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Abstract

Naı̈ve Bayes classifiers are a very simple tool for classi-
fication problems, although they are based on independence
assumptions that do not hold in most cases. Extended naı̈ve
Bayes classifiers also rely on independence assumption, but
break them down to artificial subclasses, in this way becom-
ing more powerful than ordinary naı̈ve Bayes classifiers.
Since the involved computations for Bayes classifier are ba-
sically generalised mean value calculations, they easily ren-
der themselves to incremental and online learning. How-
ever, for the extended naı̈ve Bayes classifiers it is necessary,
to choose and construct the subclasses, a problem whose
answer is not obvious, especially in for online learning. In
this paper we propose an evolving extended naı̈ve Bayes
classifiers that can learn and evolve in an online manner.

1. Introduction

In recent years, in many application fields of data anal-
ysis and mining it was realised that there is a strong need
for analysing and mining streaming data. Streaming data
differ from the classical paradigm of data analysis and min-
ing in the sense that the data set to be analysed is not com-
pletely available at the start of the analysis. Data arrive as
a stream so that more and more data become available over
time. In most applications it is not possible to wait until
a large amount of data has been collected for the analysis.
Instead, the analysis should be started as soon as possible,
even with a small data set. However, when more data arrive,
the analysis should not be re-started completely, but should
be carried out in an incremental fashion. This means that
new or modified algorithms are needed that can work in an
incremental way. In most cases, it is also impossible to store
the full history of the data stream. Therefore, an algorithm
for streaming data should only rely on a small, simplified

excerpt from the original data stream that contains the nec-
essary information for the analysis.

When a data stream is analysed in a purely incremen-
tal fashion, it is assumed that the underlying model of the
data and its parameters do not change over time, which
turns out to be an unrealistic assumption in many applica-
tions. Therefore, a proper analysis of a data stream must
be able to evolve over time, i.e. it must be able to adjust its
model structure and the corresponding parameter set, when
changes in the data stream occur.

In this paper we focus on evolving classifiers. This
means we assume that the data stream consists of a num-
ber of input attributes that are used for the prediction of an
additional categorical attribute whose values are the classes.
The correct classification is not available at the time, when
the input data arrive and the prediction is needed. How-
ever, in order to be able to train the evolving classifier, we
assume that the correct classification will be available at a
later stage. For instance, when we want to predict whether
it will rain the next day, the prediction must be based on
known measurements available before the next day. How-
ever, after the next day, it is known whether the prediction
was correct or not, i.e. whether it has been raining or not.

Many traditional classifiers try to minimize the classifi-
cation error directly. This means in most cases that the full
information from a training data set is needed to build such
classifiers. However, in an evolving setting it is not realis-
tic to assume that all historical data can be stored. Although
there are approaches to evolving, classification performance
driven classifiers, they tend to be quite complex. Naı̈ve
Bayes classifiers do not suffer from this problem, they are
distribution driven. Distributions and their parameters are
very easy to track and to be adapted in an evolving fashion.
However, a standard naı̈ve Bayes classifier is very limited
and not well-suited for more difficult classification prob-
lems, especially since only one simple joint probability dis-
tribution is used per class. Extended naı̈ve Bayes classifiers
allow the introduction of artificial subclasses for each class



in order to achieve a better performance. Another advan-
tage of extended naı̈ve Bayes classifiers is that they can be
interpreted as a rule-based fuzzy classifier so that their clas-
sification behaviour is easier to understand for non-experts.

The evolving extended naı̈ve Bayes classifier proposed
in this paper can handle continuous as well as categorical
attributes. Updating the parameters of the probability dis-
tribution can be carried out in a purely incremental fashion,
but it is also possible to neglect the influence of classifica-
tions that were learned a long time. The more interesting
evolving part of the classifier is the introduction of new ar-
tificial subclasses in order to improve the performance of
the classifier.

Section 2 briefly reviews the concepts of standard and
extended naı̈ve Bayes classifiers and their relation to fuzzy
classifiers. How incremental learning and evolving strate-
gies can be applied to extended naı̈ve Bayes classifiers is
discussed in section 3, followed by a brief example in sec-
tion 4. We conclude the paper by outlining future work,
especially ideas for simplifying the extended naı̈ve Bayes
classifiers in an evolving fashion.

