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 
Abstract— the concept of ensemble learning offers a promising 

avenue in learning from data streams under complex 

environments because it better addresses the bias and variance 

dilemma than its single-model counterpart and features a 

reconfigurable structure, which is well-suited to the given context. 

While various extensions of ensemble learning for mining non-

stationary data streams can be found in the literature, most of 

them are crafted under static base-classifier and revisit preceding 

samples in the sliding window for a retraining step. This feature 

causes computationally prohibitive complexity and is not flexible 

enough to cope with rapidly changing environments. Their 

complexities are often demanding because they involve a large 

collection of offline classifiers due to the absence of structural 

complexities reduction mechanisms and lack of an online feature 

selection mechanism. A novel evolving ensemble classifier, namely 

Parsimonious Ensemble (pENsemble), is proposed in this paper. 

pENsemble differs from existing architectures in the fact that it is 

built upon an evolving classifier from data streams, termed 

Parsimonious Classifier (pClass). pENsemble is equipped by an 

ensemble pruning mechanism, which estimates a localized 

generalization error of a base-classifier. A dynamic online feature 

selection scenario is integrated into the pENsemble. This method 

allows for dynamic selection and deselection of input features on 

the fly. pENsemble adopts a dynamic ensemble structure to output 

a final classification decision where it features a novel drift 

detection scenario to grow the ensemble’s structure. The efficacy 
of the pENsemble has been numerically demonstrated through 

rigorous numerical studies with dynamic and evolving data 

streams where it delivers the most encouraging performance in 

attaining a tradeoff between accuracy and complexity. 

Index Terms— Fuzzy Neural Network, Evolving Fuzzy Systems, 

Ensemble Classifier, Data Streams, Online Learning, Concept Drift 

I. INTRODUCTION 

HE data-intensive era where data are collected 

continuously at a fast rate under dynamic and evolving 

environments opens a new promising research direction to 

process data streams efficiently [1], [2].  Unlike a classical 

paradigm in machine learning where a dataset is utilised to 

construct hypothesis and is executed over multiple passes, data 

streams requires a strictly online learning framework with a low 

memory requirement and even if possible with no memory at 

all – one-pass learning mode. Another challenging trait of data 

streams lies in their non-stationary characteristics [3] where the 

data do not follow static and predictable distributions and 
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contains a variety of concept drifts [4], [5]. These facts make a 

retraining phase when incorporating a new sample to an old 

dataset impossible to be performed because it leads to the so-

called catastrophic forgetting [6] of previously valid knowledge 

and is not scalable when dealing with massive data streams. For 

data stream analytics, a learning machine should satisfy the 

following requirements [18]: 

1. Data arrive one by one or chunk by chunk; 

2. Data are learned in a single-scan without revisiting 

previously learned samples; 

3. The total number of samples is unknown before process runs; 

4. A learning machine must have drift handling capability 

regardless of how slow, rapid, abrupt, gradual, temporal, local 

or global change in data stream is;  

Evolving Intelligent System (EIS) provides a unique 

solution for data stream mining because a strictly one-pass 

learning procedure involved here has delivered great success to 

cope with time-critical applications where data streams are 

generated at a very fast sampling rate [7]. Furthermore, EIS 

adopts an open structure where its components can be 

automatically generated, pruned, merged and recalled on the fly 

[8], [9] and can be well-suited to a given problem. This trait 

reflects the true data distributions and tracks changing data 

distributions [10]. EIS has transformed to be one of the most 

active research area in the computational intelligence research 

as evidenced by the number of published works in this area [71]. 

Nonetheless, EIS is typically built upon a single classifier 

architecture which often does not produce adequate accuracy 

for complex problems [11], [35]. In fact, from classical batch 

learning perspective, it is well-known that ensemble classifiers 

outperform single base classifiers in case of high noise levels 

and a low number of available training samples [12] because 

they can better resolve the bias-variance dilemma due to proper 

subspace and data exploration using weak classifiers [13]. 

While few works about a synergy between EIS and an ensemble 

structure can be found in the literature [14], [15], most of them 

utilise a static ensemble architecture, which should be 

predetermined in advance. Although diversity of base 

classifiers can be guaranteed by varying user-defined 

parameters or applying different data partitions to base 

classifiers, the issue of concept drifts remains an open challenge 

because of their fixed structure.  
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The ensemble learning concept uses combination of 

individual base classifiers with a modularity principle, where it 

enables a dynamic evolution of the ensemble structure [12]- 

[19]. The key of ensemble learning lies in the diversity of base 

classifiers, which makes them more robust to various forms of 

uncertainty in data streams (such as significant noise levels). 

Nonetheless, one must bear in mind that the diversity of an 

ensemble classifier might be counterproductive in realm of data 

streams because it opens the door for outdated base-classifiers 

in the ensemble structure. Adaptability of the ensemble 

classifier plays a vital role to the success of ensemble learning 

because it formulates mechanisms how an ensemble classifier 

adapts itself when changing data distributions are presented 

[18]. The ensemble classifier can also be distinguished into two 

groups: active and passive approach. The passive approach 

relies on continuous updates of its components and assumes that 

the concept drifts occur in the ongoing fashion; the active 

approach is equipped by a dedicated drift detection mechanism 

in which it is restructured and parameters are fine-tuned when 

a drift is captured [19]. In practise, the drift detection 

mechanism plays key to role to alert operators for possible 

changing system behaviours and to identify whether a change 

causes catastrophic effect to operation’s cycle – vital for 

process’s safety.  
To the best of our knowledge, local concept drift, curse of 

dimensionality, and structural complexity are the three open 

issues in the current literatures. In case of local concept drift, 

changes do not ensue in the whole feature space rather in some 

local regions only with different rates and severities [20] [21]. 

It remains an open question because existing ensemble 

classifiers are mostly constructed using a batch classifier or 

accumulate already seen samples in the sliding window for 

retraining steps and considers only the global change in data 

distribution. Although ensemble algorithms like DELA [16] is 

excluded from the local concept drift bottleneck due to its three 

levels of adaptivity, namely structural adaptivity, combination 

adaptivity, model adaptivity, it suffers from the absence of a 

dedicated drift detection method [16]. Furthermore, the 

structural complexities of existing ensemble classifiers are 

considerable because they usually involve a large number of 

base classifiers to assure acceptable accuracy. Most of them 

suffer from the absence of a structural complexity reduction 

mechanism which alleviates complexities of ensemble 

classifiers [22]. Existing ensemble classifiers also assume that 

input features are pre-selected in the pre-processing steps. This 

issue hinders its viability in the time-critical applications where 

data streams are generated continuously in a fast sampling rate 

which makes an iterative pre-processing step impractical. 

Furthermore, pre-recorded data are often irrelevant in the later 

stage because of rapidly changing environments.  

A novel ensemble learning algorithm, namely Parsimonious 

Ensemble (pENsemble), is proposed in this paper. pENsemble 

features an open structure where a local expert is created and 

pruned dynamically under strictly one-pass learning mode. It is 

constructed with a recently published evolving classifier, 

namely Parsimonious Classifier (pClass) [24]. An evolving 

classifier strengthens the adaptive nature of evolving ensemble 

because it handles a local concept drift better than a classical 

batch classifier with its dynamic and online paradigm. It 

features an open structure paradigm which is self-evolving to 

track variations in the local data space. The original pClass is, 

however, created using a generalized TSK fuzzy rule imposing 

considerable computational and space complexities if used 

under the roof of the ensemble classifier. pClass is here 

implemented using both standard axis-parallel Gaussian fuzzy 

rule and the multivariate Gaussian function. Because pClass is 

originally designed with the multivariate Gaussian function, 

pClass with the axis-parallel ellipsoidal rule can be realized 

with ease by putting forward diagonal covariance matrix 

instead of non-diagonal one. pENsemble works fully in the 

single-pass learning mode, which is well-suited to the online 

life-long learning scenario. pENsemble is also equipped with a 

dynamic feature selection scenario which can address a high 

input dimensionality and to the best of our knowledge is absent 

from the majority of existing ensemble classifiers. The final 

class prediction of pENsemble is inferred by a dynamic 

ensemble paradigm [25] which dynamically grow, shrink and 

adjust the weights of local experts to data streams. The dynamic 

ensemble concept is inspired by the evolving trait of DWM [34] 

but different criteria are applied to perform the structural 

learning scenarios of pENsemble. pENsemble puts forward 

three new learning components as follows: 

• Online Drift Detection Scenario: pENsemble adopts a 

dynamic ensemble structure where a new local expert can be 

added when a concept change presents in the data streams [26]. 

This procedure is governed by a non-parametric drift detection 

method derived from the concept of Hoeffding’s bounds [27]. 
This method monitors the performance metric and sends a 

warning signal when a significant variation is identified. This 

method is threshold-free and relies on some probability 

inequalities under assumption of independent, univariate and 

bounded random variables which has been theoretically proven. 

