
 Open access Proceedings Article DOI:10.1109/CEC.2005.1554920

Evolving controllers for simulated car racing — Source link

Julian Togelius, Simon M. Lucas

Institutions: University of Essex

Published on: 12 Dec 2005 - Congress on Evolutionary Computation

Topics: Open-loop controller and Control theory

Related papers:

 Evolving robust and specialized car racing skills

 Arms races and car races

 Optimising the Performance of a Formula One Car Using a Genetic Algorithm.

 Towards automatic personalised content creation for racing games

 Evolution of the driving styles of anticipatory agent remotely operating a scaled model of racing car

Share this paper:

View more about this paper here: https://typeset.io/papers/evolving-controllers-for-simulated-car-racing-
19lieqm7dn

https://typeset.io/
https://www.doi.org/10.1109/CEC.2005.1554920
https://typeset.io/papers/evolving-controllers-for-simulated-car-racing-19lieqm7dn
https://typeset.io/authors/julian-togelius-3xqtmvlou6
https://typeset.io/authors/simon-m-lucas-13wvvqicff
https://typeset.io/institutions/university-of-essex-2hcqk90p
https://typeset.io/conferences/congress-on-evolutionary-computation-189ojnjk
https://typeset.io/topics/open-loop-controller-1jwrz47i
https://typeset.io/topics/control-theory-3tznv960
https://typeset.io/papers/evolving-robust-and-specialized-car-racing-skills-vxleuf8qj9
https://typeset.io/papers/arms-races-and-car-races-1qwhzr65lp
https://typeset.io/papers/optimising-the-performance-of-a-formula-one-car-using-a-3ieo7kimwu
https://typeset.io/papers/towards-automatic-personalised-content-creation-for-racing-3rsqtcm2ie
https://typeset.io/papers/evolution-of-the-driving-styles-of-anticipatory-agent-3hvfgzwz8j
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/evolving-controllers-for-simulated-car-racing-19lieqm7dn
https://twitter.com/intent/tweet?text=Evolving%20controllers%20for%20simulated%20car%20racing&url=https://typeset.io/papers/evolving-controllers-for-simulated-car-racing-19lieqm7dn
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/evolving-controllers-for-simulated-car-racing-19lieqm7dn
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/evolving-controllers-for-simulated-car-racing-19lieqm7dn
https://typeset.io/papers/evolving-controllers-for-simulated-car-racing-19lieqm7dn

Evolving Controllers for Simulated Car Racing

Julian Togelius and Simon M. Lucas

Department of Computer Science

University of Essex

Colchester CO4 3SQ, United Kingdom

julian@togelius.com, sml@essex.ac.uk

Abstract-

This paper describes the evolution of controllers for

racing a simulated radio-controlled car around a track,

modelled on a real physical track. Five different con-

troller architectures were compared, based on neural

networks, force fields and action sequences. The con-

trollers use either egocentric (first person), Newtonian

(third person) or no information about the state of the

car (open-loop controller). The only controller that able

to evolve good racing behaviour was based on a neural

network acting on egocentric inputs.

1 Introduction

That car racing is a challenging problem, generating consid-

erable public excitement, is evident from the huge amount

of time and money invested both in practising and watching

physical car racing, and in developing and playing racing

games. For the same reasons, the problem(s) cannot sensi-

bly be considered “trivial” or “solved” - no one would want

to watch a race where the drivers were perfect.

Though experiments with neural and evolutionary meth-

ods have undoubtedly taken place in commercial game stu-

dios, these have not been published for reasons of commer-

cial confidentiality. The academic evolutionary computa-

tion community has apparently not devoted much energy to

the car racing domain. One exception is Wloch and Bent-

ley [11], who used evolutionary algorithms to optimize the

parameters of simulated Formula 1 racing car with good

results. However, they did not try to evolve the car con-

troller, but rather used the simulator’s built-in controller.

