
1

Evolving Diverse Ensembles using
Genetic Programming for Classification with

Unbalanced Data
Urvesh Bhowan, Mark Johnston, Mengjie Zhang and Xin Yao

Abstract—In classification, machine learning algorithms can
suffer a performance bias when data sets are unbalanced. Data
sets are unbalanced when at least one class is represented by
only a small number of training examples (called the minority
class) while the other class(es) make up the majority. In this
scenario, classifiers can have good accuracy on the majority
class but very poor accuracy on the minority class(es). This
paper proposes a Multi-objective Genetic Programming (MOGP)
approach to evolving accurate and diverseensembles of genetic
program classifiers with good performance on both the minority
and majority classes. The evolved ensembles comprise of non-
dominated solutions in the population where individual members
vote on class membership. This paper evaluates the effectiveness
of two popular Pareto-based fitness strategies in the MOGP
algorithm (SPEA2 and NSGAII), and investigates techniques to
encourage diversity between solutions in the evolved ensembles.
Experimental results on six (binary) class imbalance problems
show that the evolved ensembles outperform their individual
members, as well as single-predictor methods such as canonical
GP, Naive Bayes and Support Vector Machines, on highly-
unbalanced tasks. This highlights the importance of developing
an effective fitness evaluation strategy in the underlying MOGP
algorithm to evolve good ensemble members.

Index Terms—Genetic Programming, Classification, Class Im-
balance Learning, Multi-objective Machine Learning

I. I NTRODUCTION

Classification with unbalanced data presently represents a
major obstacle in machine learning (ML) [1][2][3]. Data sets
are unbalanced when the learning examples from at least
one class arerare. In binary classification, the class with the
smaller number of examples is called the minority class, while
the other class is the majority class. Unbalanced data sets
are common; fraud detection [4], medical diagnostics [5], and
image recognition [6] are only a few examples.

Genetic Programming (GP) is an evolutionary technique
based on the principles of evolution or natural selection
which has been widely successful in evolving reliable and
accurate classifiers to solve a range of real-world classification
problems [7]. However, GP, like many other ML techniques,
can evolve classifiers “biased” toward the majority class when
data is unbalanced [4][2][3]. Biased classifiers have strong
classification accuracy on one class but weak accuracy on the
other. This can occur because typical training criteria such as
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the overall accuracy or error rate can be influenced by the
larger majority class.

Good accuracy on the minority class is usuallyat least
as important as, or in some scenarios more important than,
the majority class accuracy. However, these two learning
objectives are usually in conflict; increasing the accuracyof
one class can result in lower accuracy on the other. Evolution-
ary multi-objective optimisation (EMO) is a useful technique
to capture this trade-off in the learning process [8][9][10].
EMO is often advantageous over canonical (single-objective)
optimisation techniques because afront of the best trade-off
(non-dominated) solutions along the objectives can be evolved
simultaneously in a single optimisation run, without requiring
the objective preference to be specifieda priori.

In this paper we develop a multi-objective GP (MOGP)
approach to classification with unbalanced data, using the
minority and majority class accuracy as competing objectives
in the learning process. Our first goal is to compare two
popular Pareto-based fitness schemes in the MOGP algorithm,
namely, SPEA2 [9] and NSGAII [10], across a number of
classification tasks with unbalanced data. Recent work has
shown that while NSGAII can be effective in evolving a good
set of non-dominated solutions in some tasks, this performance
needs to be improved for difficult classification problems
[11]. We hypothesise that SPEA2 can evolve better-performing
classifiers on these tasks as this strategy is known to better
exploit the middle-region of the frontier; whereas NSGAII
tends to reward exploration at the end-regions.

Another key advantage in simultaneously evolving a set
of highly-accurate classifiers along the minority and majority
class trade-off frontier is that the combined classification
ability of these non-dominated solutions can be usedco-
operatively in an ensemble. However, for an ensemble to
be more accurate than any of its individual members, the
ensemble members must be diverse, i.e., make different errors
on different inputs. The second goal of this paper is to adapt
the MOGP approach to evolve diverse solutions which can be
successfully combined into an ensemble, to further improve
classification performance. We will investigate whether the
stochastic way in which new solutions are created in the
evolutionary process is sufficient to evolve diverse ensembles,
and compare two measures in the fitness function to encourage
diversity among the evolved solutions, namely, negative cor-
relation learning [12][13][14] and pairwise failure crediting
[15]. Finally, we compare the classification performance of
the evolved MOGP ensembles using three different voting
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strategies to canonical (single-objective) GP approachesand
two other learning algorithms, Naive Bayes and Support
Vector Machines, on the tasks.

The rest of this paper is organised as follows. Section
II outlines the related work. Section III discusses the GP
framework and the MOGP approaches. Section IV presents
the experimental results comparing the two MOGP fitness
schemes. Section V adapts the MOGP approach to evolving
ensembles. Section VI discusses the MOGP ensemble results,
and compares these to canonical GP and other machine learn-
ing approaches. Section VII outlines some further discussions
in this work. Section VIII concludes this paper and gives
directions for future work.

II. RELATED WORK

In this section we discuss the related work for class imbal-
ance and ensemble learning, and their limitations.

A. Overview of Related Work for Class Imbalance

Addressing the class imbalance learning bias tends to in-
volve two major aspects [1]. The first uses various sampling
techniques to create an artificially balanced distributionof
class examples for training. Common approaches include
random over-sampling of the minority class [2], random under-
sampling of the majority class [3], editing or removing noisy
or atypical majority class examples [16], or synthetic over-
sampling (SMOTE) to create “new” minority examples by
interpolating between similar known examples [17]. Bagging
and boosting techniques which train multiple classifiers us-
ing different (usually balanced) subsets of class examples
(bootstrap samples), are also popular sampling-based methods
[4][18][19][20][21]. While these approaches can be effective,
some sampling algorithms can incur a computational overhead
when the samples are dynamically composed (such as active
learning), and lead to over-fitting if active learning is not
assumed [1].

The second aspect uses cost adjustment within the learning
algorithm to factor in the uneven distribution of class exam-
ples, using the unbalanced data set “as is” in training. In GP,
this includes using fixed misclassification costs for minority
and majority class examples [5][22] or better training criteria
such as thearea under the receiver operating characteristics
(ROC) curve(known as AUC) [3], in the fitness function.
The AUC is a useful performance measure acrossmultiple
true positive (TP) and false positive (FP) rates. In GP, some
work has also focused on developing new fitness functions
for classification with unbalanced data [23]; while some
approaches combine sampling and cost adjustment [24][25].
While many of these methods show improved minority class
performances, particularly when the AUC is used in the fitness
function, they have limitations. Adapting the fitness function
for cost-adjustment can require that misclassification costs
for each class be determineda priori, while some improved
measures such the AUC can significantly increase training
times due to the computational overhead required to calculate
these measures in fitness evaluation [23].

B. Ensemble-based Learning

Much work has shown that ensemble-based machine learn-
ing approaches to classification can outperform canonical
single-predictor classifiers [8][13][26][27]. By considering the
contributions or outputs of multiple accurate classifiers,each
able to specialise on different parts of the input-space, the en-
semble can improve generalisation ability and reduce the risk
of overfitting; while single-predictor approaches are required
to map the full input-space using only one classifier. However,
constructing good ensembles is a difficult problem. In [26],
the authors discuss the two main techniques (among others)
to generate diverse and accurate ensembles. The first involves
manipulating or dividing up the input-space into many subsets
which are used to train the different ensemble members,
such as bagging and boosting techniques [4][18][27]. In [27],
several bagging and boosting methods with different ensemble
sizes are compared; results using 26 benchmark UCI tasks
show that the ensembles usually outperform single-predictors
and that small ensembles (10-25 predictors) give the best
results. However, techniques such as bagging which partition
the input space can suffer from similar limitations to other
sampling-based techniques (e.g. over-fitting).

The second approach involves injecting randomness into the
learning process. This technique is favoured in evolutionary
algorithms (EAs) due to its inherent stochastic and population-
based nature. EAs have been combined with bagging and
boosting techniques for ensemble diversity [19][28] (discussed
in the next section). Many EA approaches use an additional
penalty term in the fitness function such as negative correlation
learning (NCL) [15][13][29] to encourage ensemble diversity,
or use cooperative co-evolutionary methods (such as “teaming”
in GP) [30][31]. These approaches differ from typical bagging
and boosting techniques as most of them typically use thefull
training set in learning to promote interaction and cooperation
in the ensemble, whereas bagging techniques sample the data
into smaller subsets during learning.

EMO approaches which use a diversity objective in the
fitness function typically build the ensembles using the setof
non-dominated individuals in the population [15][13][32][29].
In [29], the training accuracy is traded-off against the NCL
in a two-objective EMO (called DIVACE) to evolve neural
network (NN) ensembles. In [15], two diversity measures
are compared using DIVACE to evolve NN ensembles: NCL
and a measure called pairwise failure crediting (PFC). PFC
shows better generalisation than NCL on two benchmark UCI
tasks. In [13], EMO with three objectives is used to evolve a
Radial Basis Function (RBF) network ensemble: the accuracy,
NCL and a new regularization term to penalise large network
weights to improve generalisation. The new approach is shown
to outperform a two-objective version using only accuracy and
NCL, particularly on noisy problems.

Some EMO approaches use other mechanisms for diversity
[8][32][33]. In [8], the structure of the NN models (e.g.
number of hidden nodes) is varied for diversity, and this is
traded-off against their error rates where small accurate models
are preferred. The authors conclude that choosing good non-
dominated solutions for the ensembles is difficult and can be
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problem-specific; a region of the frontier is manually selected
for each of their classification tasks. In [32][33][34], two
multi-objective formulations are proposed to evolve neuro-
ensembles. The first splits the training set into two subsets
and uses the error on the subsets as the learning objectives,
while the second adds Gaussian noise to the training set as
the second objective. The first formulation shows better results
than the second, and these methods are competitive compared
to NCL on two (binary) benchmark classification tasks.

Non-Pareto EAs with anti-correlation measures in the fit-
ness function have also shown success in ensemble learning
[35][36][37]. In [35], a new measure, root quartic NCL, shows
better results than traditional NCL using a grammar-guidedGP
on a 6-multiplexer problem. Both measures are theoretically
analysed to explain how each creates diversity in a population:
the new measure creates widely separated but small clustersof
points in the population, while NCL increases the distancesof
the points to the overall mean of the points. In [37], a fitness
function is developed which first assigns adifficulty weighting
to each training example, and uses the sum of example weights
correctly learned by a given individual as the fitness of that
individual. The example weights correspond to the number of
individuals which incorrectly classify that example.

Cooperative co-evolution (or teaming) methods have also
shown success in ensemble learning in GP [30][31]. In [30],
teams of individuals in linear GP are applied to two bench-
mark classification tasks and a regression task, and several
ensemble combination schemes are evaluated (discussed in the
subsection below). In [31], four methods which vary the way
selection and replacement is performed on teams and team
members, are compared on two multiclass UCI classification
tasks. In canonical teaming, selection and replacement is
done exclusively between teams or individuals, while the
new “orthogonal evolution” algorithms use individual selection
with team replacement, and vice versa. The new methods
produce better results than canonical methods. However, it
is important to note a major difference between teaming in
GP and the methods used is this paper. Teaming typically
produces teams of weak individuals that cooperate strongly
together, as shown in both [30] and [31]. In this paper, the
GP classifiers are “strong” individuals (i.e. relatively accurate
classifiers) where the two diversity-based fitness functions
encourage cooperation between individuals.