This learning feature lowers the ensemble complexity because 

the ensemble size expands on demands only and is independent 

from the number of data streams. 

• Ensemble Pruning Scenario: pENsemble presents an 

ensemble pruning scenario which is crafted from the notion of 

localized generalization error [28]. This method estimates 

generalization performance of a local expert [29] and 

determines local experts to be pruned [30]. This technique 

analyses the upper bound of error of a local expert within Q 

neighbourhood which reflects the generalization power of a 

local expert.  This notion is proposed in [28]-[31] under a radial 

basis function neural network (RBFNN) and is adapted to the 

working principle of pENsemble here applying a TSK neuro 

fuzzy local expert, namely pClass. 

• Online Feature Selection Scenario: pENsemble is capable of 

performing an online feature selection scenario using the so-

called Generalized Online Feature Selection (GOFS) method, 

an extension of the OFS method in [32]. The advantage of 

GOFS over its counterparts lies in its capability for selection 

and deselection of input attributes on the fly by assigning crisp 

values (0 or 1). This allows flexibility in the feature selection 

process and avoids the discontinuity bottleneck because an 

input variable can be recovered again in the future when needed 

[33]. Another salient feature of the GOFS concept is seen in its 

aptitude in handling partial input information which relieves 

computational and storage burdens because a learning process 

does not necessarily start from a full-scale input variables.  
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This paper conveys the following four major contributions 

as follows: 1) a novel ensemble learning algorithm inspired by 

a seminal work, namely DWM [34], is proposed. It modifies 

DWM with the introduction of a drift detection scenario, an 

ensemble pruning scenario, an online feature selection and an 

evolving local expert; 2) pENsemble puts forward a new 

perspective of a fully evolving ensemble learning concept 

where it is evolving in both ensemble level and base-classifier 

level; 3) three novel learning modules, namely the drift 

detection method, the ensemble pruning scenario, and the 

online feature selection, are proposed; 4) the efficacy of 

pENsemble was numerically validated using 15 real-world and 

synthetic data streams. It was compared with the state-of-the art 

classifiers showing that pENsemble outperformed its 

counterparts in terms of accuracy and complexity.  

The paper is structured as follows: Section 2 outlines literature 

survey over current ensemble learning algorithms and evolving 

learning algorithms, Section 3 discusses architecture and 

learning policy of pENsemble, Section 4 elaborates on the 

working principles of the base classifier – pClass, Section 5 

describes numerical studies and comparisons with prominent 

algorithms, concluding remarks are drawn in the last section.  

 

 
Fig 1.  Architecture of pENsemble

II. RELATED WORKS 

Research in the area of EIS has started with algorithmic 

development of a number of works. Evolving rule-based model 

exemplifies the EIS concept using the incremental unsupervised 

learning [37]. DENFIS in [9] is another early example of EIS 

which combines the working principle of TSK fuzzy system 

and the Evolving Clustering Method (ECM). Angelov and Filev 

proposed the so-called eTS [7] which benefits from the data 

potential theory forming an evolving version of the mountain 

clustering. This work is modified for a classification problem 

[65], [66] and has formed the first evolving classifier, termed 

eClass. The term EIS has not been however formalised until the 

clarification in [71] since the term “evolving” is sometime 

confused with the well-known term of evolutionary 

computation. Motivated by significant progress in real-time 

data collection and capture, the notion of EIS has gained 

popularity in the community because it has been shown 

effective in addressing lifelong learning situation and non-

stationary environments. Several extensions and variations of 

EIS have been put forward in the literature [39], [40], [67]-[70]. 

An evolving version of Vector quantization was designed in 

[41] and is algorithmic backbone of FLEXFIS [42], which was 

later extended to a more robust version including rule merging 

in [43], generalized rules and an incremental feature weighting 

mechanism in [44] – an extension of input pruning scenario in 

[72]. A generalized TSK fuzzy rule was put forward in [45]-

[47] and generates a non-axis parallel ellipsoidal cluster, which 

happens to have better coverage and flexibility than 

conventional fuzzy rules [44]. Pratama et al in [47] developed 

the theory of rule statistical contribution borrowing the concept 

of hidden neuron statistical contribution in [48], [49]. EIS has 

also been implemented for control system. In [78], adaptive 

fuzzy tracking control for MIMO uncertain system with 

guaranteed closed-loop stability was proposed. This approach 

is extended to take into account various uncertainties [79].  

 Evolving Ensemble (eEnsemble) was proposed in [14] 

where it makes use of eTS [7] as a base-classifier and is realised 

under different configurations of the ensemble classifier. This 
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work was extended in [50] where eStacking is put forward 

using the concept of stacking ensemble. A parallel 

implementation of TEDAClass was proposed [69]. This work 

can be classified as an ensemble in a strict sense where data are 

distributed in a number of computing nodes. In [70], an 

ensemble of deep learning classifiers was designed for 

handwriting recognition and adopted the concept of data 

parallerization as with [69]. The all-pair classifier in [50] can 

be also grouped as an ensemble approach. It is solely 

concentrated on a class decomposition approach for multi-class 

problems in order to reduce class imbalance. Notwithstanding 

that the EIS has been well-established in the literature, it still 

deserves in-depth investigation because of at least three reasons 

1) vast majority of EIS is constructed in the single model 

framework having low diversity. The ensemble learning 

concept is well-known for its powerful generalization power 

because it address the bias-and-variance better and produces a 

model with high diversity covering a rich data region; 2) The 

use of evolving base classifier in the ensemble structure has 

been initiated in [14], [15], [50], [69], [70] but it relies on a 

static ensemble structure which is predetermined during the 

training process; 3) Existing EISs are categorized as a passive 

approach in handling concept drift because changing data 

distributions are overcome by continuously adapting a 

classifier. It lacks of capability to signal the presence of concept 

drift and to identify the type of drift. Such trait plays vital role 

in practice because it provides a feedback to an operator 

whether a drift is alarming or not. 

III. LEARNING POLICY OF PENSEMBLE 

This section concerns the learning scenarios of pENsemble 

including ensemble structure, learning procedure, and 

complexity analysis. Overview of pENsemble learning 

scenarios is depicted in Fig. 1.  

A. Ensemble Structure 

pENsemble is developed under a generalized working 

framework of the DWM in which its working principle is 

displayed in Algorithm 1. pENsemble stores a collection of 

local experts, which can be automatically generated when a 

drift is detected and pruned when it is no longer relevant to 

capture current data trends [34]. An evolving algorithm, namely 

pClass, is deployed as a base learner which implements an open 

structure paradigm and is created under the MIMO architecture 

[24]. That is, each rule possesses multiple consequents 

representing each class and the final output is inferred from that 

generating the maximum output. The reason behind the choice 

of the MIMO architecture is its aptitude in handling the class 

overlapping because each class is looked after by a unique rule 

consequent. Each local expert is assigned with a voting weight 

iw dynamically adjusted by a decreasing factor ip which 

penalises a local expert when an incorrect prediction is made. 

A local expert is pruned if its weight falls below a certain 

threshold 1 . Despite the fact that the penalty scenario is 

necessary to keep the ensemble structure relevant to up-to-date 

context, it compromises diversity of ensemble. To correct this 

shortcoming, the weight of a local expert is augmented when it 

makes correct prediction to maintain the ensemble’s diversity 
and to open possibility for a local expert to pick up again - such 

mechanism plays vital role when dealing with cyclic drift. In 

addition, pENsemble is equipped with another rule pruning 

scenario which measures the generalization potential of a local 

expert based on a localized generalization error principle. 
Algorithm 1: Parsimonious Ensemble 

Input 

( , ), , ,n O
D X C n O

     are a pair of data chunk, the number 

of input dimension and the number of output dimension, and a data chunk 

size 

, ,i ip y   are a decreasing factor, an i-th local expert, a weight of i-th local 

expert 

1, , ,O
C     are global and local predictions, sum of weighted 

predictions for each class, and pruning threshold 

a data chunk 
( )n O

D
   is received 

Output 

C global prediction 

For 1,...,t    // loops over all examples in the data chunk 

Execute the feature selection mechanism to sample the B most relevant 

samples. This scenario aims to address a high input dimensionality – Section 

3.B.3 

IF the ensemble network is empty 

1M   // create the first local expert 

11   // initialize the weight of a local expert 

End 

0    

For 1,...,i M // loop over local experts 

,
1,...,

max ( )i j
j O

y


   // elicits the local prediction 

IF (
t

C  ) 

    i i iy y  // decreases the weight of a local expert when it predicts 

incorrectly 

    i i p   

Else    

     min( (2 ),1)i i p       

End 

iy     

End 

1,...,

max( )
O

C 





  // Produces the global prediction 

1

i
i M

i

i










 // normalises the weight 

IF i    

Prune i-th local expert // Prune the local expert with a low weight 

End 

For 1,...,i M   

Calculate the localized generalization error (5) to estimate generalization 

power of a local expert. A local expert with poor generalization capability 

is removed - Section 3.B.2 

IF (7) 