Another interesting example is due to Floreano et al. [3],

who evolved a controller for a first-person car racing game

that successfully drove the car around the track. The con-

troller used direct visual input to a neural network, but only

a very small part (5 × 5 pixels) of the visual field was used

at a time. This was achieved through letting the neural net-

work select which part of the visual field to concentrate

on by moving and focusing an artificial retina, a process

known as active vision. Further, Stanley and Miikkulainen

[7] evolved a collision warning system, but did not espe-

cially concern themselves with evolving good driving per

se. At the same time as this work was done, Tanev et al. [8]

evolved the parameters for a control algorithm for a physi-

cal model racing car. Worth mentioning also is the famous

ALVINN experiments, where a neural network trained with

back-propagation learned to keep a car on the road by ob-

serving a human driver’s behaviour[6].

Applying evolutionary methods to car racing can be

worthwhile from several perspectives. One is the devel-

opment of appropriate automatic drivers for various pur-

poses, such as more interesting/challenging racing game op-

ponents that automatically can adapt to new tracks, or even

racing physical cars of some sort. Another is automatically

testing track/car combinations for “sweet spots”, i.e. simple

but non-desirable strategies a player can exploit to beat a

computer game, something which is a great concern for the

game industry [2]. But it is also worth considering car rac-

ing from an evolutionary robotics (ER) / embodied artificial

intelligence perspective. Most ER experiments use robots

with simple morphology and simple sensor setups in simple

environments [5]. The archetypical ER research robot, the

Khepera, can turn on the spot, accelerate and decelerate al-

most instantaneously and move with equal speeds forwards

and backwards. These and other features set it apart from

nearly every vehicle that is actually used for anything in the

real world. At the same time, the sensor setup is very lim-

ited. While the availability of standardized research robots

has doubtlessly benefited ER in many ways, it is plausible

that the very limited dynamics, sensors, and environments

used in such experimental setups is a major obstacle for

ER to scale up, i.e. for evolution to produce really com-

plex intelligence. We believe the more complex dynamics

of the car racing problem could allow different and poten-

tially more complex behaviour to evolve.

The main question we are trying to answer in this pa-

per is what sort of information a control mechanism needs

in order to proficiently race a car around a track, and how

it should be represented. Along the way we will look at

whether different input representations and control mecha-

nisms give rise to qualitatively different driving styles, and

not only quantitatively different lap times, and which rep-

resentation/mechanism combinations give rise to general

good driving behaviour as opposed to optimising behaviour

for one particular way of driving around a track. (A problem

here is the lack of objective measure driving quality.) Some

constraints we adopt in these experiments are that all con-

trollers are to be reactive (i.e. they do not learn or integrate

information over time in any other way) and that we only

use one track for evaluating them. Given these constraints,

we implemented a wide range of simple evolvable control

architectures.

1.1 Overview of the paper

After presenting the car model and the various algorithms

we are using, we investigate two ways of evolving con-

trollers that do not make use of any information about the

car and the environment at all, but only about the elapsed

time in the simulation. In control theory terminology, these

are “open loop” controllers. One of these is based on neural

networks and their oft-touted universal approximation ca-

pabilities. A neural network should in principle be able to

approximate a function that maps a point in time to the op-

timal action at that time, though it is not known how easy

such a function would be to evolve. The other is based on

action sequences, which are lookup tables with one action

per time step. An action sequence should be able to make

an optimal controller, given a fixed starting point and a de-

terministic simulation, though there is a question of evolv-

ability here as well. Also, minor variations in the starting

position and angle of the car are likely to have detrimen-

tal effects on these controllers, something borne out by our

experiments.

After that, we investigate two evolvable controllers

which makes use of Newtonian information, i.e. “third-

person” information about the state of the car, in this case

velocity, position, orientation, angular velocity and speed.

Again, the first of these controllers is based on a neural

network, which here implements a function from the above

mentioned inputs to car actions. The second is based on a

force field approach, where the actual speed and orientation

of the car is compared with the value associated with the

particular part of the track the car occupies. This approach

is broadly similar to that used in [4].

Finally, we investigate the use of neural networks to con-

trol the car based on egocentric information, i.e. “first per-

son” data from simulated sensors whose characteristics are

co-evolved with the neural networks.

