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Abstract—Inventory forecasting is a key component of effective
inventory management. In this work, we utilise hybrid deep
learning models for inventory forecasting. According to the
highly nonlinear and non-stationary characteristics of inventory
data, the models employ Long Short-Term Memory (LSTM) to
capture long temporal dependencies and Convolutional Neural
Network (CNN) to learn the local trend features. However,
designing optimal CNN-LSTM network architecture and tuning
parameters can be challenging and would require consistent
human supervision. To automate optimal architecture searching
of CNN-LSTM, we implement three meta-heuristics: a Particle
Swarm Optimisation (PSO) and two Differential Evolution (DE)
variants. Computational experiments on real-world inventory
forecasting problems are conducted to evaluate the performance
of the applied meta-heuristics in terms of evolved network
architectures for obtaining prediction accuracy. Moreover, the
evolved CNN-LSTM models are also compared to Seasonal Auto-
regressive Integrated Moving Average (SARIMA) models for
inventory forecasting problems. The experimental results indicate
that the evolved CNN-LSTM models are capable of dealing with
complex nonlinear inventory forecasting problem.

Index Terms—Particle Swarm Optimisation, Differential Evo-
lution, Convolutional Neural Network, Long Short-Term Mem-
ory, Time Series Analysis, Inventory Prediction

I. INTRODUCTION

Effective planning is important in production systems that

aim at effective management and coordination of related ac-

tivities and resources for an organisation. A common objective

in such systems is to achieve optimal production planning

and inventory management to meet (often variable) products

demand over the planning horizon [1]. This paper tackles

the inventory forecasting problem for highly perishable food

with a very limited shelf life and with variable customers

demand. Much research effort has been invested in developing

accurate and robust inventory prediction models. This problem

has been treated from various angles, such as time-series [2],

pattern recognition [3], clustering [4]. Generally, from machine

learning point of view, those models can be classified into

parametric or non-parametric methods [5]. Parametric meth-

ods assume a certain statistical distribution on the data and

primarily rely on statistical techniques such as auto-regressive

moving average models, linear and nonlinear regressions [6].

This research was supported by Innovate UK and PXtech Limited.

These techniques try to detect a function between the past in-

formation and the predicted state. Non-parametric approaches

do not assume that the data is following any distribution

and adopt computational intelligent methods such as fuzzy

systems, neural networks, and evolutionary computation.

In this study, we evaluate and compare the representative

methods of parametric and non-parametric approaches using

real-world data from a local food shop. We chose SARIMA

model [7] as the parametric method while CNN-LSTM model

as the non-parametric approach. Because both methods require

careful selection of parameters, we implement a grid search

method for the parameter tuning of the SARIMA model; with

regards to the CNN-LSTM, its parameters contains various

format and the quantity of parameters is far larger than that

of the SARIMA model.

To automatically design optimal CNN-LSTM network ar-

chitectures, we implemented and compared two similar meta-

heuristics: Particle Swarm Optimisation (PSO) and Differential

Evolution (DE). More specifically, a standard PSO and two DE

variants: DE/best/1/bin and DE/best/1/exp (see Section IV).

The reasons for adopting PSO and DE as optimisers for this

problem are that: 1) they are somewhat similar algorithms

and it is interesting to compare their performance; 2) they

are simple to implement (both use simple fast to execute

mathematical operators) and efficient in memory requirement;

3) and they are general parameter value optimisation methods

which require no assumptions about the problem being opti-

mised; 4) there are successful applications of PSO and DE

for evolving neural network architectures (see Section II), but

the applications of using them to evolve CNN-LSTM neural

network architectures are somewhat limited. To the best of our

knowledge, this is the first work using evolutionary algorithms

for automatically evolving the architectures of CNN-LSTM for

time series prediction.

The remainder of this paper is as follows. A literature

review is given in Section II while the subject problem is

described in Section III. The encoding scheme and proposed

algorithm are illustrated in Section IV while the parameter

tuning is presented in Section V. Computational experiments,

comparisons, and discussion are presneted in Section VI.