Ensemble Selection:Much work also addresses how to
choose which learned base classifiers to include in the final
ensemble [28][30][37][38][39][40]. In [38], the fittest individ-
uals in the population are selected for the ensemble using a
weighted average of the accuracy and diversity of each indi-
vidual. In [28] and [39], weights which specify the importance
of each ensemble member’s contribution are optimised (post-
training) using a validation set. Both works use a genetic
algorithm (GA) to optimise the ensembles, while [39] also
compares two weighted-vote schemes. These include a fitness-
weighted majority-vote and a recursive least-squared (RLS)
algorithm to minimise the error of the ensemble. These works
show that the weighted/GA-optimised ensembles perform bet-
ter than traditional majority voting where all base classifiers
contribute equally [28][39]. A probabilistic ensemble pruning

approach is proposed in [40] to approximate the member
weights, called “expectation propagation”.

In [30], several ensemble combination schemes are eval-
uated in a GP-based teaming approach. These include the
average of the members outputs, a majority vote and two
winner-takes-all schemes; and two weighting schemes where
weights of teams are co-evolved in parallel (with teams), or
optimized after each generation (for the best team) using
a perceptron learner. The combination schemes tend to be
problem-specific (none produced the best results for all three
benchmark problems), but the weighting schemes usually
improved performances (compared to without), while the
winner-takes-all performed the worst (as the ensemble output
is reduced to only one member).

In [37], offline and online ensemble selection algorithms
(off-EEL and on-EEL) are proposed. Given a pool of learned
base classifiers sorted by fitness, each classifier is removed
from the pool and copied into the ensemble where, at each
step, the ensemble is evaluated. Once the pool is empty, the
ensemble with the best performance is taken as the final
ensemble. Off-EEL is run once after the training cycle, while
on-EEL is performed at each generation. Off-EEL performs
better than on-EEL on six UCI classification tasks, as on-EEL
can be prone to noise. This paper uses off-EEL [37] to build
MOGP ensembles and compares these results to an accuracy-
based ensemble selection technique [41].

C. Ensemble Learning for Class Imbalance

Combining ensemble learning with sampling techniques,
i.e., under-sampling, over-sampling and SMOTE, to create
balanced bootstrap samples is a popular approach to clas-
sification with unbalanced data [19][42][43][28]. In [42],
two new under-sampling methods are developed to create
balanced bootstrap samples for a boosting algorithm, and
compared to 13 other sampling and boosting approaches in
the literature. Similarly, in [18] a new SVM-based under-
sampling approach iteratively collects support-vectors found
using balanced bootstrap samples which are aggregated in
the final classification step. In [4], base classifiers trained
on balanced and unbalanced bootstrap samples are compared
using a bagging approach for fraud detection in e-Commerce
transactions. Using the overall classification accuracy intrain-
ing, base classifiers trained on balanced samples are found to
be more effective.

EMO has also been combined with bagging in ensemble
learning [19][44]. In [19], a problem-decomposition approach
(e.g. one-vs-rest) is used to evolve a population of binary
classifiers for two UCI benchmark tasks with many differ-
ent minority classes. Using grammatical evolution (GE), two
populations are co-evolved for increasing ensemble diversity:
classifiers and “points” (balanced bootstrap samples). Three
objectives are used: overall error, the level of overlap between
correctly learned “points”, and a parsimony objective favour-
ing smaller solutions. A winner-takes-all approach of the non-
dominated solutions in the evolved populations determinesthe
final prediction. A more thorough description of the algorithm
which is also evaluated on more multi-class problems and
model complexities is provided in [44].
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Theoretical studies in this area also suggest a relationship
between ensemble diversity and class performance [21][43].
Increasing ensemble diversity is found to improve minority
class accuracies but degrade majority class accuracies in
unbalanced data sets. However, the accuracies of both classes
improve together when ensemble diversity is increased in
balanced data sets. These studies use eight binary and multiple
class benchmark tasks from the UCI repository.

Recent work also uses NCL in fitness for class imbalance
[20][41]. In [20], NCL is only applied to instances from the
minority class (majority class instances are ignored). This
adaptation (NCLCost) aims to maximise ensemble accuracy
and diversity on the minority class, but only accuracy on the
majority class. Comparing NCLCost to a bagging approach
and traditional NCL (calculated with all training instances),
both NCL-based methods show the best minority class ac-
curacies, while traditional NCL shows the best diversity. The
average class accuracies for NCLCost is higher than traditional
NCL, suggesting that very high diversity can negatively impact
on majority class accuracy (similar to [21]). In [41], NCL is
combined with SPEA2 to evolve a diverse set of Pareto front
classifiers in a GP approach for ensemble learning for class
imbalance. An ensemble selection strategy is used to select
only accurate Pareto front classifiers for the ensembles.

D. Contributions of This Paper

While previous ensemble approaches show good results on
some unbalanced data sets, there are some limitations which
this work tries to address. Much work uses NNs, decision trees
and Naive Bayes as the base classifiers [4][20][13][43][28].
GP has shown much success in evolving accurate classifiers
for classification with unbalanced data [11][19][23][24][45];
however, there is little work which investigates whether these
performances can be improved using a multi-objective GP
framework to evolve ensembles of GP classifiers [19][41].
This paper develops a MOGP approach to evolving accurate
and diverse ensembles and compares this performance to both
canonical (single-predictor) GP and other methods.

Another important difference between our work and other
approaches is that many of the existing works rely on sampling
techniques to either create balanced bootstrap samples when
training bagging approaches [4][19][43], or re-balance the
training data when diversity measures (such as NCL) are
used in fitness evaluation [20][21]. Our approach uses the
original unbalanced training data “as is” in the GP learning
process without the need to artificially re-balance the class
distributions in the data sets. This allows us to concentrate on
the EMO and diversity measures in the MOGP algorithm, and
remove any dependence on a sampling algorithm.

There has also been very little work which focuses on adapt-
ing the ensemble diversity measures in fitness to account for
the skewed class distributions. Some works calculate diversity
on all examples irrespective of class when data is balanced
[29][15][15], or first re-balance the training dataprior to the
diversity calculation when data is unbalanced [20]. Further, in
[20] the diversity with respect to majority class instancesis
ignored in fitness, utilising only minority class diversity. In

contrast, this paper compares two diversity measures (NCL
and PFC) in GP, and both are adapted to calculate diversity
separatelyfor each class using the original unbalanced training
data. The diversity on the minority and majority class then
contributes equally in fitness evaluation to ensure that the
ensembles are equally diverse on both classes.

As discussed, much work in ensemble learning also focuses
on how to choose the best base classifiers for the ensembles.
Some research provides recommendations on how to choose
ensemble sizesa priori and suggests that smaller ensembles
can be more accurate than large ensembles [8][27][38]. Some
others improve ensemble performances using ensemble selec-
tion algorithms [37], or optimise the weights specifying each
member’s contribution to the ensemble [28][30][39]. We try
to address this in MOGP by comparing two voting schemes
(traditional majority vote and a fitness-weighted vote similar
to [39]), and two ensemble selection strategies (an accuracy-
based approach used in [41] and off-EEL [37]) in this paper.

III. GP APPROACHES

In this section we discuss the GP framework for classifica-
tion, and outline the GP and MOGP approaches.

A. GP Framework for Classification

A tree-based structure is used to represent genetic programs
[7]. We use feature terminals (example features) and constant
terminals (randomly generated floating point numbers), and
a function set consisting of the four standard arithmetic
operators,+,−,×, and %, and a conditional operator,if.
The+,− and× operators have their usual meanings (addition,
subtraction and multiplication) while % meansprotecteddivi-
sion (usual division except that a divide by zero gives a result
of zero). The conditionalif function takes three arguments.
If the first is negative, the second argument is returned;
otherwise the third argument is returned. Each genetic program
represents a mathematical expression that returns a single
output value (floating-point number) for a given input (data
example to be classified). This number is mapped onto a set of
class labels using zero as the class threshold, i.e., an example
is assigned to theminority class if the output of the genetic
program classifier is zero or positive, or themajority class
otherwise.

B. Canonical (Single-objective) GP

The standard fitness measure in classification is the overall
classification accuracy. This is the number of examples cor-
rectly predicted by a classifier as a fraction of the total number
of training examples. Using the four outcomes for binary
classification shown in Table I and assuming the minority class
is thepositiveclass, the overall classification accuracy can be
defined byAcc (Eq. 1).

Acc =
TP + TN

TP + TN + FP + FN
(1)

In classification with unbalanced data,Acc can favour the
evolution of solutionsbiased toward the the majority class
[2][3][4]. This is becauseAcc does not take into account the
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TABLE I
OUTCOMES OF BINARY CLASSIFICATION.

Predicted Object Predicted non-object
Actual Object True Positive (TP) False Negative (FN)
Actual non-object False Positive (FP)True Negative (TN)

smallernumber of examples in the minority class. For exam-
ple, if a classification task has a minority class represented by
only 10% of available learning instances, a trivial solution can
score a high fitness (e.g. 90% overall accuracy) by assigning
all the instances to the majority class.

These two objectives, i.e., minority and majority class
accuracy, are usually in conflict where increasing the accu-
racy on one class results in a trade-off in performance in
the other class [5][11]. To capture this trade-off, the fitness
function Ave, defined by Eq. (2), uses the weighted average
classification accuracy of the minority and majority classes. In
Ave, minority accuracy corresponds to the true positive rate
(TPR), majority accuracy is the true negative rate (TNR), and
weighting coefficientW specifies the relative importance of
the minority accuracy to majority accuracy where0 < W < 1.
When W is 0.5, the accuracy of both classes is considered
as equally important in fitness. WhenW > 0.5, minority
class accuracy will contribute more in the fitness function than
majority class accuracy. Similarly, majority class accuracy will
contribute more whenW < 0.5.

Ave = W (TPR) + (1−W )(TNR) (2)

where

TPR =
TP

TP + FN
and TNR =

TN

TN + FP
(3)

C. Multi-objective GP (MOGP)

While Ave has been shown to evolve solutions with bet-
ter accuracy on both classes in some class imbalance tasks
compared toAcc, a major limitation ofAve is that the ob-
jective preference must be specifiedprior to the evolutionary
search. In real-world classification tasks, determining a good
weighting coefficient can be a lengthy trail and error process,
requiring multiple optimisation runs with different weighting
coefficients. Evolutionary multi-objective optimisation(EMO)
offers a useful solution to the problem of optimising multiple
conflicting objectives [8][9][10]. The aim of EMO is to
simultaneously evolve afront of the best trade-off solutions
along the objectives in a single optimisation run.

1) Pareto Dominance in Fitness:An important aspect in
EMO is the notion of Pareto dominance in fitness [9][10]. This
allows solutions to be ranked according to their performance
on all the objectives with respect to all solutions in the
population. This ranking is important as it affects the way
selection is performed if the objectives are to be treated
separately in the evolution. In this approach, the two objectives
are the classification accuracy of the minority and majority
class. Recall that the minority class accuracy is the TPR and
majority class accuracy is the TNR, as defined in Eq. (3).

In Pareto dominance, a solution willdominate another
solution if it is at least as good as the other solution on
all the objectives andbetter on at least one. As the two

objectives in this approach are to be maximised, this concept is
expressed using Eq. (4), where(Si)m denotes the performance
of solution Si on the mth objective. Solutions arenon-
dominatedif they are not dominated by any solution in the
population.

