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Abstract—In classification, machine learning algorithms can the overall accuracy or error rate can be influenced by the
suffer a performance bias when data sets are unbalanced. Data |arger majority class.
sets are unbalanced when at least one class is represented by Good accuracy on the minority class is usuady least

only a small number of training examples (called the minority - tant . . . tant th
class) while the other class(es) make up the majority. In this as important as, or in some scenarios more important than,

scenario, classifiers can have good accuracy on the majority theé majority class accuracy. However, these two learning
class but very poor accuracy on the minority class(es). This objectives are usually in conflict; increasing the accuraty

paper proposes a Multi-objective Genetic Programming (MOGP) gne class can result in lower accuracy on the other. Evelutio
approach to evolving accurate and diverseensembles of genetic ary multi-objective optimisation (EMO) is a useful techu

program classifiers with good performance on both the minority . . .
and majority classes. The evolved ensembles comprise of non-t0 capture this trade-off in the learning process [8][9][10

dominated solutions in the population where individual members EMO is often advantageous over canonical (single-objeftiv
vote on class membership. This paper evaluates the effectiveses optimisation techniques becausedrant of the best trade-off

of two popular Pareto-based fitness strategies in the MOGP (non-dominated) solutions along the objectives can bevedol

algorithm (SPEA2 and NSGAI), and investigates techniques t0 gimitaneously in a single optimisation run, without reigj
encourage diversity between solutions in the evolved ensembles, ’

Experimental results on six (binary) class imbalance problems the objgctive preference to be specilfimqb.riori..
show that the evolved ensembles outperform their individual ~ In this paper we develop a multi-objective GP (MOGP)
members, as well as single-predictor methods such as canonicalapproach to classification with unbalanced data, using the

GP, Naive Bayes and Support Vector Machines, on highly- minority and majority class accuracy as competing objestiv
unbalanced tasks. This highlights the importance of developing i the |earning process. Our first goal is to compare two
an effective fitness evaluation strategy in the underlying MOGP . . .
algorithm to evolve good ensemble members. popular Pareto-based fithess schemes in the MOGP algorithm,
namely, SPEA2 [9] and NSGAII [10], across a number of
classification tasks with unbalanced data. Recent work has
shown that while NSGAII can be effective in evolving a good
set of non-dominated solutions in some tasks, this perfocaa
I. INTRODUCTION needs to be improved for difficult classification problems
[11]. We hypothesise that SPEA2 can evolve better-periagmi
Classification with unbalanced data presently representgiassifiers on these tasks as this strategy is known to better
major obstacle in machine learning (ML) [1][2][3]. Data setexploit the middle-region of the frontier; whereas NSGAII
are unbalanced when the learning examples from at legstds to reward exploration at the end-regions.
one class areare. In binary classification, the class with the Another key advantage in simultaneously evolving a set
smaller number of examples is called the minority classlevhiof highly-accurate classifiers along the minority and migjor
the other class is the majority class. Unbalanced data sgfgss trade-off frontier is that the combined classificatio
are common; fraud detection [4], medical diagnostics [BY a ability of these non-dominated solutions can be used
image recognition [6] are only a few examples. operatively in an ensemble. However, for an ensemble to
Genetic Programming (GP) is an evolutionary techniquge more accurate than any of its individual members, the
based on the principles of evolution or natural selectiagshsemble members must be diverse, i.e., make differentserro
which has been widely successful in evolving reliable ansh different inputs. The second goal of this paper is to adapt
accurate classifiers to solve a range of real-world claasific the MOGP approach to evolve diverse solutions which can be
problems [7]. However, GP, like many other ML techniquessuccessfully combined into an ensemble, to further improve
can evolve classifiers “biased” toward the majority clasewh classification performance. We will investigate whethee th
data is unbalanced [4][2][3]. Biased classifiers have $frogtochastic way in which new solutions are created in the
classification accuracy on one class but weak accuracy on g¥lutionary process is sufficient to evolve diverse endesyb
other. This can occur because typical training criterizhsa® and compare two measures in the fithess function to encourage
diversity among the evolved solutions, namely, negative co
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strategies to canonical (single-objective) GP approaeimes B. Ensemble-based Learning

two other learning algorithms, Naive Bayes and Support .
Vector Machines, on the tasks. Much work has shown that ensemble-based machine learn-

The rest of this paper is organised as follows. Sectid.ﬂg approa_ches to glgssification can outperform canonical
Il outlines the related work. Section Il discusses the GBNYle-predictor classifiers [8][13][26][27]. By consititg the

framework and the MOGP approaches. Section IV preseﬁgntributiong or output; of multiple accura}te classifiersch
the experimental results comparing the two MOGP fitneggle to speCI_allse on d|fferen_t p"’?”s of Fhe input-space et .
schemes. Section V adapts the MOGP approach to evolviignPle can improve generalisation ability and reduce 8ie ri
ensembles. Section VI discusses the MOGP ensemble res@fs2Verfitting; while single-predictor approaches are ieel
and compares these to canonical GP and other machine leX?dnap the full input-space using only one classifier. Howeve

ing approaches. Section VIl outlines some further discunssi constructing 900d ensembles IS a d'ff'C‘,J't problem. In [26],
in this work. Section VIII concludes this paper and giveg1e authors discuss the two main techniques (among others)
directions for future work to generate diverse and accurate ensembles. The first @s/olv

manipulating or dividing up the input-space into many stbse
which are used to train the different ensemble members,

Il. RELATED WORK such as bagging and boosting techniques [4][18][27]. Id,[27
In this section we discuss the related work for class imbai€veral bagging and boosting methods with different ensemb
ance and ensemble learning, and their limitations. sizes are compared; results using 26 benchmark UCI tasks

show that the ensembles usually outperform single-prexdict
and that small ensembles (10-25 predictors) give the best
A. Overview of Related Work for Class Imbalance results. However, techniques such as bagging which martiti

Addressing the class imbalance learning bias tends to H€ input space can suffer from similar limitations to other
volve two major aspects [1]. The first uses various samplifigmPling-based techniques (e.g. over-fitting).
techniques to create an artificially balanced distributafn ~ The second approach involves injecting randomness into the
class examples for training. Common approaches inclul@&rning process. This technique is favoured in evolutipna
random over-sampling of the minority class [2], random undelgorithms (EAs) due to its inherent stochastic and pomriat
sampling of the majority class [3], editing or removing nisPased nature. EAs have been combined with bagging and
or atypical majority class examples [16], or synthetic evepoosting techniques for ensemble diversity [19][28] (d&sed
sampling (SMOTE) to create “new” minority examples byn the next section). Many EA approaches use an additional
interpolating between similar known examples [17]. BagginP€nalty term in the fitness function such as negative cdioela
and boosting techniques which train multiple classifiers ul¢arning (NCL) [15][13][29] to encourage ensemble divitsi
ing different (usually balanced) subsets of class examplesuse cooperative co-evolutionary methods (such as “tegimi
(bootstrap samples), are also popular sampling-basecbaethin GP) [30][31]. These approaches differ from typical bauggi
[4][18][19][20][21]. While these approaches can be effesi and boosting techniques as most of them typically usdtithe
some sampling algorithms can incur a computational overhefd@ining set in learning to promote interaction and coopena
when the samples are dynamically composed (such as activéhe ensemble, whereas bagging techniques sample the data
learning), and lead to over-fitting if active learning is notto smaller subsets during learning.
assumed [1]. EMO approaches which use a diversity objective in the

The second aspect uses cost adjustment within the learnfiigess function typically build the ensembles using theadet
algorithm to factor in the uneven distribution of class exannon-dominated individuals in the population [15][13][E2]].
ples, using the unbalanced data set “as is” in training. In GR [29], the training accuracy is traded-off against the NCL
this includes using fixed misclassification costs for mityori in a two-objective EMO (called DIVACE) to evolve neural
and majority class examples [5][22] or better trainingemi  network (NN) ensembles. In [15], two diversity measures
such as therea under the receiver operating characteristicere compared using DIVACE to evolve NN ensembles: NCL
(ROC) curve(known as AUC) [3], in the fitness function.and a measure called pairwise failure crediting (PFC). PFC
The AUC is a useful performance measure acrosstiple Shows better generalisation than NCL on two benchmark UCI
true positive (TP) and false positive (FP) rates. In GP, sortesks. In [13], EMO with three objectives is used to evolve a
work has also focused on developing new fitness functioR@dial Basis Function (RBF) network ensemble: the accuracy
for classification with unbalanced data [23]; while somBICL and a new regularization term to penalise large network
approaches combine sampling and cost adjustment [24][26Eights to improve generalisation. The new approach is show
While many of these methods show improved minority clage outperform a two-objective version using only accuracgt a
performances, particularly when the AUC is used in the féneDICL, particularly on noisy problems.
function, they have limitations. Adapting the fitness fumet = Some EMO approaches use other mechanisms for diversity
for cost-adjustment can require that misclassificationtsco$8][32][33]. In [8], the structure of the NN models (e.g.
for each class be determinedpriori, while some improved number of hidden nodes) is varied for diversity, and this is
measures such the AUC can significantly increase trainitigded-off against their error rates where small accurateets
times due to the computational overhead required to cdieulare preferred. The authors conclude that choosing good non-
these measures in fitness evaluation [23]. dominated solutions for the ensembles is difficult and can be