2 The model

At the University of Essex, a permanent arena for racing

miniature RC cars has been constructed, and similar are-

nas have been assembled for competition and demonstra-

tion sessions at the 2003 and 2004 IEEE Congresses on

Evolutionary Computation (CEC), and a competition is also

planned for CEC 2005. The arena measures approximately

2.4× 1.2 metres, and the RC cars are 1/24th scale (approx-

imately 17 centimeters long). The RC cars, which are of

a type commercially available in toy stores, are controlled

by the provided radio transmitter, attached to a PC by con-

necting the switches on the transmitter to a custom-made

circuit board which plugs into the parallel port. The car con-

trols are all on/off types (also known as bang-bang control),

with the main motor either driving the car backward, for-

ward or being un-powered, and the steering wheels pointing

either to the left, to the right or towards the center, making

nine possible control commands in all. Visual input is fed

to the computer either from a web camera mounted on top

of the track and connected via USB, or from a web cam-

era mounted on top of the car and connected via a wireless

link. Using this setup (with the overhead camera), hand-

designed algorithms have driven the cars around the track,

though with frequent collisions and intermittent progress.

For the experiments in this article, we have created a sim-

ple car-racing model aiming to reproduce many of the qual-

itative features of RC car racing. RC cars are much more

robust than real cars (owing to their smaller size, smaller

mass, and lower speed), and can bounce off walls rather than

breaking down when crashing into them. We have not aimed

to reproduce the characteristics of any particular make of

RC car or surface material, however the shape of the track

used in these experiments is modelled on the track used for

the competition at CEC 2003. The dimensions of the model

track is 400 pixels horizontal by 300 vertical, as depicted in

Figure 1.

Figure 1: The simulated track with five aim points and the

car at its starting position. The circle marks the aim point

closest to the car.

Major differences between our current simulation and

the real-world RC cars are as follows:

• In our simulation, the car position is known exactly at

each point in time; in the real-world system, our com-

puter vision system is imperfect, and while tracking

the car fairly accurately most of the time, is occasion-

ally prone to poor position estimates. Furthermore,

our current real-world car tracker only estimates the

position of the car, whereas the simulation also pro-

vides the orientation and heading of the car as possi-

ble inputs to a controller.

• The simulation proceeds via constant size time-steps,

and has no latency (i.e., the current position of the

car is available at each time step). The real system

is subject to variable time delays, due to the compu-

tational demands of the vision system (the variability

being a result of running on a multi-tasking operating

system). Also, the real system often suffers a latency

of over 100ms, which is time enough for the car to

travel 30cm.

• We have implemented a simple model of skidding,

whereby the car has some side-slip when cornering,

which causes under-steer. On the real RC cars, this

is highly non-linear, and can be exploited by skilled

drivers to execute the equivalent of a hand-brake turn

(which induces severe over-steer), to take very tight

corners.

2.1 Dynamics

As computational efficiency is crucial in experiments in ar-

tificial evolution, the car simulation was designed to mini-

mize the amount of computational effort needed per updat-

ing step, while still providing a qualitative similarity to the

dynamics of real RC car racing. The simulation, which is

implemented in Java, is based on Newtonian particle kinet-

ics; the car’s state is defined by its position, velocity, orien-

tation and angular velocity.

The moving resistance of the car is modelled as a fric-

tional force proportional to the velocity of the car. The trac-

tion of the tyres is limited, which causes skidding when cor-

nering at high speed.

Wall collisions affect the velocity and angular velocity

of the car in such a way that the car bounces off the walls

in a realistic manner, and a collision at an unfortunate angle

and speed can spin the car around so that it faces the wrong

way, adding to the challenges of the task.

We did consider using an existing car racing simulation

for our studies, such as RARS (Robot Auto Racing Simula-

tion)1, but found it easier to implement our own simulation

in order to better match our requirements.