Discard i-th local expert 

End 

End  

Undertakes the drift detection method to determine suitable learning actions 

whether a new classifier should be introduced, a learning process is 

committed to update the winning classifier, or no learning process is carried 

out – Section 3.B.1. 

pENsemble starts its learning scenario from scratch with no 

base classifier at all. The first base classifier is initialized using 
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the first data chunk. The ensemble structure grows 

automatically when changing data distributions are seen. The 

performance of individual local experts are assessed and a 

penalty is imposed using the decreasing factor 
ip  when 

misclassification is made by using a local expert whereas a 

reward is granted by increasing its voting weight when correct 

prediction is returned. After carrying out this procedure, the 

online concept drift detection method is performed. The drift 

detection strategy relies on the concept of Hoeffding’s bounds 
to determine the drift’s level [27]. The statistical process control 

approach is integrated to monitor dynamic of data streams [53] 

and classifies system behaviours into three stages, namely 

normal, warning and drift. A new base classifier is created using 

new data streams only when a drift level is reached. A weight 

of a new learner is initialized to 1. The final output of an 

ensemble classifier is inferred from a class having the highest 

accumulated weight. The output of each local learner is 

weighted by its corresponding weight. All outputs are combined 

to arrive at a weighted sum of each class. The weight of base 

classifiers are normalized to assure the partition of unity and the 

normalization step aims to avoid a new classifier to outweigh 

old classifiers. Note that pENsemble still aligns to the one-pass 

learning concept because it learns a data-chunk in a single scan 

without revisiting previous data chunks and without an iterative 

learning of a data chunk.  

B. Learning Algorithm of Parsimonious Ensemble 

This section focusses on learning procedure of pENsemble 

which encompasses the drift detection strategy, the ensemble 

pruning strategy and the online feature selection strategy.  

1) Drift Detection Method: The drift detection scenario is vital 

in the pENsemble because it controls the ensemble complexity. 

It allows an ensemble structure to expand its size when an 

uncharted training region comes into picture [19]. An online 

non-parametric drift detection method is integrated using the 

Hoeffding’s inequalities to determine acceptable level of 

concept changes in data streams [27]. This method is capable of 

capturing significant distributional changes in data streams in 

the one-pass mode and is confirmed by solid theoretical 

guarantees in [27]. It does not rely on any assumption of 

probability density function rather the performance metrics is 

regarded as independent and bounded random variables. It is 

worth mentioning that the drift handling strategy in [23] does 

not specifically detect the exact time period where a drift 

presents since it is derived from the forgetting concept – 

categorized as a passive approach.  

The drift detection scenario starts by monitoring statistics of 

data streams and defines three conditions: stable – there seems 

to be no change, warning – a possible concept drift may appear 

and drift – the drift is clearly identified. The underlying task of 

the drift detection method is to not only pinpoint when the drift 

occurs in data streams but also to track the transition between 

stable condition to drift condition and a drift is ascertained 

when it is severe enough or occurs for a period of time. A wide 

range of performance metrics can be used to assess the 

existence of drift in data streams. Referring to original work 

[27], two performance metrics, namely moving average and 

weighted moving average, are put forward. Since the moving 

average is more sensitive than the weighted version to concept 

change and thus being suitable in detecting abrupt drifts, it is 

used here and has the form 

1

, 1 ,t t t t

t

X X X X




      . Note that this can be 

calculated recursively with ease. The weighted version, 

conversely, is more reliable than unweighted version in 

detecting gradual drift. This approach is similar to the idea of 

statistical process control [53] except the basis of normality is 

relaxed here. Moreover, the use of the standard deviation  for 

the confidence interval is replaced by the significance level 
which corresponds to the warning level (

W ) and to the drift 

level (
D ). The drift detection method is elaborated in 

Algorithm 2. 
Algorithm 2: Drift Detection Method Based on the Hoeffding’s inequality 

Input 

(0,1], (0,1]W D    are confidence for the warning level and 

the drift level 

cutX is statistic computed from 1 2, ,..., cutx x x   

t cutY  is statistic computed from 1,...,cutx x  , Z is statistic 

computed from 1 2, ,...,x x x   

, ,
cut cut cutX Y Z

  


 are respectively error bounds in accordance with 

statistics used      

A data chuck 
1[ ,..., ,..., ] n

tD x x x


   containing   

samples is received  

Output 

{ , , }State Stable Warning Drift  

Calculate the statistics ,t cutY Z   and the error bounds ,
t cut tY Z

 


using the newest observation tx // calculate statistics of three data partitions 

and confidence intervals 

IF 
t t

t tZ X
Z X      

,
cut t

cut t X Z
X Z     , reset ,

t cut
t cut Y

Y 
  // find the cut points   

End IF 

IF 
0 : [ ] [ ]cut t cutH E X E Y   is rejected with significance level

D  // determine the current state of data streams 

State Drift , create a new classifier based on a current data chunk  

ElseIF 
0 : [ ] [ ]cut t cutH E X E Y   is rejected with size W  

State Warning , do nothing but store current data chunk in the 

buffer prepare a new classifier if a drift is confirmed 

Else
0 : [ ] [ ]cut t cutH E X E Y   

State Stable , use data chunk to train a winning classifier and 

clear data samples in the buffer End  

It is observed from Algorithm 2 that a new classifier is 

created when the drift state is signaled and is constructed using 

a current data chunk only. A transition period from warning to 

drift is required to bear out whether a change really occurs and 

is not caused by noise or outliers. No buffer is deployed to 

accumulate data in the transition period (warning to drift) to 

prevent a mixed-up concept of a new classifier. First, we start 

by finding a cut point in the current chunk which indicates a 
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point where a population mean increases. The cut point is a 

switching point when
t t

t tZ X
Z X    where ,t tX Z  are 

statistics obtained from 1 2, ,..., cutx x x and

1 2, , ,..,cut cut mx x x x  respectively, while the error bounds 

,
cut cutX Z

  are calculated as follows: 

( ) 1
( ) ln( )

2 ( )

m
b a

cut m cut
 
 


       (1) 

where a, b are the minimum and maximum values of an input 

variable[ , ]a b . is the significance level. After finding the 

cutting point, data points in the chunk are grouped in two groups

1 2 1 2[ , ,..., ], [ , ,..., ]cut cut t cut cut cutX x x x Y x x x     . The 

two groups are used in the analysis of the null hypothesis to 

examine the current state of data streams. When a null 

hypothesis is valid, no change is detected in the current data 

stream. When the null hypothesis is rejected with the size
W

 , 

the warning status is reported but when it is rejected with the 

size
D

 , the drift status is returned. The null hypothesis is 

formulated as 
0 : ( ) ( )cut t cutH E X E Y    and its alternative 

is set as
1 : ( ) ( )cut t cutH E X E Y  . The condition to reject the 

null hypothesis is set as 
cut t cut

X Y   where  is elicited 

using (1). We apply the same settings in [27] where ,
W D

 
are respectively fixed at 0.005 and 0.001.  It is worth stressing 

that these two values has clear statistical interpretation because 

it represents the confidence level of the Hoeffding’s bound in 
the level of 1  . 

It is observed in Algorithm 2 that no learning scenario is 

carried out at the warning stage. This mechanism is chosen 

since the warning phase constitutes a transition period where 

the presence of concept drift still calls for further investigation. 

During this phase, current data chunk is stored in the data buffer 

and is meant to construct a new classifier when a drift is 

signaled. This is, however, reset and all data are cleared from 

the buffer provided the next observation returns to the stable 

phase. The stable phase implies that the concept remains the 

same and does not induce an introduction of a new classifier. It, 

however, calls for the winning classifier to be updated using 

current data chunk to assure generalization’s capability of the 
ensemble classifier because it reduces the risk of overfitting by 

feeding more observations to the base-classifiers. The winning 

classifier is selected by simply inspecting its predictive error -

Mean Square Error is used in pENsemble. 