problem-specific; a region of the frontier is manually siddc approach is proposed in [40] to approximate the member
for each of their classification tasks. In [32][33][34], twoweights, called “expectation propagation”.
multi-objective formulations are proposed to evolve neuro In [30], several ensemble combination schemes are eval-
ensembles. The first splits the training set into two subsetated in a GP-based teaming approach. These include the
and uses the error on the subsets as the learning objecties®rage of the members outputs, a majority vote and two
while the second adds Gaussian noise to the training setvdsner-takes-all schemes; and two weighting schemes where
the second objective. The first formulation shows bettarltes weights of teams are co-evolved in parallel (with teams), or
than the second, and these methods are competitive compangtimized after each generation (for the best team) using
to NCL on two (binary) benchmark classification tasks. a perceptron learner. The combination schemes tend to be
Non-Pareto EAs with anti-correlation measures in the fiproblem-specific (none produced the best results for adlethr
ness function have also shown success in ensemble learriergchmark problems), but the weighting schemes usually
[35][36][37]. In [35], a new measure, root quartic NCL, stowimproved performances (compared to without), while the
better results than traditional NCL using a grammar-gui@®d winner-takes-all performed the worst (as the ensembleubutp
on a 6-multiplexer problem. Both measures are theoreyicals reduced to only one member).
analysed to explain how each creates diversity in a popmati In [37], offline and online ensemble selection algorithms
the new measure creates widely separated but small cludterfff-EEL and on-EEL) are proposed. Given a pool of learned
points in the population, while NCL increases the distamufes base classifiers sorted by fitness, each classifier is removed
the points to the overall mean of the points. In [37], a fitneggom the pool and copied into the ensemble where, at each
function is developed which first assignslifficulty weighting step, the ensemble is evaluated. Once the pool is empty, the
to each training example, and uses the sum of example weighitsemble with the best performance is taken as the final
correctly learned by a given individual as the fitness of thensemble. Off-EEL is run once after the training cycle, whil
individual. The example weights correspond to the number ofi-EEL is performed at each generation. Off-EEL performs
individuals which incorrectly classify that example. better than on-EEL on six UCI classification tasks, as on-EEL
Cooperative co-evolution (or teaming) methods have alsan be prone to noise. This paper uses off-EEL [37] to build
shown success in ensemble learning in GP [30][31]. In [30JJOGP ensembles and compares these results to an accuracy-
teams of individuals in linear GP are applied to two bencHpased ensemble selection technique [41].
mark classification tasks and a regression task, and several
ensemble combination schemes are evaluated (discusgeel ift: Ensemble Learning for Class Imbalance
subsection below). In [31], four methods which vary the way Combining ensemble learning with sampling techniques,
selection and replacement is performed on teams and teaen, under-sampling, over-sampling and SMOTE, to create
members, are compared on two multiclass UCI classificatibalanced bootstrap samples is a popular approach to clas-
tasks. In canonical teaming, selection and replacementsification with unbalanced data [19][42][43][28]. In [42],
done exclusively between teams or individuals, while thevo new under-sampling methods are developed to create
new “orthogonal evolution” algorithms use individual s#len  balanced bootstrap samples for a boosting algorithm, and
with team replacement, and vice versa. The new methoctsmpared to 13 other sampling and boosting approaches in
produce better results than canonical methods. Howeverthie literature. Similarly, in [18] a new SVM-based under-
is important to note a major difference between teaming 8ampling approach iteratively collects support-vectansnfi
GP and the methods used is this paper. Teaming typicallging balanced bootstrap samples which are aggregated in
produces teams of weak individuals that cooperate stronghe final classification step. In [4], base classifiers trdine
together, as shown in both [30] and [31]. In this paper, then balanced and unbalanced bootstrap samples are compared
GP classifiers are “strong” individuals (i.e. relativelycarate using a bagging approach for fraud detection in e-Commerce
classifiers) where the two diversity-based fitness funstiotransactions. Using the overall classification accuradyaim-
encourage cooperation between individuals. ing, base classifiers trained on balanced samples are faund t
Ensemble SelectionMuch work also addresses how tobe more effective.
choose which learned base classifiers to include in the finaEMO has also been combined with bagging in ensemble
ensemble [28][30][37][38][39][40]. In [38], the fittestdlvid- learning [19][44]. In [19], a problem-decomposition apach
uals in the population are selected for the ensemble usindeag. one-vs-rest) is used to evolve a population of binary
weighted average of the accuracy and diversity of each indiassifiers for two UCI benchmark tasks with many differ-
vidual. In [28] and [39], weights which specify the importan ent minority classes. Using grammatical evolution (GE) tw
of each ensemble member’s contribution are optimised {popbpulations are co-evolved for increasing ensemble divers
training) using a validation set. Both works use a genetatassifiers and “points” (balanced bootstrap samples)edhr
algorithm (GA) to optimise the ensembles, while [39] alsobjectives are used: overall error, the level of overlapveen
compares two weighted-vote schemes. These include a fitnegarectly learned “points”, and a parsimony objective favo
weighted majority-vote and a recursive least-squared JRLBg smaller solutions. A winner-takes-all approach of tban
algorithm to minimise the error of the ensemble. These work®minated solutions in the evolved populations determihes
show that the weighted/GA-optimised ensembles perform bénhal prediction. A more thorough description of the aldgwmmit
ter than traditional majority voting where all base class#fi which is also evaluated on more multi-class problems and
contribute equally [28][39]. A probabilistic ensemble ping model complexities is provided in [44].



Theoretical studies in this area also suggest a relatipnsbbntrast, this paper compares two diversity measures (NCL
between ensemble diversity and class performance [21][48hd PFC) in GP, and both are adapted to calculate diversity
Increasing ensemble diversity is found to improve minoritgeparatelyfor each class using the original unbalanced training
class accuracies but degrade majority class accuraciesd@ta. The diversity on the minority and majority class then
unbalanced data sets. However, the accuracies of botheslags®ntributes equally in fithess evaluation to ensure that the
improve together when ensemble diversity is increased émsembles are equally diverse on both classes.
balanced data sets. These studies use eight binary angleulti As discussed, much work in ensemble learning also focuses
class benchmark tasks from the UCI repository. on how to choose the best base classifiers for the ensembles.

Recent work also uses NCL in fitness for class imbalan&®me research provides recommendations on how to choose
[20][41]. In [20], NCL is only applied to instances from theensemble sizea priori and suggests that smaller ensembles
minority class (majority class instances are ignored).sThtan be more accurate than large ensembles [8][27][38]. Some
adaptation (NCLCost) aims to maximise ensemble accuraathers improve ensemble performances using ensemble selec
and diversity on the minority class, but only accuracy on then algorithms [37], or optimise the weights specifyinglea
majority class. Comparing NCLCost to a bagging approachember’s contribution to the ensemble [28][30][39]. We try
and traditional NCL (calculated with all training instas§e to address this in MOGP by comparing two voting schemes
both NCL-based methods show the best minority class dtraditional majority vote and a fitness-weighted vote &mi
curacies, while traditional NCL shows the best diversithieT to [39]), and two ensemble selection strategies (an acgurac
average class accuracies for NCLCost is higher than toagditi based approach used in [41] and off-EEL [37]) in this paper.
NCL, suggesting that very high diversity can negatively atip
on majority class accuracy (similar to [21]). In [41], NCL is 1. GP APPROACHES
combined with SPEA2 to evolve a diverse set of Pareto front . . . o
classifiers in a GP approach for ensemble learning for clasén this sect!on we discuss the GP framework for classifica-
imbalance. An ensemble selection strategy is used to selligp: and outline the GP and MOGP approaches.
only accurate Pareto front classifiers for the ensembles.

A. GP Framework for Classification

D. Contributions of This Paper A tree-based structure is used to represent genetic pregram
. We use feature terminals (example features) and cohsta
inals (randomly generated floating point numbers), and
nction set consisting of the four standard arithmetic

. . 7
While previous ensemble approaches show good resultsEg
some unbalanced data sets, there are some limitations Whécqu
this work tries to address. Much work uses NNs, decisiorstre perators+, —, x, and %, and a conditional operatorf .

and Naive Bayes as the base classifiers [4][20][13][43][2 he+,— and x operators have their usual meanings (addition,

GP has shown much success in evolving accurate classifigr% . o : -
N : ~~subtraction and multiplication) while % meapstecteddivi-
for classification with unbalanced data [11][19][23][24]; sion (usual division except that a divide by zero gives altesu

however, there is little work which investigates whethezsth zero). The conditional f function takes three arguments
performances can be improved using a mult_i-_objective CF;the first is negative, the second argument is returned,
framework to evolve ensembles of GP classifiers [19][41 therwise the third argument is returned. Each geneticramg

Th:js dpaper developsl a M%GP approact:rr:. 0 e\:colvmg acctur% resents a mathematical expression that returns a single
and diverse ensembles and compares this performance to bo ut value (floating-point number) for a given input (data

canonical (single-predictor) GP and other methods. example to be classified). This number is mapped onto a set of

Another important difference between our work and Oth(?:rlass labels using zero as the class threshold, i.e., anptgam

approaches is that many of the existing works rely on sampli assigned to theninority class if the output of the genetic

techniques to either create balanced bootstrap samples w, Fogram classifier is zero or positive, or theajority class
training bagging approaches [4][19][43], or re-balance t therwise '

training data when diversity measures (such as NCL) are
used in fitness evaluation [20][21]. Our approach uses tBe Canonical (Single-objective) GP

original unbalanced training data “as is” in the GP learning The standard fitness measure in classification is the overall
process without the need to artificially re-balance the sclag|assification accuracy. This is the number of examples cor-
distributions in the data sets. This allows us to conceatoat rectly predicted by a classifier as a fraction of the total ham
the EMO and diversity measures in the MOGP algorithm, arg training examples. Using the four outcomes for binary
remove any dependence on a sampling algorithm. classification shown in Table | and assuming the minoritgsla

There has also been very little work which focuses on adap-the positiveclass, the overall classification accuracy can be
ing the ensemble diversity measures in fitness to account {ffined byAcc (Eq. 1).

the skewed class distributions. Some works calculate sliyer

on all examples irrespective of class when data is balanced Acc = TP+TN (1)
[29][15][15], or first re-balance the training dapaior to the TP+TN+FP+FN
diversity calculation when data is unbalanced [20]. Furthre In classification with unbalanced datd¢c can favour the

[20] the diversity with respect to majority class instanégs evolution of solutionshiased toward the the majority class
ignored in fitness, utilising only minority class diversityn  [2][3][4]. This is becausedcc does not take into account the



TABLE |

OUTCOMES OF BINARY CLASSIFICATION objectives in this approach are to be maximised, this cdrisep
Predicted Object | Predicted non-objedt expressgd using Eq. (4), Whe(r&;_)m _denotes the performance
Actual Object | True Positive (TP) False Negafive (FNP of solution S; on the mth objective. Solutions arenon-
Actual non-object False Positive (FF)True Negative (TN) dominatedif they are not dominated by any solution in the
population.

smaller number of examples in the minority class. For exam-
ple, if a classification task has a minority class represebge i = i < Vm[(Si)m = (Sj)m] A FE[(Si)r > (Sj)] (4)

only 10% of available learning instances, a trivial solnt@an 2) Two Pareto-based Dominance Measurdsio common
score a high fitness (e.g. 90% overall accuracy) by aSSignirggreto—based dominance measures are the dominance rank
all the instances _to t_he ma_jonty c_Iass_. . 10] and dominance count [9] of a given solution. Dominance
These two ObJeCt'Ve_S’ l.e., minority _and majority clasgnk is the number of other solutions in the population that
accuracy, are usually in COT‘“'Ct where Increasing the aCCéj'(')minateagiven solution (lower is better), whereas dongea
racy on one class results in a tradg-off n performar_lce ddunt is the number of other solutions that a particulartgmiu
the qther class [.5][11]' To capture this trade-_off, the Bge dominates (higher is better). Each measure has a differasit b
funct|.o'n A.Ue’ defined by Eq. (2_)’ uses the W?'g_hted aVeraQGards solutions on the Pareto frontier: dominance rank is
classmgano_n accuracy of the minority and majority CI‘?E‘B known to reward exploration at the edges of the frontier hil
Ave, minority accuracy corresponds to the true positive rajg ninance count tends to reward exploitation in the middle
(TPR), majority accuracy is the true negative rate (TNR} aiyt frontier. Two popular EMO approaches which use these
weighting coefficientlV specifies the relative importance of | -<ures include SPEA2 [9] and NSGAII [10]; SPEA2 uses

the minority accuracy to majority accuracy whére W < 1. both dominance rank and dominance count, while NSGAII
When W is 0.5, the accuracy of both classes is considerg@eS only dominance rank

as equally |mpor_tant n fitness. V\/_hdﬂ( = 0.5, minority In NSGAII, the fitness value for the solutios; is its
class accuracy will contribute more in the fitness functioemt dominance rank. that is. the number of other solutions in
majority class accuracy. Similarly, majority class accyraill ’ '

the population that dominaté;, given by Eg. (5). A non-
contribute more whefl’ < 0.5. populat inaté;, given by Eq. (5)

dominated solution will have the best fithess of 0, while

Ave = W(TPR) + (1 — W)(TNR) (2) high fitness values indicate poor-performing solutions,, i.
solutions dominated by many individuals. Fitness in NSGAII
where is to be minimised. This scheme is illustrated in Figure 1(a)
TP TN
TPR= ———F— TNR= ————— NSGAII(S;) =|{jlj € PopAS; = S; 5
R=gprpy @4 INR=trep () (8i) = [{ijlj € Pop A S > Si}| (5)