2.2 Fitness function

The fitness of a controller is determined by how far along

the track it has managed to drive the car after a fixed amount

of time; for the experiments in this paper this amount is

specified as 500 time steps. How far the car has travelled is

measured using a system of aim points. Five aim points

are laid out quite evenly on the track, and the controller

is scored on how many aim points it manages to reach in

the correct order, which is counter-clockwise. To smooth

the fitness function, the progress made towards the next aim

point is also taken into account.

Each of the experiments below is carried out under two

different regimes, a fixed starting point regime and a ran-

domized starting point regime. Under the fixed starting

point regime, the car always starts at pixel coordinates 50,

150, pointing straight downwards in the preferred direction

of movement for that part of the track. Under the random-

ized starting point regime, the x-coordinate of the start-

ing position is randomized between 40 and 60, and the y-

coordinate between 120 and 180, while the orientation of

the car is set to a random angle between +/− 30 degrees

from straight downwards. When calculating fitness under

the randomized regime, each fitness evaluation is an aver-

age of three separate trials using different starting positions,

in order to make the fitness function somewhat less noisy.

Under the fixed regime, a very small random term is added

to the fitness value in order to encourage neutral mutations.

The car can be controlled not only by an evolved con-

troller, but also by a human player through a keyboard in-

terface. When the car simulation was demonstrated at the

IEEE 2005 Symposium on Computational Intelligence and

Games, a number of conference delegates took the oppor-

tunity to try to beat the evolved controllers. Of the 10 par-

ticipants who tried the game several times, the average best

fitness (score) was 11.86. Overall winner was Jay Bradley

of the University of Edinburgh, who once reached fitness

1http://sourceforge.net/projects/rars

15.97.

2.3 Evolutionary algorithm

An evolutionary algorithm with truncation-based selection

and elitism was used for all experiments. The workings of

the algorithm were as follows: in each generation, the fit-

ness of all individuals were evaluated, and the population

was sorted in fitness order. The less fit half of the popula-

tion was then deleted and replaced with a clone of the fitter

half of the population, after which the mutation operator

was applied to all individuals, except the two fittest individ-

uals. All experiments in this paper used a population size of

100 and, unless otherwise stated, ran for 100 generations.

3 Neural networks

Three of the five experimental setups in this paper use neural

network-based controllers. The neural networks are stan-

dard multi-layer perceptrons, with n input neurons, a single

layer of h hidden neurons, and two output neurons, where

each neuron implements the tanh transfer function. At each

time step, the inputs as specified by the experimental setup

is fed to the network, activations are propagated, and the

outputs of the network are interpreted as actions that are

used to control the car. Specifically, an activation of less

than -0.3 of output 0 is interpreted as backward, more than

0.3 as forward and anything in between as no motor action;

in the same fashion, activations of output 1 is interpreted as

steering left, center or right.

At the start of an evolutionary run, the m*n*2 connec-

tions are initialized to strength 0. The mutation operator

then works by applying a different random number, drawn

from a gaussian distribution around zero with standard de-

viation 0.1, to the strength of each connection.

4 No inputs and action sequences

4.1 Methods

An action sequence is a one-dimensional array of length

500, containing actions, represented as integers in the range

0-8. An action is a combination of driving command (for-

ward, backward, or neutral) and steering commands (left,

right or center). When evaluating an action sequence con-

troller, the car simulation at each time step executes the ac-

tion specified at the corresponding index in the action se-

quence. At the beginning of each evolutionary run, con-

trollers are initialized as sequences of zeroes. The mutation

operator then works by selecting a random number of posi-

tions between 0 and 100, and changing the value of so many

positions in the action sequence to a new randomly selected

action.

4.2 Results

After evolving the action sequence controllers for 100 gen-

erations, most evolutionary runs reached a fitness of about

2; after 500 generations, they often reach about 5. The re-

sulting behaviour looks more like rather random actions that

just happen to take the car in the right direction, than it looks

like good driving. The car drives very slowly, and many

evolved controllers spend considerable amounts of time

standing virtually still before finally starting to move. We

hypothesize that a major factor restraining fitness growth

is the ubiquity of local optima in the early parts of the se-

quence. This comes about because each action is associated

with a time step rather than a position on the track, so that

a mutation early in the sequence that is in itself beneficial

(e.g. accelerating the car at the start of a straight track sec-

tion) will offset the actions later in the sequence in such a

way that it probably lowers the fitness as a whole, and is

thus selected against.