Si ≻ Sj ←→ ∀m[(Si)m ≥ (Sj)m] ∧ ∃k[(Si)k > (Sj)k] (4)

2) Two Pareto-based Dominance Measures:Two common
Pareto-based dominance measures are the dominance rank
[10] and dominance count [9] of a given solution. Dominance
rank is the number of other solutions in the population that
dominate a given solution (lower is better), whereas dominance
count is the number of other solutions that a particular solution
dominates (higher is better). Each measure has a different bias
towards solutions on the Pareto frontier: dominance rank is
known to reward exploration at the edges of the frontier while
dominance count tends to reward exploitation in the middle
of frontier. Two popular EMO approaches which use these
measures include SPEA2 [9] and NSGAII [10]; SPEA2 uses
both dominance rank and dominance count, while NSGAII
uses only dominance rank.

In NSGAII, the fitness value for the solutionSi is its
dominance rank, that is, the number of other solutions in
the population that dominateSi, given by Eq. (5). A non-
dominated solution will have the best fitness of 0, while
high fitness values indicate poor-performing solutions, i.e.,
solutions dominated by many individuals. Fitness in NSGAII
is to be minimised. This scheme is illustrated in Figure 1(a).

NSGAII(Si) = |{j|j ∈ Pop ∧ Sj ≻ Si}| (5)

In SPEA2, both dominance rank and dominance count
are used in fitness. First, each solution in the population is
assigned astrengthvalueD; this is the dominance count for
solutionSi, i.e., the number of solutions it dominates:

D(Si) = |{j|j ∈ Pop ∧ Si ≻ Sj}|

The fitness value for a given solution is determined by the
strengths of all its dominators, given by Eq. (6). In this
equation, the final fitness value for solutionSi is the sum
of all dominance counts of other solutions in the population
that are dominated bySi. Similar to NSGAII, fitness here is
to be minimised where non-dominated solutions have the best
fitness of 0. This scheme is illustrated in Figure 1(b).

SPEA2(Si) =
∑

j∈Pop,Si≻Sj

D(Sj) (6)

In this paper we compare which of these two dominance
measures evolves better-performing frontier solutions for our
classification tasks (using the same evolutionary search algo-
rithm, outlined in subsequent sections). Previous work has
shown that while NSGAII is successful in some tasks, the
evolved Pareto front solutions exhibit poor accuracy compared
to canonical (single-objective) GP in difficult problems [11].
We attribute this to the presence of large numbers of highly
biased solutions along theedge-regionsof the evolved fronts,
i.e., solutions with high accuracy on one class only [11].
We hypothesise that a fitness measure which better rewards
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Fig. 1. MOGP fitness using (a) NSGAII dominance ranking and (b)SPEA2
“strength” values. Filled circles are dominated whereas non-filled circles are
non-dominated. NSGAII fitness has dominated solutions with identical fitness
values whereas these solutions have unique fitness values inSPEA2.

exploitation in the middle of the Pareto frontier can evolve
better-performing solutions in the middle region of the frontier.

This paper only compares NSGAII and SPEA2. These two
popular algorithms are chosen because each uses the two main
Pareto-based dominance measures in fitness, i.e., dominance
rank and dominance count, in different ways to evolve Pareto
fronts. A comparison with other EMO algorithms (such as
[46]) is beyond the scope of this work and will be left
for future work. However, the experimental results from this
investigation can provide useful new directions to further
improve the fitness measure.

3) Crowding in Fitness:In addition to Pareto dominance,
we also use a secondary “crowding” distance measure to
promote a good spread of solutions along the trade-off
frontier. Crowding is the Manhattan distance between solu-
tions in objective-space, where sparsely populated regions of
objective-space are preferred over densely populated regions.
Crowding is only used to resolve selection when the primary
fitness (Pareto dominance measure) is equal between two or
more individuals. This means that if two or more individuals
have the same Pareto rank, the individual with the better
crowding distance is preferred. The MOGP approaches using
the two fitness schemes both use the same crowding measure,
that is, average distance to the two neighbouring solutionson
either side of the given solution along each of the objectives
[10]. Solutions with larger crowding distances indicate that
their nearest neighbours are far apart; these are preferredto
smaller distance values. Details can be seen in [10].

4) MOGP Search Algorithm:The MOGP evolutionary
search here is based on the algorithm used in NSGAII [10].
The parent and offspring populations are merged together
at every generation. The fittest individuals in this merged
parent-child population are then copied into a new population
(called the archive population). The archive population serves
as the parent population for the next generation (the archive
population is the same size as the original parent population).
At every generation the offspring population is generated using
traditional crossover and mutation operators. The archivepop-
ulation is used to simulate elitism in the population, that is, to
preserve the set of non-dominated solutions over generations.

We use this search algorithm as it is fast and very similar
to the SPEA2 algorithm. The only difference between this
algorithm and the original SPEA2 algorithm is that SPEA2
uses an additional truncation operator in the archive popu-
lation to remove non-dominated solutions with very similar
performances on the objectives. We ignore this additional
operator as it requires one more evolutionary search parameter
to configure, and the “crowding” measure can achieve a similar

effect in the selection process.

IV. EVALUATION OF MOGP FITNESSSCHEMES

In this section we discuss the evolutionary parameters and
data sets used in the experiments, and evaluate and compare
the MOGP approaches using the Pareto-based fitness schemes.

A. Evolutionary Parameters and Data Sets

The ramped half-and-half method is used for generating
programs in the initial population and for the mutation operator
[7]. For both MOGP and GP approaches, the population size
is 500, maximum program depth is 8 (to restrict very large
programs in the population), and the evolution is allowed to
run for a maximum of 50 generations or terminated when a
solution with optimal fitness is found. For the GP approaches,
crossover, mutation and elitism rates were 60%, 35% and
5%, respectively, and tournament selection is used with a
tournament size of 7. For the MOGP approaches, crossover
and mutation rates were 60% and 40%, respectively, and
tournament selection is used with a tournament size of 2 (these
MOGP settings follow those recommended in [10][9]). Note
that due to the nature of the MOGP approaches, further elitism
is not required.

Six benchmark binary classification problems, summarised
in Table II, are used in the experiments. These are taken
from the UCI Repository of Machine Learning Databases
[47] and the Intelligent Systems Lab at the University of
Amsterdam [6]. For each task, half of the examples in each
class were randomly chosen for thetraining and thetestsets.
This ensures that both training and test sets preserve the same
class imbalance ratio as the original data set.

These benchmark data sets are carefully selected to encom-
pass a varied collection of problem domains to ensure that our
evaluation of the different MOGP approaches is not problem-
specific. These problems have varying levels of class imbal-
ance (minority class ranges between 7–35% of total examples),
and complexity where some tasks are easily-separable (e.g.
Yst2) compared to others. The training/test sets also range
from being well-represented (Ped has approximately 12000
instances), to sparsely represented (Spt has 134 instances,
only 27 from the minority class). These tasks also range
between high and low dimensionality (Ion has 34 features
while Bal only has 4), and binary and real-valued feature
types. We expect that these data sets can represent class
imbalance problems of varying difficulty, dimensionality,size
and (feature) types reasonably well.

B. Evaluating Front Hyperarea

We use thehyperarea (also known as the hypervolume)
[48] of the evolved Pareto-approximated fronts as a “single
figure” to measure which MOGP fitness scheme is better
on these tasks. The hyperarea is the area under the Pareto-
approximated front inobjective-space[48], similar to the
area under the ROC curve (or AUC). However, while the
AUC represents the performance of a single classifier at
varying classification thresholds, the hyperarea represents the
classification performance of theset of classifiers along the
front. The hyperarea is calculated by taking the sum of the
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TABLE II
UNBALANCED CLASSIFICATION TASKS USED IN THE EXPERIMENTS.

Name Classes Number of Examples Imb. Features
(Minority/Majority) Total Minority Majority Ratio No. Type

Ion Good/bad (ionosphere radar signal) 351 126 (35.8%) 225 (64.2%) 1:3 34 Real
Spt Abnormal/normal (cardiac tomography scan) 267 55 (20.6%) 212 (79.4%) 1:4 22 Binary
Ped Pedestrian/background (image cut-out) 24800 4800 (19.4%) 20000 (80.6%) 1:4 22 Real
Yst1 mit/non-target (protein sequence) 1482 244 (16.5%) 1238 (83.5%) 1:6 8 Real
Yst2 me3/non-target (protein sequence) 1482 163 (10.9%) 1319 (89.1%) 1:9 8 Real
Bal Balanced/unbalanced (balance scale) 625 49 (7.8%) 576 (92.2%) 1:12 4 Integer

TABLE III
AVERAGE (± STANDARD DEVIATION) HYPERAREA OF EVOLVEDPARETO-APPROXIMATED FRONTS, PARETO-OPTIMAL (PO) FRONT, AND TRAINING

TIMES (IN SECONDS’ S’ OR MINUTES ’ M ’ ) FOR THEMOGP APPROACHES OVER50 RUNS.

NSGAII Fitness SPEA2 Fitness
Task Hyperarea Training Hyperarea Training

Average PO Front Time Average PO Front Time
Ion 0.793± 0.041 0.952 8.3s± 1.3 0.848± 0.041 0.992 9.3s± 2.4
Spt 0.733± 0.026 0.938 16.9s± 2.1 0.732± 0.032 0.971 9.7s± 2.5
Ped 0.881± 0.013 0.903 3.5m± 52.6 0.902± 0.019 0.922 3.9m± 1.1
Yst1 0.793± 0.008 0.917 23.5s± 4.5 0.793± 0.009 0.931 20.8s± 7.1
Yst2 0.942± 0.008 0.986 23.5s± 4.4 0.949± 0.011 0.991 20.1s± 8.1
Bal 0.749± 0.049 0.993 20.1s± 2.6 0.757± 0.063 0.985 15.2s± 3.9
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(a) NSGAII Fitness (b) SPEA2 fitness
Fig. 2. Accuracy of all evolved solutions (circles), median attainment surface
(solid line) and Pareto-optimal front (dotted line) for the MOGP approaches
over 50 runs (on the Ped task). Circle size is proportional tofrequency.

areas of individual trapezoids fitted under each front solution
in objective-space [48]. Hyperarea values range between 0 and
1 where the higher the value, the better the performance.

Table III reports the average (and standard deviation) hy-
perarea of the evolved Pareto-approximated fronts on thetest
set, as well as the average training times in seconds (s) or
minutes (m), for the two MOGP approaches over 50 runs.
Table III also includes the hyperarea of thePareto-optimal
(PO) front with respect to all MOGP runs. The PO front is the
set of non-dominated solutions from the union of all Pareto-
approximated fronts evolved from the 50 independent runs.
For example, Figure 2 shows the PO front (dotted line) of
the 50 different evolved Pareto-approximated fronts for the
MOGP approaches (on thePed task). In Figure 2, each circle
represents an evolved solution in objective-space where circle
size is proportional to frequency (the larger the circle, the more
populated a particular point in objective-space).

In Table III, the MOGP approach with the significantly
better hyperarea is highlighted in bold for each task. The statis-
tical significance test (of the average hyperarea) is calculated
using the common random numbers technique at a 95% level
of significance. This technique computes the 95% confidence
interval of the hyperarea differences between the two MOGP
approaches, on a run-by-run basis over 50 independent runs.

According to Table III, SPEA2’s average hyperarea is
statistically better than NSGAII on the three tasks, and not

statistically different to NSGAII on the remaining three tasks.
The hyperarea of the Pareto-optimal (PO) front is also better
in SPEA2 for all tasks except Bal (where NSGAII is better).
Table III also shows that the two MOGP approaches show
similar average training times.