In SPEA2, both dominance rank and dominance count
C. Multi-objective GP (MOGP) are used in fitness. First, each solution in the population is
l:glssigned atrengthvalue D; this is the dominance count for

While Ave has been shown to evolve solutions with be : . ; )
S;, i.e., the number of solutions it dominates:

ter accuracy on both classes in some class imbalance ta%%"t'on
compared toAcc, a major limitation of Ave is that the ob- D(S;) = |{jlj € Pop A S; = 5,}]

jective preference must be specifipdor to the evolutionary

search. In real-world classification tasks, determiningpady The fitness value for a given solution is determined by the
weighting coefficient can be a lengthy trail and error pregesstrengths of all its dominators, given by Eqg. (6). In this
requiring multiple optimisation runs with different weigshg ~ equation, the final fitness value for solutidh is the sum
coefficients. Evolutionary multi-objective optimisatiggMO) of all dominance counts of other solutions in the population
offers a useful solution to the problem of optimising mukip that are dominated by;. Similar to NSGAII, fitness here is
conflicting objectives [8][9][10]. The aim of EMO is to to be minimised where non-dominated solutions have the best
simultaneously evolve #ont of the best trade-off solutions fitness of 0. This scheme is illustrated in Figure 1(b).

along the objectives in a single optimisation run.

1) Pareto Dominance in FitnessAn important aspect in SPEA2(S;) = Z D(5;) ®6)
EMO is the notion of Pareto dominance in fitness [9][10]. This jePop.5ir5;
allows solutions to be ranked according to their perforneanc In this paper we compare which of these two dominance
on all the objectives with respect to all solutions in theneasures evolves better-performing frontier solutiorrsofar
population. This ranking is important as it affects the waglassification tasks (using the same evolutionary seaigir- al
selection is performed if the objectives are to be treateithm, outlined in subsequent sections). Previous work has
separately in the evolution. In this approach, the two dhjes shown that while NSGAII is successful in some tasks, the
are the classification accuracy of the minority and majoritgvolved Pareto front solutions exhibit poor accuracy camegha
class. Recall that the minority class accuracy is the TPR atwdcanonical (single-objective) GP in difficult problemsl]1
majority class accuracy is the TNR, as defined in Eq. (3). We attribute this to the presence of large numbers of highly

In Pareto dominance, a solution widominate another biased solutions along thedge-regionf the evolved fronts,
solution if it is at least as good as the other solution are., solutions with high accuracy on one class only [11].
all the objectives ancdbetter on at least one. As the twoWe hypothesise that a fithess measure which better rewards



effect in the selection process.

IV. EVALUATION OF MOGP HTNESSSCHEMES

In this section we discuss the evolutionary parameters and
data sets used in the experiments, and evaluate and compare
the MOGP approaches using the Pareto-based fithess schemes.

(a) NSGAII Fitness (b) SPEA2 Fitness

Fig. 1. MOGP fitness using (a) NSGAIlI dominance ranking andSBEA2

“strength” values. Filled circles are dominated whereasilul circles are A Evyolutionary Parameters and D
non-dominated. NSGAII fitness has dominated solutions wigniidal fitness = olutionary Parameters and Data Sets

values whereas these solutions have unique fitness vall&BEA2. The ramped half-and-half method is used for generating
o i i programs in the initial population and for the mutation @ter

exploitation in the middle of the Pareto frontier can evoIvF7]' For both MOGP and GP approaches, the population size
bette_r-performing solutions in the middle region of thenfrer. ¢ 500, maximum program depth is 8 (to restrict very large

This paper only compares NSGAIl and SPEA2. These ,qrams in the population), and the evolution is allowed to
popular algorithms are chosen because each uses the tWo Maitor a maximum of 50 generations or terminated when a
Pareto-based dominance measures in fitness, i.e., doreinafigion with optimal fitness is found. For the GP approaches
rank and dominance count, in different ways to evolve Parett,Possover, mutation and elitism rates were 60%, 35% and
fronts. A comparison with other EMO algorithms (such a8g;, respectively, and tournament selection is used with a
[46]) is beyond the scope of this work and will be left,,nament size of 7. For the MOGP approaches, crossover
for future work. However, the experimental results fromsthiyng mutation rates were 60% and 40%, respectively, and
investigation can provide useful new directions to furthghmament selection is used with a tournament size of 2¢the
improve the fitness measure. _ MOGP settings follow those recommended in [10][9]). Note

3) Crowding in Fitness:In addition to Pareto dominance,nat due to the nature of the MOGP approaches, furtherralitis
we also use a secondary “crowding” distance measure j{onqt required.

promote a good spread of solutions along the trade-offgjx henchmark binary classification problems, summarised
frontier. Crowding is the Manhattan distance between soliy Tgple Il, are used in the experiments. These are taken
tions in objective-spacewhere sparsely populated regions ofrom the UCI Repository of Machine Learning Databases
objective-space are preferred over densely populatednsgi [47] and the Intelligent Systems Lab at the University of
Crowding is only used to resolve selection when the primalyysterdam [6]. For each task, half of the examples in each
fitness (Pareto dominance measure) is equal between tWQ.Qis were randomly chosen for thiaining and thetestsets.

more individuals. This means that if two or more individual%is ensures that both training and test sets preserve the sa
have the same Pareto rank, the individual with the bett@l‘éss imbalance ratio as the original data set.

crowding distance is preferred. The MOGP approaches usinGrpese benchmark data sets are carefully selected to encom-
the two fitness schemes both use the same crowding measyigs a varied collection of problem domains to ensure that ou
that is, average distance to the two neighbouring SolutmS eya|yation of the different MOGP approaches is not problem-
either side of the given solution along each of the ObJeSt'V%pecific. These problems have varying levels of class imbal-
[10]. Solutions with larger crowding distances indicatatth 5,,.¢ (minority class ranges between 7-35% of total exaples
their nearest neighbours are ]‘ar apart; these_are prefesred; complexity where some tasks are easily-separable (e.g.
smaller distance values. Details can be seen in [10]. Yst,) compared to others. The training/test sets also range

4) MOGP Search Algorithm:The MOGP evolutionary from peing well-represented (Ped has approximately 12000
search here is based on the algorithm used in NSGAII u%stances), to sparsely represented (Spt has 134 instances
The parent and offspring populations are merged togethgfly 27 from the minority class). These tasks also range
at every generation. The fittest individuals in this mergegbiveen high and low dimensionality (lon has 34 features
parent-child population are then copied into a new poputiati yhile Bal only has 4), and binary and real-valued feature
(called the archive population). The archive populatiove® types. We expect that these data sets can represent class
as the parent population for the next generation (the a&chiy,palance problems of varying difficulty, dimensionalisjze

population is the same size as the original parent populgtiogng (feature) types reasonably well.
At every generation the offspring population is generatsdg

traditional crossover and mutation operators. The archoye  B- Evaluating Front Hyperarea
ulation is used to simulate elitism in the population, tisat® We use thehyperarea(also known as the hypervolume)
preserve the set of non-dominated solutions over genestio48] of the evolved Pareto-approximated fronts as a “single
We use this search algorithm as it is fast and very similfigure” to measure which MOGP fitness scheme is better
to the SPEA2 algorithm. The only difference between thisn these tasks. The hyperarea is the area under the Pareto-
algorithm and the original SPEA2 algorithm is that SPEA3@pproximated front inobjective-spacg48], similar to the
uses an additional truncation operator in the archive poparea under the ROC curve (or AUC). However, while the
lation to remove non-dominated solutions with very similaAUC represents the performance of a single classifier at
performances on the objectives. We ignore this additionghrying classification thresholds, the hyperarea reptssbe
operator as it requires one more evolutionary search paeamelassification performance of theet of classifiers along the
to configure, and the “crowding” measure can achieve a simif@ont. The hyperarea is calculated by taking the sum of the
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TABLE I
UNBALANCED CLASSIFICATION TASKS USED IN THE EXPERIMENTS

Name | Classes Number of Examples Imb. Features
(Minority/Majority) Total Minority Majority | Ratio | No. Type
lon Good/bad (ionosphere radar signal) 351 126 (35.8%) 225 (64.2%) 1:3 34 Real

Spt Abnormal/normal (cardiac tomography scan) 267 55 (20.6%) 212 (79.4%) 14 22  Binary

Ped | Pedestrian/background (image cut-out) 24800 4800 (19.4%) 20000 (80.6%) 1:4 22 Real
Yst; mit/non-target (protein sequence) 1482 244 (16.5%) 1238 (83.5%) 1:6 8 Real
Ysto me3non-target (protein sequence) 1482 163 (10.9%) 1319 (89.1%) 1.9 8 Real
Bal Balanced/unbalanced (balance scale) 625 49 (7.8%) 576 (92.2%) 1:12 4 Integer

TABLE Il
AVERAGE (4 STANDARD DEVIATION) HYPERAREA OF EVOLVEDPARETO-APPROXIMATED FRONTS PARETO-OPTIMAL (PO)FRONT, AND TRAINING
TIMES (IN SECONDS’S’ OR MINUTES'M’) FOR THEMOGP APPROACHES OVER50 RUNS.