Finally, conclusions are drawn in Section VII.



II. LITERATURE REVIEW

Time series, which is a sequence of data points in time order,

is being generated in a wide spectrum of domains, such as

daily fluctuation of stock markets, power consumption records,

performance monitoring of data centres, forecasting of sales

and inventory of retailer business, etc [8].

During the past few years, deep learning based methods

have achieved tremendous progress in the domains of com-

puter vision and pattern recognition and have attracted ever-

increasing research interests since it can be deployed for

big-data analytics, with applications encompassing: computer

vision, pattern recognition, speech recognition, natural lan-

guage processing, and advanced recommendation systems.

Ever since the deep convolutional neural network (DCNN)

model (AlexNET) proposed by Krizhevsky, et al. [9] for

the ILSVRC2012 image classification challenge displayed

tremendous success, other DNN models such as VGG [10],

GoogLeNet [11], and ResNets [12] with excellent performance

have also been put forward.

Moreover, DNNs have demonstrated superiority in numer-

ous machine learning tasks in time series analysis from which

CNNs and recurrent neural networks have been successfully

applied in several applications. Recurrent neural networks are

powerful in discovering the dependency in sequence data and

particularly the LSTM works well on sequence data with

long-term dependencies [8], [13], [14] due to the internal

memory mechanism. Lipton et al. [15] presented a study to

empirically evaluate the ability of LSTM to recognise patterns

in multivariate time series of clinical measurements. A study

that empirically evaluated RNN can be found at [13]. CNN is

a type of DNN that is commonly applied to analysing image

data. One of the key attributes of CNN is to conduct different

processing layers that yield an effective representation of local

salience of the signals. The deep architecture of CNN allows

multiple layers of these processing units to be stacked, so

that this deep learning model can characterise the salience of

signals in different scales [16].

Hybrid neural networks combining the strength of several

types of neural networks are receiving increasing interest in the

domain of computer vision [8], such as its successful applica-

tions in image captioning [17], image classification [18], action

recognition [19] and so on. However, the exploitation of hybrid

architectures for time series analysis is somewhat limited.

There are various ways to combine CNN and LSTM and the

models can be trained separately and then combined together

or vice versa [20]. The convolutions of the CNN can be used

directly as part of reading input into the LSTM units them-

selves. This combination can be referred to as convolutional

LSTM or ConvLSTM for short [21]. Du et al. [22] proposed a

traffic flow forecasting framework based on hybridising LSTM

and CNN, which focuses on the impact of local spatial features

and long dependency features and spatial-temporal correlations

in traffic flow data. Lin et al. [8] proposed an end-to-end hybrid

neural network (CNN and LSTM) to learn local and global

contextual features for predicting the trend of time series. CNN

and LSTM are complementary in their modelling capabilities

as CNN is good at reducing frequency variations while LSTM

is good at temporal modelling [23].

In practice, given a new problem, researchers tend to add

pre- and/or post-processing step(s) to improve solution quality

without changing network architecture or to try to redesign the

architectures and incorporate unique task-specific properties

in order to obtain better results. However, designing network

architecture and tuning parameters can be challenging. For

example, specific problems like image classification would

require expert knowledge, hence the need for consistent human

supervision. Therefore, it would be crucial to design a frame-

work that can automatically search for optimised network

architecture.

This idea of applying evolutionary algorithms as a means

for developing architectures of neural networks has been

adopted. With the advance of high-performance computing

such as GPU and other related cognitive computing clusters,

the computational time can be significantly reduced. In fact,

by adopting components such as convolution, pooling, batch

normalisation etc., Real et al. [24] developed an intuitively

mutation-capable evolutionary neural network that uniquely

does not require any human participation once the mutation

has commenced. To the best of our knowledge, Bin et al. [25]

proposed the first work using PSO for automatically evolving

the architectures of CNNs. Dragoi et al. [26] applied DE to

determine the optimal neural network topology. Studies ap-

plied DE for designing of different variants of neural network

can be found at [27] and [28].