Under the randomized starting point regime, fitness is

often below two and does not rise much further. Analysis

of evolved controllers shows that the car often gets stuck

on walls. A plot of fitness evolution for both the fixed and

random starting points is shown in Figure 2.

Figure 2: Evolving action sequences. The upper graph rep-

resents the fitness of the best individual in each generation,

averaged over 10 evolutionary runs, under the fixed starting

point regime. The lower graph represents the same entity

when the car was evolved with randomized starting posi-

tions.

5 Open-loop neural network

5.1 Methods

A neural network as described above with two inputs, five

hidden nodes and two outputs is fed with the number of the

current time step divided by 500, yielding an input value of

0 in the first time step and 1 in the last, and a constant input

with the value 1.

5.2 Results

After 100 generations of evolution, the controller typically

reached fitness levels of about 2 to 3. The car behaviour

looks no less random than that of the action sequence con-

trollers, the main difference is that the car goes faster in this

case. Most evolutionary runs found a way for the car to ac-

celerate into the walls at the right angle and speed to bounce

it’s way around little more than half of the track, but none

got further. An analysis of the actions produced by the con-

troller reveals that the controller issues the same action for

several hundred time steps in a row, and only changes action

once or twice per trial. At the moment we don’t know why

any more intelligent behaviour refuses to evolve.

When evolving with randomized starting points it seems

to be impossible to find a behaviour sequence that relies on

bouncing off walls in the right way, and so evolved con-

trollers tend to just run around in circles and reach very low

fitness levels, barely above zero. The fitness evolution of

this type of controller is shown in Figure 3.

Figure 3: Evolving open loop neural network controllers.

The upper line is for a fixed starting position, the lower line

for randomised starts.

6 Newtonian inputs and force fields

6.1 Methods

A force field controller is here defined as a two-dimensional

array of two-tuples, describing the preferred speed and pre-

ferred orientation of the car while it is in the field. Each field

covers an area of n*n pixels, and as the fields completely

tile the track without overlapping, the number of fields are

(l/n)*(w/n), where l is length, and w is width of the track, re-

spectively. At each time-step, the controller finds out which

field the centre of the car is inside, and compares the pre-

ferred speed and orientation of that field with the cars actual

speed and orientation. If the actual speed is less than the

preferred, the controller issues an action containing a for-

ward command, otherwise it issues a backward command;

if the actual orientation of the car is left of the preferred ori-

entation, the issued action contains a steer right command,

otherwise it steers left. In the results reported here, we used

fields with the size 20 × 20 pixels, evolved with gaussian

mutation with magnitude 0.1, though we have tried other

combinations of field size and mutation magnitude without

any improvement in fitness. This is broadly similar to the

kind of controllers evolved in [4], though we are controlling

a car rather than a holonomic robot.

6.2 Results

The force field controllers evolve very slowly, and after 100

generations barely exceeded fitness 1; evolving for 1000

generations sometimes brought fitness up to around 4 when

using fixed starting positions; when starting positions were

randomised, fitness stayed at 1. The cars moved around in

a peculiar fashion, sometimes following a sane path around

the track for a while, only to become stuck oscillating be-

tween two force fields a moment later. Figure 4 shows the

fitness evolution of this type of controller, and Figure 5

shows a sample trace.

Figure 4: Evolving force field controllers.

Figure 5: Movement trace of a car controlled by a force field

controller.

7 Newtonian inputs and neural networks

7.1 Methods

The neural network is fed seven inputs: a constant input

with value 1, the x and y components of the car’s position,

the x and y components of its velocity, its speed and its ori-

entation. All inputs are scaled to be in the range -10 to 10.

Seven hidden neurons are used in the network, and the two

outputs are interpreted as described above.