2) Ensemble Pruning Strategy Based on Local Generalization 

Error: The success of ensemble classifier is highly determined 

by the generalization potential of base classifiers. Although it is 

well-known that a collection of weak classifiers often promotes 

better performance than that of strong classifiers, it is not the 

case in realm of data streams. The diversity comes at the cost of 

complexity and predictive performance because data stream is 

inherent with non-stationary contexts. A base classifier with 

low generalization potential is expected to play little during its 

lifespan or even to jeopardize final predictions because of their 

roles in the voting process and therefore pruning such base 

classifier reduces the ensemble complexity [22]. Our approach 

is inspired by the localized generalization error method which 

quantifies generalization capability of a classifier within a 

predefined Q local region [28].  This technique is meant to 

approximate the upper bound of mean square error (MSE) for 

unseen samples lying in the Q region. The use of a 

predetermined Q region is a plausible approach to study 

model’s generalization since most training samples occupy a 
dense local region and are inter-related to each other because 

they are drawn from the same unknown distribution. Finding an 

upper bound of generalization error for hidden context in the 

entire input space is extremely difficult but we can safely ignore 

irrelevant concept sitting far away from training samples.  

The Q neighbourhood is defined as that 

 ( ) ,0 , 1,..,Q b b i iS x x x x x x Q i n         

where n is the number of input dimension and Q is a given real 

value [28]. All samples in ( )Q bS x  except 
bx  are regarded as 

unseen samples and the generalization capability of a model 

must be delved from its generalization capability in a union of

( )Q bS x . Since a complete picture of data distribution is 

unknown before the process runs, it is assumed that unseen 

samples have same chance to appear. ix  is treated as a 

random variable following the uniform distribution with zero 

mean and variance 
2

jx  . The localized generalization error is 

defined as follows: 

2( ) ( ( ) ( )) ( )

Q

SM i

S

R Q f x F x p x dx   (1)  

where ( )if x , ( )F x , ( )p x  are the i-th local expert, the target 

function and the unknown probability density function of the 

input x respectively. In practice, unseen samples will lead to a 

higher error than those of training samples. Through the 

Hoeffding’s inequality with a probability of (1 )  , the 

average of the square error converges to the true mean: 

2 2( ) ( (( ) ) )SM emp SQR Q R E y A            (2)  

 ( ) ( )y f x f x
b

   , ln
( 2 )

B
    ,

2( ( ) ( ))

1
b bf x F x

i
tR

emp







 

 where , , ,A B   stand for the difference between the 

maximum and minimum values of the desired outputs,  the 

maximum possible value of the MSE, the data window size, and 

the confidence interval. The range of desired output, A , and the 

maximum MSE, B ,  are known during the training process and 

are updated regularly as new training samples are observed .

empR denotes the training error which indicates the bias of a 

model. 
2(( ) )SQE y  stands for the stochastic sensitivity 

measure which illustrates the sensitivity of network output 

against the variation of network input.   

The difference between the training sample and the unseen 

sample within the Q neighbourhood is portrayed by the output 
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perturbation y  and 
2(( ) )SQE y  indicates the expectation 

of the squared output perturbations between already seen 

samples and unknown samples in the Q local region. It analyses 

how sensitive a classifier’s output is to the variation of input 

data. The expression of the stochastic sensitivity measure for a 

Gaussian basis function with a center ju  and a width jv  of j-

th input coordinate has been defined in [28] and is formulated 

by assuming independent input perturbations without the 

weight perturbations. The input perturbation follows the 

uniform distribution with zero mean and a variance 
2

jx   but 

the input feature is not identically distributed and has its own 

expectation 
jx and variance 

2

jx . The definition of the 

stochastic sensitivity measure is applicable [29] directly here 

when pClass is implemented with a classical axis-parallel rule. 

This strategy can be still used for the generalized Gaussian rule 

if a transformation strategy is carried out to find low 

dimensional representation of multivariate Gaussian function 

[47]. By the central limit theory, if the number of input features 

is not too low, the Gaussian basis function would have a log-

normal distribution. It is written as follows:    

2 2

1 ( )

1
(( ) ) ( ( ) ( )) ( )

Q b

SQ b b

t S x

E y f x x f x p x d x




      
   (3) 

where ( )p x stands for the probability density function of the 

input perturbation. Since the input perturbation is uniformly 

distributed in the Q region, the probability density function is 

formed as 1 (2 )n
Q and the variance is expressed as 

2 2 3
jx Q  .  The assumption of uniformly distributed input 

perturbations is plausible considering the strictly single-pass 

working principle of pENsemble without any prior knowledge. 

Albeit this assumption, the distribution of the input 

perturbations can be relaxed provided that the variance of the 

input perturbation is finite. Let 
24 2

2 2 4

1

4 2 2 2 2
,

3
1 ,

2 2 4
,

1

( ) exp(( ( ) / 2 ) ( ( ) / )), ,

( ) ( ( ) ), /

( [( ) ] ( ) 4 ( )
( )

4 [( ) ]( ))

( ( ( ) / )

j j

j j j j

j j

j j

T
i e i i i i i i j

n

j x x ij i i i

j

n
D j x x x x i j

i

j D j x x i j

n

i i x x i j i

j

x W Var s v E s v s x u

E s u v

E x u
Var s

E x u

v u v



   

   

 

  







   

   

   


  

  





 )

     

The final expression of the stochastic sensitivity measure 
2(( ) )SQE y  [28]-[31] is formulated in the form: 

4
2 2 2 2 4 2

,
1 1 11

1 0.22(( ) ) (( ( ( ) 0.2 )/ )
3 9

R n R R

x x x i j x i i ij j j j
i j ii

Q n
E y u v Q v

SQ i
      

  

           (4) 

Because Q  is constant for all base-classifiers, it can be 

dropped from (6). It is observed from the localized 

generalization error formula (2) that there exist three 

components: the training error, the stochastic sensitivity 

measure and some constants. High training error pinpoints the 

under-training case which results in poor generalization of 

unseen samples. The stochastic sensitivity measure illustrates 

the sensitivity of a classifiers against output’s change and that 
having its outputs varying dramatically against input variation 

should characterize high stochastic sensitivity. A good 

generalization is attained by minimizing both terms or forming 

a sound tradeoff between the two. In other words, the ensemble 

pruning scenario aims to discover those classifiers with large 

( )SMR Q  because the smaller it is, the better the model’s 
generalization is. Although this formula aims to analyse the 

upper bound of MSE which targets regression cases and direct 

regression to class indices in most cases results in poor 

performance, this strategy is still applicable to classification 

problems. The relationship between the localized generalization 

error and misclassification rate has been studied in [31] where 

if the error distribution is known, the percentage of unseen 

samples being correctly classified is given by 

0 ( ) ( ) 0.5E err Var err    where  is the 

confidence parameter. Suppose that we compare two classifiers 

1 2,f f , it is understood from the localized generalization error 

theory that 1f  is said to have better generalization error when 

its ( )SMR Q is lower than that of 2f  with the same Q . It is 

shown in [31] that the generalization performance of 1f in terms 

of misclassification rate is better than 2f  with the minimum 

probability 
3

1 2

1
(1 ( ) / ( ) )(1 )

6
SM SMR Q R Q    , where 

(1 ) is the confidence level.    

The ensemble pruning condition is set as follows:  

( ) ( ( ) ) 3 ( ( ) )SM i SM i SM iR Q mean R Q std R Q    (5) 

where this expression adopts the 3-sigma rule principle and 

aims to track downtrend of the model’s generalization. 
Assuming that the localized generalization error follows the 

Gaussian distribution, 99.7% of its values occupy the three 

sigma range or it incurs 99.7% confidence level. That is, any 

case beyond the range of three sigma is said to be anomalies. 

Although the concept of localized generalization error has been 

exploited in various problems [28]-[31], its efficacy for data 

stream analytics is to the best of our knowledge unexplored.   
The ensemble pruning strategy has drawn significant 

research attention to enhance scalability of ensemble learner in 

the large-scale applications since the increase in complexity of 

the ensemble classifier is not obvious in small-scale 

applications. In [73], the notion of margin distribution with L1 

norm regularization strategy is implemented to produce sparse 

weight for ensemble pruning purpose. Similar idea is adopted 

in [74] but in addition to ensemble margin the confidence 

concept is incorporated. Another prominent work for ensemble 

pruning is shown in [75]. It relies on a combination of several 

diversity measures and the use of Genetic Algorithm (GA) to 

weight them. The individual contribution ordering based 

method for ensemble pruning scenario is proposed in [76] and 

aims to find diversity/accuracy tradeoff. The expectation 

propagation is used to derive sparse weights for ensemble 

pruning method in [77]. While the ensemble pruning scenario 

is a mature research area, vast majority of them are 
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computationally prohibitive for data streams applications. 

Moreover, few works have considered generalization potential 

for the underlying indicator of ensemble pruning as exemplified 

by pENsemble.        
3) Online Feature Selection Strategy: A high input dimension 

is commonly found in various real-world data stream cases and 

undermines the learning capability in the online real-time 

scenario because it imposes considerable complexity [33]. The 

transparency of a fuzzy rule is also affected because a rule 

consists of too many atomic clauses. Notwithstanding that the 

online feature selection strategy has drawn considerable 

research interest, they to date focus on a single classifier only. 