NSGAII Fitness SPEA2 Fitness
Task Hyperarea Training Hyperarea Training
Average [ PO Front Time Average [ PO Front Time

lon 0.793+ 0.041 0.952 8.3%- 1.3 0.848+ 0.041 0992 93st24
Spt 0.733+ 0.026 0.938 16.9¢ 2.1 | 0.732+ 0.032 0.971 9.7s+ 2.5
Ped | 0.881+ 0.013 0.903 3.5mt 52.6 | 0.902+ 0.019 0922 39m=+ 1.1
Yst; | 0.793+ 0.008 0.917 23.5¢ 4.5 | 0.793+£ 0.009 0.931 20.8st 7.1
Ystz | 0.9424+ 0.008 0.986 23.5¢ 4.4 | 0.949+£ 0.011 0.991 20.1s+ 8.1
Bal 0.7494+ 0.049 0.993 20.1s£+ 2.6 | 0.757+ 0.063 0.985 15.2¢ 3.9

o8 statistically different to NSGAII on the remaining threalka.
.90 The hyperarea of the Pareto-optimal (PO) front is also bette
€ 5 in SPEA2 for all tasks except Bal (where NSGAII is better).
i’so Table 1l also shows that the two MOGP approaches show
57 similar average training times.
70 All Solutions g 70 All Solutions
65 i i
ool o paree opt. ront o Perets ot From C. Comparing Pareto Fronts and Canonical GP
O iy Acaraey O ey Acragr To investigate why the MOGP approach using SPEA2 is
(a) NSGAIl Fitness (b) SPEA2 fitness able to outperform NSGAII on three out of the six tasks, as

i ) i e well as compare the classification performance of the Pareto
Fig. 2. Accuracy of all evolved solutions (circles), medidtamment surface . . . L
(solid line) and Pareto-optimal front (dotted line) for theDBP approaches approximated fronts to canonical (single-objective) Geuse
over 50 runs (on the Ped task). Circle size is proportiondtequency. attainment summary surfacde approximate an “average”

evolved front over 50 independent runs for each MOGP

areas of individual trapezoids fitted under each front smiut approach on the tasks. Attainment summary surfaces are
in objective-space [48]. Hyperarea values range betweenmlO & useful technique to summarise the outcome of a series
1 where the higher the value, the better the performance. of multi-objective experiments, where a potentially diést

Table IIl reports the average (and standard deviation) hyet of non-dominated solutions can be returned from each
perarea of the evolved Pareto-approximated fronts ortetse MOGP run [49]. Each attainment surface comprises of evolved
set, as well as the average training times in seconds (s)sefutions (from all runs) that have identicattainmentvalues,
minutes (m), for the two MOGP approaches over 50 runghere the number of attainment surfaces correspond to the
Table 1l also includes the hyperarea of tRareto-optimal number of MOGP runs (50). A solution’s attainment value
(PO) front with respect to all MOGP runs. The PO front is thig the probability that the MOGP system will evolve another
set of non-dominated solutions from the union of all Paretgolution whichweakly dominateghe given solution on all
approximated fronts evolved from the 50 independent runshjectives [49]. Themedianattainment surface, i.e., the set of
For example, Figure 2 shows the PO front (dotted line) gblutions with attainment values of 0.5, corresponds tseho
the 50 different evolved Pareto-approximated fronts fa@ thsolutions with a 50% probability of attainment with resptect
MOGP approaches (on thieed task). In Figure 2, each circle all runs. This set represents an “average” evolved front ove
represents an evolved solution in objective-space wheeteci 50 independent runs. For example, the solid line in Figure 2
size is proportional to frequency (the larger the circle,tore  shows the “average” evolved front (median attainment seifa
populated a particular point in objective-space). over 50 runs for the MOGP approaches (on el task).

In Table Ill, the MOGP approach with the significantly The “average” evolved front and Pareto-optimal front for
better hyperarea is highlighted in bold for each task. Thgsst the two MOGP approaches over independent 50 runs (on the
tical significance test (of the average hyperarea) is caled! testset) is shown in Figure 3 for the six tasks. Figure 3 also
using the common random numbers technique at a 95% leiradludes the average performance of the fittest evolvedisalu
of significance. This technique computes the 95% confidence the two classes (also on the test set) using canonicalésin
interval of the hyperarea differences between the two MOGbjective) GP with the two fitness functiond¢c (Eq. 1) and
approaches, on a run-by-run basis over 50 independent runt:e (Eq. 2), over 50 runs. The GP fitness functidne uses

According to Table Ill, SPEA2’s average hyperarea iseven different weighting coefficients between 0.2 and &t8 (
statistically better than NSGAII on the three tasks, and nuttervals of 0.1). The GP training times using eithérc and
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Fig. 3. Classification performance of evolved solutions gigimo MOGP approaches (NSGAIl and SPEA2 fitness), and siolgjeetive GP using two fitness
functions (Acc and Ave). The top row shows those tasks where the average hypersieg SPEA?2 fitness is statisticalbetter thanNSGAII fitness (there
is no significant difference in hyperarea for the tasks inib#om row).

Ave (with a particular weighting coefficient) are very similain these three tasks (lon, Ped and JystSimilarly, the PO
to each other on the tasks. On average this is approximatéynt for SPEA2 also clearly dominates the PO front for
1.4 seconds for lon and Spt, 3.2 seconds for Bal, 6.6 secoMSGAII in two of these tasks (Ped and ¥ktThis suggests

for the Yst tasks, and 2.2 minutes for Ped.

that on these tasks, MOGP with SPEA2 can evolve frontier

Figure 3 shows that the evolved Pareto fronts, particulalutions in a single run that perform better than, or attleas
the MOGP approach with SPEA2, contain an accurate $¥¢ll as, multiple runs of canonical GP usintpe. However,
of solutions along the minority and majority class trade-oMOGP with NSGAII cannot achieve this to a sufficient level of
frontier for these tasks. This highlights an important adage accuracy, as the canonical GP solutions alongAhe frontier

of MOGP over canonical (single-objective) GPsmgle run

clearly dominate the NSGAIl average front.

of the MOGP algorithm can trace out a good set of trade-off A likely reason for this difference in behaviour is the
solutions, leaving the final choice for the decision-maker. inherent bias between the two fitness schemes. SPEA2 tends
contrast, in canonical GP, this trade-off must be deterchiné& evolve more solutions in the middle region of the frontier

a priori needing multiple GP runs usingve (one for each pushing this front outwards toward theenith point (100%
weighting coefficient) to generate a frontier. Althoughmgéé accuracy on both objectives). NSGAII fitness tends to evolve
run of the single-objective GP method uses less time than #@eépread of solutions along the whole of the frontier. Fos¢he
MOGP approaches, the single-objective GP method requirigssification tasks, edge-region solutions are less atdsir

a much longer time to get a reasonable Pareto front.

than middle-region solutions, as these represent biased cl

Figure 3 also shows that the standard GP fitness functidfiers. Figure 2 illustrates this difference for tii&d task,
Acc evolves biased solutions on the tasks with high majori§nd clearly shows that SPEA2 evolves more solutions in the

class accuracies but low minority class accuracies.
Further inspection of the results in Figure 3 (particuldhyg

runs.

median attainment surfaces for SPEA2 and NSGAII) shows
that in some tasks (top row in Figure 3), SPEA2's average
front lies along the single-objective GP frontier (usidge);

whereas the average front for NSGAII lies below tHee

middle region of the frontier compared to NSGAII over all

V. EVOLVING ENSEMBLES USINGMOGP

In this section we adapt the MOGP approach to evolve

frontier in these tasks. The explains why the average hygaraensembles and discuss two ensemble-diversity measures in t
for SPEA2 (from Table Il1) is statistically better than NSGA fitness function.



A. Adapting MOGP Fitness (diversity on the majority class instances is ignored). dtier
proaches (mentioned above) apply the diversity measure
all examples irrespective of class (for classificatiorithwi
balanced data sets).

1) Negative Correlation Learning (NCL)The first mea-
) : T;'!?Jre to encourage diversity among the individuals in the
end—.user for the_ﬁnal selection. However, as the front of—no opulation uses NCL as a correlation penalty term in the
.dor'm'nated s'o.Iu.t|ons has as much l'n.forr.natlon. as any siNgifress function [13][15][29]. NCL measures the phenotypic
individual, utilising thecombinedclassification ability of these differences between the solutions in the ensemble and ge re

solutions in a pompetitive voting or ensemble-baseq_smna(gf the population. The NCL measure, given by Eq. (7) below,
can be benef_lc_:lal .[8][33][29]' In an ensgmble of classifiens calculates thaveragecorrelation penalty for each class, for a
simple classification strategy usesnajority voteapproach: ngiven solutionp in the population

gn

One of the key advantages of this EMO approach is th?g)ﬁJ
the evolved Pareto front represents highly accurate @iaissi
each with a different performance bias toward either cldgs.
until now, our goal has been to present these classifierseto

each ensemble member votes on what class label to as
to a given data instance, and the class label with the most

number of votes determines the class of that particulaaist 1 E 1 & ) M ;
[8]. This strategy has proved successful in previous engemb CLy = 5 > A NG -E)| > (GI-E)
learning approaches [8][33][29]. e=1 i=1 J=1.j#p
A key condition for an ensemble of classifiers to be more
L . where
accurate than any of its individual members is that the ensem » 1
ble members must be accurate and diverse with respect to thei Gi = 1+ e9v?

outputs [26]. Diverse ensemble members should not make th . .
same errors on the same inputs, otherwise the ensemble \(’)Vﬂ?aliznc?ﬁwc)a')g rInS tlgi ?nugsg gpcilsfﬁzs’riﬂzsfégecﬂm?; d
risk misclassifying all the same inputs together. In otherds, P is rav?/ out u[t)of enetic rc§ a wrF\)en evaluated%n the
in a good ensemble, if one individual generates an error forigt%' P 9 program

given input, i.e., votes for the incorrect class label, thigeo ('at)}(LampIe n qlas&. E; is the output of the ensgmple on
members should not also make the same error the*" example in class, i.e., 1 or O to denote a minority or
' _majority class label, respectively. The ensemble outfi} (s

As previously discussed (Section Il), one of the mali majority vote of the predicted class labels of each ensembl

Eeif&nlg]l:]es t?n::o?ﬁtrlfctr?]:\éerala e:;;]er;nbzlgs ;E\Qﬂi\/es IngCtmember. The ensemble size, i.e., the number of non-dondinate
andomness Into the iearning algo [26]. S appPIa o) ions in the current generation, is given b¥. The lower

we rely on the ?tOChaSt'C way in which new GP soll_mons 4fe NCL values, the better the diversity of the solutions.
created (e.g. using the genetic operators) to evolve divedes- The NCL penalty is incorporated into MOGP by using

sifiers, where th_e non-dqminated solutions in the popu1ati%q_ (7) as thesecondaryfitness measure instead of the

at each generf':mon consututg .the. ensgmblg. o “crowding” distance. This means that the NCL term is used
However, without an EXpI'C't_ diversity obje(_:tlve in fitness, resolve selection (e.g. for crossover/mutation and ieech

to encourage the evolved solutions to make different e00rs gojoction) when the primary fitness measure (Pareto ranking

different inputs, the ensemble members are not guaran@eeqlging SPEA2) is equal between two or more individuals.

be diverse with respect to their_predictions. Fo.r thi; rBAB® N\ c| is used as the secondary fitness measure because Eq.
adapt the MOGP approach to incorporate a diversity objectiv;) ijises the ensemble outpuk) in its calculation. This

into the fitness function, aiming to reward solutions whievé |\~ < that the primary fithess measure must be applied to
better diversity with better fitness values. We investigate o nonylation first to determine which solutions are non-
measures to promote the evolution of diverse solutionsen thyminated in the population, i.e., the current Pareto frast
population, negative correlation learning (NCL) and p@ew yheqe solutions then determine the ensemble output.

failure crediting (PFC). o ) ) 2) Pairwise Failure Crediting (PFC):The second diversity
Both measures have proven effective in evolving diversgeasure is also used as a penalty function but unlike the
ensembles of NNs for classification [15][20][29]. In thisycL, PFC is a population-level diversity measure [15]. This
paper, these measures are adapted to calculate a solutigieins that PFC measures the errors (on the training set)
diversity separatelyfor each class to account for the skeweg each solution with respect tall other solutions in the
class distributions in these tasks; otherwise, these sityer opulation; whereas NCL compares the outputs of a solution

measures risk being biased toward the majority class. TReihe ensemble only. Eq. (8) below calculates the PFC penalt
average across both the minority and majority class is thggp solution p with respect to clase.

used as the final diversity value in fithess to encourage the

ensemble members to be equally diverse with respect to both 1 T Zj-\f I(gpP,gp?)
classes. This is different to the way some previous appesach PFCep=7—7 > 51 - ;3 = (8)
(such as [13][15][20][29][35]) have used the diversity rmiae j=lggp DTTe TETTC

in fitness. As discussed in Section II-C and Section II-Qyhere

only [20] has adapted the NCL measure in a similar manner ) v ;
to account for unbalanced class distributions. However, in H(gp?s gp)) = {1 if pred(_gpi) # predgp;)
[20], the NCL is only applied to minority class instances v 0 otherwise
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TABLE IV
AVERAGE (£ STANDARD DEVIATION) HYPERAREA OF EVOLVEDPARETO-APPROXIMATED (PA) FRONTS PARETO-OPTIMAL (PO)FRONT, AND TRAINING
TIMES FOR THEMOGP APPROACHES STATISTICALLY BETTER HYPERAREA VALUES (5% LEVEL OF SIGNIFICANCE) ARE HIGHLIGHTED IN BOLD.