III. PROBLEM DESCRIPTION

The problem concerned in this paper is part of a real-

world production planning of highly perishable foods [29] and

staff scheduling [30] in an environment with highly variable

customers demand.

We predict the hourly sales of a food shop that produces

and sells fresh prepared dishes, sandwiches and desserts. The

shop usually opens at 7:00AM and closes at 10:00PM. For

the purpose of using forecasting for inventory planning, it is

crucial to predict at least one week sales ahead. Unreliable

prediction could have negative impact on food preparation and

inventory planning since conservative estimation of sales can

result in low efficiency due to over prepared causing wastage

while underestimation of sales may lead to customers reneging

(i.e. customers leaving because the preferred item is out of

stock). Therefore, the goal is to build a forecasting model

that accurately predicts hourly sales of different items 1 week

ahead.

The data for the time series prediction is obtained by

transaction records held by the system used by the store.

The transaction records contain information of items transition

time-stamps and quantity. For each item, we grouped the data

by sum of hourly sales. Subsequently, we pre-processed the

data by removing outliers, system errors and retrospectively

adjust quantity caused by unexpected transactions (e.g. re-

turned product). As the store operates 16 hours per day and 7



days a week, the goal is to use the pre-processed historical data

to predict the 112 hourly sales for each item with one week in

advance. In total, we selected 10 case studies for testing our

algorithm.

The obtained data are usually highly nonlinear and non-

stationary, which are affected by different effects of store

promotions, weather, trafc conditions and special events (e.g.

holiday, football match). Therefore, the demand for items

may change dramatically within the day or week as shown

in Fig.1 and 2, respectively. In addition, the signal-to-noise

ration is very low. In this problem, demand forecasting by

CNN-LSTM model is motivated by the combination of CNN

and LSTM neural networks, which considers the spatial-

temporal dependency features of our data. CNN is used to

capture the local trend features of demand (e.g. demand change

from 9:00AM to 9:00PM in Fig.1) and LSTM is utilised to

learn features of both short-term time variation and long-term

dependency periodicity (e.g. the pattern of peak sales at noon

time in Fig.2.

Fig. 1: Demand fluctuates considerably in a day.

Fig. 2: Demand fluctuates considerably in a week.

IV. THE PROPOSED OPTIMISATION ALGORITHMS

Each time of searching the optimal neural network with

certain parameters values (e.g. number and type of layers,

number of neurons), we calculate the Mean Absolute Error

(MAE), which is the solution fitness in the meta-heuristic

(i.e. PSO or DE), and update parameters values. Here, we

implemented 3 meta-heuristics: a regular PSO (see Section

IV-B), a DE/best/1/bin and a DE/best/1/exp (see Section IV-C).

A. The encoding scheme

Each parameters values is encoded by a n-tuple s =

{l0, l1, l2, ...ln} representing layers in a neural network. li
represents the ith layer and its value is an integer, more

specifically, an integer expressed in decimal.

1) Convolutional layer: An integer value is not sufficient

to encode the multiple parameters that required by the convo-

lutional or pooling layer. To ensure a layer represents by only

one integer value, the integer value representing convolutional

or pooling layer is converted to a binary string. In this

encoding scheme, we use an integer ranging from 1 to 256

to represent a convolutional layer as a convolutional layer

require two key parameters - filter size and kernel size. Some

preliminary experiments suggest that the filter size up to 64

(26) and kernel size up to 4 (22) are sufficient to obtain

good results. In terms of integer and binary string conversion,

integer range [1,64] and [1,4] can be converted by a 6 bits

and 2 bits binary string respectively. Therefore, in total, we

need a 8 bits binary string (range [1,256]) to represent the

two parameters of a convolutional layer.