C. Comparing Pareto Fronts and Canonical GP

To investigate why the MOGP approach using SPEA2 is
able to outperform NSGAII on three out of the six tasks, as
well as compare the classification performance of the Pareto-
approximated fronts to canonical (single-objective) GP, we use
attainment summary surfacesto approximate an “average”
evolved front over 50 independent runs for each MOGP
approach on the tasks. Attainment summary surfaces are
a useful technique to summarise the outcome of a series
of multi-objective experiments, where a potentially different
set of non-dominated solutions can be returned from each
MOGP run [49]. Each attainment surface comprises of evolved
solutions (from all runs) that have identicalattainmentvalues,
where the number of attainment surfaces correspond to the
number of MOGP runs (50). A solution’s attainment value
is the probability that the MOGP system will evolve another
solution which weakly dominatesthe given solution on all
objectives [49]. Themedianattainment surface, i.e., the set of
solutions with attainment values of 0.5, corresponds to those
solutions with a 50% probability of attainment with respectto
all runs. This set represents an “average” evolved front over
50 independent runs. For example, the solid line in Figure 2
shows the “average” evolved front (median attainment surface)
over 50 runs for the MOGP approaches (on thePed task).

The “average” evolved front and Pareto-optimal front for
the two MOGP approaches over independent 50 runs (on the
test set) is shown in Figure 3 for the six tasks. Figure 3 also
includes the average performance of the fittest evolved solution
on the two classes (also on the test set) using canonical (single-
objective) GP with the two fitness functions,Acc (Eq. 1) and
Ave (Eq. 2), over 50 runs. The GP fitness functionAve uses
seven different weighting coefficients between 0.2 and 0.8 (at
intervals of 0.1). The GP training times using eitherAcc and



8

70 75 80 85 90 95 100

30

40

50

60

70

80

90

100
Ion

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y

0.20.3
0.4 0.5

0.6

0.7

0.8

 

 

NsgaII Med. Att. Front
NsgaII Pareto Front
Spea2 Med. Att. Front
Spea2 Pareto Front
Acc (GP)
Ave (GP)

40 50 60 70 80 90

65

70

75

80

85

90

95

Ped

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

NsgaII Med. Att. Front
NsgaII Pareto Front
Spea2 Med. Att. Front
Spea2 Pareto Front
Acc (GP)
Ave (GP)

65 70 75 80 85 90 95

86

88

90

92

94

96

98

Yst2

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y

0.2
0.3

0.4

0.5

0.6

0.7

0.8

 

 

NsgaII Med. Att. Front
NsgaII Pareto Front
Spea2 Med. Att. Front
Spea2 Pareto Front
Acc (GP)
Ave (GP)

40 50 60 70 80 90

60

65

70

75

80

85

90

95

Spt

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y

0.2

0.3
0.4

0.5

0.6
0.70.8

 

 

NsgaII Med. Att. Front
NsgaII Pareto Front
Spea2 Med. Att. Front
Spea2 Pareto Front
Acc (GP)
Ave (GP)

40 50 60 70 80

50

55

60

65

70

75

80

85

90

95

Yst1

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y

0.2
0.3

0.4

0.5

0.6

0.7

0.8
 

 

NsgaII Med. Att. Front
NsgaII Pareto Front
Spea2 Med. Att. Front
Spea2 Pareto Front
Acc (GP)
Ave (GP)

0 20 40 60 80 100
60

65

70

75

80

85

90

95

100
Bal

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y

0.2
0.3

0.4

0.50.6
0.70.8

 

 

NsgaII Med. Att. Front
NsgaII Pareto Front
Spea2 Med. Att. Front
Spea2 Pareto Front
Acc (GP)
Ave (GP)

Fig. 3. Classification performance of evolved solutions using two MOGP approaches (NSGAII and SPEA2 fitness), and single-objective GP using two fitness
functions (Acc andAve). The top row shows those tasks where the average hyperarea using SPEA2 fitness is statisticallybetter thanNSGAII fitness (there
is no significant difference in hyperarea for the tasks in thebottom row).

Ave (with a particular weighting coefficient) are very similar
to each other on the tasks. On average this is approximately
1.4 seconds for Ion and Spt, 3.2 seconds for Bal, 6.6 seconds
for the Yst tasks, and 2.2 minutes for Ped.

Figure 3 shows that the evolved Pareto fronts, particularly
the MOGP approach with SPEA2, contain an accurate set
of solutions along the minority and majority class trade-off
frontier for these tasks. This highlights an important advantage
of MOGP over canonical (single-objective) GP: asingle run
of the MOGP algorithm can trace out a good set of trade-off
solutions, leaving the final choice for the decision-maker.In
contrast, in canonical GP, this trade-off must be determined
a priori needing multiple GP runs usingAve (one for each
weighting coefficient) to generate a frontier. Although a single
run of the single-objective GP method uses less time than the
MOGP approaches, the single-objective GP method requires
a much longer time to get a reasonable Pareto front.

Figure 3 also shows that the standard GP fitness function
Acc evolves biased solutions on the tasks with high majority
class accuracies but low minority class accuracies.

Further inspection of the results in Figure 3 (particularlythe
median attainment surfaces for SPEA2 and NSGAII) shows
that in some tasks (top row in Figure 3), SPEA2’s average
front lies along the single-objective GP frontier (usingAve);
whereas the average front for NSGAII lies below theAve
frontier in these tasks. The explains why the average hyperarea
for SPEA2 (from Table III) is statistically better than NSGAII

in these three tasks (Ion, Ped and Yst2). Similarly, the PO
front for SPEA2 also clearly dominates the PO front for
NSGAII in two of these tasks (Ped and Yst2). This suggests
that on these tasks, MOGP with SPEA2 can evolve frontier
solutions in a single run that perform better than, or at least as
well as, multiple runs of canonical GP usingAve. However,
MOGP with NSGAII cannot achieve this to a sufficient level of
accuracy, as the canonical GP solutions along theAve frontier
clearly dominate the NSGAII average front.

A likely reason for this difference in behaviour is the
inherent bias between the two fitness schemes. SPEA2 tends
to evolve more solutions in the middle region of the frontier,
pushing this front outwards toward thezenith point (100%
accuracy on both objectives). NSGAII fitness tends to evolve
a spread of solutions along the whole of the frontier. For these
classification tasks, edge-region solutions are less desirable
than middle-region solutions, as these represent biased clas-
sifiers. Figure 2 illustrates this difference for thePed task,
and clearly shows that SPEA2 evolves more solutions in the
middle region of the frontier compared to NSGAII over all
runs.

V. EVOLVING ENSEMBLES USINGMOGP

In this section we adapt the MOGP approach to evolve
ensembles and discuss two ensemble-diversity measures in the
fitness function.
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A. Adapting MOGP Fitness

One of the key advantages of this EMO approach is that
the evolved Pareto front represents highly accurate classifiers,
each with a different performance bias toward either class.Up
until now, our goal has been to present these classifiers to the
end-user for the final selection. However, as the front of non-
dominated solutions has as much information as any single
individual, utilising thecombinedclassification ability of these
solutions in a competitive voting or ensemble-based scenario
can be beneficial [8][33][29]. In an ensemble of classifiers,one
simple classification strategy uses amajority voteapproach:
each ensemble member votes on what class label to assign
to a given data instance, and the class label with the most
number of votes determines the class of that particular instance
[8]. This strategy has proved successful in previous ensemble
learning approaches [8][33][29].

A key condition for an ensemble of classifiers to be more
accurate than any of its individual members is that the ensem-
ble members must be accurate and diverse with respect to their
outputs [26]. Diverse ensemble members should not make the
same errors on the same inputs, otherwise the ensemble will
risk misclassifying all the same inputs together. In other words,
in a good ensemble, if one individual generates an error for a
given input, i.e., votes for the incorrect class label, the other
members should not also make the same error.

As previously discussed (Section II), one of the main
techniques to construct diverse ensembles involves injecting
randomness into the learning algorithm [26]. In this approach,
we rely on the stochastic way in which new GP solutions are
created (e.g. using the genetic operators) to evolve diverse clas-
sifiers, where the non-dominated solutions in the population
at each generation constitute the ensemble.

However, without an explicit diversity objective in fitness
to encourage the evolved solutions to make different errorson
different inputs, the ensemble members are not guaranteed to
be diverse with respect to their predictions. For this reason, we
adapt the MOGP approach to incorporate a diversity objective
into the fitness function, aiming to reward solutions which have
better diversity with better fitness values. We investigatetwo
measures to promote the evolution of diverse solutions in the
population, negative correlation learning (NCL) and pairwise
failure crediting (PFC).

Both measures have proven effective in evolving diverse
ensembles of NNs for classification [15][20][29]. In this
paper, these measures are adapted to calculate a solution’s
diversity separatelyfor each class to account for the skewed
class distributions in these tasks; otherwise, these diversity
measures risk being biased toward the majority class. The
average across both the minority and majority class is then
used as the final diversity value in fitness to encourage the
ensemble members to be equally diverse with respect to both
classes. This is different to the way some previous approaches
(such as [13][15][20][29][35]) have used the diversity measure
in fitness. As discussed in Section II-C and Section II-D,
only [20] has adapted the NCL measure in a similar manner
to account for unbalanced class distributions. However, in
[20], the NCL is only applied to minority class instances

(diversity on the majority class instances is ignored). Theother
approaches (mentioned above) apply the diversity measure
to all examples irrespective of class (for classification with
balanced data sets).

1) Negative Correlation Learning (NCL):The first mea-
sure to encourage diversity among the individuals in the
population uses NCL as a correlation penalty term in the
fitness function [13][15][29]. NCL measures the phenotypic
differences between the solutions in the ensemble and the rest
of the population. The NCL measure, given by Eq. (7) below,
calculates theaveragecorrelation penalty for each class, for a
given solutionp in the population.

NCLp =
1

2

K
∑

c=1





1

MNc

Nc
∑

i=1

(Gp
i − Ei)





M
∑

j=1,j 6=p

(Gj
i − Ei)









(7)
where

G
p
i =

1

1 + egp
p

i

In Eq. (7),K is the number of classes, andNc is the number
of training examples in classc. Gp

i is the processed output and
gp

p
i is raw output of genetic programp when evaluated on the

ith example in classc. Ei is the output of the ensemble on
the ith example in classc, i.e., 1 or 0 to denote a minority or
majority class label, respectively. The ensemble output (Ei) is
a majority vote of the predicted class labels of each ensemble
member. The ensemble size, i.e., the number of non-dominated
solutions in the current generation, is given byM . The lower
the NCL values, the better the diversity of the solutions.

The NCL penalty is incorporated into MOGP by using
Eq. (7) as thesecondaryfitness measure instead of the
“crowding” distance. This means that the NCL term is used
to resolve selection (e.g. for crossover/mutation and archive
selection) when the primary fitness measure (Pareto ranking
using SPEA2) is equal between two or more individuals.
NCL is used as the secondary fitness measure because Eq.
(7) utilises the ensemble output (E) in its calculation. This
means that the primary fitness measure must be applied to
the population first to determine which solutions are non-
dominated in the population, i.e., the current Pareto front, as
these solutions then determine the ensemble output.