7.2 Results

Evolving for 100 generations, best fitness varies consider-

able between evolutionary runs. While most runs produced

controllers with fitness values around 3, at least one run

produced a controller with fitness over 6. None of the con-

trollers manage to the drive the car properly around the track

however, the fittest controller instead drove the car into the

“box” in the center of the track and exploited a glitch in

the fitness function, whereby it can come close enough to

the aim points on the left side of the track for the fitness

function to increase without the car ever going around the

left wall of the box. The cars drive fast and seem to make

sensible turns, but they all eventually get stuck on a wall.

Randomising the starting position produces controllers

of slightly lower fitness. Figure 6 shows the fitness evolu-

tion of this type of controller, while Figure 7 shows a sample

trace of the car.

Figure 6: Evolving newtonian neural network controllers.

Figure 7: Movement trace of a car controlled by a neural

controller with newtonian inputs.

8 Simulated sensor inputs and neural networks

8.1 Methods

In this experimental setup, the six inputs to the neural net-

work consist of one constant input with the value 1, the

speed of the car, and the outputs of three wall sensors and

one aim point sensor. The aim point sensor simply outputs

the difference between the car’s orientation and the angle

from the center of the car to the next aim point, yielding a

negative value if that point is to the left of the car’s orienta-

tion and a positive value otherwise.

Each of the three wall sensors is allowed any forward

facing angle (i.e. a range of 180 degrees), and a reach be-

tween 0 and 100 pixels. These parameters are co-evolved

with the neural network of the controller. The sensor works

by checking whether a straight line extending from the cen-

tre in the car in the angle specified by that sensor intersects

with the wall at eleven points positioned evenly along the

reach of the sensor, and returning a value equal to 1 divided

by the position along the line which first intersects a wall.

Thus, a sensor with shorter reach has higher resolution, and

evolution has an incentive to optimize both reaches and an-

gles of sensors. This type of sensor controller is related to

the wrap-around vector histogram approach of [1], except

that we are only using three sensors instead of full wrap-

around.

8.2 Results

After 100 generations, evolution produced a controller with

excellent fitness values, which equal more than three laps

around the track in the allotted 500 time steps. The cars

drive around the track at close to full speed, cutting corners

incredibly close, crashing into walls only where they can

take advantage of the rebound. The sensors vary consider-

ably in the combination of angles and ranges, though often

show a bias towards straight ahead and left. An example

evolved sensor configuration is shown in Figure 8, which

uses the short left sensor to help follow the inside wall, or

take close cut corners, and the longer range sensors to help

decide when to turn.

Figure 8: A sample evolved configuration of sensors.

The best final fitness value found when examining ten

evolved controllers was 16.04, which narrowly beats the

best human competitor so far. When evolving with ran-

domised starting positions best fitness was slightly lower,

with a similar sensor setup. The lower fitness is due to the

cars slowing down in corners. Figure 9 shows the fitness

evolution of this type of controller, while Figure 10 shows a

sample trace of the car’s movement.

Figure 9: Evolving sensor-based neural controllers with full

inputs.

Figure 10: Movement trace of a car controlled by a sensor

controller.

To investigate the relative contributions of the wall and

aim point sensors, we “lesioned” the controller by disabling

the sensor types one at a time. First, we disabled the wall

sensors, and evolved controllers making use only of the aim

point sensor, speed and the constant input. Under the fixed

starting point regime this resulted in cars with fitness of-

ten between 11 and 12; they drove well, but bumped into

the wall protruding from the top of the track once every

lap. When randomizing starting points, the aim sensor-only

controller fared much worse, reaching medium fitness about

7. Evolution produced a controller that sometimes made its

way around the track, but, depending on initial conditions,

more often got stuck on a wall. Figure 11 shows the fitness

evolution under this restriction.

We then re-enabled the wall sensors and instead disabled

the aim point sensor. Under the fixed starting point regime,

evolution produced controllers that often had all wall sen-

sors set long range, and pointing approximately 20 degrees

Figure 11: Evolving sensor-based neural controllers without

wall sensors.

left of straight ahead, and that drove at high speed, more or

less following the outer wall. When randomizing starting

points, they often have a long range sensor pointing straight

forward, and medium range sensors pointing approximately

45 and 90 degrees to the left, and execute careful following

of the outer wall without ever bumping into it.