MOGP Baseline MOGP NCL MOGP PFC
Task Hyperarea Train Hyperarea Train Hyperarea Train
PA front PO front Time PA front PO front Time PA front PO front Time
lon | 0.848+ 0.041 0.992  9.3st 2.4 | 0.849+ 0.039 0.981 1.4mt 6.8 | 0.828+ 0.032 0.982 304 2.6
Spt | 0.732+4 0.032 0.971  9.7¢ 2.5 | 0.7334 0.031 0.964  1.2mt 5.3 | 0.719+ 0.025 0.964 29.5¢ 1.6
Ped | 0.902+ 0.019 0.922 3.9m+ 1.1 | 0.905+ 0.011 0.926 90.2m+ 1.3 | 0.883+ 0.010 0.921 17.7m+ 24.8
Yst; | 0.793+ 0.009 0.931 20.8st 7.1 | 0.795+ 0.010 0.922 5.6m+ 14.4 | 0.7744 0.009 0.923 1.2mk 4.5
Ysty | 0.949+ 0.011 0.991 20.1st 8.1 | 0.949+ 0.007 0.989 5.3m+ 18.9 | 0.928+ 0.011 0.989 1.1mt 5.9
Bal | 0.757+ 0.063 0.985 15.2¢- 3.9 | 0.810+ 0.078 1.0  2.4m+ 8.5 | 0.800+ 0.065 1.0 45.1s+ 3.2
and by simultaneously accumulating PFC values between any two
) 1 if gp? > 0 (i.e. minority class) solutions. qu example, if the_PFC for solutignis beln_g
predgp}) = 0 otherwise (i ority ¢l computed with respect to solutian then both the Hamming
otherwise (i.e. majority class) distances and errors will be the same for both solutionsin t

In Eq. (8), N, is the number of training examples in class case, only;T(T' — 1) comparisons are required to compute
andgp? is the raw output of genetic prograpwhen evaluated the PFC for the entire population.
on thei" example in class (as used in Eq. (7) for NCL); 3) Baseline MOGP EnsembleTo compare the relative
and T is population size. Indicator functiof(-) returns 1 if effectiveness of the two ensemble-diversity measuresiedt,
the predicted class label between two solutions is differewe use MOGP with SPEA2 fitness (Eq. 6) to represent a
for a given input, or 0 otherwise; this is used to computeaselineapproach where no explicit ensemble-diversity ob-
the Hamming distancéetween the predictions of two genetigective is used in fitness. This baseline approach invesiga
programs on all inputs in clags The errors Err? and Errd, whether the stochastic way in which new classifiers are edeat
are the number of incorrect predictions in clasfor two within the GP process is sufficient to evolve diverse ensembl
solutionsp and j in the population. An incorrect prediction (compared to two ensemble-diversity measures in fitness). A
occurs when the predicted and actual class labels diffeafosimilar approach is used in [27] where only the randomness of
given input. Eq. (8) will return values between 0 and 1 wheit@e initial weights of a neural network-based ensemblenfusi
the higher the PFC, the better the diversity. bagging) is shown to be sufficiently effective for diversitiis

As the outputs of each solution in the population aneaper extends this idea to genetic program-based ensemble
compared to all others, Eq. (8) aims to make solutions tassifiers. Note that MOGP with SPEA2 is chosen as the
the population uncorrelated to all others. This is différen baseline approach as this Pareto-based Dominance measure
NCL which aims to minimise the correlation between solwiorin fithess has been shown (in the previous section) to evolve
and the ensemble. As a result, Eq. (8) does not require thetter-performing solutions than NSGAII on these tasksyHo
ensemble output in the PFC calculation, allowing the PF&Yver, as both SPEA2 and NSGAII have a different bias towards
measure to be used ahy stage in the fitness evaluation. Tocertain regions of the Pareto frontier, the diversity of the
take advantage of this flexibility, Eq. (8) is incorporatedoi evolved Pareto-approximated fronts using both methods can
the objective performance of the evolved solutions (ala®ys also be different; we leave exploring the difference in dity
the classification accuracypeforethe primary fithess measurebetween these two methods for future work.
(Pareto ranking using SPEA2) is applied to the population.
This gives equal selection preference to accurate andséiveg \OGP Evaluation using Ensemble-Diversity Measures
solutions. This is represented by Eq. (9), whésg). is the
objective performance of solutiop on objectivec. We use

weight factoriW where0 < W < 1 to specify the trade-off
between accuracy and diversity, and Béto 0.5 to treat these have on the hyperarea of the evolved Pareto fronts (otetite

two measures as equally important for ensemble membersii t_s). Table IV reports the average (an'd standard devjation
hyperarea of the evolved Pareto-approximated fronts, yhe h

1—Err? perarea of the Pareto-optimal front, and the average tguini
(Sple =W N, + (1= W)PFCep ©) times for the three MOGP approaches, over 50 independent

. . . runs on the tasks. An analysis of variance (ANOWA}est
The advantage of incorporating the accuracy and dlverstg/o] of the average hvperarea of the Pareto-approximated
of evolved solutions into the objective performance is that fronts from the th?ee ayp roaches is used to statﬁ);icaﬁ te
Pareto rankings (according to SPEA2) are not solely based Pln ree app o . . y

. , the null hypothesis, i.e., no statistical difference in érgrea
the accuracy of the solutions on the two classes (as is tie Ceglues over 50 runs at a 5% level of significance. This test
for MOGP using NCL). This means that these ensembles can 0 9 )

. ' . . Indicates that for all tasks except Spt, there is a stadiléjic
contain more diverse but potentially less accurate Smmlosi nificant difference in the hyperarea values for the three
compared to the NCL-based ensembles. 9 yp

Note that the computational overhead required to Compﬁgproaches over 50 runs, i.e., null hypothesis rejecteda As

Eq. (8), Where each solution 'S. compared to all _O.th(_ars INwe use the F-test in Table IV (and not the common random numbers
the population T(T" — 1) comparisons), can be minimisedechnique used in Table I1) as more than two systems are beinpared.

Before we compare the different MOGP ensemble perfor-
mances, we first investigate what effect the diversity dbjes
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TABLE V
ENSEMBLE ACCURACY (4 STANDARD DEVIATION) ON THE TEST SET AND AVERAGE ENSEMBLE SIZE USING THE FULIPARETO FRONT AS THE
ENSEMBLE (MAJORITY VOTE AND WEIGHTED VOTE) AND WITH ACCURACY-BASED ENSEMBLE SELECTION

Pareto Front Ensemble Reduced Ensemble
Task MOGP Majority Vote (PF-vote) Weighted Vote (PF-Wvote) Majority Vote (RPF-vote)
Size Minority Acc  Majority Acc | Minority Acc ~ Majority Acc || Size  Minority Acc  Majority Acc
Baseline || 8.8 84.5+ 6.2 83.5+ 9.9 825+ 5.8 89.1+ 8.3 7.8 79.9+ 7.2 87.2+ 9.1
lon NCL 12.7 85.54+ 5.2 86.8+ 7.3 80.9+ 5.9 91.4+ 5.9 10.8 82.6+ 6.9 91.0+ 3.2
PFC 28.1 84.9+ 5.1 92.4+ 6.4 79.6+ 6.2 96.3+ 3.7 223 81.7+538 95.84+ 3.8
Baseline || 7.8 445+ 55 88.8+ 2.7 86.4+ 13.7 59.9+ 36.4 2.8 69.9+ 11.7 70.1+ 174
Spt NCL 9.5 48.6+ 5.6 86.5+ 2.9 84.1+ 12.0 63.3+ 32.7 41 71.14+ 9.0 78.44+ 8.7
PFC 27.3 44.6+ 5.4 90.8+ 2.3 759+ 104 72.64+ 22.2 12.1  62.1+ 8.0 80.5+ 4.8
Baseline || 154.9 12.5+ 27.2 87.1+ 28.2 | 89.1+ 3.6 83.3+ 3.1 87.8 814+ 14.1 79.3+ 28.9
Ped NCL 52.6 71.8+ 8.9 91.74+ 2.7 88.0+ 3.2 83.54+ 3.7 432 8744+ 45 84.2+ 6.1
PFC 71.6 82.4+ 5.6 92.1+ 2.4 925+ 1.6 84.1+ 3.1 40.1 91.6+ 1.9 85.2+ 3.0
Baseline || 46.7 58.0+ 4.0 87.1+ 24 70.0+ 4.2 77.3£ 43 241 68.7+ 3.2 775+ 3.8
Ystl NCL 25.8 63.6+ 3.8 83.0+ 3.3 70.6+ 3.7 76.8+ 4.4 17.0 69.0+ 2.6 80.7+ 1.8
PFC 39.7 64.6+ 4.8 82.54+ 4.3 71.8+ 5.3 75.44+ 6.5 16,5 71.0+ 44 75.5+ 5.4
Baseline || 18.5 77.1+ 4.6 96.2+ 1.1 82.8+ 3.6 95.1+ 1.3 152 80.6+ 7.8 94.84+ 2.2
Yst2 NCL 16.1 77.6+ 6.0 95.3+ 1.7 83.6+ 4.7 93.7+ 1.7 13.4 89.6+ 5.2 91.9+ 2.9
PFC 27.9 81.2+ 4.9 95.54+ 1.5 89.6+ 3.2 92.14+ 1.9 20.6 89.2+ 3.2 92.3+ 1.8
Baseline || 9.8 53.3+ 214 94.1+ 4.4 842+ 125 71.4+ 23.6 4.7 82.6+ 13.7 59.0+ 21.4
Bal NCL 8.4 59.2+ 16.1 87.8+ 6.6 86.9+ 11.8 66.0+ 29.5 4.9 61.84+ 4.2 94.1+ 5.9
PFC 20.8 51.74+ 18.2 95.44+ 3.5 87.3+ 9.3 741+ 17.1 10.1 83.6+ 9.4 79.5+ 10.3

result, apost-hocmultiple comparisons test using the Kruskalto calculate the corresponding diversity measure in fithess
Wallis (KW) method [50] is used to determine the statisticallevaluation. However, this increase is not a serious conicern
significant differences between group means. The KW tasbst tasks. PFC also shows faster average training times tha
conducts a series of pairwise comparisomsing the hyperarea NCL in the tasks. For the largest training set, Ped (more than
values from the MOGP approaches, and outputs a set 28000 examples), NCL incurs substantially longer training
95% confidence intervals for each comparison based on tiraes than the two other approaches.