2) Pairwise Failure Crediting (PFC):The second diversity
measure is also used as a penalty function but unlike the
NCL, PFC is a population-level diversity measure [15]. This
means that PFC measures the errors (on the training set)
of each solution with respect toall other solutions in the
population; whereas NCL compares the outputs of a solution
to the ensemble only. Eq. (8) below calculates the PFC penalty
for solutionp with respect to classc.

PFCc,p =
1

T − 1

T
∑

j=1,j 6=p

∑Nc

i=1
I(gppi , gp

j
i )

Err
p
c + Err

j
c

(8)

where

I(gppi , gp
j
i ) =

{

1 if pred(gppi ) 6= pred(gpji )

0 otherwise
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TABLE IV
AVERAGE (± STANDARD DEVIATION) HYPERAREA OF EVOLVEDPARETO-APPROXIMATED (PA) FRONTS, PARETO-OPTIMAL (PO) FRONT, AND TRAINING

TIMES FOR THEMOGP APPROACHES. STATISTICALLY BETTER HYPERAREA VALUES (5% LEVEL OF SIGNIFICANCE) ARE HIGHLIGHTED IN BOLD.

MOGP Baseline MOGP NCL MOGP PFC
Task Hyperarea Train Hyperarea Train Hyperarea Train

PA front PO front Time PA front PO front Time PA front PO front Time
Ion 0.848± 0.041 0.992 9.3s± 2.4 0.849± 0.039 0.981 1.4m± 6.8 0.828± 0.032 0.982 30.4s± 2.6
Spt 0.732± 0.032 0.971 9.7s± 2.5 0.733± 0.031 0.964 1.2m± 5.3 0.719± 0.025 0.964 29.5s± 1.6
Ped 0.902± 0.019 0.922 3.9m± 1.1 0.905± 0.011 0.926 90.2m± 1.3 0.883± 0.010 0.921 17.7m± 24.8
Yst1 0.793± 0.009 0.931 20.8s± 7.1 0.795± 0.010 0.922 5.6m± 14.4 0.774± 0.009 0.923 1.2m± 4.5
Yst2 0.949± 0.011 0.991 20.1s± 8.1 0.949± 0.007 0.989 5.3m± 18.9 0.928± 0.011 0.989 1.1m± 5.9
Bal 0.757± 0.063 0.985 15.2s± 3.9 0.810± 0.078 1.0 2.4m± 8.5 0.800± 0.065 1.0 45.1s± 3.2

and

pred(gppi ) =

{

1 if gp
p
i ≥ 0 (i.e. minority class)

0 otherwise (i.e. majority class)

In Eq. (8),Nc is the number of training examples in classc,
andgppi is the raw output of genetic programp when evaluated
on the ith example in classc (as used in Eq. (7) for NCL);
andT is population size. Indicator functionI(·) returns 1 if
the predicted class label between two solutions is different
for a given input, or 0 otherwise; this is used to compute
the Hamming distancebetween the predictions of two genetic
programs on all inputs in classc. The errors,Errpc andErrjc ,
are the number of incorrect predictions in classc for two
solutionsp and j in the population. An incorrect prediction
occurs when the predicted and actual class labels differ fora
given input. Eq. (8) will return values between 0 and 1 where
the higher the PFC, the better the diversity.

As the outputs of each solution in the population are
compared to all others, Eq. (8) aims to make solutions in
the population uncorrelated to all others. This is different to
NCL which aims to minimise the correlation between solutions
and the ensemble. As a result, Eq. (8) does not require the
ensemble output in the PFC calculation, allowing the PFC
measure to be used atany stage in the fitness evaluation. To
take advantage of this flexibility, Eq. (8) is incorporated into
the objective performance of the evolved solutions (alongside
the classification accuracy)beforethe primary fitness measure
(Pareto ranking using SPEA2) is applied to the population.
This gives equal selection preference to accurate and diverse
solutions. This is represented by Eq. (9), where(Sp)c is the
objective performance of solutionp on objectivec. We use
weight factorW where0 < W < 1 to specify the trade-off
between accuracy and diversity, and setW to 0.5 to treat these
two measures as equally important for ensemble membership.

(Sp)c = W

(

1− Errpc
Nc

)

+ (1−W )PFCc,p (9)

The advantage of incorporating the accuracy and diversity
of evolved solutions into the objective performance is thatthe
Pareto rankings (according to SPEA2) are not solely based on
the accuracy of the solutions on the two classes (as is the case
for MOGP using NCL). This means that these ensembles can
contain more diverse but potentially less accurate solutions
compared to the NCL-based ensembles.

Note that the computational overhead required to compute
Eq. (8), where each solution is compared to all others in
the population (T (T − 1) comparisons), can be minimised

by simultaneously accumulating PFC values between any two
solutions. For example, if the PFC for solutionp is being
computed with respect to solutionq, then both the Hamming
distances and errors will be the same for both solutions. In this
case, only1

2
T (T − 1) comparisons are required to compute

the PFC for the entire population.
3) Baseline MOGP Ensemble:To compare the relative

effectiveness of the two ensemble-diversity measures in fitness,
we use MOGP with SPEA2 fitness (Eq. 6) to represent a
baselineapproach where no explicit ensemble-diversity ob-
jective is used in fitness. This baseline approach investigates
whether the stochastic way in which new classifiers are created
within the GP process is sufficient to evolve diverse ensembles
(compared to two ensemble-diversity measures in fitness). A
similar approach is used in [27] where only the randomness of
the initial weights of a neural network-based ensemble (using
bagging) is shown to be sufficiently effective for diversity. This
paper extends this idea to genetic program-based ensemble
classifiers. Note that MOGP with SPEA2 is chosen as the
baseline approach as this Pareto-based Dominance measure
in fitness has been shown (in the previous section) to evolve
better-performing solutions than NSGAII on these tasks. How-
ever, as both SPEA2 and NSGAII have a different bias towards
certain regions of the Pareto frontier, the diversity of the
evolved Pareto-approximated fronts using both methods can
also be different; we leave exploring the difference in diversity
between these two methods for future work.

B. MOGP Evaluation using Ensemble-Diversity Measures

Before we compare the different MOGP ensemble perfor-
mances, we first investigate what effect the diversity objectives
have on the hyperarea of the evolved Pareto fronts (on thetest
sets). Table IV reports the average (and standard deviation)
hyperarea of the evolved Pareto-approximated fronts, the hy-
perarea of the Pareto-optimal front, and the average training
times for the three MOGP approaches, over 50 independent
runs on the tasks. An analysis of variance (ANOVA)F-test1

[50] of the average hyperarea of the Pareto-approximated
fronts from the three approaches is used to statistically test
the null hypothesis, i.e., no statistical difference in hyperarea
values over 50 runs at a 5% level of significance. This test
indicates that for all tasks except Spt, there is a statistically
significant difference in the hyperarea values for the three
approaches over 50 runs, i.e., null hypothesis rejected. Asa

1We use the F-test in Table IV (and not the common random numbers
technique used in Table III) as more than two systems are being compared.
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TABLE V
ENSEMBLE ACCURACY (± STANDARD DEVIATION) ON THE TEST SET AND AVERAGE ENSEMBLE SIZE USING THE FULLPARETO FRONT AS THE

ENSEMBLE (MAJORITY VOTE AND WEIGHTED VOTE) AND WITH ACCURACY-BASED ENSEMBLE SELECTION.

Pareto Front Ensemble Reduced Ensemble
Task MOGP Majority Vote (PF-vote) Weighted Vote (PF-Wvote) Majority Vote (RPF-vote)

Size Minority Acc Majority Acc Minority Acc Majority Acc Size Minority Acc Majority Acc
Baseline 8.8 84.5± 6.2 83.5± 9.9 82.5± 5.8 89.1± 8.3 7.8 79.9± 7.2 87.2± 9.1

Ion NCL 12.7 85.5± 5.2 86.8± 7.3 80.9± 5.9 91.4± 5.9 10.8 82.6± 6.9 91.0± 3.2
PFC 28.1 84.9± 5.1 92.4± 6.4 79.6± 6.2 96.3± 3.7 22.3 81.7± 5.8 95.8± 3.8
Baseline 7.8 44.5± 5.5 88.8± 2.7 86.4± 13.7 59.9± 36.4 2.8 69.9± 11.7 70.1± 17.4

Spt NCL 9.5 48.6± 5.6 86.5± 2.9 84.1± 12.0 63.3± 32.7 4.1 71.1± 9.0 78.4± 8.7
PFC 27.3 44.6± 5.4 90.8± 2.3 75.9± 10.4 72.6± 22.2 12.1 62.1± 8.0 80.5± 4.8
Baseline 154.9 12.5± 27.2 87.1± 28.2 89.1± 3.6 83.3± 3.1 87.8 81.4± 14.1 79.3± 28.9

Ped NCL 52.6 71.8± 8.9 91.7± 2.7 88.0± 3.2 83.5± 3.7 43.2 87.4± 4.5 84.2± 6.1
PFC 71.6 82.4± 5.6 92.1± 2.4 92.5± 1.6 84.1± 3.1 40.1 91.6± 1.9 85.2± 3.0
Baseline 46.7 58.0± 4.0 87.1± 2.4 70.0± 4.2 77.3± 4.3 24.1 68.7± 3.2 77.5± 3.8

Yst1 NCL 25.8 63.6± 3.8 83.0± 3.3 70.6± 3.7 76.8± 4.4 17.0 69.0± 2.6 80.7± 1.8
PFC 39.7 64.6± 4.8 82.5± 4.3 71.8± 5.3 75.4± 6.5 16.5 71.0± 4.4 75.5± 5.4
Baseline 18.5 77.1± 4.6 96.2± 1.1 82.8± 3.6 95.1± 1.3 15.2 80.6± 7.8 94.8± 2.2

Yst2 NCL 16.1 77.6± 6.0 95.3± 1.7 83.6± 4.7 93.7± 1.7 13.4 89.6± 5.2 91.9± 2.9
PFC 27.9 81.2± 4.9 95.5± 1.5 89.6± 3.2 92.1± 1.9 20.6 89.2± 3.2 92.3± 1.8
Baseline 9.8 53.3± 21.4 94.1± 4.4 84.2± 12.5 71.4± 23.6 4.7 82.6± 13.7 59.0± 21.4

Bal NCL 8.4 59.2± 16.1 87.8± 6.6 86.9± 11.8 66.0± 29.5 4.9 61.8± 4.2 94.1± 5.9
PFC 20.8 51.7± 18.2 95.4± 3.5 87.3± 9.3 74.1± 17.1 10.1 83.6± 9.4 79.5± 10.3

result, apost-hocmultiple comparisons test using the Kruskal-
Wallis (KW) method [50] is used to determine the statistically
significant differences between group means. The KW test
conducts a series of pairwise comparisons2 using the hyperarea
values from the MOGP approaches, and outputs a set of
95% confidence intervals for each comparison based on the
studentized rangedistribution q (similar to a Studentst-
test). The KW method is a non-parametric test for when the
experimental data is not assumed to be normally distributed.

In all tasks except Bal and Spt, the average hyperarea
for both the baseline and NCL approaches arestatistically
better than PFC, but are not statistically different from one
another. These two hyperarea values (baseline and NCL) are
highlighted in bold in Table IV for these tasks. In one task
(Bal), the average hyperarea for both NCL and PFC are
statistically better than the baseline approach, but are not
statistically different from one another. These two hyperarea
values (NCL and PFC) are also highlighted in bold for Bal.
In the Spt task, the average hyperarea values for all three
approaches are not statistically different from one another.