2) Pooling layer: Similar as the encoding of convolutional

layer, the pooling layer has three key parameters - pooling

size, stride size and pooling type. The range of pooling size

and stride size are defined as [1,4] while the pooling type

are {1, 2} where 1 stands for max pooling and 2 stands for

average pooling, therefore, the range of pooling layer can be

represented by a 5 bits length binary string. Because [1,256]

of range in the solution encoding has been taken by the

convolutional layer, the pooling layer can take the placeholder

of range [257,288] (size 32) next to [1, 256]. Since the

placeholder size of the pooling layer (size 32) is only 1/8

of that of the convolutional layer (size 256), leading to much

smaller possibility of pooling layer to be chosen comparing

with the convolutional layer. To ensure each type of layer have

comparable opportunity to be chosen by the meta-heuristics, an

uniform distribution has been utilised by increasing the place

holder size of pooling layer from 32 to 256, hence increase

the range from [257, 288] to [257, 512]. Let the integer value

before increasing range be b and after increasing the range be

a, then b = a mod la where la is the placeholder size before

increasing its value. An example of convolutional and pooling

layer encoding scheme is given in Fig.3.

3) Dropout layer: Dropout layer has only 1 key pa-

rameter, is encoded without integer and binary string con-

version. We use placeholder size 8 to represent dropout

rate starting form 0.05 and with 0.05 increment (i.e.

{0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}), similar with the



Fig. 3: Encoding

pooling layer, the placeholder size of dropout layer is increased

from 8 to 256 (i.e. range is increased to [513, 768]) to increase

the possibility to be chosen by the meta-heuristics. Again, a

modulo operation is required to obtain its original value.

4) Empty, dense, and LSTM layer: In order to cope with the

variable-length of CNN-LSTM architectures can be detected

in the evolving process, a range of placeholder is used [25],

representing an empty layer if the value of a layer fall within

that range. To collaborate with the idea of all kinds of layers

have similar opportunity to be chosen by the meta-heuristics,

the range of placeholder size of empty layer is set to [769,

1024] (size 256) and the range of dense layer (i.e. fully

connected neural network layer) is [1025, 1278] (size 256)

which represents maximum 256 neurons. The placeholder

range of LSTM layer is [1025, 1278] (size 256) which

represents maximum 256 LSTM units.

The layer type and its range (based on best manual config-

urations) is summarised in table I below:

TABLE I: Layer, placeholder range and parameter list

Layer Range Parameters

Conv [1, 256] filter size: 1-64
kernel size: 1-4

Pooling [257, 512] pooling size: 1-4
stride size:1-4
pooling type:maxpooling, average pooling

Dropout [513, 768] [0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4]

Empty [769, 1024] place holder

Dense [1025, 1280] number of neurons

LSTM [1281, 1536] number of LSTM units

B. Particle Swarm Optimisation

PSO is a population-based meta-heuristic introduced by

Eberhart and Kennedy [31] that has been successfully ap-

plied to many parameter value optimisation methods. PSO is

initialised with a group of random particles (i.e. solutions,

population members) and then the algorithm searches for

optima by updating generations of particles. In each iteration

of PSO, each particle is updated within its given bounds

by following two “best” values. The first one is the best

solution that the particle and its neighbours have achieved so

far (local best). The other one is the best solution found so far

by any particle in the whole population (global best). Based

on these two best values, a particle updates its velocity and

positions. More details of how PSO works can be found in

[31]. There are many variants [32] of PSO, but in this paper

we implemented the standard one [31].

C. Differential Evolution

DE optimises a problem by maintaining a population of

candidate solutions and creating new candidate solutions by

combining existing ones according to its simple formulae,

and then keeping whichever candidate solution has the best

score or fitness on the optimisation problem at hand. Usually,

DE generates new parameter vectors by adding the weighted

difference between two other vectors to a third vector in the

population. If the resulting vector yields a lower fitness value

than a predetermined member in the population, the newly

generated vector replaces the predetermined vector that was

compared in the next generation; otherwise, the old one is

retained [33]. This basic principle has been extended to many

variants of DE.