studentized rangddistribution ¢ (similar to a Studentd-

test). The KW method is a non-parametric test for when the
experimental data is not assumed to be normally distributed VI

In all tasks except Bal and Spt, the average hyperaregpn this section we discuss the MOGP ensemble classification

for both the baseline and NCL approaches afatistically yegyits and compare these approaches to canonical GP and
better than PFC, but are not statistically different frome onyiher machine learning approaches on the tasks.

another. These two hyperarea values (baseline and NCL) are
highlighted in bold in Table IV for these tasks. In one task
(Bal), the average hyperarea for both NCL and PFC ape Voting Accuracy using Full Pareto Front

statistically better than the baseline approach, but arte no | h o . |
statistically different from one another. These two hy Table V reports the average minority and majority class

values (NCL and PFC) are also highlighted in bold for Baficcuracy (with standard deviations) of the evolved ensembl

In the Spt task, the average hyperarea values for all thigdnd the three MOGP approaches (Baseline, NCL and PFC),
approaches are not statistically different from one armothe ©" fhe test"se(;cs over 50 r:””S' In tg‘le left-most column of
These results suggest that in most tasks, the PFC approghaﬂ eV (calle PF.-vote)(,jtf € ensem ﬁs usaa;:{onty-v:teo;}
evolves non-dominated solutions with lower classification € Pareto-approximated front, i.e., the set of non-dotatha
curacy on the two classes, compared to both the baselﬁﬂi“t'ons in an evolved population. The majority vote sfesi
and NCL. However, these solutions may be non-dominatH?Jat the class label with the most votes from the ensemble
because they are highly diverse with respect to their errdREMPErs is taken as the ensemble output. The average number
(this is explored further in the next section). It is intdieg O Pareto front solutions (ensemble sizes) are also indlumle
that for the Bal task, both NCL and PFC approaches evolJ@Ple V alongside the classification accuracy. o
at least one non-dominated solution with 100% accuracy on'mmediately noticeable in Table V are the strong majority
both the minority and majority class. This solution reprase €lass performances for the three MOGP approaches using
the Pareto-optimal hyperarea of 1 in Table IV for Bal, afliS voting strategy. In some tasks such as lon and, Ytee
the Pareto-optimal frontier consists of only this one patdr Corresponding minority class accuracies are still reasgna
point. The baseline MOGP approach is not able to accompligf©d. while in the others, particularly Ped and Spt, this is
this in any task. very poor. This shows that in most tasks, the evolved Pareto
Table IV also shows that as expected, both NCL and petents can contain more solutions biased toward the mgjorit
incur longer average training times than the baseline agbro €1ass than the opposite case, i.e., solutions with good nityno

This is due to the additional computational effort require@ccuracy or middle-region solutions, as these biasediso&it
can influence the final ensemble vote, thus biasing the final

2k(k — 1)3 total comparisons wherk is the number of MOGP systems. ensemble prediction.

MOGP ENSEMBLE CLASSIFICATION RESULTS
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B. Limiting the Influence of Biased Ensemble Members  ensemble-diversity objective in fithess (unlike NCL and PFC
d its Pareto front solutions are more accurate on the two

. L . a
'Three strategies are evaluated tq limit the influence 8E'ectives but less diverse in their outputs (as discuseed i
biased ensemble members on the final ensemble vote. tion V-B)

first strategy uses a weighted majority vote of the Paretoraple v also shows that ensemble sizes for RPF-vote are

front solutions where the weight arontribution of a given  gayier than PF-vote in all tasks. In exactly 4 tasks (lon and
individual in the voting process is based on the fithess qfst2 are the two exceptions), roughly half of the number
that individual on the training set (used in [39]). For NCly¢ paretg front solutions are excluded from the RPF-vote
a_nd PFC, an individual’s fitness is the_ average accuracy embles (compared to PF-vote), as these solutions heve le
diversity (Eq. (7) and Eq. (9), respectively) on both classey,n 500, accuracy on both classes. This reaffirms the notion
while for the baseh.ne MOGP, th|s. is the average accuragyat not all Pareto front solutions make useful contribsitor
on both classes. This means that biased Pareto front swuti, 1o ensemble. Eor lon, the ensemble results for the PF-
with poor fitljess on one class wi_II contr'ibute Ies; in then®ti \\vote and RPE-vote strategies have higher majority class
process, while Pareto front solutions with good fitness dh bo, .o, racies (than minority class accuracies) compared to PF
classes will contribute more. The ensemble results usiag flye angd the RPF-vote ensemble sizes are not much smaller
weighted majority vote_are shown_ in the m'd_d'e column 'than the PF-vote ensembles. This suggests that the evolved
Table V. For presentation convenience, the fitness-weihtg, e fronts for lon did not contain many biased solutions,
majority vote of the full Pareto front in the ensemble iseall ;5 the gifferences in ensemble sizes between the PF-vote and
the PF-Wvote strategy in Table V. RPF-vote is larger in other tasks. This may be due to the

The second strategy uses a naive but effective ensem@(’)‘?nparatively low level of class imbalance in lon.
selection strategy (used in [41][27]) to simplgmovebiased  |nterestingly, the baseline MOGP ensembles perform as
Pareto front solutions from the final ensemble. Pareto froffe|| as NCL and PFC in some tasks, particularly for the
solutions with less than 50% accuracy on either the minorip=_\wyote strategy. For example, in lon, Ped and.)Y e
or the majority class (on the training set) are removed frogseline and NCL results are similarly good; while all three
the ensemble, allowing the reduced ensembles to contayn ofioGPs (baseline, NCL and PFC) show similar results in Yst
relatively accurate members (with at least 50% accuracy §Rjs is surprising as the baseline MOGP uses no ensemble-
both classes). In this ensemble selection strategy, showngjyersity objective in fitness. This suggests that in theskd,
the right-most column in Table V (called RPF-vote), eacihe stochastic processes within GP alone are sufficient to
member's vote contributes equally during voting. Ensemblgolve diverse solutions when the PF-Wvote strategy is used
members with at least 50% accuracy on both classes impligg ensemble voting (compared to NCL and PFC which use
that a solution is better than random guessing on the tagkgiicit ensemble-diversity measures in fitness). Howefuer
[41][27]. ther investigation of the differences between the three MOG

The third strategy uses off-EEL [37] for ensemble selectiaipproaches is needed and is explored in Section VI-D.
(these results are discussed in the next section).

Table V shows that all three MOGP approaches with tfe. Off-EEL Algorithm for Ensemble Section

PF-Wvote and RPF-vote strategies have more balanced classhe RPF-vote strategy for ensemble selection offers a naive
performances with better minority class accuracies in ajkt effective approach to choosing which individuals to use
tasks (except lon), particularly Spt, Ped (for the baseling the final ensemble (from the set of evolved Pareto front
MOGP) and Yst. This suggests that the PF-Wvote and RPiassifiers). A more exhaustive and arguably better ensembl
vote strategies succeeded in reducing the influence of diaselection approach is the off-EEL (offline evolutionary en-
Pareto front solutions in the ensembles in these tasks.eTheemble learning) algorithm [37] (discussed in Section )JI-B
two strategies typically produce similar (or non-doming}i In this section we evaluate the MOGP ensembles using off-
ensemble results for the NCL and PFC approaches in nearly@#f| to investigate if this algorithm can improve ensemble
tasks (except Bal), suggesting that both are similarlyctiffe performances compared to the RPF-vote strategy.
in keeping the ensemble performances well-balanced on botiThe off-EEL algorithm uses a greedy search to construct
classes. In Bal, the NCL results for PF-Wvote and RPF-vofge ensembles from a pool of base classifiers (in this case,
vary in their minority and majority class bias, e.g., mitpri an evolved Pareto front). This algorithm sorts the input set
class accuracy is higher using PF-Wvote, while majorityslasf base classifiers according to their fitness values on the
accuracy is higher using RPF-vote. This may be due to noiggining set (similar to the PF-Wvote), from the fittest to the
or the comparatively high level of class imbalance in Bal. |east fit classifiers. Then, each classifier is removed froen th
Interestingly, the PF-Wvote results dominate the RPF-voteorted) input set and inserted into the ensemble where, at
results for the baseline MOGP approach in all tasks (excegdch step, the ensemble is evaluated using a majority vote of
Spt where both strategies show non-dominated resultsy Tthie base classifiers in the current ensemble. Once all tre bas
suggests for the baseline MOGP, the RPF-vote ensembles stassifiers from the input set are processed, the ensemtile wi
contain some individuals that do not positively contribtae the best performance is taken as the final ensemble. In this
the ensemble, as performances improve when the influencepaper, only odd numbered ensembles sizes are considered as
these members on the ensemble are reduced using PF-Wwbtese constitute ensembles whe@ drawscan occur in the
This may be because the baseline MOGP uses no additiomating process.
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TABLE VI . .
ENSEMBLE ACCURACY (& STANDARD DEVIATION) ON THE TEST seT anp 1O @ Single-figure measure such as the overall accuracy). We

AVERAGE ENSEMBLE SIZE USING OFFEEL ENSEMBLE SELECTION[37]. use the Pareto dominance relation between the outcomes of
Task  MOGP | Size Minority Acc  Majority Acc any two MOGP approaches to determine if one approach is
Baseline| 5.6 83.7+ 5.8 89.2+ 8.8 better than the other, in terms of a “win”, “lose” or “draw”
lon — NCL 99 822455 895481 result. For two MOGP approachegy, and gp, these three
PFC 212  83.6+ 5.2 96.6+ 2.8 . !
Baseline| 39 560Lf 101  836Lf 48 outcomes for a particular run can be defined as follows.
Spt  NCL 52  539+97 83.8+ 4.8 , . _
PEC 107 663+ 85  79.9+ 6.6 o Win for gp, if gp; dominatesgp, (loss for gps).
Baseline| 65.3  89.5% 1.5 84.6% 2.3 o Win for gps if gp; is dominated byyp, (loss for gp,).
Ped NCL 40.4 88.8+ 3.0 83.4+ 2.8 « Draw otherwise.
PFC 55.2  90.6+ 1.5 87.9+ 1.5
Baseline| 33.6  68.5+ 5.5 80.4+ 5.2 Table VII shows the pairs of ensemble “wins” between
ystt NCL | 135 641450 834440 two MOGP approaches, when each approach is compared
PFC 29.2  70.6+ 5.4 78.8+ 5.5 . | .
Baseine| 65  92.3% 2.0 907E 2.9 with every other on a run-by-run basis for 50 independent
Yst2 NCL 8.6 804473 9454 2.1 runs on the tasks. Each win-pair in Table VIl corresponds
PFC___ | 172 931+£26 908+ 24 to the three pairwise comparisons between the baseline, NCL
Baselne| 47 714+ 159  85.6% 9.0 ) D
Bal NCL 55 621+ 175 856+ 7.3 and PFC approaches for a particular ensemble combination
PFC 109 814+ 121  86.2+ 9.1 strategy. The ensemble combination strategies correspiand

PF-Wvote, RPF-vote and off-EEL.

