although some correlations
exist, marked reduction in blood and
sputum eosinophils through anti–IL-5
approaches had no impact on FENO (57).
Similarly, reduction in FENO through IL-
4Ra– or IL-13–directed approaches, while

consistently reducing FENO, had no effect
on blood eosinophils and tended to increase
them (60, 61, 81).

Periostin, a new biomarker of
interest, was initially identified in
microarray and polymerase chain reaction
studies (55). Follow-up studies have
suggested association with sputum
eosinophilia (82), increased airway
expression in asthma, and an association
with Th2 inflammation (67). Periostin
successfully predicted response to IL-13
targeted therapy (61), in addition to
predicting response to omalizumab (63).
However, its utility as a response marker
is uncertain.

Although further clinical studies
are needed for all these biomarkers, it is
likely that several of these, alone or in
combination, will be useful in identifying
patients for therapy using type 2–targeted
therapies. Because of the high predictive
value and ease of measurement of blood
eosinophils, it is likely that they will
serve as an initial biomarker to predict
response to biologic agents targeting Il-4,
-5, and -13. The role of periostin and
FENO in targeting type 2 biologic therapy
is less clear, although the change in FENO
after dupilumab therapy correlates well
with improvement in FEV1. Thus,
whether high FENO will be a better predictor
for IL-4/-13 directed therapy or whether
blood eosinophils will be a better

Table 1. Biologic Agents in Asthma and Potential Biomarkers

Pathway
Biologic Agents

Approved or in Trials
Biomarkers Predicting
Response to Therapy

Biomarkers Modulated
by Therapy Reference(s)

IgE Omalizumab FENO FENO Hanania et al., 2013 (63)
Blood eosinophils Sputum eosinophils
Periostin

IL-4/IL-13 Pitrakinra (competitive antagonist) FENO FENO Wenzel et al., 2007 (81)
Dupilumab (receptor antibody) Sputum eosinophils Wenzel et al., 2013 (60)

Blood eosinophils
IL-13 Lebrikizumab Periostin FENO Corren et al., 2011 (61)

Tralokinomab FENO Piper et al., 2013 (62)
Eosinophils
Sputum IL-13 (periostin
surrogate)

IL-5 Mepolizumab Sputum eosinophils Sputum eosinophils Flood-Page et al., 2007 (25)
Haldar et al., 2009 (57)
Pavord et al., 2012 (58)
Bel et al., 2014 (59)
Nair et al., 2009 (66)
Ortega et al., 2014 (74)
Castro et al., 2011 (75)
Castro et al., 2014 (76)

Reslizumab Blood eosinophils Blood eosinophils
Benralizumab

Definition of abbreviation: FENO = fractional exhaled nitric oxide.
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predictor of anti–IL-5 responses
remains unclear. It is likely that clinical
and research experience will eventually
identify a panel of biomarkers that best
predicts response to these biologic
therapies.

Complex Type 2 Phenotypes
Despite the rise in success of targeted
biologics for type 2 asthma, not all patients
with type 2 Hi asthma respond to these
therapies. Although anti–IL-5 showed
efficacy in oral CS-dependent patients,
there was still a substantial subgroup of
patients in whom minimal effects were
observed (59). Similarly, anti–IL-4 and/or
-13 approaches remain unstudied in
patients with very severe asthma. Further
investigation into possible subgroups of type
2 Hi asthma remains important. A recent
study by Modena and colleagues found
several patient clusters among patients with
elevated FENO that were suggestive of a type
2 Hi process, including one with a possible
type 1 signature (83). Thus, even patients
with type 2 Hi asthma may be grouped into
additional subphenotypes who may
selectively respond better to certain targeted
approaches.