Figure 12: Evolving sensor-based neural controllers with-

out aim point sensors. Note that the value for the random

starting point regime is actually slightly higher after gener-

ation 25.

Controller Fixed Randomized

Action sequence 2.23 1.36

Open loop neural 2.72 0.17

Force field 1.16 0.16

Newtonian neural 2.94 1.84

Sensor-based 13.59 12.4

No wall sensors 11.76 7.02

No aim point sensor 10.97 11.33

Table 1: Average fitness of best individuals of 10 evolu-

tionary runs of the various controller architectures under the

starting point regimes.

8.3 Time consumption

Evolving 100 generations of a population of 100 sensor-

based controllers, where each controller is evaluated for 500

time steps, takes 4 minutes and 22 seconds using Java 1.4.2

on a 933 Mhz Apple iBook G4. This works out to approx-

imately 2.82 seconds per generation, 28 ms per controller

evaluation, or 0.05 ms per time-step. A little more than

half of this time is spent on propagating activations through

the neural network. While the evolved networks should be

fast enough to control many cars simultaneously in a com-

mercial driving simulator, the process of evolving the con-

trollers is probably still too slow to e.g. create new drivers

adapted for arbitrary tracks on the fly.

9 Conclusions

The most consistent effect across all the experiments re-

ported above is that controllers (except the sensor controller

with the aim point sensor disabled) have higher fitness when

starting position and orientation is kept fixed. Not surpris-

ingly, evolution is able to optimize car behaviour better in

these noise-free cases, and has to develop more robust be-

haviour (which means longer lap times) or risk getting stuck

on a wall when starting position is randomized. When rac-

ing actual physical cars, starting position will necessarily

vary, and so performance under this regime is the more

interesting factor when evaluating the suitability of a con-

troller for transfer to a physical domain.

Our experiments also point to the vast superiority of

first-person to third-person information for the problem at

hand. This might be because of the existence of walls,

which presumably makes any mapping from third-person

spatial information to appropriate first-person actions, ex-

tremely nonlinear. A controller using third-person infor-

mation (such as visual data from an overhead web cam-

era) could get around this problem by somehow represent-

ing the walls, and re-creating the kind of sensors used in

our sensor-based simulations described above. The prob-

lems with using third-person information might also partly

be due to difficulty of rotating coordinates as the car’s ori-

entation changes.

We were somewhat surprised by the poor performances

of the action sequence and force field controllers, both of

which should theoretically be able to represent good solu-

tions, at least for fixed starting points. We therefore hy-

pothesize that the poor performance is because of problems

with the evolutionary algorithm rather than the representa-

tions per se; our main culprit here is the mutation methods,

which seem to drive the action sequence into local optima

and make for very slow progress in force field evolution.

For a fixed starting position, it should be possible to achieve

good lap times by seeding the EA with an action section ob-

served by running an evolved sensor controller, but we’ve

not yet tried this.

Regarding force field controllers, an alternative hypoth-

esis is that it is simply not theoretically possible to success-

fully drive a non-holonomic vehicle around a track using

that paradigm directly, as it does not take into account the

state of the car when entering a particular cell (this is not

a problem for holonomic vehicles, which can be treated as

stateless).

9.1 Future research

To investigate whether the evolved controllers really dis-

play good driving behaviour as opposed to optimizations for

one particular track, we would need to test them on more

than one track. This could be done by testing each indi-

vidual on several different track in each fitness evaluation,

and then using a different set of tracks for testing the final

evolved driving ability. Possibly a “generalist” driver could

be evolved that performs reasonably on all tracks; this con-

troller could then, using incremental or layered evolution

[9], be specialized to perform well on a particular track —

hopefully in shorter time than it would take to evolve a spe-

cialized controller from scratch.