2. The Framework of Extended Naı̈ve Bayes
Classifiers

Supervised classification refers to the problem to predict
the value of a categorical attribute, the so-called class, based
on the values of other attributes that can be categorical, or-
dinal or continuous. A typical setting for supervised classi-
fication is where a data set of classified data objects is avail-
able and the task is to construct the classifier based on this
data set. Usually the data set is split up into a training and a
test set, even multiple times in the case of cross-validation,
in order to better judge the prediction quality of the classi-
fier for unknown data. Typically, the misclassification rate
is used as an indicator for the quality of the classifier. How-
ever, this is only a special case of a general cost or loss ma-
trix that specifies the estimated average costs that will result
from misclassifications of an object from each true class

�
to any other class � . The misclassification rate simply uses
a cost matrix with ones everywhere, except in the diago-
nal. The costs in the diagonal, i.e. the losses for correct
classifications are assumed to be zero. The costs for mis-
classifications can differ extremely so that simply counting
the misclassifications might mislead the classifier. If, for in-
stance, we want to predict whether a component of a safety
critical system like an aeroplane will work without failure
during the next operation, the costs for misclassifying the
component as faulty, although it would work, are the costs
for exchanging the component. The costs for misclassifying
a faulty component as correct can cause the death of many
people as ”costs”.

A large variety of classifiers exist in the literature which

cannot be mentioned here completely. Linear discriminant
analysis is a very simple statistical classifier that is easy to
construct. Decision trees are very popular because they are
easy to understand according to their simple rule-like struc-
ture. The same applies to fuzzy classifiers. Both of them
rely on more complex learning algorithms. Naı̈ve Bayes
classifiers, that will be the focus of this paper, are also very
elementary probabilistic models. They are Bayesian net-
works with an extremely simple structure. The learning al-
gorithm for naı̈ve Bayes classifiers is very simple and they
can also be interpreted easily due to the – sometimes unre-
alistic – underlying independence assumptions.

2.1. Naı̈ve Bayes Classifiers

A Bayes classifiers exploits the Bayes rule from statis-
tics: ������� 	�

� ����	�� ��
���������
����	�


(1)�
is the hypothesis, in the case of classification any value

of the categorical attribute that we want to predict.

	
is the

evidence, i.e. the information from the observed attributes
that we want to exploit to predict the considered categorical
attribute. When the misclassification rate is used as an indi-
cator for the quality of the classifier, then simply the class� yielding the highest posterior probability

������� � � 	�

is predicted. If a cost matrix � for misclassifications is
known, the prediction tries to minimize the expected loss.
If the categorical attribute to be predicted can take values
from the finite set of classes � , then the entry �

� ������� 
 for
any ��������� � in the cost matrix stands for the costs that will
result, when predicting ��� instead of the correct class � . Of
course, we always assume �

� ����� 
��! for any �"� � . Cor-
rect predictions do not cause any loss. The expected loss
given evidence

	
and predicting class � is
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In this case, the class � yielding the lowest value in (2) is
predicted by the Bayes classifier.

Note that in both equations (1) and (2), the probability����	�

of the specific evidence does not have any influence

on the predicted class � , since

����	�

can be considered as a

constant factor independent of � . Therefore, for the decision
in (1), it is sufficient to consider the likelihoods (unnormal-
ized probabilities). ����� 	�
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(3)

and in (4) we only need the relative expected losses
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The evidence

	
represents the measured or given val-

ues of the attributes that we exploit for the prediction of the
considered categorical attribute. For a naı̈ve Bayes clas-
sifier (see for instance [15]) it is assumed that these at-
tributes are independent given the classes. This means that,
if
� � � ,�,�, � ��� are the attributes used for prediction, we have��� � � � � � � ,�,�, � ��� � � �

� � 
 ���� � � � � �
� � 
 � ,�,�,+����� ��� � � �

� � 
 (5)

In order to apply a naı̈ve Bayes classifier, the probabilities
in (5) must be known. In case that the attributes

� � � ,�,�, � ���
are categorical attributes, these probabilities can be esti-
mated based on the corresponding relative frequencies in
the available training data set.

For a continuous attribute
���

, it is necessary to estimate
its (conditional) probability density function (pdf)

���	��
 %
from the training data set. Once we have an estimation for
the pdf

���	��
 % , the corresponding value
�
�	��
 % � � � 
 is used in

(5) instead of the probability

��� ��� � � �
� � 
 . This means the

computed value

��� � � � � � � ,�,�, � ��� � � �
� � 
 is no longer a

probability, but a likelihood, i.e. an unnormalized probabil-
ity.