An online feature selection technique for the ensemble learner 

is proposed in this paper and is constructed under the 

framework of the GOFS method [32]. As the OFS [33], our 

feature selection approach is extensible to the partial input 

information condition where only a subset of input attributes 

can be obtained for the training process. The GOFS performs a 

crisp feature selection where input features are assigned crisp 

weights (0 or 1) which allows dynamic activation and 

deactivation of input attributes during the training process.  

The contribution of j-th input features can be measured from 

an accumulated output weight across all fuzzy rules 
,

1

R

j i

i

W

  

because it indicates how much output change is imposed by a 

variation of input attributes [2]. Since pENsemble is developed 

from a collection of first order TSK fuzzy systems 
( 1) 1n

iW
   , the 0-th term of the first order TSK fuzzy 

system, which corresponds to the intercept of a linear function, 

is excluded from the summation of output weights. In realm of 

the TSK fuzzy system, the rule consequent depicts the local 

tendency of a rule and may substitute the gradient information 

in the sensitivity analysis of input variables since the gradient 

information changes in each point in the case of nonlinear 

function. This concept is confirmed by the fact that each base 

classifier in the pENsemble employs a local learning scheme in 

which each rule consequent represents a specific region of the 

approximation curve. Data standardization is required here 

because different input ranges may mislead the contribution of 

an input feature. To guarantee transparency of feature 

contribution, normalization is done: 

 

,

1

,

1 1

R

j i

i
j n R

j i

j i

W

W

 

 





  (8) 

where j  is the contribution of j-th input attribute. Since 

pENsemble consists of a set of evolving classifiers, fuzzy rules 

of all local experts are extracted and subject to (8) where 

1 2 ... MR R R R     is a total number of fuzzy rules of all 

base classifiers while M is the number of base classifiers in the 

ensemble. In addition, a sparsity property of L1 norm is 

examined to understand whether the value of n input features is 

accumulated in the L1 ball. Referring to the OLS theory, the 

input pruning process takes place given that misclassification 

occurs. The input pruning scenario is executed here when the 

global prediction of ensemble network does not match the true 

class label C C where C  is the true class label and C  is the 

predicted class label. This approach is plausible because the 

feature selection scenario aims to take the corrective actions by 

getting rid of the influence of poor features. No feature selection 

is necessary when correct prediction is returned to save 

computational cost. The rule consequent is first adjusted using 

the gradient descent approach and projected to the L2 ball to 

assure a bounded norm. Detailed procedure of the GOFS 

method is shown in Algorithm 3.  
Algorithm 3: GOFS procedure for full input attributes 

Input: , , B   are the learning rate, the regularization factor and the 

desired number of input dimension. 

Output: 
1 B

selectedX
  is a selected input vector 

Obtain the global prediction of the ensemble network C   

IF C C   

// update the rule consequent of all base classifiers 

i i i

i

E
W W W

W
  

  


 . 

//Project the weight vector into the L2 ball

2

1

min(1, )i i

i

W W
W


   

// Compute the contribution of input attributes as per (1) 

// Extract selectedX  from the highest B elements of (1) 

Else 

i i iW W W     

End IF 

 

We fix 0.2, 0.01    following the same setting as [32]. 

The standard mean square error (MSE) is applied as the cost 

function, the first order derivative 

i

E

W




 is derived as follows: 

1

1

R

e i

i

R

i
i

i

x
E

W










 






                (2) 

where  
i  is the spatial firing strength. It is worth noting that 

(2) is elicited under assumption that all fuzzy rules are 

structured under the first order TSK fuzzy neural network under 

pClass framework. In other words, fuzzy rules of all base 

classifiers are combined and treated as a unified local expert. 

This scenario is made possible by the local property of the 

pENsemble where each fuzzy rule functions as a loosely 

coupled sub-model. The stochastic gradient descent approach is 

applied in Algorithm 2 rather than the FWGRLS method 

because no covariance matrix has to be allocated and assigned 

for each local model thereby greatly simplifying the overall 

optimization process. It is worth noting the feature selection 

process is done in a centralistic manner where all fuzzy rules of 

each base classifiers are put together. Hence, the output 
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covariance matrix in the local level cannot be used as it 

represents different optimization objectives. The convergence 

of the GOFS method has been proven [32] and its upper bound 

has been obtained. The GOFS method allows different subsets 

of input variables to be selected in every training observation. 

Since the partial input information situation only entails minor 

variation of its full counterpart [32], it is not explained here. 

4) Complexity Analysis: This section aims to analyze the 

computational burden of pENsemble which presents a 

generalized version of DWM. The pENsemble utilizes the drift 

detection method which imposes the computational complexity 

( )O n  because it only relies on the mean of data samples which 

can be computed with ease recursively. The computational 

complexity of pENsemble is also affected by the rule pruning 

scenario governed by the localized generalization error. This 

learning module incurs the computational burden ( )O nRO  

for one classifier. Suppose that there exist M classifiers in the 

classifier, this figure increases to ( )O nROM . The resultant 

computational complexity of pENsemble is 

( ( ) )O M DDM EP IP     where DDM stands for the 

drift detection method, EP denotes the ensemble pruning and 

IP is a short of the input pruning.   is the data chunk size and 

data samples in the chunk are learned in a single scan and are 

not revisited again. Note that the term M in the aforementioned 

big O notation is influenced by the computational complexity 

of pClass as the base classifier. pClass is a fully evolving 

algorithm working in the single-pass learning mode. The 

computational complexity of pClass has been derived in [24].   
IV. PARSIMONIOUS CLASSIFIER 

This section briefly outlines algorithmic procedure of 

pClass which serves as the local expert of pENsemble.  It 

includes network structure of pClass, rule growing strategy, 

rule pruning and recall strategy, and parameter learning 

strategy. Since pENsemble deploys the online feature selection 

scenario in the top level, the input weighting mechanism of 

pClass is switched to the sleep mode.  

• Network Structure of pClass: pClass is a class of neural-fuzzy 

classifiers generating a generalized first-order TSK fuzzy rule. 

It utilises a multivariate Gaussian function evolving a non-axis-

parallel ellipsoidal cluster as the rule premise, while exploiting 

the first order polynomial as the rule consequent. The 

multivariate Gaussian function offers an appealing input space 

partition notably when data are not distributed in the underlying 

axes because the ellipsoidal cluster rotates to any direction [24]. 

Such trait is capable of lowering the fuzzy rule demand and 

retains inter-relations among input variables [11]. Although 

such rule premise is less transparent than the conventional fuzzy 

rule, pClass is fitted with a transformation strategy which 

allows the extraction of classical rule. Nonetheless, the 

multivariate Gaussian function incurs prohibitive 

computational cost and memory requirement due to its non-

diagonal covariance matrix. pClass is also implemented here 

using the conventional Gaussian rule triggering axis-parallel 

cluster. This also aims to demonstrate the performance of 

pENsemble under two different base classifiers.  

• Rule Growing Strategy: the rule growing process of pClass 

is orchestrated by three rule growing modules which determines 

the novelty of a data point whether it deserves to be a prototype 

of a new rule. The first rule growing strategy, namely the Datum 

Significance (DS) method, estimates the statistical contribution 

of a data sample which indicates its possible contribution in the 

whole course of training process. It is derived from assumption 

of the uniform distribution and the statistical contribution is 

expressed as the zone of influence of an ellipsoidal cluster.  

The statistical contribution, however, ignores 

summarization power of a rule because it does not consider how 

strategic a current position of rule in the feature space is [24], 

[38]. This hinders its capability to capture concept drift because 

no distance information is provided in enumerating the 

importance of fuzzy rules. The second rule growing strategy, 

namely the Data Quality (DQ) method, is put forward. This 

concept follows the concept of recursive density estimation 

(RDE) [2], [7] where a density of a local region is computed 

recursively. This concept concludes that a rule addition is 

necessary either when a data point represents the most relevant 

concept having the highest density or when a data point is 

beyond the coverage of existing rules [24]. The DQ method 

differs from the RDE method [7] in two facets: 1) it involves a 

weighting strategy reducing the influence of outliers which 

causes a drop of density for next samples; 2) it uses the inverse 

multi-quadratic function in lieu of the Cauchy function; 3) it is 

tailored for the multivariate Gaussian function.  

An oversized rule is prone to the cluster delamination 

problem which pinpoints a situation where two or more distinct 

data clouds [2] are contained by only a cluster. This situation 

undermines the generalization because the specificity of a 

cluster decreases significantly. The third rule growing strategy 

aims to overcome this issue borrowing the concept of GART+ 

[54]. It monitors the coverage span of the winning rule obtained 

from the Bayesian concept – a rule with the maximum posterior 

probability. It limits the growth of the winning rule where a new 

rule is introduced when the size of winning rule exceeds a pre-

specified level [55]. 