These results suggest that in most tasks, the PFC approach
evolves non-dominated solutions with lower classificationac-
curacy on the two classes, compared to both the baseline
and NCL. However, these solutions may be non-dominated
because they are highly diverse with respect to their errors
(this is explored further in the next section). It is interesting
that for the Bal task, both NCL and PFC approaches evolve
at least one non-dominated solution with 100% accuracy on
both the minority and majority class. This solution represents
the Pareto-optimal hyperarea of 1 in Table IV for Bal, as
the Pareto-optimal frontier consists of only this one particular
point. The baseline MOGP approach is not able to accomplish
this in any task.

Table IV also shows that as expected, both NCL and PFC
incur longer average training times than the baseline approach.
This is due to the additional computational effort required

2k(k − 1) 1
2

total comparisons wherek is the number of MOGP systems.

to calculate the corresponding diversity measure in fitness
evaluation. However, this increase is not a serious concernin
most tasks. PFC also shows faster average training times than
NCL in the tasks. For the largest training set, Ped (more than
24000 examples), NCL incurs substantially longer training
times than the two other approaches.

VI. MOGP ENSEMBLE CLASSIFICATION RESULTS

In this section we discuss the MOGP ensemble classification
results and compare these approaches to canonical GP and
other machine learning approaches on the tasks.

A. Voting Accuracy using Full Pareto Front

Table V reports the average minority and majority class
accuracy (with standard deviations) of the evolved ensembles
using the three MOGP approaches (Baseline, NCL and PFC),
on the test sets over 50 runs. In the left-most column of
Table V (called PF-vote), the ensembles use amajority-voteof
the Pareto-approximated front, i.e., the set of non-dominated
solutions in an evolved population. The majority vote specifies
that the class label with the most votes from the ensemble
members is taken as the ensemble output. The average number
of Pareto front solutions (ensemble sizes) are also included in
Table V alongside the classification accuracy.

Immediately noticeable in Table V are the strong majority
class performances for the three MOGP approaches using
this voting strategy. In some tasks such as Ion and Yst2, the
corresponding minority class accuracies are still reasonably
good, while in the others, particularly Ped and Spt, this is
very poor. This shows that in most tasks, the evolved Pareto
fronts can contain more solutions biased toward the majority
class than the opposite case, i.e., solutions with good minority
accuracy or middle-region solutions, as these biased solutions
can influence the final ensemble vote, thus biasing the final
ensemble prediction.
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B. Limiting the Influence of Biased Ensemble Members

Three strategies are evaluated to limit the influence of
biased ensemble members on the final ensemble vote. The
first strategy uses a weighted majority vote of the Pareto
front solutions where the weight orcontribution of a given
individual in the voting process is based on the fitness of
that individual on the training set (used in [39]). For NCL
and PFC, an individual’s fitness is the average accuracy and
diversity (Eq. (7) and Eq. (9), respectively) on both classes;
while for the baseline MOGP, this is the average accuracy
on both classes. This means that biased Pareto front solutions
with poor fitness on one class will contribute less in the voting
process, while Pareto front solutions with good fitness on both
classes will contribute more. The ensemble results using the
weighted majority vote are shown in the middle column in
Table V. For presentation convenience, the fitness-weighted
majority vote of the full Pareto front in the ensemble is called
the PF-Wvote strategy in Table V.

The second strategy uses a naive but effective ensemble
selection strategy (used in [41][27]) to simplyremovebiased
Pareto front solutions from the final ensemble. Pareto front
solutions with less than 50% accuracy on either the minority
or the majority class (on the training set) are removed from
the ensemble, allowing the reduced ensembles to contain only
relatively accurate members (with at least 50% accuracy on
both classes). In this ensemble selection strategy, shown in
the right-most column in Table V (called RPF-vote), each
member’s vote contributes equally during voting. Ensemble
members with at least 50% accuracy on both classes implies
that a solution is better than random guessing on the tasks
[41][27].

The third strategy uses off-EEL [37] for ensemble selection
(these results are discussed in the next section).

Table V shows that all three MOGP approaches with the
PF-Wvote and RPF-vote strategies have more balanced class
performances with better minority class accuracies in all
tasks (except Ion), particularly Spt, Ped (for the baseline
MOGP) and Yst2. This suggests that the PF-Wvote and RPF-
vote strategies succeeded in reducing the influence of biased
Pareto front solutions in the ensembles in these tasks. These
two strategies typically produce similar (or non-dominating)
ensemble results for the NCL and PFC approaches in nearly all
tasks (except Bal), suggesting that both are similarly effective
in keeping the ensemble performances well-balanced on both
classes. In Bal, the NCL results for PF-Wvote and RPF-vote
vary in their minority and majority class bias, e.g., minority
class accuracy is higher using PF-Wvote, while majority class
accuracy is higher using RPF-vote. This may be due to noise
or the comparatively high level of class imbalance in Bal.

Interestingly, the PF-Wvote results dominate the RPF-vote
results for the baseline MOGP approach in all tasks (except
Spt where both strategies show non-dominated results). This
suggests for the baseline MOGP, the RPF-vote ensembles still
contain some individuals that do not positively contributeto
the ensemble, as performances improve when the influence of
these members on the ensemble are reduced using PF-Wvote.
This may be because the baseline MOGP uses no additional

ensemble-diversity objective in fitness (unlike NCL and PFC),
and its Pareto front solutions are more accurate on the two
objectives but less diverse in their outputs (as discussed in
Section V-B).

Table V also shows that ensemble sizes for RPF-vote are
smaller than PF-vote in all tasks. In exactly 4 tasks (Ion and
Yst2 are the two exceptions), roughly half of the number
of Pareto front solutions are excluded from the RPF-vote
ensembles (compared to PF-vote), as these solutions have less
than 50% accuracy on both classes. This reaffirms the notion
that not all Pareto front solutions make useful contributors
in the ensemble. For Ion, the ensemble results for the PF-
Wvote and RPF-vote strategies have higher majority class
accuracies (than minority class accuracies) compared to PF-
vote, and the RPF-vote ensemble sizes are not much smaller
than the PF-vote ensembles. This suggests that the evolved
Pareto fronts for Ion did not contain many biased solutions,
as the differences in ensemble sizes between the PF-vote and
RPF-vote is larger in other tasks. This may be due to the
comparatively low level of class imbalance in Ion.

Interestingly, the baseline MOGP ensembles perform as
well as NCL and PFC in some tasks, particularly for the
PF-Wvote strategy. For example, in Ion, Ped and Yst2, the
baseline and NCL results are similarly good; while all three
MOGPs (baseline, NCL and PFC) show similar results in Yst1.
This is surprising as the baseline MOGP uses no ensemble-
diversity objective in fitness. This suggests that in these tasks,
the stochastic processes within GP alone are sufficient to
evolve diverse solutions when the PF-Wvote strategy is used
for ensemble voting (compared to NCL and PFC which use
explicit ensemble-diversity measures in fitness). However, fur-
ther investigation of the differences between the three MOGP
approaches is needed and is explored in Section VI-D.

C. Off-EEL Algorithm for Ensemble Section

The RPF-vote strategy for ensemble selection offers a naive
yet effective approach to choosing which individuals to use
in the final ensemble (from the set of evolved Pareto front
classifiers). A more exhaustive and arguably better ensemble
selection approach is the off-EEL (offline evolutionary en-
semble learning) algorithm [37] (discussed in Section II-B).
In this section we evaluate the MOGP ensembles using off-
EEL to investigate if this algorithm can improve ensemble
performances compared to the RPF-vote strategy.

The off-EEL algorithm uses a greedy search to construct
the ensembles from a pool of base classifiers (in this case,
an evolved Pareto front). This algorithm sorts the input set
of base classifiers according to their fitness values on the
training set (similar to the PF-Wvote), from the fittest to the
least fit classifiers. Then, each classifier is removed from the
(sorted) input set and inserted into the ensemble where, at
each step, the ensemble is evaluated using a majority vote of
the base classifiers in the current ensemble. Once all the base
classifiers from the input set are processed, the ensemble with
the best performance is taken as the final ensemble. In this
paper, only odd numbered ensembles sizes are considered as
these constitute ensembles whereno drawscan occur in the
voting process.
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TABLE VI
ENSEMBLE ACCURACY (± STANDARD DEVIATION) ON THE TEST SET AND

AVERAGE ENSEMBLE SIZE USING OFF-EEL ENSEMBLE SELECTION[37].

Task MOGP Size Minority Acc Majority Acc
Baseline 5.6 83.7± 5.8 89.2± 8.8

Ion NCL 9.9 82.2± 5.5 89.5± 8.1
PFC 21.2 83.6± 5.2 96.6± 2.8
Baseline 3.9 56.0± 10.1 83.6± 4.8

Spt NCL 5.2 53.9± 9.7 83.8± 4.8
PFC 10.7 66.3± 8.5 79.9± 6.6
Baseline 65.3 89.5± 1.5 84.6± 2.3

Ped NCL 40.4 88.8± 3.0 83.4± 2.8
PFC 55.2 90.6± 1.5 87.9± 1.5
Baseline 33.6 68.5± 5.5 80.4± 5.2

Yst1 NCL 13.5 64.1± 5.0 83.4± 4.0
PFC 29.2 70.6± 5.4 78.8± 5.5
Baseline 6.5 92.3± 2.9 90.7± 2.9

Yst2 NCL 8.6 80.4± 7.3 94.5± 2.1
PFC 17.2 93.1± 2.6 90.8± 2.4
Baseline 4.7 71.4± 15.9 85.6± 9.0

Bal NCL 5.5 62.1± 17.5 85.6± 7.3
PFC 10.9 81.4± 12.1 86.2± 9.1

Naturally, when the pool of base classifiers is large, this
algorithm incurs an additional computation cost as the en-
semble must be evaluated on all training examples at each
iteration. For the MOGP approaches, the pool of base classi-
fiers (evolved Pareto front) is not sufficiently large to incur a
substantial increase in training time. The Pareto fronts contain
fewer than 100 classifiers in most tasks except Ped for the
baseline MOGP where the average Pareto front size is 154 (as
shown in Table V).

Table VI shows the ensemble results for the off-EEL ensem-
ble selection algorithm over 50 MOGP runs. As expected, the
off-EEL ensemble performances either dominate, or are non-
dominated with respect to, the RPF-vote results (in Table V)in
these tasks. The off-EEL algorithm also shows a better balance
in minority and majority accuracies (i.e. both are similarly
high) than RPF-vote in the two tasks with the highest levels
of class imbalance (Yst2 and Bal) for the baseline and PFC
approaches. These results are not unexpected as the off-EEL
algorithm uses a greedy search to find good ensembles with
high accuracy on both classes compared to the naive RPF-vote
strategy.

D. Counting Ensemble “Wins”

For further analysis of the differences between the MOGP
approaches and the ensemble voting/selection strategies,we
also compare the outcomes of each MOGP approach on arun-
by-run basis over the 50 independent runs. This enables us to
investigate which MOGP fitness approach (Baseline, NCL or
PFC) and ensemble selection strategy (PF-Wvote, RPF-vote
or off-EEL) produces better overall results across all MOGP
experiments and tasks. These questions are difficult to answer
using only the average performances reported in Table V and
Table VI. For clarity, in our experimental setup, a single run
of the three MOGP approaches (baseline, NCL and PFC) all
use the same random starting seed and initial population.