B ) . For example, the first win-pair entry in Table VII for lon
Naturally, when the pool of base classifiers is large, thiSiin pr.wWvote (“8 / 8") shows the number of wins when

algorithm incurs an additional computation cost as the efke baseline MOGP is compared to the NCL approach. In
;emple must be evaluated on all training examples at eqﬁ@ case, both the baseline and NCL score 8 wins each
iteration. For the MOGP approaches, the pool of base clasgizch approach dominates the other exactly 8 times): these
fiers (evolved Pareto front) is not sufficiently large to in@u 55rq4ches are non-dominated with respect to each other in
substantial increase in training time. The Pareto fronfd&@0 e yemaining 34 experiments. Similarly, when the baseline
fewer than 100 classifiers in most tasks except Ped for they prc approaches are compared (also with PF-Wvote) for
baseline MOGP where the average Pareto front size is 154 (8$ «7 ; 14” means that PEC wins against (dominates) the

shown in Table V). baseline in 14 experiments, and the baseline wins agair@t PF

Table VI shows the ensemble results for the off-EEL ensemy 7 oyheriments. These approaches are non-dominated in the
ble selection algorithm over 50 MOGP runs. As expected, ”r"@maining 29 experiments.

off-EEL ensemble performances either dominate, or are non- .
dominated with respect to, the RPF-vote results (in Tabl&V) The last two rows in Table VIl reports the total number of

these tasks. The off-EEL algorithm also shows a better balanWIn$ for each pair, and the total number of "draws” (non-
. S . : : .~ dominated performance), ovedl runs and tasks. The total
in minority and majority accuracies (i.e. both are simyarl

high) than RPF-vote in the two tasks with the highest leve Sumber of wins and draws (each column) in Table VIl sum

of class imbalance (Ystand Bal) for the baseline and PFCO 3:])0 (5(:1 runs< 6 tasks).. in/lose/d "
approaches. These results are not unexpected as the off-EE[ _ese_t ree o utcomes,_l.e., winjloserdraw, rep resemila-
algorithm uses a greedy search to find good ensembles ialdistribution overN independent runs. This means that

high accuracy on both classes compared to the naive RPF- proportion of wins for one approach (call this), the
strategy. proportion of wins for the other approach (call thig), and

the proportion of draws between them (call thig, always
D. Counting Ensemble “Wins’ sums to 1 overN runs. Ina myltinomial dis'tribution,'we can

' calculate a 95% confidence interval of td#ferencein the

For further analysis of the differences between the MOGﬁoportion of wins between two approaches ¢ p.) for a
approaches and the ensemble voting/selection strateuyiaf.\s,pamcmar task, to determine if one MOGP ensemsilgnifi-
also compare the outcomes of each MOGP approachron-a cantly dominatesanother over all runs. The 95% confidence
by-runbasis over the 50 independent runs. This enables usigsrval of this difference between any two MOGP approaches

investigate which MOGP fitness approach (Baseline, NCL ggp pe calculated using Eq. (10), where (p;) is the variance
PFC) and ensemble selection strategy (PF-Wvote, RPF-vgfe,,. for the #" approach inV (50) runs.
P

or off-EEL) produces better overall results across all MOG
experiments and tasks. These questions are difficult to@emsw
using only the average performances reported in Table V and (p1 — p2) £ 1.96+/var(py — p2) (10)
Table VI. For clarity, in our experimental setup, a singla ru
of the three MOGP approaches (baseline, NCL and PFC) \A/Irpere
use the same random starting seed and initial population. 4 (p, — py) = war(py) + var(ps) —

A run-by-run analysis of the MOGP approaches has a two-
dimensional aspect, as both the majority and minority class —(var(py + p2) —var(pr) — var(p2))
accuracies of the ensembles must be taken into account when 2var(p1) + 2var(p2) — var(p1 + p2)
determining if one approach is better than another (condpare
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TABLE VII
"WIN” PAIRS BETWEEN ANY TWOMOGP APPROACHES ON A RUNBY-RUN BASIS FOR THE ENSEMBLE VOTING STRATEGIESA “WIN” IS WHEN ONE
APPROACH DOMINATES THE OTHER ON A GIVEN RUNTHE “WINS” ARE SUMMED OVER50 RUNS FOR EACH TASK AND THEN SUMMED OVER ALL TASKS
(50 RUNS X 6 TASKS). BOLD RESULTS INDICATE A STATISTICALLY SIGNIFICANTLY BETTERENSEMBLE PERFORMANCE95% SIGNIFICANCE LEVEL).

Task Pareto Front Weighted Vote (PF-Wvote) Reduced Pareto Front Ensemble (RPF-vdte) off-EEL Ensemble Selection
Baseline  Baseline NCL Baseline  Baseline NCL Baseline  Baseline NCL
vsNCL  vsPFC vs PFC vsNCL  vsPFC vs PFC vsNCL  vsPFC vsPFC
fon 878 7714 8719 8714 5722 4714 1176 6722 3720
Spt 3/5 1/5 1/3 7110 7110 718 10/7 3/6 1/9
Ped 11/3 1/25 0/19 0/20 1/24 0/42 15/7 0/20 0/26
Ystl 7/8 4/2 5/7 8/9 8/5 6/5 5/3 6/3 1/3
Yst2 715 5/2 3/12 4/16 5/3 3/14 5/1 817 0/4
Bal 10/7 11/ 14 10/9 13/13 11/15 9/15 1478 12/16 4pR1
Total Wins | 46/36 29762 27769 40782 37779 29798 60/32 35/74 9/83
Total draws | 218 209 204 178 184 173 208 191 208
and off-EEL strategies, both MOGPs perform similarly.
pi(1— ;) 2) Further Discussions:The above results show that the
var(p;) = - N PFC ensembles performed better than NCL on these tasks,
(prAp2)(1—p1— o) particularly for the off-EEL sglect!on algqnthm. This may
var(pr +p2) = N be due to two reasons. The first is the different ways NCL

and PFC create “spread” (or diversity) in the populatiore(se

Th its of the 95% fid . | h 36] for theoretical insights into how NCL creates spread in
e results of the o confidence intervals are shown population as discussed in Section 11-B). The second is the

Table VII, where the statistically signficantly better eméde different ways NCL and PFC are used in MOGP: NCL is

performance is highlighted in bold for a particular Win-rpa|C lculated after the population is ranked (using SPEA2) on

As we construct three separate confidence intervals for eaf objectives, while PFC is calculated before Pareto ranki
pairwise comparison, the statistical relationship onlyles is done (see éection V-A for details)

to a specific pair. Developi S .
. ping an approach which incorporates NCL into the
. 1) PFC better thgn NCL over all tasksTable Vi high- objective performance before Pareto-ranking is done {simi
lights the overall differences in ensemble performances qsr to PFC) may improve ensemble performances for NCL.
tween tlrll © thliee MhOGIT\I?:pr_roaches. Thde tot;IFrg:ur_nbﬁ_r Ef Wikewise, new diversity measures (such as the root quartic
(over all tasks) when IS compare to ~ IS higher e proposed in [35][36] discussed in Section 1I-B) may
PFC for all three ensemble combination strategies. ThlsnmeaGIISO improve ensemble performances for NCL, due to differen

that mb?” tgree. er:setrr;nbllt\alccl_ombmanon stra‘;(taglfhs, tr;ﬁ P'\::\Bys in which these measures create “spread” in a population
ensembles dominate the ensem € oftenthan the 5 \vever, more investigation is required to confirm these

opposite case over all runs and tasks. For the off-EEL styate,

) . AR ; X othesis. As this is outside the scope of this work, we will
in particular, this difference in total wins between PFC anﬂy\/%stigate them in future work b

NCL is very large (PFC has 83 total wins but NCL only has
9). This is due to the PFC ensembles achieving statisticalléy ) ) )
significantly better performances than NCL in nearly alkgas £ COmparison with Canonical GP, NB and SVM
This suggests that the PFC approach, particular with off;EE We also compare the ensemble performances with canonical
produces better ensemble results than NCL in these tasks(single-predictor) GP using three fitness functions, and tw

A similar conclusion can be drawn when the PFC ensembleter popular machine learning techniques, namely, Naive
are compared to the baseline MOGP for the three ensemByes (NB) and Support Vector Machines (SVM), on the
combination strategies. PFC always scores more total wiigsks. Table VIII shows the average class accuracies of the
(over all tasks) than the baseline when these two approacfigest evolved solutions using canonical GP (on the tesf) set
are compared against each other for all three strategies. Pver 50 independent runs. The three GP fitness functions
better PFC performances may be due to better cooperatisirespond toAce (Eg. 1), Ave (Eq. 2), and the area under
between the ensemble members than the baseline MOGPtlm ROC curve (AUC) [51] (denoted as GRuc in Table
these tasks, due to better diversity from the PFC measi#l). For Ave, only W = 0.5 is shown as this configuration
in the fitness function. In contrast, NCL only scores moréeats the accuracy of the two classes as equally impomant i
total wins (over all tasks) than the baseline MOGP usirgness. To calculate the AUC for each solution (for GRc),
one strategy (RPF-vote); whereas for the other two strasegiseven TP/FP ratésare used to build an ROC curve, and the
PF-Wvote and off-EEL, the baseline scomesre total wins trapezoidal technique to estimate the area under this curve
(over all tasks) than NCL. Indeed, Table VIl shows that foffor more details see [51]). Note that the same complexity
both PF-Wvote and off-EEL strategies, there is no statiyicaconstraints are placed on both the canonical GP classifiers
significant difference in the wins between the baseline aa@d the MOGP Pareto front classifiers (base classifiers in the
NCL in any tasks. This suggest that the NCL ensembles only, ) ) . o

. . Each TP/FP rate is generated by evaluating the classifi@vahdistinct

show an improvement over the baseline MOGP for the Rpaéss thresholds spread uniformly over the range of genetigram outputs;
vote ensemble selection strategy; while for the PF-Wvote asgen is recommended in [51] for a fast and accurate approximati
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TABLE VIII

CLASSIFICATION ACCURACY OF THE MINORITY AND MAJORITY CLASS FOR THE DIFFERENT APPROACHES ON THE TASKS
Task GP Acc GP Ave (W = 0.5) GP Auc NB SVM
Minority Majority Minority Majority Minority Majority | Minority Majority | Minority Majority
lon 738+ 77 953+£39 | 76.6+6.3 913+ 6.1 | 81.1+5.2 813+ 6.5 | 63.4 88.9 87.5 99.1
Spt 474+ 46 88.6+ 25| 56.7+ 8.3 827+ 3.6 | 70.2+ 6.7 70.0+ 5.8 | 66.7 83.0 37.0 94.3
Ped | 433+ 145 96.6+16 | 87.7+23 85.6+ 28 | 86.2+ 1.5 86.1+ 1.6 | 83.7 81.4 53.8 92.4
Yst; 408+ 4.2 946+ 14| 602+ 4.6 83.1+ 38| 73.0+ 14 728+ 15| 434 96.4 32.8 97.4
Ysty 640+ 81 974+ 06| 859+4.0 93.0+ 2.1 | 86.8+ 2.7 88.2+ 4.1 | 66.7 98.0 58.0 97.9
Bal 9.0+ 175 989+ 1.1 | 856+ 11.4 846+ 11.7| 828+83 87.1+11.0| 0.0 100.0 0.0 100.0

ensembles), e.g., a maximum depth limit of 8 (as outlined lies abovethe average front; whereas the performance of the
Section IV-A). baseline ensemble usually lies that front.