In order to estimate the pdf
�
�	��
 % , it is usually assumed

that
���	��
 % belongs to a class of parametric distributions, so

that only the corresponding parameters of the pdf have to
be estimated. A very typical assumption is that

��� � � is nor-
mally distributed with unknown mean � � 
 % and unknown
variance �	�� 
 % . Such parameters can be estimated from the
training data set using the corresponding well-known for-
mulae from statistics.

2.2. Extended Naı̈ve Bayes Classifiers

The underlying model of a naı̈ve Bayes classifier as-
sumes that each class is characterised by a probability dis-
tribution and for each class this probability distribution is
simply the product of it marginals. Figure 1 shows the nor-
mal distributions for the well known iris data set [3] learned
by a naı̈ve Bayes classifier. The categorical attribute to be
predicted has three different values for the iris data set. Four
continuous attributes are used for the prediction. For each
of the three classes, the naı̈ve Bayes classifier computes a
four-dimensional normal distribution (with diagonal covari-
ance matrices), whose marginal distributions are shown in
figure 1.

The classification performance will work out well in
cases like the iris data set, when the distribution of the data
can be described roughly by a (multinomial) normal distri-
bution for each class. If, however, the data objects of one

Figure 1. The normal distributions for the
three classes for each of the four attributes
for the iris data set.

class do not form a kind of compact cluster, but are dis-
tributed over different separated clusters, then a naı̈ve Bayes
classifier might fail completely.

In this sense a naı̈ve Bayes classifier can be viewed as
a specific form of a fuzzy classifier using exactly one rule
per class [10]. For this purpose the probability distribu-
tions must be scaled in such a way that they never yield
values greater than one, in order to interpret them as fuzzy
sets. This leads to a constant scaling factor that does not
influence the classification decision. The fuzzy sets (scaled
distributions) for one class are aggregated by the product
operator. Typically, fuzzy classifiers use the minimum for
this operation. However, the minimum often leads to se-
vere restrictions [14] and the product is a possible alterna-
tive. The prior probabilities for the classes correspond to
rule weights.

In order to overcome this restriction that a naı̈ve Bayes
classifier using normal distributions for continuous at-
tributes assumes a unimodal distribution of the data for each
class, the introduction of pseudo-classes was proposed in
[8]. In the sense of a fuzzy classifier, more than one rule is



allowed for each class. In terms of a Bayes classifier, each
class is represented by a number of artificial subclasses.
In order to classify a data object, such an extended naı̈ve
Bayes classifier will first compute the posterior probabili-
ties (likelihoods) for each pseudo-class in the same way as
a standard naı̈ve Bayes classifier. The posterior probabili-
ties (likelihoods) for the actual classes are simply obtained
as the sums of the posterior probabilities (likelihoods) of the
corresponding pseudo-classes.

Although the classification of new data object is obvi-
ous for an extended naı̈ve Bayes classifier, it is not clear
at all, how to estimate the prior probabilities and the cor-
responding probability distributions for the pseudo-classes.
The problem during the training phase or construction of the
extended naı̈ve Bayes classifier is to decide to which of its
subclasses an object of a specific class should be assigned.
The problem will be treated in the following section.

3. Incremental Learning and Evolving Ex-
tended Naı̈ve Bayes Classifiers

Online learning from data streams should neither involve
storing all historic data nor re-initiating the learning proce-
dure from scratch, when new data objects arrive. Learn-
ing strategies that rely directly on the information given by
wrong and correct classifications of the single data objects
are usually not well-suited for online learning and need spe-
cial adaptations. A typical example for classifiers working
on this basis are most of the fuzzy classifiers [9]. Learning
in decision trees is mainly based on a suitable impurity mea-
sure like entropy. Since entropy is based on discrete proba-
bility distributions in the case of decision trees, these proba-
bility distributions can be updated in an incremental fashion
and corresponding approaches to online learning for deci-
sion trees can be derived [6, 7]. However, this idea causes
problems, when continuous attributes are considered for a
decision tree and the splitting/discretisation of the contin-
uous attributes should be carried out in an online fashion
without storing all the data. For probabilistic models, when
they use some general weighted mean concept to estimate
their parameters, online learning is very easy to be imple-
mented, as we will see in the following.

3.1. Advantages of Weighted Mean Concepts

A mean value
� ����� ��� � ��
	 �� � � � � can be updated easily

in an incremental manner by

� ��� ��� � � 


���� � ��� � �

�

���� � ��� �

,
(6)

To update a mean value, it is sufficient to know the mean
value of the previous observations, the new observation and

the number of observations. Note that the concept of a mean
value, respectively its estimation, is much more general. It
applies also to derived concepts, especially to statistical mo-
ments. This fact can be exploited to compute variances and
covariances in an online fashion. For the empirical variance,
we have
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,
(7)

This means, the variance only involves the computation of
the two means

� � � � � and
� ��� �

, i.e. the first and second mo-
ment.