A run-by-run analysis of the MOGP approaches has a two-
dimensional aspect, as both the majority and minority class
accuracies of the ensembles must be taken into account when
determining if one approach is better than another (compared

to a single-figure measure such as the overall accuracy). We
use the Pareto dominance relation between the outcomes of
any two MOGP approaches to determine if one approach is
better than the other, in terms of a “win”, “lose” or “draw”
result. For two MOGP approaches,gp1 and gp2, these three
outcomes for a particular run can be defined as follows.

• Win for gp1 if gp1 dominatesgp2 (loss forgp2).
• Win for gp2 if gp1 is dominated bygp2 (loss forgp1).
• Draw otherwise.

Table VII shows the pairs of ensemble “wins” between
two MOGP approaches, when each approach is compared
with every other on a run-by-run basis for 50 independent
runs on the tasks. Each win-pair in Table VII corresponds
to the three pairwise comparisons between the baseline, NCL
and PFC approaches for a particular ensemble combination
strategy. The ensemble combination strategies corresponds to
PF-Wvote, RPF-vote and off-EEL.

For example, the first win-pair entry in Table VII for Ion
with PF-Wvote (“8 / 8”) shows the number of wins when
the baseline MOGP is compared to the NCL approach. In
this case, both the baseline and NCL score 8 wins each
(each approach dominates the other exactly 8 times); these
approaches are non-dominated with respect to each other in
the remaining 34 experiments. Similarly, when the baseline
and PFC approaches are compared (also with PF-Wvote) for
Ion, “7 / 14” means that PFC wins against (dominates) the
baseline in 14 experiments, and the baseline wins against PFC
in 7 experiments. These approaches are non-dominated in the
remaining 29 experiments.

The last two rows in Table VII reports the total number of
“wins” for each pair, and the total number of “draws” (non-
dominated performance), overall runs and tasks. The total
number of wins and draws (each column) in Table VII sum
to 300 (50 runs× 6 tasks).

These three outcomes, i.e., win/lose/draw, represent amulti-
nomial distribution overN independent runs. This means that
the proportion of wins for one approach (call thisp1), the
proportion of wins for the other approach (call thisp2), and
the proportion of draws between them (call thisp3), always
sums to 1 overN runs. In a multinomial distribution, we can
calculate a 95% confidence interval of thedifferencein the
proportion of wins between two approaches (p1 − p2) for a
particular task, to determine if one MOGP ensemblesignifi-
cantly dominatesanother over all runs. The 95% confidence
interval of this difference between any two MOGP approaches
can be calculated using Eq. (10), wherevar(pi) is the variance
of pi for the ith approach inN (50) runs.

(p1 − p2)± 1.96
√

var(p1 − p2) (10)

where

var(p1 − p2) = var(p1) + var(p2)−

−(var(p1 + p2)− var(p1)− var(p2))

= 2var(p1) + 2var(p2)− var(p1 + p2)
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TABLE VII
”W IN” PAIRS BETWEEN ANY TWOMOGP APPROACHES ON A RUN-BY-RUN BASIS FOR THE ENSEMBLE VOTING STRATEGIES. A “ WIN” IS WHEN ONE

APPROACH DOMINATES THE OTHER ON A GIVEN RUN. THE “ WINS” ARE SUMMED OVER50 RUNS FOR EACH TASK, AND THEN SUMMED OVER ALL TASKS

(50 RUNS× 6 TASKS). BOLD RESULTS INDICATE A STATISTICALLY SIGNIFICANTLY BETTER ENSEMBLE PERFORMANCE(95% SIGNIFICANCE LEVEL).

Task Pareto Front Weighted Vote (PF-Wvote) Reduced Pareto Front Ensemble (RPF-vote)off-EEL Ensemble Selection
Baseline Baseline NCL Baseline Baseline NCL Baseline Baseline NCL
vs NCL vs PFC vs PFC vs NCL vs PFC vs PFC vs NCL vs PFC vs PFC

Ion 8 / 8 7 / 14 8 /19 8 / 14 5 /22 4 / 14 11 / 6 6 /22 3 / 20
Spt 3 / 5 1 / 5 1 / 3 7 / 10 7 / 10 7 / 8 10 / 7 3 / 6 1 /9
Ped 11 / 3 1 /25 0 / 19 0 / 20 1 / 24 0 / 42 15 / 7 0 /20 0 / 26
Yst1 7 / 8 4 / 2 5 / 7 8 / 9 8 / 5 6 / 5 5 / 3 6 / 3 1 / 3
Yst2 7 / 5 5 / 2 3 /12 4 / 16 5 / 3 3 / 14 5 / 1 8 / 7 0 /4
Bal 10 / 7 11 / 14 10 / 9 13 / 13 11 / 15 9 / 15 14 / 8 12 / 16 4 /21
Total Wins 46 / 36 29 / 62 27 / 69 40 / 82 37 / 79 29 / 98 60 / 32 35 / 74 9 / 83
Total draws 218 209 204 178 184 173 208 191 208

and

var(pi) =
pi(1− pi)

N

var(p1 + p2) =
(p1 + p2)(1− p1 − p2)

N

The results of the 95% confidence intervals are shown in
Table VII, where the statistically signficantly better ensemble
performance is highlighted in bold for a particular win-pair.
As we construct three separate confidence intervals for each
pairwise comparison, the statistical relationship only applies
to a specific pair.

1) PFC better than NCL over all tasks:Table VII high-
lights the overall differences in ensemble performances be-
tween the three MOGP approaches. The total number of wins
(over all tasks) when NCL is compared to PFC is higher in
PFC for all three ensemble combination strategies. This means
that in all three ensemble combination strategies, the PFC
ensembles dominate the NCL ensemblesmore oftenthan the
opposite case over all runs and tasks. For the off-EEL strategy
in particular, this difference in total wins between PFC and
NCL is very large (PFC has 83 total wins but NCL only has
9). This is due to the PFC ensembles achieving statistically
significantly better performances than NCL in nearly all tasks.
This suggests that the PFC approach, particular with off-EEL,
produces better ensemble results than NCL in these tasks.

A similar conclusion can be drawn when the PFC ensembles
are compared to the baseline MOGP for the three ensemble
combination strategies. PFC always scores more total wins
(over all tasks) than the baseline when these two approaches
are compared against each other for all three strategies. The
better PFC performances may be due to better cooperation
between the ensemble members than the baseline MOGP on
these tasks, due to better diversity from the PFC measure
in the fitness function. In contrast, NCL only scores more
total wins (over all tasks) than the baseline MOGP using
one strategy (RPF-vote); whereas for the other two strategies,
PF-Wvote and off-EEL, the baseline scoresmore total wins
(over all tasks) than NCL. Indeed, Table VII shows that for
both PF-Wvote and off-EEL strategies, there is no statistically
significant difference in the wins between the baseline and
NCL in any tasks. This suggest that the NCL ensembles only
show an improvement over the baseline MOGP for the RPF-
vote ensemble selection strategy; while for the PF-Wvote and

off-EEL strategies, both MOGPs perform similarly.
2) Further Discussions:The above results show that the

PFC ensembles performed better than NCL on these tasks,
particularly for the off-EEL selection algorithm. This may
be due to two reasons. The first is the different ways NCL
and PFC create “spread” (or diversity) in the population (see
[36] for theoretical insights into how NCL creates spread in
a population as discussed in Section II-B). The second is the
different ways NCL and PFC are used in MOGP: NCL is
calculated after the population is ranked (using SPEA2) on
the objectives, while PFC is calculated before Pareto ranking
is done (see Section V-A for details).

Developing an approach which incorporates NCL into the
objective performance before Pareto-ranking is done (simi-
lar to PFC) may improve ensemble performances for NCL.
Likewise, new diversity measures (such as the root quartic
NCL proposed in [35][36] discussed in Section II-B) may
also improve ensemble performances for NCL, due to different
ways in which these measures create “spread” in a population.
However, more investigation is required to confirm these
hypothesis. As this is outside the scope of this work, we will
investigate them in future work.

E. Comparison with Canonical GP, NB and SVM

We also compare the ensemble performances with canonical
(single-predictor) GP using three fitness functions, and two
other popular machine learning techniques, namely, Naive
Bayes (NB) and Support Vector Machines (SVM), on the
tasks. Table VIII shows the average class accuracies of the
fittest evolved solutions using canonical GP (on the test sets)
over 50 independent runs. The three GP fitness functions
correspond toAcc (Eq. 1),Ave (Eq. 2), and the area under
the ROC curve (AUC) [51] (denoted as GPAuc in Table
VIII). For Ave, only W = 0.5 is shown as this configuration
treats the accuracy of the two classes as equally important in
fitness. To calculate the AUC for each solution (for GPAuc),
seven TP/FP rates3 are used to build an ROC curve, and the
trapezoidal technique to estimate the area under this curve
(for more details see [51]). Note that the same complexity
constraints are placed on both the canonical GP classifiers
and the MOGP Pareto front classifiers (base classifiers in the

3Each TP/FP rate is generated by evaluating the classifier at seven distinct
class thresholds spread uniformly over the range of genetic program outputs;
seven is recommended in [51] for a fast and accurate approximation.
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TABLE VIII
CLASSIFICATION ACCURACY OF THE MINORITY AND MAJORITY CLASS FOR THE DIFFERENT APPROACHES ON THE TASKS.

Task GPAcc GPAve (W = 0.5) GPAuc NB SVM
Minority Majority Minority Majority Minority Majority Minority Majority Minority Majority

Ion 73.8± 7.7 95.3± 3.9 76.6± 6.3 91.3± 6.1 81.1± 5.2 81.3± 6.5 63.4 88.9 87.5 99.1
Spt 47.4± 4.6 88.6± 2.5 56.7± 8.3 82.7± 3.6 70.2± 6.7 70.0± 5.8 66.7 83.0 37.0 94.3
Ped 43.3± 14.5 96.6± 1.6 87.7± 2.3 85.6± 2.8 86.2± 1.5 86.1± 1.6 83.7 81.4 53.8 92.4
Yst1 40.8± 4.2 94.6± 1.4 60.2± 4.6 83.1± 3.8 73.0± 1.4 72.8± 1.5 43.4 96.4 32.8 97.4
Yst2 64.0± 8.1 97.4± 0.6 85.9± 4.0 93.0± 2.1 86.8± 2.7 88.2± 4.1 66.7 98.0 58.0 97.9
Bal 9.0 ± 17.5 98.9± 1.1 85.6± 11.4 84.6± 11.7 82.8± 8.3 87.1± 11.0 0.0 100.0 0.0 100.0

ensembles), e.g., a maximum depth limit of 8 (as outlined in
Section IV-A).

A single run for NB and SVM is generated using the
WEKA package [52]. The SVM uses a sequential minimal
optimisation algorithm with an RBF kernel and Gamma value
of 10 (this Gamma value generally gave the best performance
from experiments using 0.1, 1, 10, and 100).

Tables V and VI show that all three MOGP ensembles
using the PF-Wvote and off-EEL strategies achieve much more
balanced (and better) results than canonical GP usingAcc, NB
and SVM in all tasks (except Ion) in Table VIII. In those tasks
with high levels of class imbalance (such as Spt, Ped, Yst1

and Bal), these single-predictor methods show biased results.
In Bal in particular, none of these methods achieve more than
10% accuracy on the minority class (Bal has highest level of
class imbalance). In Ion, SVM achieves the best results (87%
and 99% on the minority and majority class, respectively).
The MOGP ensembles cannot, on average, match the SVM
results. However, closer examination of the PFC results with
off-EEL on a run-by-run basis finds that the threebest PFC
runs score a better accuracy on both classes than SVM. These
three runs achieve 88/99%, 88/100%, and 92/100% on the
minority/majority class, respectively.