The neural networks in these experiments are quite sim-

ple; recurrent neural networks, or even learning, plastic net-

works could improve track times and generality of driving

skills further. Several times, the Newtonian input neuro-

controller evolved to exploit certain weak spots in the fitness

function; these must be rectified.

So far we have only evolved controllers for a time-trial

task, involving driving a single car at maximum speed.

There is much work to be done, however, on competitive

racing, involving two or more cars on the track simultane-

ously, with interesting adversarial collision strategies to be

evolved. An interesting difference between this and other

forms of competitive coevolution is the existence of an ab-

solute, and not just a relative fitness function.

While the car model used in this paper is adequate for the

experiments mentioned above, we plan to investigate the ap-

plication of our evolutionary methods to commercial driving

simulators and physical radio-controlled cars. An important

research question for the latter context is how the evolu-

tionary methods handle the time-lag in the physical control

cycle, as reported by Tanev et al. [8]

But the most challenging and interesting future develop-

ment is using raw visual data as input to the controllers. Vi-

sual input for controlling a first-person car game has already

been explored by Floreano et al., but much work certainly

remains to be done here. In particular, Floreano et al.’s con-

trollers made use only of a minuscule part of the visual field;

we aim to use convoluted modular neural networks [10] as

the basis for controllers that make use of raw visual data,

from a first person or a third person perspective, for con-

trolling both physical and simulated cars. Currently, we are

working on evolving controllers for the simulated car whose

input is the 400 ∗ 300 track image rotated and translated so

that the car is always in the centre of the picture and fac-

ing upwards. There are some indications that it is possible

to train perceptrons to control the car based on such input

data.

Bibliography

[1] J. Borenstein and Y. Koren. The vector field his-

togram and fast obstacle-avoidance for mobile robots.

IEEE Journal of Robotics and Automation, 7:278–

288, 1991.

[2] Jörg Denzinger, Kevin Loose, Darryl Gates, and John

Buchanan. Dealing with parameterized actions in be-

havior testing of commercial computer games. In Pro-

ceedings of the IEEE 2005 Symposium on Computa-

tional Intelligence and Games CIG05, pages 37–43,

2005.

[3] Dario Floreano, Toshifumi Kato, Davide Marocco,

and Eric Sauser. Coevolution of active vision and fea-

ture selection. Biological Cybernetics, 90:218–228,

2004.

[4] Kwang-Young Im, Se-Young Oh, and Seong-Joo Han.

Evolving a modular neural network-based behavioral

fusion using extended vff and environment classifica-

tion for mobile robot navigation. IEEE Transactions

on Evolutionary Computation, 6:413–419, 2002.

[5] Stefano Nolfi and Dario Floreano. Evolutionary

robotics. MIT Press, Cambridge, MA, 2000.

[6] Dean A. Pomerleau. Neural network vision for robot

driving. In The Handbook of Brain Theory and Neural

Networks, 1995.

[7] Kenneth O. Stanley. Efficient evolution of neural

networks through complexification. PhD thesis, De-

partment of Computer Sciences, University of Texas,

Austin, TX, 2004.

[8] Ivan Tanev, Michal Joachimczak, Hitoshi Hemmi,

and Katsunori Shimohara. Evolution of the driv-

ing styles of anticipatory agent remotely operating a

scaled model of racing car. In Proceedings of IEEE

Congress on Evolutionary Computation, 2005.

[9] Julian Togelius. Evolution of a subsumption architec-

ture neurocontroller. Journal of Intelligent and Fuzzy

Systems, 15:15–20, 2004.

[10] Julian Togelius and Simon M. Lucas. Forcing neuro-

controllers to exploit sensory symmetry through hard-

wired modularity in the game of cellz. In Proceedings

of the IEEE Symposium on Computational Intelligence

and Games, pages 37–43, 2005.

[11] Krzysztof Wloch and Peter J. Bentley. Optimising the

performance of a formula one car using a genetic algo-

rithm. In Proceedings of Eighth International Confer-

ence on Parallel Problem Solving From Nature, pages

702–711, 2004.