The general idea of the Bayesian approach in statis-
tics is to update probabilities based on new observations.
Therefore, it is no wonder that there exist many incremen-
tal learning approaches in the spirit of the general Bayesian
idea [1, 5]. These concepts are applied to many statisti-
cal methods like linear discriminant analysis [11], but also
to Bayesian networks [4], classifiers [13] and especially to
naı̈ve Bayes classifiers [12].

So far, we have only focused on incremental learning.
Evolving systems do not only learn in an online fashion, but
also adapt and change their structure while new data arrive.
It is also important to notice changes in the data stream. A
simple incremental strategy as (6) will slow down the learn-
ing process with an increasing number of data. The under-
lying assumption in (6) is that all data objects contribute
the same information to the actual system or classifier, no
matter how old these data objects are.

(6) is nothing else than a specific convex combination of
the previous mean

� ��� �
and the new observation

� ��� � . One
can also think of other convex combinations, for instance

� ��� ��� � � � ����� 
�� � ��� � ��� � � ��� � (8)

with a fixed constant
� � �  � � � . This corresponds to the

well known idea of exponential decay of the information.
After � new observations the contribution of an observation
to the mean will decrease in an exponential fashion to

� ���� 
 � � �
. In terms of the Bayesian idea, this means that the

probability for a new observation equal or similar to the last
one is

�
, whereas the probability for an observation equal

or similar to one that lies � steps back is

� ����� 
 � � �
.

One can also realise a sliding window concept of size �
for the mean easily, if it is possible to store a fixed number of� data objects for the classifier. In the sense of the Bayesian
approach this means that new observations are expected to
follow the same distribution as the previous � ones.



3.2. Incremental Learning for Extended Naı̈ve
Bayes Classifiers

The above mentioned concepts can be applied to a naı̈ve
Bayes classifier in a straight forward manner. The prior
probabilities

��� � 
 for the classes are nothing else than mean
values for counting variables, so that (6) can be used. The
same applies to the conditional probabilities

��� ��� � � 
 for
discrete attributes

���
.

For continuous attributes it is necessary to assume a cer-
tain type of distribution. When the distribution is deter-
mined by a finite number of its moments, then again (6)
is applicable. For instance, in the case of normal distribu-
tions, we can estimate the first and second moment (as spe-
cific mean values) in an incremental fashion and compute
the variance from (7). It should be noted that it is not nec-
essary to consider complicated distributions, for instance
Gaussian mixtures. The reason is that we use an extended
naı̈ve Bayes classifier and a Gaussian mixture could be rep-
resented by usual normal distributions for a corresponding
number of pseudo-classes.

When the incremental update is carried out according to
(6), incremental learning will yield the same result as batch
learning. Of course, we can also apply the ”exponential for-
getting” (8) or a sliding window concept that are not equiv-
alent to batch learning, since they treat the data in an asym-
metric way.

There is one open question for the extended naı̈ve Bayes
classifier that we have not answered so far. It is not clear
which class to choose for updating the corresponding prob-
ability distributions. For a standard naı̈ve Bayes classifier,
the probability distributions for the class of the new ob-
served object are updated. But since in an extended naı̈ve
Bayes classifier one class might be represented by a number
of pseudo-classes, we have to choose one of the pseudo-
classes. In case, the extended naı̈ve Bayes classifier has
predicted the correct class for the new observed object, we
update the probability distributions of the corresponding
pseudo-class that had yielded the highest likelihood. We
could also choose this pseudo-class in case of a misclassi-
fication. Note that in this case, we would not choose the
pseudo-class with the highest likelihood from all pseudo-
classes, but only from those that represent the correct class.
However, we slightly deviate from this concept in case of
misclassification. The reason is the way we construct the
pseudo-classes in an online fashion as described in the fol-
lowing.

3.3. Evolving Extended Naı̈ve Bayes Classifiers

So far, we have only described incremental learning but
no adaptation that is expected from an evolving system. We
initialise the extended naı̈ve Bayes classifier as a standard

naı̈ve Bayes classifier, i.e. we start with one pseudo-class
per class. New pseudo-classes are introduced, when the
misclassification rate or the average loss is too high. Since
the misclassification rate and the average loss per class are
also weighted mean concepts, they can be tracked in an on-
line fashion as well.