On average, the PFC ensembles with off-EEL dominate
canonical GP usingAuc in three tasks (Ion, Ped and Yst2). In
Bal, canonical GP (withAuc) and PFC (with off-EEL) achieve
very similar results (within 1% accuracy for each class). Asthe
model complexity of the evolved genetic program classifiers
are the same in both canonical GP and MOGP, the PFC
ensembles are better than canonical GP on some of these
tasks for two main reasons. Firstly, this is due to more support
for two learning objectives (minority and majority accuracy)
in MOGP. In other words, in canonical GP withAuc, each
classifier tries to achieve the best trade-off between the two
objectivesindividually (by maximising their AUC); whereas
in MOGP, each classifier is one point (of many) along the
Pareto front. Secondly, combining these Pareto front classifiers
into an ensemble where individuals work together (by voting)
further improves performances, as the ensemble performsat
least as wellas its individual members.

When a diversity objective such as PFC is introduced in
the fitness function during evolution, the ensemble performs
better than most of its individual members, as this performance
dominatesthe performance of the individual members. This
can be seen by comparing the MOGP ensemble results (in
Tables V or VI) to Figure 3, particularly the median attainment
surface by MOGP with SPEA2. This shows that the ensemble
performance (using PF-Wvote, RPF-vote or off-EEL) for the
two diversity-based ensembles, in particular PFC, typically

lies abovethe average front; whereas the performance of the
baseline ensemble usually lieson that front.

Even in those tasks where the MOGP ensemble results are
similar to, or dominated by, canonical GP usingAve or Auc
(such as Yst1), the ensembles still perform better than most of
its individual members. In these tasks a likely reason for the
not very good MOGP ensemble performance is the relatively
poor performance of the Pareto-approximated fronts compared
to the frontier generated byAve (different W values in Eq.
2). In Figure 3, the average evolved front in both the Ped
and Bal tasks, i.e., the median attainment surface by MOGP
with SPEA2, is clearly dominated by theAve frontier. In
other words, very high accuracy cannot be expected from
the ensemble if the individual ensemble members themselves
are not sufficiently accurate when compared to theAve

frontier. This highlights the importance of developing a good
underlying multi-objective algorithm to trace out an accurate
and diverse set of ensemble members across all the tasks. We
leave this improvement for future work.

F. Analysis of GP Trees

An advantage of GP is the representation of the evolved
classifiers. Examining the evolved GP trees can provide useful
insights into how GP learns to solve a particular problem. We
examine a number of typical evolved MOGP classifiers (using
the PFC approach) from the Bal task as the high level of class
imbalance in Bal makes this a difficult classification problem
to solve (as demonstrated by the highly-biased classification
results for canonical GP, NB and SVM in Table VIII). Figures
4 and 6 show these programs where the four input features in
Bal correspond tof0−f3 in these programs (both programs4

have a depth of 8).
The first program we analyse is shown in Figure 4. This

solution represents a non-dominated solution in the evolved
population which achieves 83% and 91% accuracy on the
minority and majority class, respectively, on the test set.The
second program we analyse (another non-dominated solution
from the same run), scores 90% and 80% accuracy on the
minority and majority class, respectively, and is identical to
Figure 4 except for seven major differences (underlined in
Figure 4). These seven differences, shown in Figure 5(b),
are responsible for the variation in performance between the
two solutions. The overall tree structure shared by both these
non-dominated solutions are shown in Figure 5(a), where the
(dashed) squares around a particular sub-tree show where in

4For convenience, function nodes in Figures 4 and 6 whose input arguments
all correspond to leaf nodes that are randomly generated numbers have been
manually replaced by their evaluated ouput (e.g. sub-tree(+ 0.5 0.1) replaced
by leaf node0.6).
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(% 0.8 (* (% (if<0 (* (- (% 0.6 f0) (% f0 f3)) (if<0 (- 0.5

f2) f2 (- f1 -0.7))) (if<0 (if<0 (% -0.7 f3) (+ f1 f3) (+

f0 f2)) (% (% f2 0.6) (- f1 f2)) (+ (- f2 f1) (- f3 f0)))

(* (- f2 (* f0 -0.5)) (% (+ -0.6 f2) (+ -0.1 f2)))) (+ (if<0

(% (- f2 f1) (% 0.5 f0)) (- (f3 (- f3 f1)) (+ (if<0 0.2 f1

0.2) (if<0 f1 f3 f3))) (if<0 (+ (- -0.6 0.2) (* 0.2 -0.1))

(* (* f1 0.4) f0) (- (% f0 f2) -0.8)))) (- (% (if<0 (* (*

-0.4 f2) (- 0.5 f2)) (* 1.0 (* -0.1 f1)) (if<0 f3 (% f0 0.1)

0.9)) (% (+ (% f0 -1.0) 0.8) (- (+ -0.7 -0.1) (* f3 f2))))

(+ (* (- (+ f1 f0) (if<0 f3 f2 f0)) (% -0.1 (- f2 -0.5)))

(% f1 0.7)))))

Fig. 4. A good evolved GP tree (for the Bal task).

%

... if...... ...

%

if +

 * %...if

.........

...
...

...
...

+...

 −
*0.8

if

1. f0

2. 0.2

3. (* (% 0.3 f1) 1.3)

4. (i<0 f0 0.9 f0)

5. 0.7

6. (if<0 f0 -0.1 f3)

7. (if<0

(% 0.5 (+ -0.7 f2))

-0.8

-1.7)

(a) (b)

Fig. 5. (a) Overall structure of two GP trees (for Bal) where� represents a
sub-tree (omitted) and the dashed rectangles (around a givensub-tree) show
where in the overall structure the seven differences occur;and (b) sub-trees
in the second GP tree that are different from Figure 4.

the tree the seven differences occur. Figure 5(a) shows that
the overall structure of the evolved GP programs can be
decomposed to examine how the learnt GP classifiers solve a
particular problem. These two particular solutions use a series
of nestedif conditions within the tree, in combination with
the other functions (+,−,× and %).

The third non-dominated solution from the same run that
we analyse is shown in Figure 6. This solution achieves lower
accuracies than the previous solutions, 72% and 67% on the
minority and majority class, respectively, and is also noticeably
smaller. This solution does not share the same overall structure
as the previous two solutions discussed above (the right side
of this tree, relative to the root node, is infact completely
different). For example, Figure 6 only has twoif conditions
and these occur deep within the tree near the leaf nodes (unlike
in the previous two solutions).

(- 0.9 (+ (+ (* (* (if<0 0.4 f0 (- f2 f1)) (- f1 f2) (- f1

(% (* 0.6 f3) (- -0.7 f0)))) f0) (- f3 (* (% (- (if<0 f2

-0.2 f1) (- f2 f0)) (- (- f0 f3) 0.03)) -0.06))))

Fig. 6. A smaller evolved GP tree (for the Bal task).

Inspection of the evolved programs for other tasks reveals a
similar pattern, that is, thebestprograms evolved by MOGP
with PFC share a similar overall structure but this structure
is different in other non-dominated solutions. Solutions with
similar performances on the objectives have similar overall
structures. We expect that when non-dominated programs
are grouped together based on their performances on the
objectives, the overall structure of programs within each group

are relatively similar to each other, but different from programs
in other groups. This is because solutions in different groups
will have different building blocks. For example, the common
if conditions in Figure 5(a) may constitute good building
blocks as these are common in well-performing solutions in
the same run (Figure 4). Likewise, the solution shown by
Figure 6 may use different building blocks which allow this
particular program (and other similar-performing programs)
to specialise on certain parts of the input-space. This diverse
nature of evolved programs allow the ensembles to improve
system performances.

VII. F URTHER DISCUSSION

This section discusses several important related aspects.

A. Raw Output-Based Ensemble Combination Strategies

To obtain the ensemble output, this paper uses a major-
ity vote of the class decisions of the individual ensemble
members. As discussed, other ensemble combination strategies
include the average (or weighted average) of the raw outputsof
the individual members, or a winner-takes-all approach where
the highest individual output is taken as the ensemble output.
However, these two combination strategies are not suitablefor
the MOGP classifiers for two important reasons. Firstly, the
raw (real-valued) outputs of the MOGP classifiers have no
bounds (can be anything between−∞ and+∞). Secondly,
the magnitude of the raw outputs are not an indication of
the confidence of the class decision; these can be arbitrarily
large or small for different MOGP classifiers. This means
that unless the raw outputs are first scaled for consistency
in the population, ensemble combination strategies using the
raw outputs can be unjustifiably influenced by individuals
with large output values. Adapting the MOGP approach (with
output scaling that reflects the confidence of an individual’s
class decision) is beyond the scope of this paper but will be
considered for future work.

B. Ensemble Optimisation

Finding the best combination of individuals (from the pool
of learnt base classifiers) to form the ensembles can be
thought of as a separate combinatorial optimisation problem.
After the initial training phase to learn the base classifiers,
a secondary optimisation/search process can be invoked to
find the best combination of base classifiers which produces
the best ensemble results [28][30][39][40]. Previous workhas
deployed a secondary search to optimise ensemble perfor-
mances post-training [28][39], or in parallel with training the
base classifiers [30][40]. Naturally, this secondary optimisation
process incurs an additional computational cost, and in some
cases, an extra validation set is required to avoid over-fitting
the training set. This area represents an interesting direction
for future work but is outside the scope of this paper.

C. Validation Sets

We have tested the MOGP approaches on six benchmark
problems with different data and variations. They contain
certain levels of noise. The performances reported are on the
unseen test tests, i.e., 50% of the original data set, for each
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task. Inspection of the training and test results show that no
clear overfitting has occurred on these tasks. If overfittingdoes
occur, an additional validation set can be used to address this,
e.g., using a validation set to determine the stopping criteria in
the training process to avoid overfitting (such as in [39][30]).
In this case, classification performances can be examined on
both the validation set and test set to determine which is the
best learned model (as used in [30]).

VIII. C ONCLUSIONS

The three goals of this paper were to develop a MOGP
framework for classification with unbalanced data using the
accuracy of the minority and majority class as learning objec-
tives, compare two Pareto-based fitness strategies in MOGP,
and adapt the MOGP approach to evolve accurate and diverse
ensembles. These goals have been successfully achieved. The
evolved ensembles comprise of non-dominated genetic pro-
gram classifiers where each member votes on the class of a
given instance.

Our experimental results using six binary unbalanced data
sets show that the MOGP approaches evolved an accurate set
of genetic program classifiers along the minority and majority
class trade-off frontier on these tasks, particularly whena
combination of dominance rank and dominance count in used
(compared to dominance rank alone) in fitness.

The additional ensemble-diversity measures in fitness also
encouraged good cooperation among the evolved MOGP en-
semble members. The MOGP ensembles typically dominated
the performance of its individual members, canonical GP, NB
and SVM, particularly on tasks with high levels of class im-
balance. The PFC penalty in particular may be more effective
in evolving solutions with better diversity compared to NCL
on the tasks. We also find that well-performing ensembles
can be evolved using only the stochastic processes within the
evolution provided that only accurate and diverse solutions
are used in the final vote as biased solutions can negatively
influence the ensemble vote.

For future work we will evaluate this approach on more
unbalanced data sets, and investigate other techniques for
ensemble diversity (such as root quartic NCL) and other
ways to incorporate these diversity measures into the fitness
functions to improve ensemble performances. We will continue
to improve the underlying MOGP framework for difficult prob-
lems, and investigate other ensemble optimisation strategies.
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