• Rule Pruning and Recall Strategy: pClass is equipped by two 

rule pruning strategies, namely extended rule significance 

(ERS) method, and potential+ (P+) method. The ERS method 

shares the same principle of the DS method which estimates the 

statistical contribution of fuzzy rules to discover 

inconsequential rules which play little role to the final output 

during their lifespan. It combines significance of both rule 

premise and rule consequence to quantify the rule contribution. 

The significance of rule premise is derived from the 

approximation of accumulated contribution of the multivariate 

Gaussian function during its lifespan without revisiting 

preceding samples. It is obtained under a uniform distribution 

assumption and this assumption results in a zone of influence 

of fuzzy rules as an indicator of rule premise significance. The 

contribution of rule consequent is measured from a weighted 

sum of an output weight vector since a small rule weight 

normally generate negligible outputs.  

The P+ method monitors the evolution of a rule in respect 

to current data trend and is vital in non-stationary environments. 

It aims to find obsolete rules which are no longer relevant to 

delineate recent concept due to drift. This scenario is realised 

by extending the concept of data potential [7], [56] for the rule 

pruning scenario. The concept of data potential performs 

recursive density estimation of fuzzy regions which pinpoints 

relevance of fuzzy rules since fuzzy rules which are not 
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supported by current data distribution is expected to return low 

density. The P+ method, however, differs from the data 

potential concept in its kernel function using the inverse multi-

quadratic function instead of the Cauchy function. The P+ 

method also functions as the rule recall scenario which is 

capable of handling the recurring drift. That is, the recurring 

drift refers to a situation where previous data distribution 

reappears again in the future. This may trigger previously 

pruned rules portraying old concept to be valid again.  Adding 

a completely new rule to address the cyclic drift does not 

coincide with the flexible nature of human being which can 

recall previous knowledge with ease. Furthermore, adding a 

new rule risks on catastrophic forgetting of previously valid 

knowledge because it ignores learning history. Previously 

pruned rules can be reactivated in the future provided that its 

relevance indicated by the P+ method beats existing rules and 

newly observed data point. It is worth noting that previously 

pruned rules are discounted from any training scenarios except 

the update of their densities. This paradigm ensures that the rule 

pruning scenario still relieves the computational burden.  

• Parameter Learning Strategy: Data streams may not incur 

sufficient novelty to be a prototype of a new rule but such data 

streams are useful to refine the influence zone of existing rule 

base [24]. This situation is addressed by fine-tuning the rule 

premise of the winning rule. The adaptation scenario is derived 

from the sequential version of maximum likelihood and is 

adapted to the multivariate Gaussian function. Furthermore, 

pClass utilises a direct update scheme of the inverse covariance 

matrix according to the formulas derived in [39] which shelves 

the reinversion of the covariance matrix. The winning rule is 

determined using the Bayesian concept where a rule with the 

maximum posterior probability is selected as the winning rule. 

This winning rule selection is preferred over the compatibility 

measure [55] since it takes into account the rule’s population.   
   The rule consequent is adjusted using the fuzzily weighted 

generalized recursive least square (FWGRLS) method. The 

FWGRLS is a derivation of the FWRLS method [7] borrowing 

the concept of weight decay function of the GRLS method in 

[57]. The FWGRLS method works in the local learning 

scenario well-suited to the EIS since it offers a decoupled 

adaptation scheme where adaptation of each local region incurs 

no cross correlation to each other since each local sub-model 

features a unique output covariance matrix [24]. Learning in a 

particular sub-model has no effect to the stability and 

convergence of other rules. The salient feature of the FWGRLS 

method compared to the FWRLS method lies in the generalized 

weight decay term in the cost function which aims to alleviate 

the overfitting situation. The weight decay term also supports 

compactness and parsimony of the rule base because it forces 

the rule consequent of an inconsequential rule to a small range. 

Therefore, inconsequential rules can be located by the ERS 

method easily. The quadratic weight decay term is incorporated 

since it is capable of reducing the weight vector proportionally 

to its current values [47]. 

V. EXPERIMENTAL STUDIES 

We elaborate on numerical validations of pENsemble by 

using 15 real-world data streams and comparisons with 

prominent classifiers. The simulations were undertaken with an 

Intel (R) Core i5-6600 CPU @ 3.3 GHZ with 8 GB of RAM. 

pENsemble is implemented under MATLAB environment 

where the MATLAB code is made publicly available in1). 

A. Comparisons with State-of-The Art Algorithms 

pENsemble is benchmarked against four prominent 

classifiers for data streams. pENsemble is realized under two 

versions of pClass: axis-parallel, multivariate. The underlying 

feature of consolidated algorithms are elaborated as follows: 

• Learn++NSE is seen as one of pioneer works in dynamic 

ensemble classifier for non-stationary environments [18]. It 

presents an extension of Learn++ [58] to tackle concept drifts 

in data streams. It is an Adaboost-like algorithm which consists 

of a set of weak learners and adopts the concept of sample 

weighting. The underlying contribution is observed in the 

dynamically weighted majority voting which reflects dynamic 

contexts of data streams.  

• Learn++CDE is a generalized version of Learn++NSE 

integrating a specific mechanism to handle the class imbalanced 

problem in data streams [52]. It combines the Learn++NSE 

with the well-established SMOOTE using the concept of 

undersampling and oversampling approaches for imbalanced 

data streams. It also proposes concepts of subensemble and 

class independent error weighting with a penalty constraint. 

Both Learn++NSE and Learn++CDE make use of CART as the 

base classifier.  

• pClass is a class of evolving classifier putting forward the 

open paradigm and the online learning capability [24]. pClass 

is structured as a five-layered neural network working in 

tandem and actualising a generalized TSK fuzzy inference 

system. In addition to its flexible network structure, pClass is 

equipped by an online feature weighting strategy. All of which 

are summed up in Section 4 of this paper. This comparison is 

necessary to illustrate how the proposed ensemble learning 

scheme is better than its single classifier version.  

• eT2Class is another case of evolving classifiers unifying the 

dynamic network structure and the online learning capability 

[10]. It differs from pClass since it incorporates the interval 

type-2 fuzzy working principle. It features a fast type-reduction 

method which is scalable for the online data stream processing.  
Table 1. Characteristic of data streams 

Data stream IA C DP TS TRS TES 

SEA 4 2 100000 200 250 250 

Iris+ 4 4 450 10 34 11 

Car+ 6 2 1728 10 130 42 

Electricity 

pricing 

8 2 45312 200 150 77 

Weather 

Line  

Sin 

Sinh 

10dplane 

Gaussian 

Hyperplane 

Susy 

CHD1 

CHD2 

4 

2 

2 

2 

10 

4 

4 

18 

10 

10 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

60000 

2500 

2500 

2500 

1200 

800K 

120 K 

5 M 

965 

528 

10 

10 

10 

10 

10 

100 

100 

10000 

5 

5 

1000 

200 

200 

200 

100 

400 

1000 

400 

100 

100 

5000 

50 

50 

50 

20 

7200 

250 

100 

93 

28 

IA: Input Attributes, C: Classes, DP: Data Points, TS: Time Stamps, TRS: 

Training Samples, TES: Testing Samples 
Consolidated algorithms were numerically validated using 

15 real-world and synthetic data streams featuring highly 

dynamic characteristics. Popular artificial and semi-artificial 

Diversity for Dealing with Drifts (DDD) problems 

characterizing the abrupt and gradual drifts, namely sin, sinh, 

line, 10dplane, car and iris+, were explored to investigate the 

1) http://www.ntu.edu.sg/home/mpratama/Publication.html
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performance of consolidated algorithms [59], [60]. The SEA 

problem introduced in [61] was used to bear out the efficacy of 

benchmarked algorithms. Moreover, an extension of the SEA 

problem contributed by Ditzler and Polikar [52] was put 

forward instead of its original version since it offers the class 

imbalance property and the cyclical drift which often occurs in 

the real-world data streams. Another popular problem in the 

data stream mining area, namely the Gaussian problem, was 

exploited [18] where each class contains gradual and 

independent drift which can be controlled from the mean and 

variance of the parametric equations. The hyperplane problem 

was exploited to inspect the learning performance of 

consolidated algorithms - a benchmark problem in the massive 

online analysis (MOA).  To assess scalability of consolidated 

algorithms, a big dataset with 5 million records - SUSY- was 

utilised. On top of those artificial and semi-artificial data 

streams, six real world problems, namely electricity pricing, 

weather, coronary heart disease for male and female patients 

(Courtesy of Dr. Agus Salim, Latrobe) [63] were included in 

our experiments. The characteristics of these data streams along 

with experimental procedures are encapsulated in Table 1 and 

detailed descriptions of each problem is detailed in the 

supplemental document. 