A DE algorithm can be marked as DE/x/y/z, where x

denotes how the differential mutation base is chosen, y denotes

the number of vector differences added to the base vector and

z indicates the crossover method. Binomial and exponential

crossover operators are two commonly used crossover variants,

among which the former has been more often implemented

[34]. For example an existing vector can be perturbed by

mixing the parameters of the randomly selected old vector

with those of the perturbed one before comparing the objective

function value, such DE is notated as DE/rand/1/*, with bino-

mial crossover, such mutant is then notated as DE/rand/1/bin.

Similarly, if a perturbed vector is mixed with the best vector

in the population using exponential crossover, such mutant is

notated as scheme DE/best/1/exp. Please refer to [34], [35]

and [33] for more detailed explanation about DE variants.

This paper evaluated both DE/best/1/bin and DE/best/1/exp

for our problem. The motivation is two-fold: Firstly, be-

fore utilising DE/best/1/bin, we did some preliminary ex-

periments on DE/rand/1/bin [33] which performs worse than

DE/best/1/bin. This give us a hint to focus more on intensifi-

cation (exploitation) instead of diversification (exploration) for

the searching scheme. Secondly, We believe that high quality

parameter vectors may share some common structures which

could be evolved more efficiently through the exponential

crossover in the evolution process. As a matter of fact, many

CNN architectures follow the same general design principles

of successively applying convolutional layers to the input,

then periodically down-sampling the spatial dimensions while

increasing the number of feature maps.

V. PARAMETER TUNING

The parameters of optimisation algorithms, which are pre-

sented below, need to be tuned for good performance.

A. Particle swarm optimisation parameters

A standard implementation of the PSO algorithm requires

4 parameters:

• Swarm size (n): Number of particles in the population.



• Inertia (ω): Inertia weight in a particle’s movement.

• Personal best attraction (phip): Weight for particle’s pull

towards its own best solution achieved so far.

• Neighbour best attraction (phig): Weight for pull towards

the global best solution.

B. DE/best/1/bin parameters

The implementation of the DE/best/1/bin requires 3 param-

eters:

• Population size (n): Number of members in the popula-

tion.

• Crossover rate (CR): controls the probability of

crossover.

• Differential rate (F ): controls the amplication of the

differential variation.

C. DE/best/1/exp parameters

Similarly, the implementation of the DE/best/1/exp requires

3 parameters:

• Population size (n): Number of members in the popula-

tion.

• Crossover rate (CR): controls the probability of

crossover.

• Differential rate (F ): controls the amplication of the

differential variation.

The Irace package [36] was applied to help parameter tun-

ing. In order to obtain parameters in reasonable computation

time, small (n = 5) population size, only 3 month’s training

data and 1 month’s test data of instance I1 were used for the

parameter exploring experiments. We utilised online learning

strategy (batch size=1) and epoch=100 when training neural

networks. The length of parameter vector (i.e. number of

layers) is limited to 12. The maximum number of allowed

iterations (generations) is set to 100.

The parameters, their range considered in the tuning (based

on some preliminary runs) and the best values found are given

in Table II, III and IV. For Irace, the maximum number of

experiments is set to 500 and other parameters are set to

default values.