When then misclassification rate or the average loss is
too high and we decide to introduce a new pseudo-class, we
assign the pseudo-class to the class for which we have the
highest misclassification rate or the highest average loss, re-
spectively. We also have to specify initial probability distri-
butions for the attributes for the new pseudo-class and also
the prior probability for the new pseudo-class.

For the introduction of new pseudo-classes, we apply the
following strategy. When we create the initial naı̈ve Bayes
classifier, we already introduce for each class a second hid-
den pseudo-class. These pseudo-classes are not used for
prediction. But we update the probability distributions for a
hidden pseudo-class each time a misclassification occurred
for an object of the associated class. In this way, the hid-
den pseudo-classes can already start to adapt their proba-
bility distributions to those objects that are misclassified,
although they do not participate in the classification pro-
cess. When a hidden pseudo-class is added to the actual
pseudo-classes, because of an unacceptable high misclassi-
fication rate or average loss for the associated class, we sim-
ply use the probability distributions for the attributes that
were computed for the hidden class. The prior probability
for the new pseudo-class is calculated as follows. Note that
we cannot simply use the tracked prior probability of the
hidden pseudo-class, since otherwise the sum of the prior
probabilities of all classes would exceed one. The prior
probability of the associated class is the sum of all prior
probabilities of the corresponding pseudo-classes. Now we
include the corresponding hidden class, without increasing
the prior probability of the associated class. Assume that
the pseudo-classes associated with the corresponding class
have prior probabilities � � � ,�,�, ����� and that the prior prob-
ability for the hidden pseudo-class was calculated as ��� � � .
This means that the prior probability of the associated class
is
	 � � � � � � . We define the new prior probabilities for the

pseudo-classes by

� (new)� �
� �
� � ��� � � � ,�,�, �	� ��� 


where
� � 	 � � � � � �	 � � �� � � � �

,

This will give at least a small chance to the added pseudo-
class to yield the highest likelihood. When we move a hid-
den pseudo-class to the extended naı̈ve Bayes classifier, we
introduce a new hidden pseudo-class associated with the
same class to the hidden pseudo-classes. The prior prob-
abilities of this new hidden pseudo-class are initialised with



standard parameters (uniform distributions for categorical
attributes, standard normal distributions for continuous at-
tributes. The prior probability is set to zero.

As mentioned above, when a new data object is classi-
fied correctly, we update the probability distributions of the
pseudo-classes of the extended naı̈ve Bayes classifier yield-
ing the highest likelihood. When the new object is classi-
fied incorrectly by the extended naı̈ve Bayes classifier, we
update the probability distributions of that pseudo-class as-
sociated with the correct class that was last added to the
extended naı̈ve Bayes classifier.

When we have moved a hidden pseudo-class to the ex-
tended naı̈ve Bayes classifier, we do not immediately move
another hidden pseudo-class to the extended naı̈ve Bayes
classifier after the next observation, since in most cases the
misclassification rate or average loss will not drop imme-
diately after introducing a hidden pseudo-class to the ex-
tended naı̈ve Bayes classifier. Before we move another hid-
den pseudo-class to the extended naı̈ve Bayes classifier, we
wait a fixed number of new observations in order to give the
modified classifier a chance to adapt its parameters.

4. An Application Example

In order to illustrate how our approach works, we con-
sider a modified version of the iris data set. The original
iris data set contains three classes that are roughly grouped
into three clusters. We artificially join two of the classes, so
that one class is represented by two clusters. We then apply
our incremental evolving extended naı̈ve Bayes classifier to
a stream of randomly drawn samples from the iris data set.
The classifier constructs four pseudo-classes, two for each
class, i.e. one more than expected. Figure 2 shows the cor-
responding normal distributions. Although the distributions
do not completely look like one would expect, the misclas-
sification rate is quite low (4%). The left normal distribution
for the first attribute and the corresponding pseudo-class is
almost not used by the classifier.

5. Conclusions

In this paper, we have proposed an extended version of a
naı̈ve Bayes classifier that is able to learn in an incremental
fashion and to extend its structure automatically, when the
data from the data stream cannot be classified well enough.
Future work will include concepts to reduce the number of
pseudo-classes. Pseudo-classes with an extremely low prior
probability can be removed. Also pseudo-classes with sim-
ilar probability distributions can be joint together. Here a
� � -test could be applied.

We also plan to incorporate ideas from semi-supervised
online learning [2], in case the classification is not available
for all data.

Figure 2. The normal distributions for the four
pseudo-classes resulting from the modified
iris data set.
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