 

 
Fig. 2(a) trace of classification rate in iris plus problem, (b) trace of ensemble structure in iris plus problem, (c) fuzzy rule evolution of base classifier  

Table 2. Numerical results of benchmarked algorithms 

Numerical Example Evaluation Criteria pENsemble 

(axis-parallel) 

Learn++.NSE Learn++.cde pClass eT2Class pENsemble 

(multivariate) 

 

 

SEA 

Classification Rate 0.97±0.02 0.93±0.02 0.93±0.02 0.89±0.1 0.88±0.23 0.97±0.02 

Fuzzy Rule 4.1±1.8 N/A N/A 6.6±4.2 1.5±0.5 4.06±1.8 

Input Attribute 2 3 3 3 3 2 

Network Parameters 40.6±18.3 N/A N/A 157.3±101.9 61.3±21 48.7±21.8 

Execution Time 0.78±0.2 1804.2 2261.1 0.42±0.3 0.34±0.11 0.89±0.12 

Ensemble Size 2.03±0.9 200 200 N/A N/A 2.03±0.3 

 

 

Line 

Classification Rate 0.9±0.07 0.88±0.13 0.89±0.14 0.91±0.07 0.94±0.1 0.9±0.07 

Fuzzy Rule 2 N/A N/A 1.5±0.7 1.1±0.3 2 

Input Attribute 1 2 2 2 2 1 

Network Parameters 12 N/A N/A 30 22 12 

Execution Time 0.36±0.14 1.24 1.53 0.25±0.009 0.13±0.04 0.06±0.06 

Ensemble size 1 10 10 N/A N/A 1 

 

 

 

sin 

Classification Rate 0.78±0.26 0.8±0.15 0.8±0.13 0.72±0.2 0.71±0.3 0.78±0.3 

Fuzzy Rule 2.9±1.6 N/A N/A 3.3±1.2 1.9±1.1 2.8±1.4 

Input Attribute 1 2 2 2 2 1 

Network Parameters 17.4±9.9 N/A N/A 39.6 38±11.3 16.8±8.4 

Execution Time 0.21±0.05 0.8 1.9 0.17±0.04 0.24±0.03 0.19±0.05 

Ensemble Size 1.6±0.5 10 10 N/A N/A 1.4±0.7 

 

 

 

sinH 

Classification Rate 0.71±0.06 0.73±0.22 0.75±0.5 0.71±0.09 0.69±0.06 0.71±0.06 

Fuzzy Rule 2 N/A N/A 2±0.9 1.2±0.7 2 

Input Attribute 1 2 2 2 2 1 

Network Parameters 44 N/A N/A 43.2 24±8.4 44 

Execution Time 0.18±0.09 0.69 1.89 0.12±0.05 0.18±0.05 0.19±0.04 

Ensemble Size 1 10 10 N/A N/A 1 

 

 

Classification Rate 0.78±0.15 0.84±0.17 0.85±0.14 0.73±0.18 0.78±0.2 0.75±0.17 

Fuzzy Rule 2.5±1.1 N/A N/A 4.6±1.9 3.3±0.5 2.2±0.6 
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Iris+ 

Input Attribute 1 4 4 4 4 4 

Network Parameters 25±10.8 N/A N/A 147±22.1 237.6±34.8 22±6.3 

Execution Time 0.32±0.2 0.26 0.44 0.27±0.01 0.42±0.4 0.06±0.03 

Ensemble Size 1.1±0.3 10 10 N/A N/A 1.1±0.3 

 

 

 

Car 

Classification Rate 0.79±0.1 0.67±0.3 0.68±0.3 0.77±0.1 0.77±0.14 0.79±0.1 

Fuzzy Rule 3 N/A N/A 2.5±0.8 1.5±0.5 1 

Input Attribute 1 6 6 6 6 1 

Network Parameters 18 N/A N/A 140±47.6 156±54.6 6 

Execution Time 0.29±0.21 1.36 1.34 0.09±0.07 0.16±0.05 0.19±0.05 

Ensemble Size 1 10 10 N/A N/A 1 

 

 

10dplane 

Classification Rate 0.78±0.2 0.72±0.14 0.71±0.13 0.63±0.26 0.56±0.38 0.8±0.2 

Fuzzy Rule 6.4±2.1 N/A N/A 3.1±0.87 3.2±1.4 2.8±0.6 

Input Attribute 5 11 11 11 11 5 

Network Parameters 18 N/A N/A 37.2±10.5 956.8±418.1 117.6±46.7 

Execution Time 0.22±0.08 0.79 1.37 0.39±0.42 1.2±0.6 0.25±0.08 

Ensemble Size 1.6±0.52 10 10 N/A N/A 1.5±0.5 

 

 

Weather 

Classification Rate 0.8±0.02 0.75±0.03 0.73±0.02 0.8±0.04 0.8±0.03 0.78±0.02 

Fuzzy Rule 4.6±2.9 N/A N/A 2.3±0.5 2.3±0.3 3±1.05 

Input Attribute 2 8 8 8 8 1 

Network Parameters 60±28.2 N/A N/A 226.8±95.6 391±81 18±6.3 

Execution Time 2.0±0.7 184.8 9.98 1.8±0.22 1.8±0.1 1.4±0.06 

Ensemble Size 4.6±2.9 10 10 N/A N/A 1.5±0.5 

 

 

 

Gaussian 

Classification Rate 0.75±0.0 0.95±0.03 0.95±0.03 0.74±0.2 0.72±0.13 0.75±0 

Fuzzy Rule 49.78±28.89 N/A N/A 2.1±0.3 1.4±0.5 99.56±57.3 

Input Attribute 1 2 2 2 2 1 

Network Parameters 298.7±171.9 N/A N/A 50.2±6.9 35.5±12.4 597.36±343.9 

Execution Time 27.7±13.3 21020 79998 0.74±0.05 1.6±0.3 19.6±9.3 

Ensemble Size 49.8±28.7 100 100 N/A N/A 49.7±28.7 

 

 

Hyperplane 

Classification Rate 0.92±0.02 0.91±0.02 0.9 0.91±0.02 0.89±0.1 0.92±0.02 

Fuzzy Rule 3.74±0.7 N/A N/A 3.8±1.7 2.04±0.2 2.7±0.7 

Input Attribute 2 4 4 4 4 2 

Network Parameters 37.4±6.7 N/A N/A 114.9±52.6 110.6±10.6 32.8±8.1 

Execution Time 0.9±0.2 926.04 2125.5 2.7±1.4 2.5±1.5 0.7±0.23 

Ensemble Size 1.87±0.34 100 100 N/A N/A 1.87±0.34 

 

 

Electricity pricing 

Classification Rate 0.75±0.16 0.69±0.08 0.69±0.08 0.68±0.1 0.72±0.17 0.75±0.16 

Fuzzy Rule 3.02±1.1 N/A N/A 3.5±2.4 4.6±1.3 1.01±0.07 

Input Attribute 2 8 8 8 8 1 

Network Parameters 36.8±13.04 N/A N/A 226.8±95.6 778.6±20.8 6.03±0.4 

Execution Time 0.28±0.08 211.2 211.2 7.1±4.4 0.3±0.08 0.27±0.02 

Ensemble Size 1.3±0.6 119 119 N/A N/A 1.01±0.07 

 

 

Coronary Heart Disease1 

Classification Rate 0.94±0.02 0.83±0.4 0.84±0.35 0.86±0.16 0.94±0.02 0.95±0.01 

Fuzzy Rule 2 N/A N/A 6.4±5.8 3.8±0.4 1 

Input Attribute 2 10 10 10 10 1 

Network Parameters 24 N/A N/A 844.8±773.1 957.8±112.8 6 

Execution Time 0.26±0.06 1.87 1.82 0.77±0.28 1.92±0.8 0.28±0.08 

Ensemble Size 1 5 5 N/A N/A 1 

 

 

Coronary Hearth Disease2 

 

Classification Rate 0.93±0.09 0.81±0.4 0.81±0.43 0.92±0.4 0.92±0.01 0.97±0.07 

Fuzzy Rule 2 N/A N/A 1 3.2±1.1 1 

Input Attribute 2 10 10 10 10 1 

Network Parameters 24 N/A N/A 33.4±27.7 422.4±144.5 6 

Execution Time 0.21±0.16 4.19 2.2 0.59±0.5 0.7±0.4 0.16±0.008 

Ensemble Size 1 5 5 N/A N/A 1 

SUSY 

Classification Rate 0.77±0.04  

 

 

Terminated 

0.73±0.06 0.74±0.06 0.76±0.04 

Fuzzy Rule 3.8±1.5 1.96±0.26 5.2±1.5 2.84±1.4 

Input Attribute 1 18 18 1 

Network Parameters 22.9±9.1 748±33.3 3875.2±1119 34.1±17.3 

Execution Time 0.29±0.08 0.79±0.3 2.42±0.6 0.6±0.28 

Ensemble Size 1.9±0.7 N/A N/A 1.6±0.7 

Consolidated algorithms are assessed in six evaluation 

criteria, namely classification rate, fuzzy rule, input attribute, 

network parameters, execution time and ensemble size. 