Type 2 Lo Asthma
Although the bulk of recent successful
biologic treatment trials have been directed
at type 2 cytokines, nearly half of patients
with asthma lack evidence for this pathway
(42, 56). The inflammatory processes
associated with this broad phenotype
remain unclear. Neutrophilic inflammation
may play some role, but its meaning may
differ on whether it is seen with or without
eosinophils (84, 85). Biopsy studies showed
patients without eosinophilic inflammation
have a thinner SBM, suggesting an
alternative pathology, whereas studies by
Wenzel and colleagues (42) and Baines and
colleagues (86) showed differences in gene
expression in sputum from patients with
neutrophilic versus eosinophilic asthma.
These studies argue for a role for
neutrophilic inflammation in some
asthmatic phenotypes. Importantly, these
patients are consistently found to be largely
refractory to steroid treatment, and thus,
they have limited treatment options
(38, 39). Considerable work on mice has
suggested a role for IL-17 in this
neutrophilic inflammation (87, 88), but
human data supporting the importance
of this pathway, including the minimal

efficacy of an anti–IL-17R antibody in
moderate-to-severe asthma, is lacking (89,
90). Some studies have shown potential
benefit with macrolide therapy in these
patients, which decreases IL-8 levels and
neutrophil activation (91). Macrolides
have shown modest clinical efficacy in
neutrophilic asthma phenotypes and in
those with the type 2 Lo phenotypes, where
neither eosinophils nor FENO were elevated
(92). Currently, the exact pathophysiology
of this pathway and whether the increased
neutrophils identify the underlying
pathologic state or are a marker of high CS
use in a disease that is refractory to CS
remains unclear. In our recent study, Th1
inflammation, together with a low Th17
and Th2 response, was detected in almost
70% of patients with severe asthma (93). A
role for IFN-g in increased airway
hyperreactivity is suggested, using a mouse
model of the disease.

Obesity-related asthma may also
present as non–type 2 asthma. Obesity
represents a difficult area in asthma,
because it can be both a comorbid feature
and possibly a causal feature of the disease.
Increasing obesity is associated with

worsening asthma, although the
relationship of obesity with asthma
pathobiology may differ by age at onset,
with later onset of obese asthma
reflecting a more causal role for obesity,
whereas with earlier age of onset, obesity
may be more of a comorbidity (94, 95). The
pathobiology of obesity-associated asthma
may involve chest wall biomechanics and
airway compliance (96, 97), poor response
to medications due to obesity, and
adipose-related inflammatory activity
(97, 98).

Similarly, smoking-related asthma may
also represent a unique phenotype with
neutrophilic predominance and type 1
inflammation seen in some studies (99).
These patients are often poorly responsive
to asthma therapies, but may benefit from
smoking cessation (99).

Conclusions

It has become increasingly clear that asthma
represents a heterogeneous disease with
multiple phenotypes representing different
pathobiologies, natural histories, symptom
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Figure 2. An example of current asthma phenotypes as they relate to inflammatory type (type-2 high or
low) and other variables. Note that many phenotypes overlap because currently there is no clear
demarcation between these groupings. Patients may exhibit clinical or pathologic features of multiple
groups, emphasizing the limitations in the current understanding of phenotypes and the ability to use
them routinely in clinical practice at this current stage. CS = corticosteroids; GM-CSF = granulocyte–
macrophage colony–stimulating factor.
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burden, and responses to therapy (Figure 2).
The importance of these differences has
been underscored by the failure of one-size-
fits-all approaches to asthma care, from the
lack of efficacy of CS in some patients with
severe asthma to the initial failure of
untargeted biologic therapy. Although our
current molecular understanding of these
phenotypes remains limited, ongoing

studies are generating new and novel
hypotheses for testing in clinical trials.
Well-characterized large populations of
diverse asthma patients with longitudinal
follow-up are likely to add new information
on molecular networks, including their
inception and stability. Improved animal
models reflecting the diversity of asthma
will help test the importance of these

pathways. In combination, this research
will enable us to better characterize the
phenotypes that make up the disease of
asthma, and allow us to develop and target
individualized therapies to the right
patients. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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