TABLE II: Parameter Tuning for the PSO Using Irace

Parameters Type Range Best

ω R [-2, 2] -0.572

phip C (-2, -1.5, -0.5
-1, -0.5, 0,
0.5, 1, 1.5,
2)

phig C (-2, -1.5, -1
-1, -0.5, 0,
0.5, 1, 1.5,
2)

C: Categorical
R: Real

TABLE III: Parameter Tuning for the DE/best/1/bin Using

Irace

Parameters Type Range Best

CR R [0, 1] 0.654
F R [-2, 2] 0.836

R: Real

TABLE IV: Parameter Tuning for the DE/best/1/exp Using

Irace

Parameters Type Range Best

CR R [0, 1] 0.352
F R [-2, 2] 0.781

R: Real

VI. COMPUTATIONAL EXPERIMENTS

A. Performance baseline

A baseline in forecast performance provides a point of

comparison. We choose SARIMA as a point of reference

for the proposed algorithms. SARIMA is an approach for

modelling univariate time series data that may contain trend

and seasonal components. SARIMA is one of variants of Auto-

regressive Integrated Moving Average (ARIMA) model which

is the most widely used forecasting methods for univariate

time series data forecasting.

Time series models come in three kinds: Moving Aver-

age (MA) models, Auto-regressive (AR) models and Auto-

regressive Moving Average (ARMA) models. The data studied

in this paper is built upon on ARIMA due to the non-stationary

and stationary property of the data obtained. As its name

interpreted, ARIMA(p,d,q) model is a combination of three

terms, an auto-regressive term (p), a moving-average term (d)

and an integrating term (q). Moreover, as the data contain

repeating cycle, SARIMA can explicitly supports time series

data with a seasonal component by adding additional seasonal

terms in the ARIMA. The seasonal terms is used to specify the

seasonal autoregressive order (P), Seasonal difference order

(D), seasonal moving average order (Q), and the number of

time steps for a single seasonal period (m).

Together, an SARIMA model can be formalised as

SARIMA(p,d,q)(P,D,Q)m. Due to SARIMA is a type of

regression models which are very sensitive to some design

choices such as outliers removal (we applied Tukey’s method

[37]), how much previous data to use (we use 3 months and

1 month traing and test data split) and model parameters (i.e.

(p,d,q)(P,D,Q)). Here, we set m to 16 for a daily seasonal cycle

as an store operates 16 hours in a day. Then a grid search

searching for the lowest Akaike Information Criteria (AIC)

values is adopted to configure the 6 parameters (p,d,q)(P,D,Q).

The AIC [38] is a widely used measure of a statistical model

by quantifying the goodness of fit and the parsimony of

the model. According to some preliminary experiments, each

value of p, d, q, P, D, Q are set within range [0,3] for the grid

search. The obtained results is given in table V.



TABLE V: SARIMA solution

Instance SARIMA parameters MAE

I1 (1, 0, 0)x(1, 0, 1, 16) 7.30
I2 (1, 0, 0)x(1, 0, 1, 16) 9.82
I3 (1, 1, 1)x(1, 1, 1, 16) 6.38
I4 (1, 1, 1)x(1, 1, 1, 16) 6.11
I5 (1, 1, 1)x(1, 1, 1, 16) 6.07
I6 (1, 1, 1)x(1, 1, 1, 16) 4.88
I7 (1, 1, 1)x(1, 1, 1, 16) 4.70
I8 (1, 0, 0)x(1, 0, 1, 16) 43.14
I9 (1, 0, 0)x(1, 0, 1, 16) 25.12

I10 (1, 0, 1)x(1, 0, 1, 16) 18.88

B. Performance of proposed algorithms

In order to analyse the performance of the proposed solution

method, we test the algorithm on 10 problem instances using

the best-suited parameter values given in section V. Population

size n increased to 30, also the length of training and test

data are increased to 12 and 2 months respectively. In order to

obtain statistically sound results, all experiments are conducted

with 10 independent runs (mean values were recorded) over

all 10 problem instances. For each instance, all 10 runs start

with the same initial solution created at random.

The algorithms was implemented in Keras [39] and run

on a 8 cores PC with Intel i7 2.99GHZ processor and 16G

RAM. Due to the very large amount of computational time

required, we set the maximum number of allowed iterations

(generations) to 100 for all instances. Each run of experiment

on each instance takes around 30 to 40 minutes’ computational

time. Table VI presents the obtained MAE values. The best

results are highlighted in bold. The average MAE show an

increasing order as follows: DE/best/1/exp < DE/best/1/bin

< PSO < SARIMA. Generally, these experimental results

suggest that DE/best/1/exp is be able to find better solution

than others. The SARIMA performs the worst because the

very low signal-to-noise ratio is in the data, especially for

instances I8, I9 and I10.