A single run for NB and SVM is generated using the Even in those tasks where the MOGP ensemble results are
WEKA package [52]. The SVM uses a sequential minimaimilar to, or dominated by, canonical GP usidge or Auc
optimisation algorithm with an RBF kernel and Gamma valuguch as Yst), the ensembles still perform better than most of
of 10 (this Gamma value generally gave the best performarit®individual members. In these tasks a likely reason fer th
from experiments using 0.1, 1, 10, and 100). not very good MOGP ensemble performance is the relatively

Tables V and VI show that all three MOGP ensemblgdoor performance of the Pareto-approximated fronts coeapar
using the PF-Wvote and off-EEL strategies achieve much mdfethe frontier generated bylve (different W values in Eq.
balanced (and better) results than canonical GP udingNB  2)- In Figure 3, the average evolved front in both the Ped
and SVM in all tasks (except lon) in Table VIII. In those task@nd Bal tasks, i.e., the median attainment surface by MOGP
with high levels of class imbalance (such as Spt, Ped; Y&ith SPEA2, is clearly dominated by thdve frontier. In
and Bal), these single-predictor methods show biasedtsesufther words, very high accuracy cannot be expected from
In Bal in particular, none of these methods achieve more thHe ensemble if the individual ensemble members themselves
10% accuracy on the minority class (Bal has highest level 8f¢ not sufficiently accurate when compared to thec
class imbalance). In lon, SVM achieves the best results (878gntier. This highlights the importance of developing ado
and 99% on the minority and majority class, respectivelyynderlying multi-objective algorithm to trace out an aater
The MOGP ensembles cannot, on average, match the S\@od diverse set of ensemble members across all the tasks. We
results. However, closer examination of the PFC resulth witeave this improvement for future work.
off-EEL on a run-by-run basis finds that the threestPFC
runs score a better accuracy on both classes than SVM. Thesénalysis of GP Trees
three runs achieve 88/99%, 88/100%, and 92/100% on thean advantage of GP is the representation of the evolved

minority/majority class, respectively. classifiers. Examining the evolved GP trees can provideulisef
On average, the PFC ensembles with off-EEL dominajgsights into how GP learns to solve a particular problem. We
canonical GP usingluc in three tasks (lon, Ped and ¥jtIn  examine a number of typical evolved MOGP classifiers (using
Bal, canonical GP (wittAuc) and PFC (with off-EEL) achieve the PFC approach) from the Bal task as the high level of class
very similar results (within 1% accuracy for each class)tts imbalance in Bal makes this a difficult classification proble
model complexity of the evolved genetic program classifiegg solve (as demonstrated by the highly-biased classificati
are the same in both canonical GP and MOGP, the Pkgsults for canonical GP, NB and SVM in Table VIII). Figures
ensembles are better than canonical GP on some of thasgnd 6 show these programs where the four input features in
tasks for two main reasons. Firstly, this is due to more supp@g| correspond tgf0 — f3 in these programs (both prografns
for two learning objectives (minority and majority acCWpc have a depth of 8).
in MOGP. In other words, in canonical GP withuc, each  The first program we analyse is shown in Figure 4. This
classifier tries to achieve the best trade-off between the tWojution represents a non-dominated solution in the edolve
objectivesindividually (by maximising their AUC); whereas population which achieves 83% and 91% accuracy on the
in MOGP, each classifier is one point (of many) along thginority and majority class, respectively, on the test 3&e
Pareto front. Secondly, combining these Pareto frontifless second program we analyse (another non-dominated solution
into an ensemble where individuals work together (by V(:)tingrom the same run), scores 90% and 80% accuracy on the
further improves performances, as the ensemble perf@tmsminority and majority class, respectively, and is ideritita
least as wellas its individual members. Figure 4 except for seven major differences (underlined in
When a diversity objective such as PFC is introduced frigure 4). These seven differences, shown in Figure 5(b),
the fitness function during evolution, the ensemble performare responsible for the variation in performance between th
better than most of its individual members, as this perforwea two solutions. The overall tree structure shared by botsehe
dominatesthe performance of the individual members. Thison-dominated solutions are shown in Figure 5(a), where the
can be seen by comparing the MOGP ensemble results (@fashed) squares around a particular sub-tree show where in
Tables V or VI) to Figure 3, particularly the median attainme
surface by MOGP with SPEA2. This shows that the ensembléFor convenience, function nodes in Figures 4 and 6 whose amguments
performance (using PF-Wvote, RPF-vote or off-EEL) for thaII correspond to leaf nodes that are randomly generated msrhlage been

! - : - ) ﬁ’lanually replaced by their evaluated ouput (e.g. sub{tte8.5 0.1 replaced
two diversity-based ensembles, in particular PFC, typicaloy leaf node0.6).



(%0.8 (* (% (if<0 (* (-
£2) 2 (- f1-0.7))) (if<0 (if<0 (%-0.7 £3) (+ f1 f3) (+

f0 £2)) (% (%f2 0.6) (- f1f2)) (+ (- f2 f1) (- 3 £0)))

(* (- £2 (* f0 -0.5)) (% (+ -0.6 f2) (+ -0.112)))) (+ (if<0
(% (-
0.2) (if<0 f1f3£3))) (if<0 (+ (-
(* (» 1 0.4) fO) (-
-0.42) (- 0.5f2)) (» 1.0 (* -0.1 f1)) (if<0 f3 (%f0 0.1)
0.9))
(+ (* (-
(%f1 0.7)))))

(%0.6 0) (%f0 f3)) (if<0 (- 0.5

f2 f1) (%0.5 f0)) (- (f3 (- £3 f1)) (+ (if<0 0.2 f1
-0.6 0.2) (* 0.2 -0.1))
(%0 £2) -0.8)))) (- (% (if<0 ( (*
(% (+ (%f0 -1.0) 0.8) (- (+-0.7 -0.1) (* £3 £2))))

(+ f1£0) (if<0 f3 f210)) (%-0.1 (- f2 -0.5)))

Fig. 4. A good evolved GP tree (for the Bal task).

0 1.10
L 2 2.0.2
038 * 3.(*» (%0.3 f1) 1.3)
Ty - 4.(i<0 f0 0.9 f0)
i/\+ ﬁ\+ 507
D U AN 6.(if<0 f0 -0.113)
LA :If: : :If It /*\:0:0: 7.(if<0
- 'T%Hfr-ff (%0.5 (+ -0.7 £2))
T DLD -0.8
-1.7)
(@) (b)

Fig. 5. (a) Overall structure of two GP trees (for Bal) whereepresents a
sub-tree (omitted) and the dashed rectangles (around a giuetree) show
where in the overall structure the seven differences ocand; (b) sub-trees
in the second GP tree that are different from Figure 4.
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are relatively similar to each other, but different from gmams

in other groups. This is because solutions in different gsou
will have different building blocks. For example, the commo

i f conditions in Figure 5(a) may constitute good building
blocks as these are common in well-performing solutions in
the same run (Figure 4). Likewise, the solution shown by
Figure 6 may use different building blocks which allow this
particular program (and other similar-performing progsam
to specialise on certain parts of the input-space. Thisrskve
nature of evolved programs allow the ensembles to improve
system performances.

VII. FURTHERDISCUSSION
This section discusses several important related aspects.

A. Raw Output-Based Ensemble Combination Strategies

To obtain the ensemble output, this paper uses a major-
ity vote of the class decisions of the individual ensemble
members. As discussed, other ensemble combination s&steg
include the average (or weighted average) of the raw outifuts
the individual members, or a winner-takes-all approachrehe
the highest individual output is taken as the ensemble outpu
However, these two combination strategies are not suifable
the MOGP classifiers for two important reasons. Firstly, the
raw (real-valued) outputs of the MOGP classifiers have no
bounds (can be anything betweemo and +co0). Secondly,
the magnitude of the raw outputs are not an indication of
the confidence of the class decision; these can be arbjtraril

the tree the seven differences occur. Figure 5(a) shows tig@e or small for different MOGP classifiers. This means
the overall structure of the evolved GP programs can yéat unless th_e raw outputs are f_wst_scaled for_ cons!stency
decomposed to examine how the learnt GP classifiers solvE'gNe population, ensemble combination strategies usieg t
particular problem. These two particular solutions userse "@W Outputs can be unjustifiably influenced by individuals
of nestedi f conditions within the tree, in combination withWith large output values. Adapting the MOGP approach (with

the other functions+,—,x and %).

The third non-dominated solution from the same run thﬁl >
Wg])nsmered for future work.

we analyse is shown in Figure 6. This solution achieves lo
accuracies than the previous solutions, 72% and 67% on
minority and majority class, respectively, and is alsocedbly

smaller. This solution does not share the same overalltsieic
as the previous two solutions discussed above (the rigkt s
of this tree, relative to the root node, is infact completelx

different). For example, Figure 6 only has twd conditions

and these occur deep within the tree near the leaf nodekeéun@

in the previous two solutions).

(_
(% (* 0.6 £3) (-
20.2 f1) (- f2 f0)) (- (-

0.9 (+ (+ (* (* (if<0 0.4 f0 (- f2 f1)) (- f1f2) (- f1
-0.7 £0)))) f0) (- f3 (* (% (- (if<0 f2
fOo f3) 0.03)) -0.06))))

Fig. 6. A smaller evolved GP tree (for the Bal task).

output scaling that reflects the confidence of an individual’
ass decision) is beyond the scope of this paper but will be

€ Ensemble Optimisation

Finding the best combination of individuals (from the pool
of learnt base classifiers) to form the ensembles can be
{ ought of as a separate combinatorial optimisation proble
fter the initial training phase to learn the base classfier
secondary optimisation/search process can be invoked to
ind the best combination of base classifiers which produces
the best ensemble results [28][30][39][40]. Previous waak
deployed a secondary search to optimise ensemble perfor-
mances post-training [28][39], or in parallel with traigithe
base classifiers [30][40]. Naturally, this secondary ojstéation
process incurs an additional computational cost, and inesom
cases, an extra validation set is required to avoid ovémgitt

Inspection of the evolved programs for other tasks revealsr training set. This area represents an interesting titirec

similar pattern, that is, thbestprograms evolved by MOGP for future work but is outside the scope of this paper.
with PFC share a similar overall structure but this struetur

is different in other non-dominated solutions. Solutionshw

C. Validation Sets

similar performances on the objectives have similar oVeral We have tested the MOGP approaches on six benchmark
structures. We expect that when non-dominated program®blems with different data and variations. They contain

are grouped together based on their performances on
objectives, the overall structure of programs within eakupg

teetain levels of noise. The performances reported are en th
unseen test tests, i.e., 50% of the original data set, fan eac
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