Classification rate refers to accuracy on testing samples defined 

as the rate of correctly classified testing samples while fuzzy 

rule for pENsemble is inspected from a total number of fuzzy 

rules across all local experts. Input attributes in pENsemble are 

sampled dynamically in every training instance by assigning 

crisp weights where a desired number of input attributes is 

predetermined before process runs whereas input attributes in 

other algorithms conversely happens to be fixed. Network 

parameters are enumerated as a total number of network 

parameters across all local experts and are determined by the 

type of network architecture. Structural complexities of the base 

classifiers have been discussed in [24] and are not recounted 

here. Execution time is obtained from the running time to 

accomplish a training process, while the ensemble size is 

measured from the number of base classifiers deployed in the 

training process. The simulation follows the periodic hold-out 

process where data streams are generated chunk by chunk in a 
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number of time stamps and each data chunk are partitioned into 

two parts, namely training and testing and are processed in 

online mode. The evolution of classification rate, ensemble size 

of benchmarked algorithms and fuzzy rule evolution of base 

classifier are visualized in Fig. 2. The classifier is evaluated in 

the training-then-testing mode and classifier’s accuracy is seen 
from its generalization aptitude in classifying testing samples. 

That is, it is assumed that data streams arrive in chunk-by-chunk 

mode where every chunk is split into two parts: training and 

testing. The performance of the algorithms are measured based 

on their overall performance across all data streams. The 

procedure of the periodic hold-out process is depicted in Fig. 3. 

Numerical results of consolidated algorithms are tabulated in 

Table 2 and are averaged over the number of time stamps.   

 
Fig. 3  the principle of periodic hold-out process

From Table 2, pENsemble outperforms its counterparts in 

the viewpoint accuracy where it produces the highest accuracy 

in 9 of 15 study cases. It is depicted that pENsemble delivers 

almost 10% improvement of classification rate compared to its 

single model version - pClass. pENsemble’s accuracy is inferior 
to Learn++NSE and Learn++CDE in sinH, Gaussian and iris+ 

data streams. Nonetheless, it is understood that both 

Learn++NSE and Learn++CDE possess intractable structural 

complexities since the ensemble size grows exponentially as the 

number of data streams which might not be a wise option in the 

real-world data stream environments where the total number of 

data streams is unpredictable and possibly infinite. This 

drawback is portrayed in the SUSY problems having 5 million 

samples. Both algorithms were terminated before obtaining any 

results because they had run for three days in the same 

computational resources as other algorithms without returning 

any results. In the realm of fuzzy rule and network parameters, 

pENsemble generates a comparable level of complexities even 

compared to non-ensemble classifiers. These facts are 

acceptable since pENsemble features two rule pruning 

scenarios analyzing not only relevance of base classifiers but 

also approximation of generalization performance of base 

classifiers. Moreover, the dynamic online feature selection 

scenario contributes substantially to lower network parameters 

without compromising the predictive accuracy. The compact 

and parsimonious structures of pENsemble expedite its 

execution times which happened to be comparable with its 

single model counterparts and even faster than them in some 

study cases. Note that the claim of execution time can be made 

because all consolidated algorithms were executed under the 

same computing platform. pENsemble overcomes both 

Learn++NSE and Learn++CDE in the context of ensemble size 

in all study cases. It is worth noting that pENsemble makes use 

of the drift detection method controlling the growth of ensemble 

structures. The drift detection method brings a step forward 

from Learn++.NSE and Learn++.CDE since a new data stream 

does not necessarily trigger the introduction of a new local 

expert and a new local expert is added only when the conflict 

attributed to the concept change is severe enough and beyond 

the scope of existing local experts. This scenario leads to a more 

resilient approach to deal with the plasticity-stability dilemma 

than static ensemble or greedy ensemble [27]. Nonetheless, it is 

recognized that ensemble structure incurs more demanding 

complexities than a single classifier. Another important 

observation is in the influence of base-classifier to the overall 

ensemble performance. It is evident that pENsemble performs 

similarly under the two versions of pClass in terms of accuracy. 

Although it is expected that the multivariate Gaussian function 

imposes high network parameters to be stored in the memory, 

this type of rule antecedent evolves lower numbers of fuzzy 

rules than its counterpart – the axis-parallel rule. This leads to 

comparable memory demand and computational cost.   

Fig 2(a) displays evolution of classification rate of 

benchmarked algorithms in iris+ problem. The iris+ problem 

has been modified from its standard version by duplicating 

original samples and randomly selecting samples. It is 

demonstrated that predictive accuracy of benchmarked 

algorithms suffers from concept drift and learning strategies 

help to recover from significant performance deterioration. Fig 

2(b) captures the fact that pENsemble has a fully evolvable 

ensemble structure fully controlled by the drift detection 

mechanism and ensemble pruning scenario. Compared to 

Learn++NSE and Learn++CDE, pENsemble incurs 

substantially more parsimonious ensemble structure since its 

structure only grows on demand with respect to whether or not 

drift is present in the data streams and is contrast to 

Learn++NSE and Learn++CDE where a new base classifier is 

introduced when a new data stream arrives regardless of 

whether or not it contains added value to the training process. 

Fig. 2(c) depicts the evolving nature of base classifier in SEA 

problem where a base classifier can grow and shrink its 

structure flexible on the fly. This trait is fruitful to deal with the 

dynamic and evolving nature of base classifiers. pENsemble is 

constructed by a collection of axis-parallel pClass as the base 

classifier. Fuzzy rule extracted by this base classifier in sin 

problem is illustrated: 

IF 1X   is close to )89.742,7.46(1 A AND 2X is close to

)68.2,54.3(1A THEN 211 21.108.025.0 XXy  , 

212 21.108.025.1 XXy   

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

14 

where ()(), 21 AA stand for the Gaussian membership function 

corresponding to 21 , XX coordinates and can be associated by 

a specific linguistic label. 21 , yy denote the rule consequents 

associated to two class labels of sin problem. On the other hand, 

fuzzy rule generated by pClass with the non-axis parallel 

Gaussian rule in the sin problem is shown as follows: 

IF X   is close to 
0.21 10,10

( , )
0.35 10,5.4

A
   
   
   

THEN

1 1 20.226 0.086 1.181y X X    , 

2 1 21.223 0.086 1.178y X X    

where ()A refers to the rule antecedent of multivariate Gaussian 

function which comprises two elements, the centroid and the 

inverse covariance matrix. It is evident that pClass is 

constructed under two base-classifiers with different types of 

fuzzy rules. The multivariate Gaussian rule carries some 

advantage in terms of its aptitude in dealing with complex data 

distribution but it comes with the cost of rule transparency due 

to the absence of atomic clauses of the fuzzy rules. Furthermore, 

the transformation strategy of multivariate Gaussian rule has to 

be carried out when executing the ensemble pruning strategy 

(Section C.2).   

VI. CONCLUSION 

This paper presents a novel evolving ensemble classifier, 

termed parsimonious ensemble (pENsemble). pENsemble 

feature some unique characteristics where an evolving 

classifier, namely pClass, is utilized as its local expert. The 

flexible working principle of pClass helps pENsemble to handle 

local drift of data streams effectively because it features an open 

structure and a fully online working principle. pENsemble 

constitutes a fully evolving ensemble classifier where its 

structure is automatically generated and self-expands when a 

concept drift is detected. pENsemble offers a parsimonious 

working principle which is resulted from pruning activities of 

inactive classifiers. It is equipped with two ensemble pruning 

strategies which assess relevance and generalization power of a 

local expert. An online feature selection strategy is incorporated 

into pENsemble. This mechanism actively selects a subset of 

input attributes and differs from common practice in the 

literature because it allows to arrive at different subsets of input 

attributes in every training observation. The efficacy of 

pENsemble has been numerically validated through 15 real-

world and synthetic data streams. It has been compared with 4 

well-known algorithms where our algorithm delivers the 

highest accuracy in 9 of 15 study cases. It is also found that 

pENsemble generated comparable complexities from those of 

single classifier variants and far less complexities than those of 

ensemble classifier variants. Simulations with two different 

local experts have been carried out to examine its sensitivity to 

the local expert and pENsemble performs similarly under the 

two local experts. Future work will be directed toward 

investigation of granular computing for data stream analytics to 

address high-level data stream abstraction. 
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