It can be seen that DE/best/1/exp outperformed

DE/best/1/bin at 9 instances except I10. The mean MAE

obtained by DE/best/1/exp (µDE/best/1/exp) is close but

less than that of DE/best/1/bin (µDE/best/1/bin). To test

the significant of difference, we formulate the following

hypotheses: H0 : µDE/best/1/exp ≥ µDE/best/1/bin, Ha :

µDE/best/1/exp < µDE/best/1/bin and performed a one-tail

two samples t-test. P-value of this test is 0.005 (< α=0.01),

therefore we reject H0 and a conclusion can be drawn that

the DE/best/1/exp obtained better result compared with DE.

Compared with the results obtained by the PSO and the

DE/best/1/bin, the DE/best/1/exp is superior due to exponential

crossover is more effective when linkages exist between the

neighbouring decision variables [34] [40]. Evidence can be

found at Fig.4, 5 and 6 which show PSO has no improvement

since the beginning of iteration process, but DE/best/1/exp can

consistently improve. This is confirmed with our assumption

of high quality parameter vectors may share some common

structures which could be evolved more efficiently through the

exponential crossover in the evolution process. The DE method

performs better than PSO for this problem. We believe the rea-

son is that DE/best/1/* scheme focus more on intensification

instead of diversification when searching. Although PSO can

be exploitative as well, but the qualified parameters might be

difficult to be found for the regular PSO in the parameter

tuning process in section V. In the end, the evolved neural

network architecture by DE/best/1/exp for instances I1, I4 and

I7 are given in Fig.7, 8 and 9 respectively.

TABLE VI: Experiments results

Instance SARIMA DE/best/1/bin PSO DE/best/1/exp

I1 7.30 5.28 5.30 4.43

I2 9.82 9.41 9.45 8.44

I3 6.38 4.63 4.55 4.32
I4 6.11 5.32 5.22 4.98

I5 6.07 4.57 4.62 4.40

I6 4.88 3.10 3.15 2.81

I7 4.70 3.25 3.48 3.20

I8 43.14 36.57 36.33 35.66

I9 25.12 19.76 19.70 19.54

I10 18.88 14.55 14.82 14.69

AVG 13.24 10.64 10.66 10.25

Fig. 4: Convergence rate of solving instance I1

Fig. 5: Convergence rate of solving instance I4



Fig. 6: Convergence rate of solving instance I7

VII. CONCLUSIONS

We have presented meta-heuristic approaches that succeeds

in automatically evolving CNN-LSTM architectures for time

series forecasting problems using real-world data from a

local food shop. The goal of the proposed meta-heuristics

is to identify new network architectures to improve forecast-

ing accuracy. Three meta-heuristics, PSO, DE/best/1/bin, and

DE/best/1/exp were evaluated. For a fair comparison, all the

meta-heuristics were tuned and tested in the same experimental

conditions. The results obtained from the inventory forecasting

problem using time series data indicate that the proposed

evolutionary approaches outperformed the SARIMA’s predic-

tion accuracy (baseline solution). Additionally, DE/best/1/exp

outperformed the DE/best/1/bin and PSO in terms of evolved

network architecture for obtaining prediction accuracy. We

believe the present findings have the potential implications for

efficiently detecting the architectures of deep neural networks.

Further work will be undertaken to improve the current

method to obtain better results. Firstly, external dataset will

be included for multivariate time series prediction, rather than

just focusing on existed historical data set held by the store.

Secondly, we will use high performance computing which

allows much more generations of the evolutionary algorithms

to be evolved and wider parameter range of layers to be

explored.
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